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Abstract— We consider the problem of joining two long time
series based on their most correlated segments. Two time series
can be joined at any locations and for arbitrary length. Such
join locations and length provide useful knowledge about the
synchrony of the two time series and have applications in many
domains including environmental monitoring, patient monitoring
and power monitoring.

However, join on correlation is a computationally expensive
task, specially when the time series are large. The naive algorithm
requires O(n4) computation where n is the length of the time
series. We propose an algorithm, named Jocor, that uses two algo-
rithmic techniques to tackle the complexity. First, the algorithm
reuses the computation by caching sufficient statistics and second,
the algorithm prunes unnecessary correlation computation by
admissible heuristics. The algorithm runs orders of magnitude
faster than the naive algorithm and enables us to join long time
series as well as many small time series. We propose a variant of
Jocor for fast approximation and an extension to a GPU-based
parallel method to bring down the running-time to interactive
level for analytics applications. We show three independent uses
of time series join on correlation which are made possible by our
algorithm.

I. INTRODUCTION

Joining two time series in their most correlated segments of

arbitrary lag and duration provides useful information about

the synchrony of the time series. For example, Figure 1 shows

exchange rates of two currencies, INR (Indian Rupee) and

SGD (Singapore Dollar), against USD since 1996. The two

time series have a mild negative correlation value when looked

at globally. In Figure 1, the join segments are highlighted

and they have a correlation coefficient of 0.94. The joined

segments have a small lag and a duration of more than 3

years until 2007. This correlated segment suggests a strong

similarity in the baskets of currencies to which INR and SGD

were pegged to [6]. Note that, in general, the information of

the peg-basket of a currency is confidential. The two currencies

became uncorrelated after the join segment which denotes

a major change in one of the currencies’ pegging and it is

believed SGD stopped following USD and was pegged against

a basket of other currencies mostly dominated by EUR in that

time while INR kept following USD.

Consider another example to motivate time series join on

correlation. Normally, we expect respiration and systolic blood

pressure to be uncorrelated for a healthy person. However, if

we observe them becoming correlated, it is highly predictive

of cardiac tamponade, an acute type of pericardial effusion in

which fluid accumulates in the pericardium (the sac in which

the heart is enclosed). Tamponade almost always results in
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Fig. 1. Two time series of currency exchange rates are joined to reveal high
correlation in the past. The x-axis shows business days. The y-axis shows
conversion rates of INR and SGD against USD after normalization.

death, unless quickly treated by pericardiocentesis, a procedure

where fluid is aspirated from the pericardium. We can monitor

the respiration and blood pressure for such correlations, that

can exist in varying lag and duration depending on patients,

to save lives.

There are several possible ways two time series can be

joined. The most obvious way is to join on overlapping

timestamps, however timestamps are not always available and

such joining assumes zero lag. If we use the content of the

time series, we can join on highly correlated subsequences

of the two time series. Most existing works on similarity

join either consider fixed duration join or use some domain

specific similarity function. We focus on joining two long time

series or two sets of time series based on the most correlated

(i.e. highest Pearson’s correlation coefficient) segments of

arbitrary lag/locations and duration. Although we are using

the term “join,” unlike relational joins, we are not merging

or concatenating the participating time series when joining on

correlation.

Joining on correlation is very expensive computationally.

The trivial algorithm to join two time series takes O(n4) time

where n is the length of the time series. A computational time

of this magnitude is unacceptable for a time-critical application

as above and for many other time series datasets of moderate

size. For example, the join operation shown in Figure 1 took

5 hours by the naive algorithm implemented in C++ on a

third generation intel CPU. In this paper, we show a very fast

algorithm, named Jocor (JOin on CORrelation), to join two

time series on correlation that runs orders of magnitude faster

than the naive algorithm while producing identical results.

We extend Jocor in several directions. We show a faster

approximate version that can produce approximate results

within bounded accuracy. We propose using length-adjusted



correlation for time series join that can work better than

Pearson’s correlation. We implement a parallel system in a

GPU (Graphics Processing Unit) to reach interactive running

time for large real-world datasets. We show two case studies

in oceanography and power management where join segments

are meaningful and can potentially be exploited to build

applications.

The paper is organized as follows. We describe the problem

formally with necessary notation and background in Section

2. In Section 3, we describe the motivation of join on corre-

lation with respect to existing algorithms. Section 4 discusses

related work. Section 5 describes the algorithm with necessary

theoretical development. In Section 6, we show the extensions

of Jocor. Experimental results are shown in Section 7 and the

case studies are shown in Section 8.

II. PROBLEM DEFINITION

In this section, we define the problem and other notations

used in the paper.

Definition 1: A Time Series t is a sequence of real numbers

t1, t2, . . . , tn where n is the length of the time series. A time

series subsequence t[i : i+m−1] = ti, ti+1, . . . , ti+m−1 is a

continuous subsequence of t starting at position i and length

m.

We would like to join two time series x and y of length

n and m respectively. We assume n > m without losing

generality. We define the time series join problem as below.

Problem 1 (MaxCorrelation Join): Find the most corre-

lated subsequences of x and y with length len ≥ minLength.

We extend the definition to find α-approximate join.

Problem 2 (α-Approximate Join): Find the subsequences

of x and y with length len ≥ minLength such that the

correlation between the subsequences is within α of the most

correlated segments.

In the above problems, we refer to maximizing the Pear-

son’s correlation coefficient when finding the most correlated

subsequences. Pearson’s correlation coefficient is defined in

equation 1.

C(x, y) =
E[(x− µx)(y − µy)]

σxσy

(1)

The person’s correlation is a good similarity measure be-

cause it can be computed by just a linear scan and it is

scale and offset invariant. However, correlation coefficient is

not a metric and it’s range is [-1,1]. If we just focus on

maximizing positive correlations and ignore the negatively

correlated subsequences, we can use z-normalized Euclidean

distance and exploit the triangular inequality for efficiency.

Z-normalized Euclidean distance is defined as below.

If we are given two time series x and y of the same length

m, we can use the euclidean norm of their difference (i.e. x-y)

as the distance function. To achieve scale and offset invariance,

we normalize the individual time series using z-normalization

before the actual distance is computed. The z-normalized

Euclidean distance is then computed by the formula

dist(x, y) =

√

√

√

√

m
∑

i=1

(x̂i − ŷi)2 (2)

where x̂i = 1
σx

(xi − µx) and ŷi = 1
σy

(yi − µy). The

relationship between positive correlation and z-normalized

Euclidean distance is the following [18].

C(x, y) = 1−
dist2(x, y)

2m
(3)

According to equation 3, maximizing correlation can be

replaced by minimizing the z-normalized Euclidean distance.

However, computing correlation coefficient or z-normalized

Euclidean distance in the above formulation requires two

passes (first, to compute µ and σ and second, to compute

the distance). In contrast, we can compute the normalized

Euclidean distance between x and y using five numbers derived

from x and y. These numbers are denoted as sufficient statistics

in [22]. The numbers are
∑

x,
∑

y ,
∑

x2 ,
∑

y2 and
∑

xy.

The correlation coefficient can be computed as below.

C(x, y) =

∑

xy −mµxµy

mσxσy

(4)

dist(x, y) =
√

2m(1− C(x, y)) (5)

Computing the distance in this manner not only takes one

pass but also enables us to reuse computations and reduce

the amortized time complexity from linear to constant. Note

that, the sample mean and standard deviation can be computed

from these statistics as µx = 1
m

∑

x and σ2
x = 1

m

∑

x2−µ2
x,

respectively. In this paper, we use the above formulation to

compute correlation and/or z-normalized Euclidean distance.

As used in [25][13], we normalize Euclidean distance

based on length and we name it Length-adjusted z-normalized

Euclidean distance (LA dist).

LA dist(x, y) =
dist(x, y)

m
(6)

LA dist is not a metric but has one desirable property

for join applications. It removes the bias of the correlation

measure for shorter sequences. We defer the details of the

discussion on bias until Section 6.

III. MOTIVATION

In this section, we provide an analysis on different join

possibilities for time series and motivate the necessity of

joining time series based on highly correlated subsequences.

In Figure 2 we show two time series x and y of equal length.

They are the same currency exchange rates from Figure 1.

When considering to join x and y, we have several options.

First, we can measure the correlation or any other similarity

measure between x and y globally and join them if the global

correlation is above a certain threshold τ . Second, we can

measure the cross-correlations between x and y for all lags

and decide if any lagged correlation is larger that τ . Third, we



can measure the correlation between any pairs of subsequences

of any length and decide if any of the pairs is larger than τ .

And finally, we can find the most correlated join segments

having a minimum length.

In Figure 2, we show the matched segments for each of the

four cases and the corresponding correlation values found in

each case. Clearly, global correlation or cross-correlation do

not produce good join segments. We achieve a very good join

with τ = 0.95 as shown in Figure 2(C ). However, the join

segment could be much larger if we set a required minimum

length as shown in Figure 2(D). Note that, the correlation is

smaller in this case than the best.

Computing global correlation requires one linear scan

and thus, it is O(n). Computing cross-correlation requires

O(n log n) time using FFT algorithm. Computing correlation

for arbitrary subsequences by a naive method requires O(n4)
time which can reduce to O(n3) if we reuse computation by

caching in the memory. For large data, such a large time

complexity is unacceptable. To give an example, for n =
40, 000, the naive algorithm takes 11 days to finish.

IV. RELATED WORK

Existing work on time series join or data stream join can

be classified into several categories.

The first category joins on timestamps which is completely

different from the problem we consider in this paper as there

is no similarity comparison [9][23]. The second category

of methods join time series based on Euclidean distance or

Dynamic Time Warping (DTW) without any normalization

to remove the scale and offset [8][24]. Thus, joining based

on correlation cannot just work with these algorithms as

correlation computation needs normalization for every sub-

sequence. The third category of join methods are scale and

offset invariant but unfortunately are not exact [11][12][10]

and have no bound on the error. These methods propose

unique ways of segmenting the time series for efficiency and

find joining segments based on a similarity function over a

feature-set. These methods usually have quite a few parameters

to tune by the domain experts. In contrast, Jocor finds join

segments with maximum correlation coefficient and requires

only one domain-independent parameter, the minimum length

of the segment which can be zero trivially. We also provide

a fast approximation method which has tight error bound for

confidence.

We have the assumption that the joining series are uniformly

sampled series i.e. the samples are taken at equal intervals and

the intervals are the same for both the time series. Typical

datasets adhere to this assumption and therefore, methods

assuming equal sampling intervals are very common in the

literature.

Other than joining two time series, there is a rich literature

of computing pairwise correlation values for a large number

of evolving time series over fixed length sliding window [26],

possibly with limited lags [22]. We fundamentally differ from

them as we consider only archived time series for arbitrary

lag and duration.

Algorithm 1 Join(x, y)

Ensure: Return the locations and length of the most corre-

lated segments of x and y

1: x← (x-mean(x))/stdv(x)

2: y← (y-mean(y))/stdv(y)

3: n← length(x), m← length(y)

4: best← 0
5: for i← 1 to m−minLength+ 1 do

6: for j ← 1 to n−minLength+ 1 do

7: maxLength← min(m− i+ 1, n− j + 1)

8: for len← minLength to maxLength do

9: c←Correlation(x[j:j+len-1],y[i:i+len-1])

10: if c > best then

11: best← c

A recent parallel work [10] on finding longest correlated

subsequence between a query and a long time series has been

published. In [10], authors propose an index structure and an

α-skip method to find the longest match of a given query with

correlation more than a threshold. There are some fundamental

differences between [10] and our proposed work. Our work

builds upon a bound on correlation measure across length

described in [15] while [10] uses early abandoning technique

based on the input threshold. Therefore, the speedup in [10]

depends on the input threshold while our algorithm does not

vary on the minimum length input. For a trivial input of zero,

the method in [10] degenerates to brute-force search, while

ours still finds the most correlated segment very quickly. In

addition, we consider joining two large time series while [10]

assumes the query be negligible in size.

V. JOIN ON CORRELATION

We describe our algorithm in this section in two phases. We

first show how to reuse the sufficient statistics for overlapping

correlation computation and then show how to prune segment-

pairs admissibly. We also provide pseudocode for clarity. We

name our method Jocor (JOin on CORrelation) as mentioned

before.

The simplest algorithm to join two time series based on

correlation is O(n4). Algorithm 1 shows such a method to find

the most correlated join segments. The algorithm computes

correlation of all the possible pairs of segments of all the

lengths. Note that the correlation function in line 9 takes

at least a linear scan over both the segments to compute

the correlation. Algorithm 1 runs massive computation. For

example, we have run a c++ implementation of this simple

algorithm for the two time series in Figure 1 having four

thousand observations each and it takes 5 hours to finish. We

will use the Algorithm 1 as a skeleton and add statements

around it to build Jocor.

A. Overlapping Correlation Computation

To reduce the massive computation required for algorithm 1,

we need to use the overlap between segments while computing

correlation. In this section, we show a method to cache
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Fig. 2. The join segments and correlation coefficients for the same pair of currencies using different methods.

sufficient information to compute the correlation values at line

9 in constant time with O(n2) space.

Let’s start with computing the shifted cross product between

two time series. It can be done in O(n log n) time using the

FFT algorithm as presented in lines 4 to 6 in the Algorithm

2. We are showing the steps in the Algorithm 2 without

describing it elaborately. The steps produce an array that

contains the sum of the products of the elements in x and

y for different shifts of x. The output z of the Algorithm 2 is

expressed more precisely as below. Here negative indices are

assumed to return zeros.

zk =

m′

∑

l=1

ylxk−m′+l (7)

Here m′ is the length of y and n′ > m′ is the length of x.

Note that, zm is x.y and zk’s for n′ +m′ ≥ k > m′ are sums

of products of y with k-shifted x. Also note that the length of

z is twice the length of x.

We use the Algorithm 2 to fill in a two dimensional array

that caches sufficient statistics to compute any correlation

coefficient of any length at any locations of the two time

series. Since the Algorithm 2 keeps one series fixed and shifts

the other, we can shift the fixed series in an external loop to

call the Algorithm 2 repeatedly to produce a set of z vectors.

More precisely, we want to populate a set of cross products Z

where Zi = multiply(x, y[i : m]). The cross products in Z are

the most important statistics for any correlation computation

between any segments. The dot product of two subsequences

of x and y starting at j and i-th locations, respectively, with

length len can be computed as follows.

Zi[m− i+ j]− Zi+len[m− i+ j]

=
∑m−i

l=1 yl+ixm−i+j−(m−i)+l

−
∑m−i−len

l=1 yl+i+lenxm−i+j−(m−i−len)+l

=
∑m−i

l=1 yl+ixj+l −
∑m−i

l=len yl+ixj+l

=
∑len

l=1 yl+ixj+l

The complexity to compute the cache Z is O(n2 log n)
which may seem to be high. However, having such a quadratic-

space cache reduces the join algorithm from O(n4) to O(n3).
Where in the Algorithm 1 do we use the above caching

mechanism? The Algorithm 3 describes the complete Jocor

method transformed from the Algorithm 1. Lines 4-5 compute

Algorithm 2 multiply(x, y)

Ensure: Return the shifted dot products for x and y

1: n′ ← length(x), m′ ← length(y)

2: x← append(x, n′-zeros)

3: y← append(reverse(y), (2n′ −m′)-zeros)

4: X←FFT(x)

5: Y←FFT(y)

6: Z←X.Y

7: z←iFFT(Z)

the cache and line 12 uses the cache to retrieve the sum-of-

products of the subsequences of x and y. Note the correlation

computation in line 13 is a constant time operation assuming

the mean and standard deviations are already known. We

use cumulative sums to generate the means and standard

deviations as described in [19] and in the definition section.

The remaining parts of the Jocor algorithm will be explained

in the next section.

B. Pruning Uncorrelated Locations

We describe our second technique to further optimize the

Algorithm 1. We aim to build a mechanism to skip some of

the lengths in the loop at line 8. We use a novel distance

bound across lengths [15] to compute the step size dynamically

instead of incrementing the len variable by one.

If we know the distance between two subsequences of length

len as d = dist(x[j : j+ len−1], y[i : i+ len−1]), the lower

bound for the dnext = dist(x[j : j + len], y[i : i + len]) can

be expressed as below. Here, z needs to be larger than any

normalized value in the dataset and can be pre-computed.

d2LB = ( len
(1+len) +

len
(1+len)2 z

2)−1d2

= fd2

We want to use the above bound to find a safe stepSize

that jumps over all the unnecessary lengths which would not

have more correlation than the best correlation discovered so

far. Note that, in the bound equation, the d2LB is a fraction 0 <

f < 1 of d2 and the larger the len the more close the fraction

is to one. A pessimistic choice would be to assume that we

repeatedly apply the fraction for len instead of the fractions

for len + 1, len + 2, . . . , len + S where S is a stepSize. For

example, 0.64 < 0.6×0.7×0.8×0.9. Therefore, d2
LBS = fSd2



Algorithm 3 Jocor(x, y)

Ensure: Return the locations and length of the most corre-

lated segments of x and y

1: x← (x-mean(x))/stdv(x)

2: y← (y-mean(y))/stdv(y)

3: n← length(x), m← length(y)

4: for i = 1 to m do

5: Zi ← multiply(x, y[i : m])
6: best← 0
7: for i← 1 to m−minLength+ 1 do

8: for j ← 1 to n−minLength+ 1 do

9: maxLength← min(m− i+ 1, n− j + 1)

10: len← minLength

11: while len ≤ maxLength do

12: sumXY ← Zi[m− i+ j]− Zi+len[m− i+ j]
13: c←

sumXY−µxµy

lenσxσy

14: if c > best then

15: best← c

16: f ← ( len
(1+len) +

len
(1+len)2 z

2)−1

17: stepSize← ⌊log 1−best
1−c

÷ (log f − 1
len

)⌋
18: if stepSize ≤ 0 or stepSize ≥ len then

19: stepSize← 0
20: len← len+ stepSize+ 1

and S is a safe stepSize if d2
LBS ≥ d2best. Using the equality,

we solve for S exploiting the Taylor series and ignoring the

higher order terms.

d2

best

d2 = fS

⇒ (len+S)(1−Cbest)
len(1−C) = fS

⇒ log(1 + S
len

) + log (1−Cbest)
(1−C) = S log f

⇒ S
len

+ log (1−Cbest)
(1−C) = S log f

⇒ S > log (1−Cbest)
(1−C) ÷ (log f − 1

len
)

In the Algorithm 3, we use the above equation to determine

the stepSize for the innermost loop at line 17. The fraction

f is computed at line 16. Note that we take floor of S and

check the range of stepSize at line 18 so we don’t violate the

condition for taylor expansion which is S
len
≤ 1.

Computing the maximum normalized value: As described

in the previous section, z is the empirical maximum normal-

ized value in the dataset over all possible means and variances

at all lengths. There exists an algorithm to exactly compute

the maximum value for z in O(n2) time (shown in [15]) for

every length. To join time series on correlated subsequences,

the O(n2) is acceptable as the entire algorithm has higher

complexity. However we can set a pessimistic z value in

linear time by normalizing the time series globally and taking

the twice of the absolute value of any individual observation.

Mathematically, by setting z = 2 ∗max(abs(x), abs(y)).
Unfortunately, there can be datasets where noisy spikes can

massively impact the empirical value of z and thus reducing

the benefit of the bounds. The value of z can be thought of as

the largest possible value of an observation in the dataset if the

data is z-normalized prior to any processing. A z-normalized

time series has mean and variance equal to 0 and 1 and the

maximum value can be infinitely large. We can make proba-

bilistic assumption about z when the time series are large and

roughly normally distributed. If we assume that an unknown

observation z will follow a standard normal distribution, we

can argue that, P (z > C) = 1 − 1√
2π

∫ C

−∞ e−
x2

2 dx. Thus,

a value of 5 (i.e. 5σ away from the mean) has a very small

probability (10−5) to appear in an unknown observation of a

normalized time series. In this way, we can set a hard-coded

value of 5 for z for noisy datasets and have high confidence

that the bound is almost always correct.

VI. EXTENSIONS

Jocor is an exact method finding the most correlated seg-

ments. In this section, we present two extensions of the Jocor

algorithm.

A. Join on Length Adjusted Distance

Our first extension is to join on length-adjusted z-

normalized Euclidean distance (LA dist) instead of the Pear-

son’s correlation coefficient. Although, in [16] and [25] authors

have used such distance measure, we motivate the necessity

of LA dist for time series join.

We first experiment to see the distribution of the maximum

correlation for different lengths. Figure 3 shows how the

maximum correlation between all segment-pairs of a certain

length decreases as we increase the length. In other words,

the shorter subsequences tend to be more correlated than their

extended subsequences. This creates a strong bias in Jocor so

it produces the best matching segments of a length close to

the minLength. The minLength is 100 for Figure 3.
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Fig. 3. For the pair of currencies shown in Figure 2, The best Pearson’s
correlation coefficients and the best length-adjusted Euclidean distances are
shown for various lengths. Pearson’s correlations decrease with increasing
lengths. While the length-adjusted Euclidean distance can report a longer join
segment with less Pearson’s correlation coefficient than the best one.

Being adjusted by the length, LA dist prefers a long

sequence of a slightly less correlation over a short sequence

of the highest correlation. As seen in this example, LA dist

finds the best match at length more than 400 although the

correlation for the match is not the best. It can be clearly seen

in the Figure 3 that the best match found by LA dist is at a

length where the correlation has started to decrease drastically.

How do we change our Jocor algorithm to accommodate the

optimization for LA dist? We need to compute the LA dist

instead of the correlation, c, at line 13 using the equations 5



and 6. We also need to change the “if” condition to maximize

LA dist at line 14. However, these are simple changes by

definition. The step size at line 17 is derived for correlation

and we need to find the proper step size for LA dist.

We start with restating the definition of LA dist.

LA dist(x, y) = dist(x,y)
m

= 1
m

√

∑m
i=1 (

xi−µx

σx
−

yi−µy

σy
)
2

The lower bound for the LA dist can be computed from

the lower bound of the z-normalized Euclidean distance found

in the previous section.

d2LB = fd2 = ( len
(1+len) +

len
(1+len)2 z

2)−1d2

⇒
d2

LB

(1+len)2 = len
(1+len+z2)

d2

len2

⇒ LA dist2LB = len
(1+len+z2)LA dist2

= f ′LA dist2

As step size for correlation is computed from the lower

bound, we can compute the step size for the LA dist as below.

In the derivation, we take the largest value for the log(1 −
S

len+S
) at the limit S → 0.

LA d2

best

LA d2 = f ′S

⇒ len(1−Cbest)
(len+S)(1−C) = f ′S

⇒ log(1− S
(len+S) ) + log (1−Cbest)

(1−C) = S log f ′

⇒ log (1−Cbest)
(1−C) = S log f ′ + S

(len+S) +
S2

2(len+S)2 + . . .

⇒ S > log (1−Cbest)
(1−C) ÷ (log f ′ + 1

len
)

Thus, changing the lines 13-17 in the Jocor algorithm is

sufficient to achieve a Jocor for LA dist.

B. Approximate Join

Our algorithm in the previous section is an exact algorithm

that runs faster than the trivial counter part. For short signals,

the exact method is the best choice and reasonably fast.

However, for long time series which are of the order of 105,

we need a really fast approximation technique trading off some

accuracy within a bound. In this section we describe how to

convert the Jocor algorithm to an approximation algorithm

within a bound.

The technique is very simple. We skip every k positions of

the inner time series in line 8 of the Jocor algorithm. The effect

of such skipping is that we may miss the exact solution and

find a very close approximate solution. We provide a bound

on the worst-case-loss in correlation if we adopt the skipping

technique for the inner time series. Note that, skipping every

8 positions in this way is not the same as 8-way down-

damping before joining the time series because the correlation

coefficients are still computed in the original resolution.

Before we derive the error bound, let us first discuss the

trivial bound for correlation across length. Recall, the bound-

ing factor f for a length is ( len
(1+len) +

len
(1+len)2 z

2)−1 which

is a monotonically increasing function over length. If the user

supplied minimum length is minLen then the trivial factor for

any length is fminLen = ( minLen
(1+minLen) +

minLen
(1+minLen)2 z

2)−1.

Now, if we don’t skip anything, i.e. k = 1, then we compare

(n− len+1)(m− len+1) pairs of locations for one specific

length len. If we skip every k positions of the inner time

series, the number of pairs of locations is reduced to (n −

minLen+1) (m−minLen+1)
k

. Assume the best location pair, o,

is one of the pairs that the algorithm misses that has a distance

d. There exists a pair p that the algorithm compared and we

can extend that pair at most k-steps to obtain the optimal

pair. By definition, our approximate algorithm outputs either

p or another pair that has less distance than the pair p. If we

assume, pessimistically, p has the minimum possible distance

(i.e. dk) then the distance of o should be larger than the lower

bound for k-step extension of p. Therefore, d2 > d2kf
k
minLen.

Note the use of the trivial lower bound here.

To demonstrate the above theorem in action, we do an

experiment varying the skipSize k and running the Jocor

algorithm to find the best computed pair. Note that, k =
1 gives the optimal distance. We plot the discovered best

correlation in red and the worst case drop in the correlation

that could be possible for a skipSize k in green. The discovered

best correlation is mostly the same as the optimal one and it

never drops below the green curve showing the theorem is

correct for these six datasets.

In the bottom four datasets the worst possible correlation is

even more than 0.9. Therefore, we can easily set skipSize k to

32 and get 32× speed-up. However for the powerConsumption

dataset we observe a massive error range that carries no

information. The reason is the dataset has large spikes that

cause a large z value and as a result, a very small bounding

factor.
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Fig. 4. Approximation bounds for different datasets.

To summarize, if one discovers a 0.2 correlated pair using

skipSize 32, it is highly likely there exists no good pair. If

one discovers 0.9 correlated pair, the pair is as good as the

best one. An additional note, the speedup does not depend on

which time series we place in the inner loop. But the space

usage can be reduced by placing the longer time series in the

inner loop.

VII. EXPERIMENTS

We have all of our code, data, slides, pdfs and additional

experiments available on anonymous repository [1] and the

access password is JOCOR2014. Our method is completely

reproducible and easy to use for visualization. We provide

a matlab script that can be used to produce all the join

visualizations shown in this paper.
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Fig. 5. Experimental demonstration of speedup of the three different algorithms. (left) A1 over Brute Force method. (middle) A2 for various skipSize.
k = 1 denotes the runtime for A1. (right) A3 over A1.

We use six datasets for our experimentation. The datasets

are mainly of two different forms. First, two long time series

from two different sources. Second, many short time series

from the same source. To use the second form of data, we

divide the short series into two equal partitions and concatenate

the short series in each partition to create two long time series.

Performing join on these two time series is equivalent to per-

forming join between the two partitions of time series except

the overlapping segments created because of the concatenation.

Each of the dataset has potential to grow to millions of time

series and thus, a scalable algorithm for join computation is a

necessity for them.

• Power: 520K points long whole house power consump-

tion sequence that captures important patterns on the

individual appliances operating at an instance of time

[14]. We join the whole house power consumption to that

of the refrigerator.

• LightCurve : 8000 star light-curves are collected from

[20]. Each light-curve has 1000 observations.

• EEG: EEG traces having roughly 180K observations from

two electrodes of the same patient in the same recording

[17].

• Currency: Daily conversion rates of different currencies

from USD since 1996 [3]. We have 190 currency con-

version rate and we have up to 4000 observations per

currency.

• BloodPressure: The blood pressure of Dahl salt-sensitive

(SS) rat collected to study baroreflex dysfunction [7].

We have 100 blood-pressure sequences each having 2000

observations.

• Random Walk (RW): Synthetically generated random

walks.

We have experimented with four different versions of our

algorithm described in Algorithm 3. The algorithms are all

implemented in C++ and the source code is available in the

webpage. For the Algorithm 2, we use fftw3 library.

• Exact Join (A1): This is the Algorithm 3 which is

guaranteed to find the most correlated subsequence.

• Approximate Join (A2): This is the algorithm which skips

every k positions of the inner time series in Algorithm 3.

• Length-adjusted Join (A3): This algorithm optimizes the

length-adjusted correlation instead of the Pearson’s cor-

relation in the Algorithm 3.

• GPU-based Join (A4): The Algorithm 3 has been re-

designed to exploit the available GPU.

A. Scalability

Jocor is the first algorithm to suggest time series join on

correlation. There are other techniques for online correlation

mining, for example, BRAID [22] and StatStream [26]. Both

of the methods consider the correlation of the most recent

windows of the streams. Jocor is not an online algorithm and

it joins offline data for all possible windows.

Most of the proposed methods that can be converted to

time series join methods are not exact, i.e. the algorithms can

miss the best join segment. As discussed in the Applications

section, the exactness is a very desirable property for time

series join. Jocor is an exact algorithm to join time series

and therefore, is computationally more expensive than other

approximate correlation mining algorithms. To compare the

speed of Jocor, we use the naive algorithm with a quadratic

cache to store sufficient statistics. Thus, the naive algorithm

has O(n3) time complexity.

For simplicity, we always use equal sized time series (i.e.

n = m) to join although our method is not limited to that. We

vary n and measure the running time of Jocor and the naive

brute force algorithm with equal memory footprint to show

the speedup and goodness of the algorithm. Note that, Jocor

has no parameter other than the minimum join length which

can trivially be set to zero without sacrificing speed-up. In

our experiments, we set minLength = 100 unless otherwise

specified.

Figure 5(left) shows the speed-up Jocor (A1) can achieve

for different datasets over naive Brute Force. Note that, naive

algorithm takes same time for all of the datasets. Jocor gets the

smallest speed-up of roughly 2× for the Power dataset. The

reason is the same as explained before in the Approximation

section; the Power dataset has large spikes that corrupts the

value of z which in turn reduces the pruning power of our

method.

We then test the speed-up Jocor can achieve by simple

approximation algorithm (A2). We vary the skipSize (k) and

measure the running time. Note that k = 1 is the same as

the Jocor algorithm. As shown in Figure 5 (middle), there is

a linear speed-up as we increase k. Note the log scale in the

y-axis. For this experiment, we fix n = 8000.

We test the speed-up of the Jocor algorithm when it opti-

mizes for the length-adjusted Euclidean distance. We vary the

time series length and measure the speed-up over the algorithm



A1 shown in Figure 5(right). There is no clear trend in the ratio

of the running times of A3 over A1 as we increase lengths.

As a general statement, we see that join on the length-adjusted

Euclidean distance takes more time than that on the Pearson’s

correlation and the exact ratio changes with the increase of

length, as well as, with datasets.

A reasonable question would be to understand the distribu-

tion of the time spent in parts of the algorithm. We report the

breakdown of the running time for the two major parts of the

Algorithm 3. The first six lines in Jocor compute the sufficient

statistics while the remaining lines search the best correlated

segment. In Figure 6(left), we show the time for the two

disjoint parts. The statistics-computation takes insignificant

amount of time compared to the exact search. However the

gap between the two parts of the code is reduced if we use the

approximation technique with a skipSize, k = 32 and becomes

significant.

B. Pruning Power

The scalability experiments have demonstrated the speed-

up. However one may raise concern that the speed-up might

have resulted from implementation differences. In this section

we show the pruning power of our novel bounds. We define

the pruning power as the average percentage of lengths that

Jocor can skip in the third loop (line 11) in Algorithm 3. We

measure the pruning power for different lengths of the joining

time series of the datasets and show in Figure 6(middle).

Most of the datasets achieve 0.98 or more pruning rate

which means, on average, Jocor prunes 98% of the lengths for

any location-pair (i, j). The rate increases as the joining se-

quences become larger. The Power dataset shows significantly

low pruning rate because of reasons explained earlier.

The pruning power of the method depends on the value

of z. Large values of z give less pruning performance. We

experimentally validate the statement in Figure 6(right). For

small z values, the datasets achieve close to 100% pruning rate

and, with the increase of z pruning rate decreases depending

on the datasets. As usual, Power performs worse. Note that

the larger values of z are less probable and we can achieve

massive speed-up if we manually set a small z sacrificing the

exactness guarantee.

C. Scalability on GPU

We also run a GPU-based implementation of our method

on a commodity GPU. It is a GeForce GT 630M with 96

cores and 800 MHz graphics clock. There is a 1GB memory

on the card. We use the maximum number of threads (i.e.

32x16=512) allowed and we use 256 (16x16) blocks, more

than the number of cores in the GPU. We need to chunk the

time series in segments so the memory of each core in GPU is

just sufficient to perform join operation on a pair of chunks and

the number of processes launched in the GPU is minimized.

This chunking is done in the CPU after the sufficient statistics

are computed at line 6 of Jocor. The algorithm sends every

pair of chunks to the GPU’s global memory, one by one, to

compute the best join segment.

The exact version of Jocor gains nothing when ported on

GPU because of the thread synchronization i.e. each thread

runs different number of the main loop and all threads should

wait for the slowest one to finish. In Figure 7(left) we show

the speed-up of the exact version where the ratio remains

very close to one or sometimes less than one. One interesting

observation is the speed-up for the Power data. Recall, Jocor

performs worse on the Power data because of lack of variance

in the number of iterations of the “while” loop. This makes

the Power data a perfect fit for speed-up by parallelization as

all the threads are running roughly the same amount of times

with a balanced load.

Next, we test the speed-up for z = 3 and show the results

in Figure 7(middle). We have around 2× to 6× speed-up from

the single CPU version. We do not consider it a success as

we have 96 cores in the GPU. Finally, we test the speed-up

for z = 3 and k = 32 and show the results in Figure 7(right).

Here we achieve up-to 47× speed-up which close to 50% of

the number of cores.

Although the above speedup is promising, the question

remains if this is sufficient for interactive applications. Of

course, the answer depends on the data size. The absolute

running times of the GPU implementation with z = 3 and

k = 32 for a join of size 10,000x10,0000 are all smaller than

10 seconds. It is a good enough size for joining tables of time

series such as our LightCurve and RatBP datasets and many

other datasets in the UCR time series archive [4].

VIII. APPLICATIONS

In this section, we show three scenarios of data mining that

can use time series join on correlation.
A. Join Based Similarity Search

Time series join on correlated subsequence can be applied

in higher level analytics. Imagine that we have a large time

series of power consumption of a household refrigerator [14]

shown in Figure 8(top). The data has more than 500 thousands

observations in each of the time series. As an analyst, one can

browse the time series with a small viewing window and arrive

at the Figure 8(middle).

The power consumption of a refrigerator has a specific

cyclic pattern with on-off segments. The ON-OFF segments

can be of different length and the Figure 8(middle) has several

long ON segments sequentially. The analyst can select a region

(shown in red) in the viewing window which includes the

uncommon segment and queries for similar patterns in the

entire time series. This action of flexibly selecting (maybe

using a mouse) the query is a powerful tool for analysis tasks

and creates a havoc for traditional similarity search methods.

Traditional methods compare the entire query using various

similarity measures such as correlation, Euclidean distance,

Dynamic Time Warping (DTW) etc. and finds the best match.

However traditional methods can not ignore flexible ends

which is a requirement from analysts who are unsure about

the exact query length.

The Figure 8(bottom) shows the best join segment for the

selected query where the two long cycles and the high cycle
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Fig. 6. (left) Break down of the computation. The statistics computation time and the join computation time are separately shown. (middle) The rate of
pruning achieved by our novel lower-bound. (right) Impact of z on the rate of pruning.
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matched almost perfectly with a correlation value of 0.97.

More importantly, the algorithm did not find any other match

with correlation more than 0.95 which suggests the pattern

is a rare one. We use traditional similarity search with 0.9

correlation threshold, we miss this great match and find some

spurious matches.
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Fig. 8. (top) A series of power consumption of a household refrigerator.
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(bottom) The best join segments are shown. The query is shown in red and
the match is shown in blue.

B. Join Based Clustering

Join segments can represent the similarity between two time

series which has already been used in [25][13]. We have

done a small experiment to demonstrate the potential of such

use. We have taken six audio samples where subjects say the

name “Stella.” We have collected the data from the GMU

speech accent archive [5] and our samples cover native english

speakers, arabic accent and mandarin accent. We have taken

envelops of the signals (shown in red in the Figure 9) and

used both DTW and Jocor to measure the similarity among

the signals and plotted dendrograms based on Ward’s linkage

method. As show in the Figure 9, join based similarity can

cluster better than DTW. The reason for join segments working

better than the DTW alignment is that there are irrelevant

phonemes segmented out from the adjacent words into our

samples. Thus DTW suffers from aligning irrelevant phonemes

to relevant ones while Jocor excludes those phonemes for the

lack of good matches.
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Fig. 9. Dendrograms based on DTW and correlation coefficient of the join
segment.

C. Join Based Filtering

Time series join on correlation can provide interesting

perspective on multivariate data. We perform a case study to

demonstrate it. We have taken a dataset [2] of salinity and

temperature of a circular region around station ALOHA (22◦

45′ N 158◦ W) in the pacific ocean shown in Figure 10. Ocean

salinity has a yearly periodicity for the surface current and a

daily periodicity for the tides. Ocean temperature is roughly

constant except occasional drops (see Figure 10). Each time

series has 1.8 million observations and note that they represent

only one location of the earth. Performing a join on such long

pair of time series is impossible by the naive algorithm which

has been made possible by Jocor.
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Fig. 10. The thermosalinograph dataset. Temperature and salinity of station
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Typically, the relationship between salinity and temperature

depends on the density of the water and there can be many

other factors that are important in their relationship [21]. We

ask the question if there was any day in the past when the

two variates were highly correlated denoting the fact that other

variables were roughly constant.

We have found three days in Figure 11 when the temperature

and salinity of the area are highly correlated. Such correlated

segments are evidences of “everything being right” in the

system. In these three days, first, the ship that recorded the

data operated in a very small area and had consistent noise-

free measurements. Second, the water density was close to

constant to observe the correlation. Third, the periodic change

in temperature in Figure 11(middle) suggests a front of an

eddy was passing the area. Thus time series join can point to

the clean and noise-free part of the data that can be used to

reason about many properties of the underlying system.

IX. CONCLUSION

Time series join on subsequence correlation is a promising

analysis tool that can potentially be used in many domains

including environmental monitoring, power management and

acoustic monitoring. In this paper we have described an

efficient algorithm to perform join on subsequence correlation.

The algorithm is orders of magnitude faster than the brute

force solution while producing the same results.
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