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Summary. This case-study ®ts a variety of neural network (NN) models to the well-known airline
data and compares the resulting forecasts with those obtained from the Box±Jenkins and Holt±
Winters methods. Many potential problems in ®tting NN models were revealed such as the possi-
bility that the ®tting routine may not converge or may converge to a local minimum. Moreover it
was found that an NN model which ®ts well may give poor out-of-sample forecasts. Thus we think
it is unwise to apply NN models blindly in `black box' mode as has sometimes been suggested.
Rather, the wise analyst needs to use traditional modelling skills to select a good NN model, e.g. to
select appropriate lagged variables as the `inputs'. The Bayesian information criterion is preferred to
Akaike's information criterion for comparing different models. Methods of examining the response
surface implied by an NN model are examined and compared with the results of alternative non-
parametric procedures using generalized additive models and projection pursuit regression. The
latter imposes less structure on the model and is arguably easier to understand.
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1. Introduction

Neural networks (NNs) have been vigorously promoted in the computer science literature for
tackling a wide variety of scienti®c problems. Recently, statisticians have started to investigate
whether NNs are useful for tackling various statistical problems (Ripley, 1993; Cheng and
Titterington, 1994) and there has been particular attention to pattern recognition (Bishop,
1995; Ripley, 1996). NNs also appear to have potential application in time series modelling
and forecasting but nearly all such work has been published outside the mainstream statistical
literature. This work is reviewed in Section 7 and reveals that, contrary to some rather gran-
diose claims, the empirical evidence on NN forecasts indicates varying degrees of success.
It is pertinent to ask whether the success of NN modelling depends on

(a) the type of data
(b) the skill of the analyst in selecting a suitable NN model and/or
(c) the numerical methods used to ®t the model and to compute predictions.

Experience regarding (a) can be built up with forecasting competitions, whereas case-studies
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are better suited to assess (b) and (c), as well as throwing some light on (a). This paper
describes one such case-study, based on the well-known airline data (see Section 2). After an
introduction to NNs in Section 3, we describe our experiences in ®tting and using NN models
in Sections 4 and 6. Section 5 discusses ways of trying to understand the response surface
implied by an NN model. Section 7 reviews our ®ndings in the context of other studies and
urges more understanding between statisticians and computer scientists.
We stress that we do not claim to propose any new methodology. Moreover, we deliberately

chose to use public domain software to carry out our analyses to replicate the likely
circumstances of an applied statistician trying out NNs for the ®rst time. The `novelty' of the
paper lies in giving practical guidance on NN modelling and a comparison with alternative
approaches from a statistical, as opposed to computing science, point of view.

2. Box±Jenkins analysis of the airline data

The main time series used in this paper is the so-called airline data, listed by Box et al. (1994),
series G, and earlier by Brown (1962). Fig. 1 shows that the data have an upward trend
together with seasonal variation whose size is roughly proportional to the local mean level
(called multiplicative seasonality). The presence of multiplicative seasonality was one reason
for choosing this data set. A common approach to dealing with this type of seasonality is to
choose an appropriate transformation, usually logarithms, to make the seasonality additive.
However, the discussion of Chat®eld and Prothero (1973) demonstrated the dif®cult nature
of such a choice, and if NN models could deal with the non-linearity that is inherent in
multiplicative seasonality and allow the raw data to be analysed this would obviate one
awkward step in the usual approach to time series analysis. Moreover, the length of the series
was typical of data found in forecasting situations, the data were widely available and non-
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Fig. 1. Airline data; monthly totals (in thousands) of international airline passengers from January 1949 to
December 1960: (a) raw data; (b) natural logarithms



con®dential and we wanted to see whether we could replicate the promising results obtained
by some computer scientists (Tang et al., 1991).
The standard Box±Jenkins analysis (e.g. Harvey (1993) and Box et al. (1994)) involves

taking natural logarithms of the data followed by seasonal and non-seasonal differencing to
make the series stationary. A special type of seasonal autoregressive integrated moving
average (SARIMA) model, of order (0, 1, 1� � �0, 1, 1�12 in the usual notation (e.g. Box et al.
(1994), p. 333), is then ®tted. This model is often called the airline model and is used as the
yardstick for future comparisons, though other SARIMA models could be found with a
similar ®t and forecast accuracy.
Most of the results reported in this paper were computed by ®tting a model to the ®rst 11

years of data and then making forecasts of the last 12 monthly observations. The forecasts
were obtained either from the base month 132 using only data available at that time, giving
multistep forecasts, or by bringing in the recent observed data one at a time, giving one-step
forecasts. The model parameters were not re-estimated at each step when computing one-step
forecasts.
For each model ®tted, using data up to time T, we computed the following statistics:

(a) S, the sum of squared residuals up to time T (the residuals are the within-sample one-
step-ahead forecast errors);

(b) �̂ � pfS=�nÿ p�g, the estimate of residual standard deviation, where n denotes the
number of effective observations used in ®tting the model and p denotes the number of
parameters ®tted in the model; thus, when ®tting the airline model to the airline data
with T � 132, the value of n is 132ÿ 13 � 119, since 13 observations are `lost' by
differencing;

(c) the Akaike information criterion (AIC), n ln�S=n� � 2p;
(d) the Bayesian information criterion (BIC), n ln�S=n� � p� p ln�n�;
(e) SSMS, the sum of squares of multistep-ahead forecast errors made at time T of the

observations from time T� 1 to the end of the series; these are the out-of-sample
(genuine ex ante) forecasts;

(f) SS1S, the sum of squares of one-step-ahead (out-of-sample) forecast errors of the
observations from time T� 1 to the end of the series.

The residual sum of squares, S, can only become smaller and the residual standard
deviations �̂ will tend to become smaller as a model is made `larger'. Thus the minimization
of a criterion such as the AIC or BIC is more satisfactory for choosing a `best' model from
candidate models having different numbers of parameters. Strictly speaking (c) and (d) above
are approximations to the variable parts of the AIC and BIC respectively. In both cases the
®rst term is a measure of (lack of) ®t and the remainder is a penalty term to prevent over-
®tting. The BIC penalizes extra parameters more severely than the AIC does, leading to
`smaller' models. Several similar criteria have been proposed including alternative closely
related Bayesian criteria which depend on different priors on model size. In particular
Schwarz's Bayesian criterion (SBC) has the penalty term p ln�n� rather than p� p ln�n�
(Priestley (1981), pages 375±376). The SBC gives results that are qualitatively similar to the
BIC used in this paper and its use here for the airline data would not change the models that
we select. The reader should note that the SBC is sometimes (confusingly) abbreviated as
BIC.
For the airline model ®tted to the airline data with T � 132, the MINITAB package

(release 9.1) gave the following values (after back-transforming all forecasts from the model
for the logged data into the original units):
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(i) S � 10789;

(ii) �̂ � 9:522;
(iii) AIC � 540:35;
(iv) BIC � 547:91;
(v) SSMS � 3910;

(vi) SS1S � 4328.

The one-step forecasts have slightly worse accuracy than the multistep forecasts as will happen
occasionally. If the airline model is ®tted to the raw data, rather than to the logarithms, then the
®t is about 20% worse (S � 12920� while the accuracy of forecasts suffers even more (e.g.
SSMS � 5230 is 34% worse).
An alternative way to compute forecasts for the airline data, without taking logarithms,

is to use the multiplicative version of Holt±Winters exponential smoothing (e.g. Chat®eld
and Yar (1988)) and this gave forecasts with comparable accuracy to Box±Jenkins forecasts.
Although applied to the raw data, the multiplicative Holt±Winters method is inherently non-
linear in that the formula for a point forecast is a non-linear function of past observations.

3. Neural networks

The following brief account of NNs is intended to make this paper as self-contained as
possible. However, the reader may also ®nd it helpful to read Ripley (1993), Sarle (1994), Stern
(1996), Warner and Misra (1996) and/or Chat®eld (1996a), section 11.4. Alternatively an
introduction from a computer science perspective such as Hertz et al. (1991) and Gershenfeld
and Weigend (1994) may be helpful, while econometric and ®nancial perspectives are pro-
vided by Kuan and White (1994) and Azoff (1994) respectively.
This paper considers one popular form of (arti®cial) NN called the feed-forward NN with

one hidden layer. In time series forecasting, we wish to predict future observations by using
some function of past observations. One key point about NNs is that this function need not be
linear, so that an NN can be thought of as a sort of non-linear (auto)regression model.
Fig. 2 depicts a typical architecture as applied to time series forecasting with monthly data.

The value at time t is to be forecasted using the values at lags 1 and 12. The latter are regarded
as inputs whereas the forecast is the output. The illustrated example includes one hidden layer
of two neurons (often called nodes or processing units or just units). In addition there is a
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Fig. 2. Architecture of a typical NN for time series forecasting with one hidden layer of two neurons: the output
(the forecast) depends on the lagged values at times t ÿ 1 and t ÿ 12



constant input term which for convenience may be taken as 1. Each input is connected to
both the (hidden) neurons, and both neurons are connected to the output. There is also a
direct connection from the constant input to the output. The `strength' of each connection is
measured by a quantity called a weight. A numerical value is calculated for each neuron as
follows. First a linear function of the inputs is found, say � wijyi where wij denotes the weight
of the connection between input yi and the j th neuron. The values of the inputs in our
example are y1 � 1, y2 � xtÿ1 and y3 � xtÿ12. The linear sum, say �j, is then transformed by
applying a function called an activation function, which is typically non-linear. A commonly
used function is the logistic function, zj � 1=f1� exp�ÿ�j�g, which gives values in the range
(0, 1). In our example this gives values z1 and z2 for the two neurons. A similar operation can
then be applied to the values of z1, z2 and the constant input to obtain the predicted output.
However, the logistic function should not be used at the output stage in time series
forecasting unless the data are suitably scaled to lie in the interval (0, 1). Instead a linear
function of the neuron values may be used, which implies the identity activation function at
the output stage.
The introduction of a constant input unit, connected to every neuron in the hidden layer and

also to the output, avoids the necessity of separately introducing what computer scientists call
a bias, and what statisticians would call an intercept term, for each unit. Essentially the biases
just become part of the set of weights (the model parameters).
For an NN model with one hidden level, the general prediction equation for computing a

forecast of xt (the output) using selected past observations, xtÿj1 , . . ., xtÿjk , as the inputs, may
be written (rather messily) in the form

x̂t � �o
�
wco �

P
h

who �h

�
wch �

P
i

wihxtÿji

��
�1�

where fwch g denote the weights for the connections between the constant input and the
hidden neurons and wco denotes the weight of the direct connection between the constant
input and the output. The weights fwih g and fwho g denote the weights for the other connec-
tions between the inputs and the hidden neurons and between the neurons and the output
respectively. The two functions �h and �o denote the activation functions used at the hidden
layer and at the output respectively. One minor point is that the labels on the hidden neurons
can be permuted without changing the model.
We use the notation NN� j1, . . ., jk; h� to denote the NN with inputs at lags j1, . . ., jk and

with h neurons (or units) in the one hidden layer. Thus Fig. 2 represents an NN(1, 12; 2)
model.
The weights to be used in the NN model are estimated from the data by minimizing the

sum of squares of the within-sample one-step-ahead forecast errors, namely S � �t �x̂t ÿ xt�2,
over the ®rst part of the time series, called the training set in NN jargon. This is not an easy
task as the number of weights may be large and the objective function may have local
minima. Various algorithms have been proposed, but even the better procedures may take
several hundred iterations to converge, and yet may still converge to a local minimum. The
NN literature tends to describe the iterative estimation procedure as being a `training'
algorithm which `learns by trial and error'. Our software used a popular algorithm called
back-propagation for computing the ®rst derivatives of the objective function. There are many
ways to use these derivatives for optimization and our ®tting method relied on the Broyden±
Fletcher±Goldfarb±Shanno algorithm (Fletcher, 1987) which is a quasi-Newton method. The
starting values chosen for the weights can be crucial and it is advisable to try several different
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sets of starting values to see whether consistent results are obtained. Other optimiza-
tion methods are still being investigated and different packages may use different ®tting
procedures. For example, a technique called simulated annealing (e.g. van Laarhoven and
Aarts (1987)) can be used to try to avoid local minima but this requires the analyst to set
numerical parameters with names like `the cooling rate', and even then there is no guarantee
that convergence to a global minimum will occur.
The last part of the time series, called the test set, is kept in reserve so that genuine out-of-

sample (ex ante) forecasts can be made and compared with the actual observations. Equation
(1) effectively gives a one-step-ahead forecast as it uses the actual observed values of all lagged
variables as inputs. If multistep-ahead forecasts are required, then it is possible to proceed in
one of two ways. Firstly, we could construct a new architecture with several outputs, giving
x̂t, x̂t�1, x̂t�2, . . ., where each output would have separate weights for each connection to the
neurons. Secondly, we could `feed back' the one-step-ahead forecast to replace the lag 1 value
as one of the input variables, and the same architecture could then be used to construct the
two-step-ahead forecast, and so on. We adopted the latter iterative approach because of its
numerical simplicity and because it requires fewer weights to be estimated. Some analysts ®t
NN models to obtain the best forecasts of the test set data, rather than the best ®t to the
training data. Then a third section of data needs to be kept in reserve so that genuine out-of-
sample forecasts can be assessed.
The number of parameters in an NN model is typically much larger than in traditional time

series models and for a single-layer NN model is given by p � �ni � 2�nu � 1 where ni denotes
the number of input variables (excluding the constant) and nu denotes the number of hidden
neurons (or units). For example, the architecture in Fig. 2 (where ni and nu are both 2)
contains nine connections and hence has nine parameters (weights). Because of this large
number, there is a real danger that the algorithm may `overtrain' the data and produce a
spuriously good ®t which does not lead to better forecasts. This motivates the use of model
comparison criteria, such as the BIC, which penalize the addition of extra parameters. It also
motivates the use of an alternative ®tting technique called regularization (e.g. Bishop (1995),
section 9.2) wherein the `error function' is modi®ed to include a penalty term which prefers
`small' parameter values (analogous to the use of a `roughness' penalty term in nonpara-
metric regression with splines). We did not pursue this approach.
NN modelling is nonparametric in character and it has been suggested that the whole

process can be completely automated on a computer

`so that people with little knowledge of either forecasting or neural nets can prepare reasonable
forecasts in a short space of time'

(Hoptroff, 1993). This black box character can be seen as an advantage but we think it
potentially dangerous. Certainly black boxes can sometimes give silly results and NN models
obtained like this are no exception. Thus Gershenfeld and Weigend (1994), p. 7, found that

`there was a general failure of simplistic ``black-box'' approachesÐ in all successful entries (in the
Sante Fe competition), exploratory data analysis preceded the algorithm application'.

Our case-study demonstrated that a good NN model for time series data must be selected by
combining traditional modelling skills with knowledge of time series analysis and of the
particular problems involved in ®tting NN models. Problem formulation is, as always, critical
and it is `unlikely that applied statistics will be reduced to an automatic process in the
foreseeable future' (Sarle, 1994).
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4. Fitting neural network models to the airline data

Many commercial packages are available for ®tting NN models. James (1994) reviewed 12
such items. We deliberately eschewed commercial software, partly for ®nancial reasons (some
are very expensive), and partly because they are typically written for the business user. For
example, whereas James (1994) would `strongly recommend' a package called 4Thought,
Harvey and Toulson (1994) described the claims made in its publicity material as being
`totally unsubstantiated'. Appendix A gives information on the software that we developed
based on public domain S-PLUS functions, and we think that this sort of software will appeal
more to the average statistician. We realize that different software packages use different
optimization methods for ®tting NN models but, although the implementations differ, we
think that the problems encountered below are representative of those that are likely to occur
with all packages, given the dif®culty in choosing an appropriate architecture, the large
number of parameters which must be estimated, the non-linearity of the model and the
existence of multiple minima in the sum-of-squares surface.
Our case-study will focus on some general issues including

(a) the choice of input variables,
(b) the choice of architecture and activation function and
(c) the criterion for selecting the `best' model.

Our software is designed to handle NNs with a single hidden layer (the usual situation), and
so the choice of architecture is primarily about choosing the number of neurons in the hidden
layer.
As well as these general issues, the case-study also focuses on some more ad hoc problems

such as

(d) deciding whether the data need scaling and
(e) choosing starting values for the weights.

We think that these particular practical dif®culties are of more general interest as being
illustrative of the sort of problems that the analyst is likely to encounter in NN modelling.
There were two immediate such problems. The untransformed airline data lie in the range
104±622. The default choice of the activation function at the output stage is the logistic
function, but this constrains the output (the forecasts) to be in the range (0, 1). Failure to
specify the identity activation function gave ridiculous results. Furthermore the starting
values used in the algorithm are out of scale with the input values so that the ®tting algorithm
failed to converge in a sensible way. Thus we found it necessary to rescale the data, and
dividing by 100 was found to work satisfactorily. All subsequent numbers, including forecasts
and comparisons with other models, refer to these scaled data. We ®nd it dif®cult to offer
general advice on the choice of scaling except to use trial and error and to try different values.
The starting weights must vary over a reasonable range, neither too wide nor too narrow,
compared with the range of the data. We found that dividing by 1000, rather than 100, also
led to convergence problems, although dividing by 1000 would (temporarily at least) have
ensured that all short-term forecasts were in the range (0, 1) so that the logistic activation
function could have been used at the output stage. The need for attention to such numerical
details is clear.
The next serious problem that we found, which appears to apply more generally to NN

model ®tting, was that consecutive restarts of the ®tting algorithm, with different random
starting points for the weights, typically found several different local minima (or even
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saddlepoints). For example, seven distinct local minima were found for the NN(1, 12; 2)
model and the resulting ®t and forecast accuracy are given in Table 1. As the algorithm can
converge to a saddlepoint, it is important to check that the Hessian is positive de®nite in each
case (though this can be dif®cult to do because the minima tend to be ¯at) to ensure that they
all represent local minima. Even though the algorithm was restarted many times from
different starting points, there is no guarantee that the model in Table 1 with the smallest S-
value gives the global minimum. All the models reported hereafter are the result of re®tting
the model at least 50 times from different random starting points and taking the best of the
resulting minima.
The problem of multiple minima is important because the ®tted weights are not stable

across different minima. Table 2 shows the ®tted weights for the ®fth and seventh minima in
Table 1 and large differences are apparent. In particular, the second neuron in the ®rst model
has much more effect on the output than the ®rst neuron has, whereas the two neurons in the
second model have nearly equal weights. This instability suggests that it is unwise to try to
interpret the ®tted weights since, even at the global minimum, the weights could be changed
substantially without changing the ®t or the forecasts very much (as in near multicollinear
regression).
We now compared various NN models having different input (lagged) variables and

different architectures. All the models had one hidden layer, were ®tted using the ®rst 132
observations (the training set) and were used to give forecasts of the last 12 observations (the
test set). As noted in Section 2, the AIC and BIC provide a fairer comparison of models with
different numbers of parameters than does the residual (®t) root mean square. For NN
models, the number of parameters, p, is the number of weights, while n, the number of
effective observations, depends on the maximum lag. The results for a range of models are
shown in Table 3 together with the corresponding values for the Box±Jenkins airline model.
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Table 1. Fit and forecast accuracy for
seven local minima for the NN(1, 12; 2)
model with T � 132 in ascending order of
®t accuracy (S){

Fit S Forecast accuracy

SSMS SS1S

2.30 0.35 0.34
2.32 0.38 0.38
2.38 0.34 0.31
2.41 0.35 0.31
2.49 0.33 0.33
2.49 0.35 0.35
2.51 0.44 0.40

{The notation is de®ned in Sections 2 and 3
and all numbers refer to the scaled data.

Table 2. Comparison of weights from two different local minima{

wc1 w11 w21 wc2 w12 w22 wco w1o w2o

727.61 4.19 4.62 70.86 0.05 0.23 74.62 70.14 16.10
74.71 0.01 0.74 70.93 0.20 0.53 71.40 6.73 5.32

{The notation is de®ned in Section 3.



(All forecasts have been back-transformed and all statistics suitably scaled to make them
comparable with the NN values ®tted to the data divided by 100. In particular, the scaled
AIC and BIC values were obtained by subtracting 119 ln�10000�.)
For illustration, we tried a wide variety of NN models. The NN(1±4; 2) model is the sort of

model which might be tried by someone with no training in time series; its ®t is poor and its
predictive performance, particularly in the long term, is awful. Clearly NN models cannot
compensate for a poor choice of input variables. Someone with slightly more experience,
realizing that these are annual data, might use all lags up to lag 12 or 13, or perhaps even
higher. These models, with many parameters, achieve small S-values which might lead the
naõÈ ve to suppose that they had found a good model, especially in view of the AIC values.
However, the BIC values tell a different story and the predictive performance is poor. With
still more knowledge of time series, it will seem reasonable to include lag 12 without necessarily
including all intervening lags, and NN models with inputs at lags (1, 2, 12, 13) or lags (1, 12,
13) generally lead to better forecasts and better BIC values, provided that not too many
hidden neurons are used.
If the model is chosen on the basis of minimizing the AIC or �̂, then the NN(1±13; 4) model

will be selected, leading to poor predictions. Experienced time series analysts would guess
intuitively that the use of so many inputs is unlikely to give good results and so it is alarming
that this model gives the `best' AIC. Clearly, in this context, the use of the AIC does not do
enough to penalize extra parameters. In contrast, the BIC picks the NN(1, 12, 13; 1) model
which is much more plausible and gives sensible results (but notice that the BIC for the Box±
Jenkins airline model is even better!).
It has been suggested that we try the bias-corrected version of the AIC (AICC ), as

recommended by Brockwell and Davis (1993), section 9.3, which is obtained by adding
2� p� 1� � p� 2�=�nÿ pÿ 2� to the AIC in our notation. This makes little difference for small
values of p but, for larger values of p, penalizes extra parameters (much) more severely than
the AIC and selected the 11-parameter NN(1, 12, 13; 2) model. Thus it is more akin to the
BIC, than the AIC, in its effect on model selection. However, many statisticians are not
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Table 3. Comparison of various NN models together with the corresponding values for the Box±Jenkins airline
model{

Lags Number
of hidden

Number of
parameters

Measures of fit Forecast accuracy

neurons S �̂ AIC BIC SSMS SS1S

1, 2, 3, 4 2 13 7.74 0.245 7333 7283 58.52 1.03
1±13 2 31 0.73 0.091 7545 7428 1.08 0.71
1±13 4 61 0.26 0.067 7605 7375 4.12 1.12
1, 12 2 9 2.30 0.144 7456 7422 0.35 0.34
1, 12 4 17 2.16 0.145 7448 7383 0.38 0.44
1, 12 10 41 1.77 0.150 7424 7268 0.51 0.59
1, 2, 12 2 11 2.17 0.141 7459 7418 0.34 0.29
1, 2, 12 4 21 1.91 0.139 7455 7375 6.82 1.03
1, 2, 12, 13 2 13 0.99 0.097 7543 7494 0.37 0.52
1, 2, 12, 13 4 25 0.81 0.093 7543 7449 0.34 0.52
1, 12, 13 1 6 1.18 0.102 7537 7514 0.33 0.50
1, 12, 13 2 11 1.03 0.098 7543 7501 0.33 0.50
1, 12, 13 4 21 0.84 0.093 7547 7467 0.54 0.62

Box±Jenkins model 2 1.08 0.095 7556 7546 0.39 0.43

{The notation is de®ned in Section 2 and all numbers refer to the scaled data.



familiar with AICC and most software computes the ordinary AIC. Thus we retain the AIC
values for comparative purposes, while noting that the AICC deserves more attention.
An obvious question is whether the better NN models found above (i.e. models that include

lags 1, 12 and maybe 13, but exclude intervening lags) could have been discovered without
prior knowledge of seasonal ARIMA models. More generally how can we choose the input
variables for an NN model? One possibility is to examine the ®tted weights for a model with
many inputs and to see which weights are `large'. For example, Table 4 shows the weights of
the connections between the 13 lagged values and the two neurons in the NN(1±13; 2) model.
Notice that the weights connecting the lagged values to the ®rst hidden neuron show small
values for lags 2±11. This suggests that we drop the intermediate lags. Admittedly, for
connections to the second hidden neuron, lags 2±11 have larger weights, but the weights from
the two hidden neurons to the output unit are 16.04 and ÿ0:90 respectively, so that the
second hidden neuron has much less effect on the output. Thus an examination of the weights
helps to identify important input variables in this example. However, in view of the instability
in estimating the weights mentioned earlier, this may be the exception rather than the rule,
and our experience in Chat®eld and Faraway (1996) unfortunately suggests the former. Thus,
as yet, we know of no general way to select input variables except to use the context and
knowledge about other models ®tted to similar data.
Why does having a high number of hidden neurons lead to poor forecasts? Consider the

NN(1, 2, 12; 2) and NN(1, 2, 12; 4) models which have the same lags but different numbers of
neurons. The prediction surfaces for these two models vary over the three lags and so cannot
be plotted directly, but can be viewed along speci®ed directions. Fig. 3 plots the predicted
one-step response along the line xtÿ1 � xtÿ2 � 0:87xtÿ12 � 0:07, chosen because the data are
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Table 4. Weights in the NN(1±13; 2) model for the connections from the 13 lagged values to the ®rst hidden
neuron (®rst row) and second hidden neuron (second row)

Weights for the following lags:

1 2 3 4 5 6 7 8 9 10 11 12 13

0.26 70.06 0.02 70.01 0.05 70.05 0.06 0.01 0.06 70.09 70.03 0.21 70.20
2.70 73.47 2.53 70.69 71.39 70.36 2.52 4.27 2.16 74.25 73.05 2.43 73.31

Fig. 3. Predicted response (in scaled units) for NN(1, 2, 12; 2) (Ð) and NN(1, 2, 12; 4) (..........) models
along the direction xtÿ1 � xtÿ2 � 0:87xtÿ12 � 0:07



dense in this direction. It shows how the model with the higher number of neurons (and
parameters) contorts to achieve a better ®t to the middle range of the data, only to give
predictions for higher values which are intuitively pulled down too far.
Some other NN models were considered that were not the result of a pure NN approach,

but rather involved the sort of intelligent pre-examination of the data that would naturally be
carried out by a sensible statistician. We had hoped that NN models could handle the data
without the necessity of a power transformation, but Fig. 1 suggests that we take logarithms
of the data to stabilize the seasonality and variance. So three plausible NN models for the
logged data were explored:

(a) an NN(1, 12, 13; 2) model (for the logarithms) (model 1);
(b) remove the linear trend (from the logarithms) and then remove the seasonal trend by

subtracting the monthly averages; then apply an NN(1±4; 2) model (model 2);
(c) apply ®rst and seasonal differencing �rr12� to the logarithms and then use an NN(1±4;

2) model (model 3).

Model 1 has the same NN structure as one of the best models for the raw data but is now
applied to the logarithms. Models 2 and 3 have the trend and seasonal variation removed
before ®tting an NN model. The choice of inputs at lags 1±4 was not sensible for the raw data
(see Table 3), but it seems reasonable to ignore longer lags for the detrended, deseasonalized
data (though we could have tried other alternatives such as lags 1±3). Model 3 is akin to the
airline model in that we apply an NN model to what is left after differencing the logged data.
The results are shown in Table 5. Natural logarithms were used throughout, but ®tted values
and forecasts were appropriately transformed so that the entries in Table 5 are comparable
with those appearing in Table 3. The ®ts of the NN(1, 12, 13; 2) models for the untransformed
and the log-transformed data are similar (in contrast with the ®ndings for the Box±Jenkins
models). A possible explanation is the local linearity of the log-transformationÐ the ratio of
the maximum to the minimum values for the whole series is about 5. But, as the current
prediction depends primarily on the values at lags 12 and 13, it is the ratio xt=xtÿ12 or xt=xtÿ13
that really matters. The maximum value of this ratio is 1.4 indicating that the curvature
introduced by the log-transform is not important.
One general problem with taking differences and making transformations is that it is not

clear how many parameters should be counted for such operations. For example should
taking logarithms count as an extra parameter? More generally for model 2 above, the ®t
criteria look very good but one could argue that detrending and deseasonalizing correspond to
including 2� 12 � 14 more parameters, so that there are 27 parameters, not 13. Recalculating
the AIC, BIC and �̂ on this basis gives ÿ572, ÿ468 and 0.097 respectively, which makes the
model less persuasive. Sadly we can offer no general guidance on how many parameters
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Table 5. Results for the three NN models ®tted to the logged data{

Model Number of
parameters

Measures of fit Forecast accuracy

S �̂ AIC BIC SSMS SS1S

1 11 1.04 0.098 7542 7500 0.44 0.63
2 13 0.96 0.091 7600 7550 0.66 0.56
3 13 1.14 0.105 7504 7456 4.35 0.67

{The notation is de®ned in Section 2 and all numbers refer to the scaled data.



should be allowed for. Model 3 gives a worse ®t and worse forecasts than both model 2 and
the airline model (see the Box±Jenkins model in Table 3) (and even gives worse forecasts than
the `naõÈ ve' model rr12 log�xt� for which SSMS � 2:16 and SS1S � 0:683). Of course, once the
data have been log-transformed, there is very little non-linearity for an NN model to capture
and so it is perhaps not surprising that NN models for the logarithms are unlikely to be able
to improve on a linear model.
We close with a general comment on the results for all the models considered in this section.

An inspection of Tables 3 and 5 shows that the within-sample (®t) estimate of the error
standard deviation, �̂, is typically much less than the prediction error standard deviation,
namely

p�SS1S=12�. The best values of �̂ are around 0.1, whereas the best estimate of the
prediction error standard deviation is 0.15 (for the NN(1, 2, 12; 2) model) but is more
typically around 0.2. This is common in time series forecasting where the within-sample ®t
usually appears better than the out-of-sample prediction. The overoptimism caused by
choosing the best of many ®tted models and then behaving as if the selected model were
known to be true has been well documented, both theoretically and empirically, in work on
model uncertainty (Chat®eld, 1995a, 1996b). The wrong model may be selected, the model
may change in the future or there may not be a `true' model anyway. In each situation
forecasts are likely to be worse than expected. This is particularly important in regard to NN
modelling as it can appear persuasive to add extra hidden units and layers (and hence extra
parameters) to improve the ®t, forgetting that out-of-sample forecasts may become worse
(see Stern (1996), section 3.2, for a recent example). This re-emphasizes that all forecasting
comparisons should be made on an out-of-sample basis.

5. Alternative ways of looking into the black box

One major criticism that is levelled at the NN models is that they provide a black box
approach which may produce satisfactory forecasts but give little insight into the structure of
the data. It can be very hard to interpret an NN model by just looking at the architecture and
weights. This section examines alternative ways of `looking inside the black box', including
procedures based on alternative methodology. When there are only two inputs, the prediction
surface can be plotted as in Fig. 4 for the NN(1, 12; 2) model. Notice that the surface is non-
linear; however, if attention is focused on the region where most of the data occur (which is
around the main diagonal) then the surface is close to linear.
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Fig. 4. Prediction surface (in scaled units) for the NN(1, 12; 2) model



When there are more than two inputs, it is not possible to plot the prediction surface so
easily and we can only view the predictions along speci®ed directions. For the NN(1, 2, 12,
13; 2) model, Fig. 5 shows the predicted response along the direction of the ®rst principal
component of fxtÿ1, xtÿ2, xtÿ12, xtÿ13 g as xtÿ1 varies (in scaled units). Most of the data lie
within a distance of �0:2 in the direction of the second principal component where we
see that the prediction surface is close to linear. This happens when the weighted sum of
inputs into those hidden neurons that have much effect on the output happen to fall in
the central, nearly linear, region of the logistic activation function. Thus these plots (which
are not usually considered in NN analysis) demonstrate that the prediction surface is
approximately linear in the region of interest. Such plots will not necessarily be useful for all
data and all NN models but they are valuable here.
We now consider two alternative statistical approaches, under the general title of non-

parametric identi®cation of non-linear time series (Tjùstheim and Auestad, 1994), which
enable prediction surfaces to be looked at more directly. Generalized additive models (GAMs)
(Hastie and Tibshirani, 1990) can be used to represent the predicted response in terms of a
sum of functions of the chosen inputs. Choosing lags 1, 2, 12 and 13 for example, this may be
written

x̂t � f1�xtÿ1� � f2�xtÿ2� � f12�xtÿ12� � f13�xtÿ13�

where the functions fi are estimated nonparametrically from the data, rather than being
prespeci®ed. Using S-PLUS software, the GAM was ®tted as described in Chambers and
Hastie (1992) with the functions fi estimated using splines. The estimated functions, along
with �2 standard error pointwise con®dence bands, are shown in Fig. 6.
The ®tted function for xtÿ2 is not signi®cantly different from constant zero so we have the

immediate message that this variable may be excluded from the model. In addition, the other
®tted functions are all close to linear. If xtÿ2 is excluded, the re®tted GAM gives a very similar
®t. The GAM can be used to make predictions when splines are used for the ®tting since
these ®ts can be extrapolated. Of course, it is dangerous to extrapolate too far but the same
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Fig. 5. Predicted response (in scaled units) for the NN(1, 2, 12, 13; 2) model along the direction of the ®rst
principal component of fxtÿ1, xtÿ2, xtÿ12, xtÿ13 g (Ð) and predicted responses along the ®rst principal
component perturbed by �0:1, �0:2 and �0:3 in the direction of the second principal component (..........)



problem would arise with an NN model. The results, shown in Table 6, are comparable with
the best NN models obtained earlier.
We tried GAMs on other time series and found them to be a useful exploratory technique.

In particular, when applied to the famous sunspots data (Box et al. (1994), series E) which
nearly everyone agrees are not linear, the functions were indeed found not to be linear but to
be approximately two straight lines with a bend in the middle. This suggests that a threshold
model (e.g. Tong (1990)) might be appropriate rather than an NN model.
An alternative approach is provided by projection pursuit regression (PPR) (see Jones and

Sibson (1987)). Given inputs x � �x1, . . ., xp�T and output y, then the PPR model is

ŷ � �y� PM0

m�1
�m �m��T

mx�,

where �m denotes a vector of constants of appropriate length, �m is a constant and the
`activation' functions �m, scaled to have zero mean and unit variance, are estimated non-
parametrically from the data, rather than given some prespeci®ed form as in NN modelling.
Setting �xtÿ1, xtÿ2, xtÿ12, xtÿ13� as the input and xt as the output, we ®rst determined that the

best choice ofM0 is 1 as larger values improve the ®t to a negligible extent. The function �1 was
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Fig. 6. Four ®tted additive functions for the terms of a GAM in scaled units, corresponding to lags 1, 2, 12 and 13
(Ð) and �2 standard error con®dence bands (- - - -)

Table 6. Results for the GAM

Lags Number of
parameters

Measures of fit Forecast accuracy

S �̂ AIC BIC SSMS SS1S

1, 12, 13 13 1.14 0.104 7527 7478 0.43 0.55



found to be virtually linear with �1 � �0:504, ÿ0:008, 0.681, ÿ0:531�. The small coef®cient
for xtÿ2 implies again that this term is not needed and the PPR model obtained is very similar
to the earlier GAM model. It is rather more dif®cult in practice to make predictions using a
PPR model since the `activation function' is estimated using the `supersmoother' method
(Friedman, 1984) which does not lend itself readily to extrapolation. This smoother could be
replaced but this would involve a dif®cult rewriting of Friedman's software. The ®tted sum of
squares S for the PPR model is 1.145 which is comparable with the value for the GAM
model.
It may seem surprising at ®rst that the GAM and PPR models give `activation' functions

which are approximately linear, when the NN models ®tted earlier used the (non-linear)
logistic function. In fact the logistic function is close to linear in its midrange, and this is
where the bulk of the data lie.
All this suggests that we may be able to use a simple linear regression model with fxtÿ1,

xtÿ12, xtÿ13 g as explanatory variables. The ®tted linear regression equation (for the data after
scaling by dividing by 100 which changes the constant but not the other coef®cients) is

x̂t � 0:0322� 0:7824xtÿ1 � 1:0720xtÿ12 ÿ 0:8394xtÿ13

and the estimated coef®cients are nearly proportional to the corresponding values obtained
by PPR. Predictions are easily made using a linear regression model and the results are shown
in Table 7. A comparison with Table 3 shows that the forecasts are excellent and the model,
with only four parameters, gives the smallest value for the BIC yet seen!

6. Results for a different time period

To see whether there is any qualitative change in the results when we predict from a different
part of the seasonal cycle, we extended the test set to the last 18 monthly observations (giving
six fewer observations in the training set). The results for various models are shown in Table
8.
As before, the best BIC value is given by the NN(1, 12, 13; 1) model. The one-step forecasts

are reasonable considering that the prediction sum of squares is now computed over 18 steps
(so that it needs to be discounted by a third to compare with the previous values for the last
12 observations). The multistep forecasts are much worse than before, partly because some
lead times are more than 1 year ahead. It is worrying that none of the NN models gives such a
good BIC value or such good forecasts as the airline model. In other respects the results are
qualitatively similar to those in Table 3. NN models with higher numbers of parameters tend
to give better ®ts but worse forecasts, and the AIC does not penalize additional parameters
suf®ciently.
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Table 7. Results for the linear regression model{

Number of
parameters

Measures of fit Forecast accuracy

S �̂ AIC BIC SSMS SS1S

4 1.18 0.101 7541 7526 0.32 0.51

{The notation is de®ned in Section 2.



7. Discussion

We carried out a second analysis using the sales data from Chat®eld and Prothero (1973) and
the results are reported in Chat®eld and Faraway (1996). Broadly speaking, the dif®culties in
®tting NN models were qualitatively similar, but the NN forecasts were even less persuasive,
partly no doubt because that series is even shorter than the airline data.
We realize that analysing two time series gives little insight into the general forecasting

ability of NN models, and so we now give a brief, and necessarily selective, review of the
voluminous and rapidly growing literature applying NNs to time series. Earlier reviews by
Chat®eld (1993) and Hill et al. (1996), section 3, bear out our empirical experience that NN
forecasts need not be clearly better than alternatives. It should also be remembered that
researchers are more likely to publish results in favour of a new method, such as NN
modelling, than the reverse (Chat®eld, 1995b). A recent competition, using real life data, was
described by Hill et al. (1996), who claimed that NNs `did signi®cantly better than traditional
methods'. This ®nding contrasts with that of Foster et al. (1992) using some of the same data
and may be overstated. Another recent competition (Callen et al., 1996), using 296 short
�n � 89� accounting series, found that linear methods are better than NNs `even when data
are ®nancial, seasonal and non-linear'. The Sante Fe competition (Gershenfeld and Weigend,
1994) used much longer series (several thousand observations) which were more clearly
non-linear. There NN models generally did well, though, for the one ®nancial time series
(exchange rate data), a `crucial difference between training and test set performance' was
found (Gershenfeld and Weigend (1994), p. 40). Out-of-sample predictions from the ®tted
NN model were no better than those from a random walk!
Simulations are complementary to the use of real life data and the results of Kuan and

White (1994), section 1.4, show that NNs can be successful in handling non-linear data.
However, even though NNs can be shown to provide a `universal function approximator',
simulations (e.g. Stern (1996), section 3) suggest that linear models give better forecasts of
linear data than NNs do, as would be expected.
An assessment of the literature is complicated by the fact that many studies in the

computer science literature, where the vast majority of work has appeared, can be criticized
from a statistical point of view because

(a) they fail to compare NNs with alternative statistical methods (e.g. Hoptroff (1993)), or
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Table 8. Results for various NN models and the Box±Jenkins airline model ®tted to the ®rst 126 observations{

Lags Number
of hidden

Number of
parameters

Measures of fit Forecast accuracy

neurons S �̂ AIC BIC SSMS SS1S

1, 12 1 5 2.38 0.147 7431 7412 1.73 0.96
1, 12 2 9 2.15 0.143 7435 7401 1.33 0.99
1, 12 4 17 1.81 0.137 7438 7374 3.27 3.30
1, 12, 13 1 6 1.09 0.101 7512 7490 2.59 0.66
1, 12, 13 2 11 0.90 0.094 7524 7483 2.05 0.60
1, 12, 13 4 21 0.69 0.086 7534 7456 4.93 2.02
1, 2, 12, 13 1 7 1.08 0.101 7511 7485 2.98 0.67
1, 2, 12, 13 2 13 0.91 0.095 7519 7471 18.10 1.48
1, 2, 12, 13 4 25 0.64 0.086 7534 7441 5.24 4.18

Box±Jenkins model 2 1.05 0.097 7525 7519 0.61 0.47

{The notation is de®ned in Section 2 and all numbers refer to the scaled data.



(b) because the comparisons appear statistically ¯awed (for example see the discussion in
Chat®eld (1993)), or

(c) because forecasts may not be genuine out-of-sample forecasts or
(d) not enough detail is given to make a proper assessment of the results.

The earlier case-study of the airline data by Tang et al. (1991) is a good example of (d) as few
details were given on how the NN models were actually ®tted and the reader is left to guess
for example that the data have been scaled by dividing by 1000 so that the logistic function
can be used at the output stage. Given the stated number of hidden neurons, the number
of weights for some of Tang's NN models apparently exceeded the number of observations.
The paper is written from the point of view of computer scientists and, for us, raised more
questions than it answered.
A better recent example from the connectionist literature is Park et al. (1996) which

compares NN and Box±Jenkins forecasts for the sunspots data. However, they used a
second-order autoregressive (AR(2)) model, as ®tted in the 1970 edition of Box et al. (1994),
even though it is now generally agreed that the `series is almost certainly not adequately ®tted
by an AR(2) model' (Box et al. (1994), p. 205). Thus the greater accuracy of NN forecasts
may be overstated. A subset AR(9) model (e.g. Morris (1977)) or a non-linear time series
model, such as a threshold model (Tong, 1990), should have been used for comparison as in
de Groot and WuÈ rtz (1991).
In reply, a computer scientist might criticize us for what we have done, for example by not

considering elaborations such as skip layer connections, extra hidden layers and feed-back
connections, but we think that the price of extra versatility is to increase the potential for
going astray. With such short series, we think that there are already more than enough
choices to be made.
The above remarks raise the issue of how statistics and NNs should interact. Sarle (1994)

rightly said that they `are not competing methodologies' and there should be better com-
munication between the two ®elds. Flexer (1995), who is himself a connectionist, went further
in lamenting the rivalry that often seems to exist and calling for more co-operation. In
particular Flexer argued that the `quality of research in the area of connectionism needs
improvement' and that NNs are not compared with statistical methods as often as they
should be. We naturally support this.
Although unable to make de®nitive statements about the forecasting accuracy of NN

models, our experience does allow us to comment on the general dif®culties involved in NN
modelling. We agree with Sarle (1994) that the

`marketing hype claims that neural networks can be used with no experience and automatically learn
whatever is required . . . is nonsense'.

We also agree with Gershenfeld and Weigend (1994), p. 59, that `there are unprecedented
opportunities to go astray'. Great care is needed to choose

(a) an appropriate set of input variables,
(b) an appropriate architecture,
(c) appropriate activation functions (which need not be the same at the hidden layers as at

the output unit(s)) and
(d) an appropriate numerical procedure for ®tting an NN model.

In particular sensible starting values need to be chosen for the weights and it may be necessary
to scale the data. As statisticians, we also ®nd NN models less revealing than alternative time
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series models. The complicated black box structure of NN models is hard to understand and
interpret, and, as there is no description of the `error' term, there is no obvious way to
compute interval forecasts.
In conclusion this case-study suggests the following general points.

(a) There is plenty of scope for going badly wrong with NN modelling (as there is for
many other sophisticated statistical techniques). Without careful choices of the archi-
tecture, the activation functions and appropriate starting values for the weights, ®tting
routines may not converge, may converge to a local minimum or may lead to forecasts
which are not sensible.

(b) Adding extra hidden units increases the number of parameters in an NN model. This
may lead to an improvement in ®t but may lead to a deterioration in out-of-sample
predictions.

(c) When comparing models with different numbers of parameters, the use of the ordinary
AIC does not do enough to penalize the addition of extra parameters, and the BIC is
recommended instead. An alternative possibility is the bias-corrected version of the
AIC (AICC).

(d) NN models are hard to interpret. GAMs and PPR provide alternative nonparametric
approaches to the identi®cation of non-linear time series which require less structure to
be imposed on the data, are more familiar to statisticians and are arguably more
helpful in exploring a set of data to understand the nature of the response surface.
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Appendix A

Software for ®tting neural nets to time series data may be found on the World Wide Web at

http://www.stat.lsa.umich.edu/~faraway/

together with full details on installation and use. We used various S-PLUS functions from Venables and
Ripley (1994) (including nnet and nnet.Hess) in conjunction with some functions written by the ®rst
author. Some knowledge of S-PLUS is required for the software to be useful.
Here is an example of its use. The airline data are read and rescaled by dividing by 100 in the ®rst

command line. An NN(1, 12; 2) model is ®tted to the ®rst 132 observations in the second line, including
an instruction to restart the algorithm 50 times from different random starting weights and to take the
best of the models found. A summary of the ®t is requested in the third line.

> air <- scan ("air.data")/100
> g <- nnts(air[1:132],c(1,12),2,retry=50)
> summary(g)
a 2-2-1 network with 9 weights

Unit 0 is constant one input
Input units: Lag 1=1, Lag 12=2,
Hidden units are 3 4
Output unit is 5

0->3 1->3 2->3 0->4 1->4 2->4 0->5 3->5 4->5
-0.10 1.26 -1.31 -0.10 0.66 -0.55 -7.43 -15.60 31.27
Sum of squares is 2.310301
AIC : -456.0137 , BIC : -421.9262 , residual se : 0.1442689
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We can now predict the next 12 observations.

> predict (g,12)
3.997191 3.803972 4.383948 4.370344 4.652647 5.185713 5.889187 6.055508
4.930448 4.410727 3.994916 4.466562

An alternative public domain software package for NN modelling is available from the University of
Nevada via the World Wide Web at

http://www.scs.unr.edu/~cbmr/research/local/res-local.html
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