
Time Series Knowledge Mining

Fabian Mörchen

Dissertation

zur Erlangung des
Doktorgrades der Naturwissenschaften (Dr. rer. nat.),

dem Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg vorgelegt von

Fabian Mörchen aus Dillenburg

Marburg/Lahn 2006

Gutachter:
Prof. Dr. Alfred Ultsch
Prof. Dr. Eyke Hüllermeier

Eingereicht am 7.12.2005
Mündliche Prüfung am 17.2.2006

Abstract

An important goal of knowledge discovery is the search for patterns in data that can help ex-
plain the underlying process that generated the data. The patterns are required to be new,
useful, and understandable to humans. In this work we present a new method for the under-
standable description of local temporal relationships in multivariate data, called Time Series
Knowledge Mining (TSKM). We define the Time Series Knowledge Representation (TSKR) as
a new language for expressing temporal knowledge. The patterns have a hierarchical structure,
each level corresponds to a single temporal concept. On the lowest level, intervals are used
to represent duration. Overlapping parts of intervals represent coincidence on the next level.
Several such blocks of intervals are connected with a partial order relation on the highest level.
Each pattern element consists of a semiotic triple to connect syntactic and semantic information
with pragmatics. The patterns are very compact, but offer details for each element on demand.
In comparison with related approaches, the TSKR is shown to have advantages in robustness,
expressivity, and comprehensibility. Efficient algorithms for the discovery of the patterns are
proposed. The search for coincidence as well as partial order can be formulated as variants of
the well known frequent itemset problem. One of the best known algorithms for this problem
is therefore adapted for our purposes. Human interaction is used during the mining to analyze
and validate partial results as early as possible and guide further processing steps. The efficacy
of the methods is demonstrated using several data sets. In an application to sports medicine
the results were recognized as valid and useful by an expert of the field.

Zusammenfassung

Ein wichtiges Ziel der Knowledge Discovery ist die Entdeckung von Mustern in Daten, die
einen Einblick in den generierenden Prozeß geben können. Die Muster sollen neuartig, nützlich
und für Menschen verständlich sein. In dieser Arbeit wird eine neue Methodik namens Time
Series Knowledge Mining (TSKM) vorgestellt, mit der lokale zeitliche Zusammenhänge in mul-
tivariaten Daten gefunden und verständlich dargestellt werden können. Für die Repräsentation
von zeitlichem Wissen wird die Mustersprache Time Series Knowledge Representation (TSKR)
definiert. Die Muster sind hierarchisch aufgebaut, jede Ebene entspricht einem anderen zeitlichen
Konzept. Auf der untersten Ebene stehen Intervalle, die das Konzept der Dauer repräsentieren.
Die Überlappung von mehreren Intervallen stellt auf der nächsten Ebene das Konzept der
Gleichzeitigkeit dar. Die Verknüpfung dieser Intervallblöcke mit einer partiellen Ordnungsre-
lation repräsentiert das Konzept der Abfolge auf der obersten Ebene. Jedes Musterelement
besteht aus einem semiotischen Tripel, das syntaktische und semantische Informationen mit
einer konkreten Pragmatik verknüpft. Die entstehenden Muster sind durch den hierarchischen
Aufbau sehr kompakt, bieten aber bei Bedarf Details zu den einzelnen Elementen. Im Vergleich
mit verwandten Ansätzen zeichnet sich die TSKR durch höhere Robustheit, Ausdrucksstärke und
Verständlichkeit aus. Effiziente Algorithmen zur Entdeckung der Muster werden vorgeschlagen.
Es wird gezeigt, daß sowohl die Suche nach Gleichzeitigkeit, als auch die Suche nach partieller
Ordnung als Varianten des bekannten Warenkorb-Problems formuliert werden können. Für die
Suche nach häufigen Mustern wurde daher einer der besten bekannten Algorithmen für dieses
Problem adaptiert. Der Mensch wird in den Suchprozess eingebunden um Teilergebnisse so früh
wie möglich zu analysieren und die weiteren Schritte zu beeinflussen. Die Menge an Mustern
wird bewußt kompakt gehalten um den Benutzer nicht mit Informationen zu überfluten. Die
Effektivität der Verfahren wird an mehreren Datensätzen demonstriert. Bei einer Anwendung
aus dem Bereich der Sportmedizin wurden die Ergebnisse vom Experten als valide und nützlich
bezeichnet.

Acknowledgements

I wish to thank my family for the encouragement and welcome distraction during this work, most
of all my wife Daniela for her loving support. Many thanks go to my advisor Alfred Ultsch. He
guided me in this endeavor with just the right mixture of affirmation and criticism. Numerous
ideas of this work have been developed using an example from sports medicine. This was made
possible by the close cooperation with Olaf Hoos, whom I thank for repeatedly inspecting the
results. I also thank Alan Fern for provision and support of the video data. Finally, I owe a lot
to my colleague Katrin Kupas and my friend Adrian Schnobrich for proofreading parts of this
work.

1

Contents

1 Introduction 4

2 Fundamentals 6

2.1 Data Mining and Knowledge Discovery . 6
2.2 Typical Data Mining Tasks . 7

3 Representations of Temporal Data 10

3.1 Temporal Data Models . 10
3.2 Temporal Operators . 11
3.3 Temporal Concepts . 14

4 Temporal Data Mining 17

4.1 Introduction . 17
4.2 Sequential Pattern Mining . 17
4.3 Temporal Association Rules . 18
4.4 Data Streams . 19
4.5 Web Usage Mining . 20
4.6 Pattern Evolution . 20
4.7 Temporal Reasoning . 20
4.8 Temporal Databases . 21

5 Time Series Data Mining 22

5.1 Introduction . 22
5.2 Preprocessing . 22
5.3 Similarity . 23
5.4 Time Series Representation . 27
5.5 Visualization . 31
5.6 Prediction . 32
5.7 Clustering . 32
5.8 Segmentation . 35
5.9 Classification . 37
5.10 Motif Discovery . 39
5.11 Anomaly Detection . 39
5.12 Retrieval by Content . 40
5.13 Rule Discovery . 41
5.14 Other Approaches . 42
5.15 Discussion . 43

2

CONTENTS 3

6 Unsupervised Mining of Temporal Rules from Time Series 45

6.1 Time Point Rules . 46
6.2 Time Interval Rules . 50

7 Time Series Knowledge Representation 53

7.1 Motivation . 53
7.2 Definitions . 55
7.3 Analysis . 65

8 Algorithms for Mining Time Series Knowledge 74

8.1 Preprocessing . 75
8.2 Aspects . 76
8.3 Finding Tones . 76
8.4 Finding Chords . 80
8.5 Finding Phrases . 83

9 Evaluation 92

9.1 Datasets . 92
9.2 Efficacy and Efficiency of TSKM . 93
9.3 Allen’s Relations . 101
9.4 Unification-based Temporal Grammar . 110
9.5 Hidden Markov Models . 112
9.6 Comparison of Methods . 116

10 Discussion 120

11 Summary 127

A Datasets 129

A.1 Skating Data: Muscle Coordination during Inline-Speed-Skating 129
A.2 Video data: Recognition of Tasks from Video Recordings 133

List of Figures 133

List of Tables 135

List of Algorithms 136

Bibliography 140

Index 172

Curriculum vitae 174

Chapter 1

Introduction

The technological advances of the last decades lead to an omnipresence of computers and net-
working in many domains of business and science. The fast increasing computing power and
the decreasing costs of high volume data storage allowed the collection of enormous amounts of
data. This has led to the relatively young field of data mining and knowledge discovery with the
goal to make sense of this data and utilize it. Companies seek to learn more about their cus-
tomers to better target advertisement, predict future product trends, or prevent fraud. Banks
and insurances aim to estimate investment risks and to predict the stock market development.
Scientists from many domains search for interesting patterns in data observed in experiments
or the environment. In medicine, genetic and other data from patients is searched to find the
cause of diseases and develop treatments.

Data mining and knowledge discovery can solve many tasks in all these endeavors. Important
requirements for knowledge discovery are interpretability, novelty, and usefulness of the results.
In many domains the experts want to know why a decision was made, otherwise they are
unlikely to trust the advice generated by automated data analysis methods. Novelty of patterns
is sought because there is no benefit in deriving information from data, that is already known to
the experts. The ultimate goal of knowledge discovery is to foster a deeper understanding of the
data in the mind of the analyst and produce results that can be utilized within the application
domain.

Many data mining problems involve temporal aspects. The most common form of temporal
data is time series where some properties are repeatedly observed generating a series of data
items similar in structure. Some examples include stock-trading data, network-traffic, web-
server statistics, sensory data, and music archives. Mining this data poses interesting challenges.
Whereas the analysis of static data sets often comes down to the question of similarity of data
items, with temporal data there are many additional possible relations. Several different data
items can be related because they often occur in a particular order or close together in time.

In this thesis we develop a representation of temporal patterns in multivariate time series
to support knowledge discovery. The knowledge representation is designed to be easily compre-
hensible, robust to noise present in the data, and is able to express many different temporal
relations. Local temporal phenomena are qualitatively described in a form close to human lan-
guage. Efficient computer algorithms are presented that find the most dominant patterns in a
time series and present a concise summary to the data analyst. This can be used to explain
important temporal phenomena of the process generating the data.

Chapter 2 presents our view of data mining and knowledge discovery. The description of
temporal data models, operators, and concepts in Chapter 3 provides a common language for
the further discussion of temporal data mining. Chapters 4-6 zoom in on the main subject of
this study - patterns and rules extracted from time series. Chapter 4 gives a brief overview
of temporal data mining. Time series data mining is explained in more detail in Chapter 5.

4

5

Existing approaches for temporal rule mining are categorized according to a novel taxonomy in
Chapter 6.

The main part of this thesis is the presentation of the Time Series Knowledge Mining (TSKM)
method in Chapter 7 and Chapter 8. After a motivation in Chapter 7.1, we define the Time
Series Knowledge Representation (TSKR) as a new pattern language for expressing temporal
knowledge, in Chapter 7.2. The TSKR is analyzed in comparison to existing approaches in
Chapter 7.3. Efficient algorithms for mining the patterns are described in detail in Chapter 8.
An experimental evaluation of the TSKM in comparison with competing methods is given in
Chapter 9. Many aspects of our work are discussed in Chapter 10, followed by the summary in
Chapter 11.

Chapter 2

Fundamentals

This chapter compares several definitions of data mining and knowledge discovery and motivates
the emphasis that we place upon understandable results. We briefly describe the most typical
data mining tasks, some of which will later occur in variants dealing with temporal data in
general or time series in particular.

2.1 Data Mining and Knowledge Discovery

This thesis belongs in the broad context of the still fairly young research area of data mining and
knowledge discovery in databases (KDD) that has evolved from a collaboration of mostly the fol-
lowing fields: statistics, machine learning, artificial intelligence, pattern recognition, knowledge
acquisition, expert system, data visualization, high-performance computing, databases, informa-
tion retrieval, multimedia and graphics (Fayyad et al., 1996; Hand et al., 2001; Dunham, 2002).
In order to define data mining and knowledge discovery in databases from our point of view, we
first quote some other definitions.

An early and often cited definition is given in (Fayyad et al., 1996). The authors define
KDD on an abstract level as the ”development of methods and techniques for making sense of
data”. The results are supposed to be ”more compact [...], more abstract [...], or more useful”.
In their view ”KDD refers to the overall process of discovering useful knowledge from data, and
data mining refers to a particular step in this process” and ”Data Mining is the application of
specific algorithms for extracting patterns from data”. The patterns are required to be ”valid on
new data [...], novel [...], potentially useful [...]” and ”understandable”. They emphasize that
the ”KDD process is interactive and iterative”. The basic process is described as the sequence of
the steps selection, preprocessing, transformation, data mining, and interpretation/evaluation,
but it is said that it ”can involve significant iteration and can contain loops between any two
steps”.

Hand et al. give a definition as follows: ”Data mining is the analysis of (often large) obser-
vational data sets to find unsuspected relationships and to summarize the data in novel ways that
are both understandable and useful to the data owner” (Hand et al., 2001). They put emphasis
on the fact that data sets are usually large, creating algorithmic challenges and distinguishing
data mining from classical exploratory data analysis. The relationships found in the data are
required to be novel and understandable. For KDD the authors adopt the view of Fayyad et al.,
but they note that boundaries between knowledge discovery in databases and data mining are
not easy to draw because ”to many people data transformation is an intrinsic part of data min-
ing”. They propose components for a general categorization of data mining algorithms: model or
pattern structure, score function, optimization and search method, data management strategy.

Dunham describes data mining from a database perspective and defines it as ”finding hid-
den information in a database” (Dunham, 2002). The author notes that knowledge discovery

6

2.2. TYPICAL DATA MINING TASKS 7

in databases and data mining ”are often used interchangeably” but also adopts the view of
Fayyad et al. and defines KDD as ”the process of finding useful information and patterns in
data” while data mining is a sub step in the process.

Ultsch defines data mining as the inspection of data with the aim of discovering knowledge.
Knowledge discovery is defined as ”the discovery and formal representation of knowledge from
data collections” (Ultsch, 2003a). The terms are thus used somewhat interchangeably, but when-
ever the latter is used the emphasis is on knowledge. Knowledge is required to be representable
in a linguistic form, that is understandable to humans and automatically usable by knowledge-
based systems. This can be achieved by using a combination of first order predicate logic and
an estimation calculus, e.g., probability or fuzzy theory. Further, knowledge is required to be
previously unknown and useful. ”The central theme of data mining and knowledge discovery
is the transition from data to knowledge”. The conversion of sub-symbolic patterns and trends
in data to a symbolic form is seen as the most difficult and most critical part of data analysis
(Ultsch, 2003a; Ultsch and Korus, 1995).

In accordance with Ultsch, we like to take the terms data mining and knowledge discovery
more literally than, e.g., Fayyad et al.. The word mining implies a lengthy laboriously process
of searching for hidden information in a large amount of data. Since preprocessing often takes
up a large amount of the complete analysis time and is also utterly important for getting good
results, it seems unfair to define data mining solely as an intermediate step in the process.
The term knowledge discovery implies the result to be knowledge. In addition to being new,
interesting, and useful, we require knowledge to be understandable to humans and automatically
interpretable by computers. We also like to drop the suffix in databases. During the advent of
KDD it was needed to emphasize the focus on large data sets and efficient algorithms compared
to exploratory data analysis in statistics. By now, databases have become an omnipresent tool
that does not help in defining the concept and the form of storing the data is not crucial for the
process. Therefore we want to define the two strongly coupled concepts in a manner somewhat
inverse to the traditional way of Fayyad et al., more as a mixture of Ultsch and Dunham:

Data mining The process of finding hidden information or structure in a data collection. This
includes extraction, selection, preprocessing, and transformation of features describing
different aspects of the data.

Knowledge discovery Data mining with the goal of finding knowledge, i.e., novel, useful,
interesting, understandable, and automatically interpretable patterns.

Note, that the definition of the above terms is a rather philosophical question. You might as
well think of data mining and knowledge discovery the same concept, but we want to emphasize
the strong requirements we pose for a model to be considered knowledge.

2.2 Typical Data Mining Tasks

In the next few sections we briefly describe some typical data mining tasks. The list is not meant
to be exhaustive but it does cover many problems encountered in data mining. We will refer
to these tasks later in the context of temporal data mining. For more details see (Hand et al.,
2001; Dunham, 2002).

Preprocessing

Preprocessing the data to be mined is utterly important for a successful outcome of the analysis.
If the data is not cleansed and normalized, there is a high danger of getting spurious and
meaningless results. Cleansing includes the removal of outliers, i.e., data objects with extreme

2.2. TYPICAL DATA MINING TASKS 8

values, replacement of missing values, or the removal of erroneous corresponding data sets. Many
data mining algorithms rely on the concept of distance between data sets. Often, a measure
of similarity between data sets needs to be chosen. For many similarity measures, e.g., the
commonly used Euclidean distance, normalization of the data needs to be considered to avoid
undesired emphasis of features with large ranges and variances.

Regression

Regression is the task of explicitly modelling variable dependencies to predict a subset of the
variables from others, see (Hastie et al., 2001) for an introduction. The most common case is
linear regression, this includes nonlinear transformations of the input variables. A well known
form of nonlinear regression is using feed-forward neural networks (Haykin, 1994), recently
Support Vector Machines (SVM, Burges (1998)) have become popular. Regression can also be
used to replace missing values.

Clustering

Clustering1 is the process of finding intrinsic groups, called clusters, in a data set. Each cluster
should be as homogeneous as possible and distinct from other clusters. A cluster can be defined
based on distances or densities. Distance based clusterings have small intra-cluster distances
vs. large inter-cluster distances. Density based clusterings have dense clusters separated by
relatively sparsely populated regions. The most widely used distance based clustering algorithm
is k-Means (MacQueen, 1965), a well known density based clustering algorithm is DBSCAN

(Ester et al., 1996).

Classification

Classification is the task of assigning class labels to a data set according to a model learned from
training data where the classes are known. It can be viewed as a special case of regression with
a discrete prediction variable. In the context of knowledge discovery understandable classifiers
are preferred over. The well known feed-forward neural nets can learn class assignments, but
the models are built using a large amount of numeric weights that cannot be easily interpreted.
Classifiers the represent the model in form of rules or trees with human readable conditions
on the feature values (see Witten and Frank (1999) for a summary of common approaches) are
better understandable. The most widely used examples are decision trees (Quinlan, 1993).

Association Rules

Association rules (Agrawal et al., 1993b) were originally developed for the analysis of shopping
baskets. A set of products purchased by a customer is represented by a set of discrete items,
called itemset. Association rules describe the co-occurrence of items in these itemsets. Two
classical examples of products that are likely to be bought together are diapers and beer or
chips and salsa. The best known algorithm is Apriori (Agrawal and Srikant, 1994). It is based
on the observation, that an itemset can only be frequent if all subsets are frequent as well. Using
this property, larger frequent itemsets are built from the bottom up merging smaller itemsets.
The concept of association rules was generalized to many different application areas and other
data types. In order to reduce the number of itemsets found, the search is can be restricted to
maximal or closed itemsets (e.g. Zaki and Hsiao (2002)). Maximal itemsets are not a subset
of another frequent itemset. For closed itemsets there is no proper superset with the same
frequency.

1Sometimes clustering is called unsupervised classification.

2.2. TYPICAL DATA MINING TASKS 9

Retrieval by Content

When retrieving data sets by content the user provides an example or a template for a data set
and approximate matches from a large database are listed. Since there is often a large amount
of data, the brute force method of calculating the distances of the query to all data sets is often
prohibitively slow. Database indexes, e.g., tree structures, are commonly used to speed up this
search (Weber et al., 1998). Another useful tool is a fast lower bounding distance. The exact
and more expensive distance only needs to be calculated if the lower bounding distance is below
a threshold. This way many data sets can be excluded from the result by only calculating the
cheap approximate distance.

Chapter 3

Representations of Temporal Data

In this chapter we define a common language for the description of data mining methods that
evolved around temporal data. Temporal data models are described in Chapter 3.1. They
provide different ways of representing observations involving time. Temporal operators (Chap-
ter 3.2) are used to combine elements of temporal data models to express temporal patterns.
We finally introduce the notion of temporal concepts in Chapter 3.3 to provide a unifying view
of temporal relations based on the commonly used temporal operators.

3.1 Temporal Data Models

In this chapter we will introduce models for temporal data. All term definitions will be empha-
sized.

Usually temporal data is represented based on observations at discrete points in time. Often,
time is uniformly sampled. If not, there is usually some lower bound for the granularity of time.
We refer to this finest level of temporal detail as time points. Even if no explicit time values but
only an ordering of the data is given, this can be mapped to integer values representing time
points. A time series is a set of unique time points with values or objects assigned to each time
point. A time sequence is a multi-set of time points with assigned values or objects, i.e., it can
include duplicate time points. A pair of time points defines a time interval . An interval series
is a sequence of non-overlapping time intervals. In a contiguous interval series no gaps between
two consecutive intervals are allowed. An interval sequence can include overlapping and even
equal time intervals.

A numeric time series is a time series with numerical values for each point. This is the
data model commonly used in statistics, e.g., for the prediction of stock prices. A symbolic time
series is a time series with nominal values for each point. This is the data model commonly
used in bioinformatics, e.g., for the analysis of gene data and can be obtained from numeric time
series by discretization (see Chapter 5.4.3). A numeric interval series is an interval series with
numerical values for each interval, a symbolic interval series has nominal values, respectively.
These data models are commonly obtained from univariate numeric time series by segmentation
(see Chapter 5.8) and feature extraction (see Chapter 5.2). A symbolic time series can be
obtained from a symbolic interval series using, e.g., only the start points of each interval and
ignoring the durations.

A numeric time sequence is a multi-set of time points with numerical values for each point. A
symbolic time sequence is a multi-set of time points with nominal values for each point. This data
model is used, e.g., in (Mannila and Toivonen, 1996) for telecommunication events. A numeric
interval sequences provides numerical values for each interval, a symbolic interval sequences has
nominal or ordinal values.

10

3.2. TEMPORAL OPERATORS 11

In all symbolic data models, the symbols can optionally be accompanied by more attributes,
describing, e.g., the length of an interval (Last et al., 2001) or the local slope (Höppner, 2002c).
The three mentioned series can be univariate, i.e., consisting of a single series or multivariate
when several series cover the same time range. Further, there can be sets of all the above
mentioned models, e.g., sets of numeric series (Dugarjapov and Lausen, 2002) or sets of symbolic
series in multiple sequence alignment of genetic sequences.

An itemset sequence is a time sequence with a subset of a set of symbols per time point. This
data model is used in inter-transaction association rule mining (Agrawal and Srikant, 1995). A
symbolic sequence is a degenerate form of an itemset sequence.

Another temporal data model mentioned in (Roddick and Spiliopoulou, 2002) is mining re-
sults, e.g., a set of discovered association rules that can change over time. In (Morik, 2000)
temporal facts are defined as logical predicates involving start and end points of an interval as
arguments, in (Padmanabhan and Tuzhilin, 1996) temporal facts are defined for time points.

Literally, the term series and sequence both refer to ordered entities. We chose to define
the terms as a set and a multi-set of time points, respectively, adhering to the most typical
usage of these terms in the literature. The term time series is widely used in statistics for a set
of numeric measurements taken at unique time points. The term sequence is widely used for
mining sequential patterns in itemsets, the transaction times of which can include duplicates.

3.2 Temporal Operators

3.2.1 Time Point Operators

The following temporal operators can be used with time series and time sequences. For two
points in time there are three basic binary operators: before, equals, and after. Both before
and after can be accompanied by a threshold, e.g., after at most (least) k time units. This
corresponds to a complete ordering of the time stamps and is used in many temporal data
mining algorithms. Sometimes an operator is used to specify that two or more time stamps lie
within a time interval (Mannila and Toivonen, 1996; Das et al., 1998; Weiss, 1999) expressing
closeness in time without a particular order.

Bettini et al. define an operator called temporal constraint with granularity, that can express
the operators before, after, and equals w.r.t. a granularity of time (Bettini et al., 1998). They
argue, that one day is not equivalent to 24h, because the latter could cover parts of two days,
an important distinction in some applications. Also, finer granularities do not necessarily have
to correspond to larger ones: an hour is always part of a day, but not every hour is part of a
business day. Thus, the result of the operator can be undefined. A fuzzy extension for temporal
reasoning (see Chapter 4.7) has been proposed in (DuBois and Prade, 1989) expressing relations
like much before or closely after.

Periodical patterns (Han et al., 1998) are not commonly expressed with operators, but one
could say that a symbol repeats approximately every k time points.

3.2.2 Time Interval Operators

Time interval operators can only be used with interval series and sequences.

Allen’s Interval Operators

For the purpose of temporal reasoning Allen formalized temporal logic on intervals by specifying
13 interval relations (Allen, 1983) and showing their completeness. Any two intervals are related
by exactly one of the relations. The operators are: before, meets, overlaps, starts, during, finishes,

3.2. TEMPORAL OPERATORS 12

the corresponding inverses after, met by, overlapped by, started by, contains, finished by, and
equals (see Figure 3.1).

Figure 3.1: Examples of the 13 interval relations between the intervals A and B according to
(Allen, 1983). Each relation and the corresponding inverse are shown in one row,
e.g., the first rows depicts A before B or the alternative formulation B after A. The
equals relation is its own inverse.

The relations are commonly used beyond temporal reasoning, e.g., for the formulation of
temporal rules (Kam and Fu, 2000; Cohen, 2001; Höppner, 2002c). Others allow all relations but
restrict the composition of several relations (Kam and Fu, 2000; Cohen, 2001) or the maximum
duration of a pattern (Höppner, 2002c) to make the search space for patterns smaller.

The strict use of Allen’s interval relations has been recognized as problematic.
Badaloni and Giacomin propose a fuzzy extension of Allen’s interval relations by adding a
preference degree to each possible relation (Badaloni and Giacomin, 2000). They discuss the
implications on reasoning tasks, but they do not describe how to calculate the membership val-
ues for the relations. For other approaches to fuzzy time interval relations see (Calin and Galea,
2001; Nagypal and Motik, 2003; Ohlbach, 2004). Snoek and Worring further object, that two
intervals will always have a relation, no matter how far they are apart (Snoek and Worring,
2004). They use a so-called fuzzy version of Allen’s relations originally proposed for document
processing (Aiello et al., 2002). Using a threshold, interval endpoints are considered equal
if they are within a small distance. This way the strict meets, starts, finishes, and equals
relations apply more often, while before, overlaps, and during occur less often. For intervals
very far apart (determined by a second threshold) they introduce the no relation operator.
This modified version is called TIME (Time Interval Multimedia Event) relations. There are
no fuzzy membership functions, however, only one relations holds for any two given intervals.

Freksa’s Semi-Interval Operators

Freksa generalized the interval relations by using semi-intervals (Freksa, 1992) with the following
11 operators: older, younger, head to head, survives, survived by, tail to tail, precedes, succeeds,
contemporary, born before death, and died before birth. Combining the previous leads to six
derived operators: older & survived by, younger & survives, older contemporary, surviving con-

3.2. TEMPORAL OPERATORS 13

temporary, survived by contemporary, and younger contemporary. The generalization was done
motivated by the observation that ”in no case, more than two relations between beginnings and
endings of events must be known for uniquely identifying the relation between the corresponding
events”. The semi-interval representation has the advantage that coarse or incomplete knowledge
is represented by simpler formulas instead of long disjunctions. A concept of similarity of the
relations is described. Freksa’s semi-interval relations were used to mine temporal association
rules in (Rainsford and Roddick, 1999).

Roddick’s Midpoint Interval Operators

Roddick and Mooney combined Allen’s interval relations with the five point-interval relations of
(Vilain, 1982) considering the relative positions of the interval midpoints (Roddick and Mooney,
2005). A total of 49 relations is obtained, e.g., nine different versions of overlaps. Some of the
different overlaps relations can be interpreted as small, medium, or largely overlapping intervals.
The motivation is handling data with coarse time stamps and data from streams with arbitrary
local order. The authors also describe the relation between the models of Allen and Freksa and
the respective extensions to midpoints and/or intervals of equal durations.

Other Interval Operators

Villafane et al. use an interval operator called containment, that is equivalent to the disjunction
of Allen’s equals, starts, during, and ends (Villafane et al., 1999).

Ultsch defines the Unification-based Temporal Grammar (UTG) that contains an approx-
imate version of Allen’s equals operator called more or less simultaneous (Ultsch, 1996b;
Guimarães and Ultsch, 1997; Ultsch, 2004). The start and end points of the intervals are not
required to be exactly equal, they only need to be within a small time interval. A further
generalization, called coincides, was proposed in (Mörchen and Ultsch, 2004) by dropping the
constraints on the boundary points, only requiring some overlap between the intervals. This is
equivalent to the disjunction of Allen’s overlaps, starts, during, finishes, the four corresponding
inverses, and equals.

3.2.3 Temporal Logic Operators

Temporal logic operators apply to data given as temporal facts. They evaluate the truth of facts
at time points or during time intervals.

In (Bacchus and Kabanza, 2000) first order Linear Temporal Logic (LTL) is used for plan-
ning tasks. LTL is an extension of First Order Logic (FOL) used to specify temporal facts about
predicates in a sequence of worlds. The main temporal operators are until and next, additionally
the derived operators always and eventually are used. Padmanabhan and Tuzhilin use an exten-
sion called First Order Temporal Logic (FOTL) with the core operators since, until, next, and
previous (Padmanabhan and Tuzhilin, 1996). Additionally they derive the operators always,
sometimes, before, after, and while and introduce the bounded versions untilk and sincek. The
operators relate facts instantiated at time points. Cotofrei and Stoffel use a first order language
with the temporal base operators sometimes, always, next, and until and some derived operators
to express temporal classification rules (Cotofrei and Stoffel, 2002c).

In (Rodriguez et al., 2000) three interval predicates based on a visual rule language
(Alonso and Rodriguez, 1999) are used: always, sometime, and true-percentage. The predicates
explicitly include start and end points of an interval and are evaluated on facts instantiated at
time points. The truth of a static predicate, e.g., a range condition for the variable, is tested
for each time point in an interval, counting how often it is true. For always this needs to be

3.3. TEMPORAL CONCEPTS 14

true for all time points, sometimes corresponds to least one success, and true-percentage can be
parameterized as a compromise of the other two.

The Event logic defined in (Siskind, 2001) is a combination of Allen’s relations with logical
predicates that hold on intervals. The AMA (and meets and) logic used in (Fern et al., 2002) is
a subset of the complete Event logic restricted to conjunctions of several meeting conjunctions
of positive interval literals.

3.3 Temporal Concepts

Based on the various temporal operators used in the literature, we propose a unifying view of
temporal concepts. A temporal concept is essentially an intuitive notion of the type of temporal
relationship between time points or time intervals. A single temporal concept can correspond
to several temporal operators. We give examples for each concept using the weather.

3.3.1 Duration

The concept of duration is the persistence or repetition of a property over several time points.
Duration is what distinguishes time point from time interval data models. Time points express
instantaneous information, e.g., lightning during a thunderstorm. According to the time resolu-
tion of our visual perception lightning is perceived as an instantaneous event without duration.
The following thunder, however, usually lasts for a few seconds and can thus be described by
an interval and has a duration. Time points will be displayed by vertical lines, time intervals as
horizontal bars (see Figure 3.2).

3.3.2 Order

The concept of order is the sequential occurrence of time points or time intervals. A flash is
always followed by a thunder in a storm, an arrow is used to represent the ordering between
the two events in Figure 3.2. For both data models the concept of order corresponds to the
operators before and after, and for intervals also the more restrictive meets operator.

Figure 3.2: The temporal concept of duration is represented by an interval indicating the pres-
ence of thunder. The temporal concept of order is shown by consecutive placement
of temporal events according to the direction of time from left to right.

3.3.3 Concurrency

The concept of concurrency is the closeness of two or more temporal events in time in no
particular order. In a heavy thunderstorm lightning and drops of rain occur concurrently, but
there is no special order relation between these events (Figure 3.3). Concurrency is often used
for time points, especially for the data model of time sequences where the exact local order of
time points is not necessarily meaningful. With intervals it correspond to the occurrence of two
or more intervals within a larger sliding window and no further constraints on their relative
position.

3.3. TEMPORAL CONCEPTS 15

Figure 3.3: The temporal concept of concurrency represents closeness in time with no particular
order. The time during which raindrops and flashes of lightning occur concurrently
is shown as an interval.

3.3.4 Coincidence

The concept of coincidence describes the intersection of several intervals. If rain coincides with
sunshine, there will often be a rainbow visible. Both rain and sunshine could have started earlier
or last longer, but only when they coincide the rainbow is visible. The lifetime of the rainbow
interval in Figure 3.4 thus corresponds to the overlap of the sunshine and rain intervals. The
concept of coincidence is present the contains operator and nine of Allen’s relations (overlaps,
starts, during, finishes, the corresponding inverses, equals). The coincides operator directly
expresses this temporal concept.

Figure 3.4: The overlapping parts of two or more intervals represent the temporal concept of
coincidence. In the example rain, sunshine, and a rainbow coincide for a certain
duration.

3.3.5 Synchronicity

The concept of synchronicity is the synchronous occurrence of two temporal events and is a
special case of coincidence. The flash of lightning and the shrinking of our pupils to adjust
for the brightness are synchronous time point events at the accuracy of our perception. For
time intervals imagine a sunny spring afternoon with a cloud passing the sun. During this time
interval it will be slightly darker and cooler. Both effects set in and end synchronously with
the shadow approaching and receding. The corresponding intervals in Figure 3.5 are aligned.
For both time points and intervals synchronicity mainly corresponds to the operator equals. For
time intervals it can also be the relaxed form more or less simultaneous to allow for inaccuracies
in the measurements of the interval boundaries. For time points such a threshold only makes
sense for time sequences and it needs to be small, otherwise it would rather correspond to the
concept of concurrency.

3.3. TEMPORAL CONCEPTS 16

Figure 3.5: The temporal concept of synchronicity is a special case of coincidence. The involved
intervals need to start and end simultaneously like the presence of a cloud and the
change in temperature and brightness in the example.

3.3.6 Periodicity

The concept of (approximate) periodicity is the repetition of the same or very similar values
with an (almost) constant period. A common example is the seasons we experience each year
with a period of about 12 months.

3.3.7 Summary

In Figure 3.6 we show which temporal concepts are expressed by the time point operators
and by Allen’s time interval operators. The inverses of operators are not shown, because they
correspond to the same temporal concept. The remaining interval operators are not shown
because they correspond to disjunctions of Allen’s operators. The four time point operators
express the four most common temporal concepts used with time points. Coincidence for time
points corresponds to synchronicity. Duration can be modelled with time points by immediate
repetition of the same symbol and is implicitly present in intervals. Allen’s interval relations
cover the three most common temporal concepts used with intervals: order, coincidence, and
synchronicity. Four different operators partly express coincidence. Periodicity and concurrency
are not commonly used for intervals.

Figure 3.6: The outer columns list all time point and time interval operators. The arrows
pointing to the temporal concepts in the center columns indicate which concepts are
expressed by which operators.

Chapter 4

Temporal Data Mining

4.1 Introduction

We see temporal data mining (TDM) as the mining of data that has some temporal aspect
to it. This covers a large area of problems and mining methods. Naively applying traditional
data mining techniques by treating the temporal attributes as static features and ignoring the
temporal structure of the data is usually not enough. Many special temporal mining algorithms
have been developed for various temporal data types. Since temporal data mining is a relatively
new field of research, there is no widely accepted taxonomy yet.

Chen and Petrounias propose a framework for temporal data mining. A temporal pattern
is defined as tuple consisting of a static pattern and a temporal expression indicating when the
pattern is valid (Chen and Petrounias, 1998).

Morik defines representation languages for temporal data mining and categorizes tasks by
distinguishing two temporal concepts (linear precedence and immediate domination) and five
data models (multivariate and univariate time series, nominal valued time series, sequence vector,
and facts) (Morik, 2000). Within this framework they describe the experiences and results of
three case studies.

Roddick and Spiliopoulou define paradigms for (Spatio-) temporal data mining. They dis-
tinguish three temporal data types (scalar, events, mining results) and two mining paradigms
(Apriori-like, classification) (Roddick and Spiliopoulou, 2002).

Lin et al. describe temporal data mining as ”the analysis of temporal data and [...] finding
temporal patterns and regularities”. They list several mining tasks (classification, clustering,
induction) and problems (similarity, periodical) (Lin et al., 2001).

The following sections describe the some important areas of temporal data mining and some
related topics. Similar categorizations of temporal data mining can be found in (Dunham, 2002)
and (Roddick and Spiliopoulou, 2002). Since time series are the main focus of this thesis, the
large area of time series data mining (TSDM) will be explained in more detail in Chapter 5.
Similarly, Chapter 6 is devoted to the particular task of unsupervised rule discovery from time
series, listing approaches most relevant for this thesis. Figure 4.1 visualizes this upcoming zoom
into temporal data mining.

4.2 Sequential Pattern Mining

The search of frequent itemset subsequences is commonly called sequential pattern mining
(Agrawal and Srikant, 1995). A typical application is customers purchasing sets of items at
different times, where the seller is interested in products typically bought some time after an
initial purchase. This way recommendations can be given. Itemset sequences can be searched

17

4.3. TEMPORAL ASSOCIATION RULES 18

Figure 4.1: Chapters 4 through 6 describe the nested topics temporal data mining, time series
data mining, and unsupervised rules discovery at increasing levels of detail.

with the well known AprioriAll (Agrawal and Srikant, 1995) algorithm. A faster method is
SPADE (Sequential Pattern Discovery using Equivalence classes, Zaki (1998)). Generaliza-
tions of sequential patterns using concept hierarchies and temporal constraints were proposed
in (Srikant and Agrawal, 1996). They also describe a fast algorithm called GSP (Generalized
Sequential Pattern).

An algorithmically different approach for mining sequential patterns is called pattern-growth
(Han and Pei, 2001) using, e.g., the PrefixSpan (Pei et al., 2001) algorithm. The pattern-growth
approach uses the divide and conquer principle to avoid or dramatically reduce the generation
and testing of candidate patterns. The SPAM (Sequential Pattern Mining, Ayres et al. (2002))
approach is also a depth-first search using a memory resident bitmap representation to achieve
a high speedup compared to SPADE in general and to PrefixSpan for large data sets.

Recently, CloSpan (Yan et al., 2003) has been proposed to mine only closed sequential pat-
terns, i.e., patterns with no super-patterns of the same frequency. To free the user from choosing
the minimum frequency, Tzvetkov et al. propose to mine the top k closed patterns raising the
threshold dynamically (Tzvetkov et al., 2003). In (Wang and Han, 2004) the Bi-Directional Ex-
tension checking (BIDE) algorithm is demonstrated to outperform CloSpan. The Apriori and
PrefixSpan algorithms were extended to multidimensional sequential data in (Yu and Chen,
2005).

Episode rules (Mannila et al. (1997), Chapter 6) applied to itemset sequences are similar
to sequential patterns. An Episode can represent a partial order of itemsets, an Episode rule
describes an implication of Episodes.

4.3 Temporal Association Rules

While sequential patterns describe the concept of order in itemset sequences, temporal associa-
tion rules combine traditional association rules with temporal aspects. Often the time stamps
are explicitly used to describe the validity, periodicity, or change of an association.

Özden et al. mine association rules that hold only during certain cyclic time intervals
(Özden et al., 1998). The authors argue, that when searching over several months, a co-
occurrence of, e.g., coffee and doughnuts might have relatively low frequency. But when looking

4.4. DATA STREAMS 19

at hourly sales figures they might be more frequent in the morning hours. The temporal gran-
ularity needs to be specified by the user.

Similarly, Chen and Petrounias combine association rules with temporal constraints on the
validity (Chen and Petrounias, 1998). The temporal features are based on a user defined cal-
endar and can describe an absolute time, a periodical time, or a specific time. The sup-
port is only measured during these time intervals. Algorithms to mine the rules given the
temporal constraints (Chen et al., 1998) and to mine the valid time periods given the rules
(Chen and Petrounias, 1999) are proposed.

In (Ale and Rossi, 2000) time is used for a more meaningful calculation of association rule
support. The lifetime of an item is defined as the time between the first and the last occurrence.
The temporal support is calculated w.r.t. this interval. This way rules are found that are only
active during a certain time. In addition, outdated rules can be pruned by the user.

Inter-transaction association rules (Lu et al., 1998; Tung et al., 1999) merge all itemsets
within a sliding time window augmented with the occurrence times. The resulting rules can
express occurrences with relative time differences. Recently a faster algorithm has been proposed
for this problem (Huang et al., 2004).

Rainsford and Roddick define temporal association rules as traditional association rules plus
a conjunction of binary temporal predicates (see Chapter 3.2, Rainsford and Roddick (1999)). A
separate confidence factor is assigned to the basic rule and each temporal operator. The temporal
aspects of the rules can be visualized in a parallel coordinate plot (Rainsford and Roddick, 2000).

In (Dong and Li, 1999) emerging patterns are defined as patterns whose support increases
significantly over time. It is argued, that these changes are often more interesting than rules
with constant support that more likely indicate known facts.

In (Wijsen, 1997) the concept of trend dependencies is defined to express rules of the form:
”If an employee’s rank increases then his/her salary does not decrease”. Wang et al. analyze
the evolution of numerical attributes over some time steps (Wang et al., 2001). They define
temporal association rules as the correlations between two sets of evolving attributes.

4.4 Data Streams

Data streams are characterized by a continuous high rate flow of incoming data. Due to the speed
and size of the stream, the data cannot be stored as persistent relations. One data element is thus
seen only once, the retrieval of older records is prohibitively expensive. Babcock et al. describes
the data stream model as: ”the data elements in the stream arrive online”, ”the system has no
control over the order [...]”, ”data streams are potentially unbounded in size” (Babcock et al.,
2002) and there is only one chance of fast access for each data element. Some applications of
data streams are financial data, network monitoring, web applications, and sensor networks.
The fundamental research issues w.r.t. database queries are described in (Babcock et al., 2002).
Domingos and Hulten describe a framework to perform data mining on streams meeting the
following requirements: (An algorithm) ”must require small constant time per record [...]. It
must use only a fixed amount of main memory [...]. It must be able to build a model using at
most one scan of the data [...]. It must make a model available at any point in time [...]. It should
produce a model that is equivalent (or nearly identical) to the one that would be obtained by the
corresponding ordinary data mining algorithm [...]. When the data-generating phenomenon is
changing over time [...] the model at any time should be up-to-date” (Domingos and Hulten,
2003). The concepts are applied, e.g., to decision trees (Domingos and Hulten, 2000). An
extension for adapting to concept drift, i.e., changes of the underlying model is described in
(Hulten et al., 2001).

4.5. WEB USAGE MINING 20

4.5 Web Usage Mining

Web Usage Mining is the analysis of web log data in search for typical access patterns of users.
These patterns can be used to improve the website structure or prefetch pages likely to be
accessed next. In e-commerce environments the identification of customers is an important
issue. There are three major steps involved (Srivastava et al., 2000): preprocessing (reformatting
log data, e.g., to identify user sessions), pattern discovery, and pattern analysis. The above
mentioned sequential patterns as well as Episode rules can be applied to web log data. Based
on typically available background knowledge other specialized algorithms have been developed.
The mining of so called Maximal Frequent Forward Sequences involves removal of backward
traversals and page refreshes. In contrast Maximal Frequent Sequences do not exclude the steps
back because they can give important hints for changing the site structure, e.g., by additional
shortcut links (Dunham, 2002).

Pattern analysis is distinguished from pattern discovery by a more interactive mining process
involving user specified patterns. MiDAS (Mining Internet Data for Associative Sequences) ex-
tends traditional sequential pattern discovery with the following web-specific features: navigation
templates to guide the search, incorporation of the website topology, concept hierarchies, e.g., for
categorizing referrer URLs, and application dependent syntactic constraints (Baumgarten et al.,
1999). For the WUM framework (Spiliopoulou and Faulstich, 1999) a flexible query language,
called MINT, has been developed. The pages in a pattern need not be accessed contiguously
and wild cards are allowed.

4.6 Pattern Evolution

If one observes results from data mining algorithms at different points in time, interest-
ing temporal developments can occur. Existing mining results can be updated with new
data. These temporal data mining approaches are called rule evolution and rule maintenance
(Roddick and Spiliopoulou, 2002). Maintenance and change detection of association rules is a
common example (Cheung et al., 1997). In (Chakrabarti et al., 1998) unexpected changes in
association rules over time are searched. A framework for mining the mining results, called
higher order mining, is proposed in (Spiliopoulou and Roddick, 2000). The authors claim that
the higher order semantics correspond to many everyday phenomena and give examples. A rule
can change over time by differing in the antecedent, the consequent, or in the interestingness
measures. Cotofrei and Stoffel compact a set of temporal rules by pruning with a confidence
bound and merging rules based on the Minimum Description Length (MDL, Rissanen (1989))
principle (Cotofrei and Stoffel, 2002b, 2005).

4.7 Temporal Reasoning

Temporal reasoning deals with deduction algorithms based on logical representations of temporal
phenomena. Scenarios are described with temporal constraints (see also Section 3.2). The consis-
tency can be determined and queries about scenarios satisfying all constraints can be answered,
see (Schwalb and Vila, 1997) for a survey. Inference about past, present and future is performed
to support applications in planning, understanding, and diagnosis. Some important issues in-
clude the identification of tractable subclasses of constraint algebras (Nebel and Bürckert, 1994),
enhancement of exact search algorithms, and development of polynomial time approximations
(Schwalb, 1998).

4.8. TEMPORAL DATABASES 21

4.8 Temporal Databases

Temporal databases are specialized database system that offer functionality for temporal queries.
They support the temporal data mining process but they are not needed to pursue this goal
(Roddick and Spiliopoulou, 2002). In (Böhlen et al., 1998) data models for temporal databases
are discussed. (Ozsoyoglu and Snodgrass, 1995) provide a survey on data models and query
languages, including real-time databases. A glossary of temporal database concepts is available
in (Jensen et al., 1994).

Chapter 5

Time Series Data Mining

5.1 Introduction

As time series data mining we consider research dealing with data mining using numeric and
symbolic time series and sequences. We also include the interval data types, because they are
commonly obtained from time series or time sequences.

A brief overview of time series data mining1 is given in (Antunes, 2001). They identify the
representation of time series data and the definition of a suitable similarity measure as the main
problems. The problems of outliers, noise, and scaling differences need to be addressed. They
consider two different data models: numeric and symbolic time series. Accordingly, they list rep-
resentation methods with common similarity measures and give some examples of applications to
clustering, classification, and prediction. Finally, they comment that ”the research has not been
driven so much by actual problems but by an interest in proposing new approaches” (Antunes,
2001). Lin et al. consider the following tasks as the major time series data mining areas: subse-
quence matching, anomaly detection, and motif discovery (Lin et al., 2004). Earlier work by the
same authors also lists indexing, clustering, classification, segmentation (Keogh and Kasetty,
2002) and summarization (Lin et al., 2003a).

In this chapter we present an extended list of typical tasks for time series data mining. This
includes methods for converting between the data models, e.g., a numeric time series into a
symbolic interval sequence. Many examples from the literature are pointed out for each data
model where the task is applicable. We conclude with a discussion of the state of the art in time
series data mining with respect to the goal of discovering understandable knowledge. The main
focus of this thesis, unsupervised discovery of rules from time series, is deferred to Chapter 6.

5.2 Preprocessing

Preprocessing of time series data requires special methods to incorporate the temporal dimen-
sion. We will list the most important techniques briefly and give some examples. Many other
application dependent methods are possible.

A very important step when using time series obtained from real life measurements is the
reduction of noise. Noise filtering can be done, e.g., using digital filters (Smith, 1997) or wavelet
thresholding (Jansen, 2001).

For methods requiring stationary signals, the trend needs to be removed. This can be done
by fitting linear or higher order functions and keeping the residuals. Differencing is a very
simple and often effective method for trend removal, but noise is amplified and the meaning

1They call it temporal data mining.

22

5.3. SIMILARITY 23

of the feature is changed. Missing values can often be replaced by linear interpolation. For
financial time series the last available value is commonly used.

Feature extraction techniques can be used to convert a series of original values to a more
meaningful domain or to provide additional information. They can return a time series, pos-
sibly with a lower resolution, a single value, or a static vector of features. In (Himberg et al.,
2001b) principal component analysis (PCA, Jolliffe (1986)) and independent component analysis
(ICA, Hyvärinen (1999)) are used to preprocess sensor data. For musical data instantaneous
frequency (Goto, 2004) or other summaries of the short term frequency content are used, see
(Mörchen et al., 2005) for an overview. For financial time series the log of the first order dif-
ferences is commonly used (de Bodt et al., 2001). A time series measuring the instantaneous
probability of a change point is used in (Idé and Inoue, 2005) to analyze the correlation between
heterogeneous variables.

Feature extraction can also change the data model. In (Mannila and Salmenkivi, 2001;
Vlachos et al., 2004b) time series describing the local frequencies of symbols in a symbolic se-
quence are analyzed.

5.3 Similarity

The notion of time series similarity is of utmost importance for many other mining tasks, e.g.,
clustering. We will mainly use the dual term distance.

5.3.1 Numeric Time Series Distances

There are four categories of similarity measures for numeric time series (Keogh, 2004). Shape-
based methods compare the overall appearance of the time series. Feature-based methods extract
features that usually describing time independent aspects of the series that are compared with
static distance functions. Model-based methods fit a model to the data and measure the similar-
ity by comparing the models. Compression-based methods analyze how well two time series can
be compressed alone and together. The categories are shown in Figure 5.1 with some examples
explained below.

Figure 5.1: Categorization of numeric time series distances. Short time series are commonly
compared by shape. Features or models can be derived and compared for long time
series. The compression-based distance measures how well the concatenation of two
series can be compressed.

The Euclidean distance is the most widely used shape-based distance for the compar-
ison of numeric time series (Keogh and Kasetty, 2002). More generally, other Lp norms
(Yi and Faloutsos, 2000), i.e., Manhattan for p = 1, Euclidean for p = 2, Maximum for p =∞,
can be used as well, putting different emphasis on large deviations. There are several pitfalls
when naively using Lp distances on time series: scaling and translation of the amplitudes or
the time axis, noise and outliers, uniform and non-uniform time warping (e.g. Antunes (2001);
Keogh and Kasetty (2002)). Therefore many authors have used transformations that make the

5.3. SIMILARITY 24

Euclidean distance invariant to these differences. Care has to be taken in choosing the transfor-
mations to obtain a time series distance measure that is meaningful to the application.

A translation or scaling of the amplitude can produce a large distance between time series
even if they have a similar shape. A common example where this is not desired is the comparison
of stock prices. The absolute value of a stock is usually not as interesting as the shape of up and
down movements. This problem can be overcome by a linear transformation or normalization
of the amplitudes (Goldin and Kanellakis, 1995). Normalizing to a fixed range (Agrawal et al.,
1995a) or zero mean and unit variance (Keogh and Kasetty, 2002) needs to be applied to both
time series. These methods are fast and very common, but they do not give the optimal match of
two series under linear transformations (Kahveci et al., 2002; Argyros and Ermopoulos, 2003).
A linear transformation should only be applied to one of the time series, because trying to
find two transformations simultaneously always gives zero scaling factors as the optimal (and
useless) answer (Goldin et al., 2003). For querying of time series databases (see Chapter 5.12)
some authors transform the query (Chu and Wong, 1999), others transform the candidate series
(Goldin and Kanellakis, 1995). The minimum of both possibilities is used in (Kahveci et al.,
2002). In (Goldin et al., 2003) the transformation is searched with optional bounds on the
amount of scaling and shifting. The scaling factor, in particular, should not be allowed to be
negative for many applications, because this corresponds to an inverted shape.

Both normalization and linear transformation should be handled with care in the presence
of noise (Vlachos et al., 2002). If one time series is essentially flat with some noise, normalizing
it to unit variance will make it look very different. Noise can also be emphasized by linear
transformations in order to match features of the other time series. Goldin et al. give examples
where similarity after normalization does not correspond to qualitative similarity (Goldin et al.,
2003).

Another problem with Lp distances of time series is the presence of outliers or noisy regions.
This can be compensated by allowing gaps in the matching of two time series. An early approach
matches short sub-series with gaps in between to determine similarity (Agrawal et al., 1995a).
No distance function is defined, however. Das et al. align two time series using the longest com-
mon subsequence (LCSS) algorithm (Das et al., 1997). A linear transformation is allowed, two
points are compared using a threshold. The similarity is defined as the length of the LCSS. Fast
approximate algorithms are described in (Das et al., 1997; Bollobas et al., 2001). Vlachos et al.
normalize the LCSS similarity by the length of the time series, allow linear transformations, and
define distance functions (Vlachos et al., 2002, 2004a).

Scaling and translation of time is usually not a big problem because the time axis val-
ues are not commonly used in distance calculation, but rather the order of values. Prob-
lems arise however with time series of different lengths and/or sampling rates. Resampling
can be used to make both time series of the same length and then apply a distance function
(Keogh and Kasetty, 2002), sometimes referred to as uniform time warping (Palpanas et al.,
2004). Down-sampling the longer series has been observed to be efficient and robust against
noise (Argyros and Ermopoulos, 2003).

Small distortions of the time axis are commonly addressed with non-uniform time
warping (Keogh and Pazzani, 1999), more precisely with Dynamic Time Warping (DTW,
Berndt and Clifford (1996)). The DTW distance allows warping of the time axes in order to
align the shapes of the two times series better. The two series can also be of different lengths.
The optimal alignment is found by calculating the shortest warping path in the matrix of dis-
tances between all pairs of time points under several constraints. The point-wise distance is
usually the Euclidean or Manhattan distance. The DTW is calculated using dynamic pro-
gramming with time complexity O(n2). See (Ratanamahatana and Keogh, 2004b) for a concise
description of DTW. The same authors have recently demonstrated that using a lower bound-
ing technique (Keogh, 2002) the complexity is essentially O(n) (Ratanamahatana and Keogh,

5.3. SIMILARITY 25

2004a). Salvador and Chan describe an approximation algorithm with time complexity O(n)
(Salvador and Chan, 2004).

Two distance measures related to Lp distances and sometimes used with static data are the
correlation and the cosine distance. The former is based on the Pearson correlation coefficient
that measures linear dependence. The time series need to be of the same length and all time
points are assumed to be independent samples from the same probability distribution. The
estimate of the correlation may be poor when the series are short. Examples can be constructed
where the distance does not correspond to the intuition of shape similarity (Möller-Levet et al.,
2003). The correlation distance is sometimes used with financial time series (Struzik and Siebes,
1999; Ormerod and Mounfield, 2000), that are commonly assumed to be close to random walk
(de Bodt et al., 2001). In (Bagnall et al., 2003) correlation is used to compare a discretized
representation to the numerical series in the context of clustering. The algorithm for retrieving
matches to a visual query in (Haigh et al., 2004) also uses correlation. The cosine distance
measures the angle between the time series interpreted as a vector in a high dimensional space
and is equivalent to the correlation distance if the mean is subtracted from each time series.

Many of the proposed alternatives to the Euclidean distance are not superior.
Keogh and Kasetty have evaluated 11 different measures (some of which are explained above)
on two time series classification benchmark data sets. The results obtained with the Euclidean
distance were an order of magnitude better than those of any other measure. We refer the
interested reader to (Keogh and Kasetty, 2002) and the references therein for the remaining
distance functions.

For long time series of possibly very different lengths, the shape-based methods do not
give intuitive results, feature- and model-based methods should be considered. The method of
extracting features from the time series and comparing the feature sets is very domain dependent.
If only certain properties of the time series are important, the right features will give good results.
One example of rather general features is the use of the first four moments of the empirical
probability distribution of the data and the first order differences (Nanopoulos et al., 2001).
Additional features based on trend, seasonality, and self-similarity were used in (Wang et al.,
2004). For a set of time series globally important features can be selected using the most
important coefficients from Discrete Fourier Transform (DFT, Shatkay (1995b)) or Discrete
Wavelet Transform (DWT, Mallat (1999)) decompositions (Mörchen, 2003). In (Zhao et al.,
2005) the coefficients are chosen independent from the data by considering a weighting of the
time points with a bias towards recent values. For the DFT representation a likelihood ratio
distance has been shown to outperform Euclidean distance of the coefficients on data where the
low frequencies do not have discriminatory power (Janacek et al., 2005). In (Vlachos et al., 2005)
the most important periods are selected combining the periodogram with the autocorrelation
function. These examples are termed Statistics and Coefficients in Figure 5.1.

Compared to feature-based methods, model-based distances have the additional advantage,
that prior knowledge about the data generating process can be incorporated. The similarity can
be measured by modelling each time series and determining the likelihood that one series was
produced by the model from another series. The average of the pairwise likelihoods can be used to
obtain a symmetric similarity measure. For numeric time series Hidden Markov Models (HMM,
Rabiner (1989)) with continuous output values or Auto Regressive Moving Average (ARMA)
models (Box et al., 1994) are common choices (e.g. Smyth (1997); Perrone and Connell (2000);
Xiong and Yeung (2003)). In (Ge and Smyth, 2000) HMM models are combined with a piecewise
linear representation. In (Panuccio et al., 2002) the distance between HMM models is normalized
to take into account the goodness of fit of the series producing the model. Alternatively to the
likelihood distance, the models of two series can be compared directly, e.g., for ARIMA models
using the model parameters (Deng et al., 1997) or derived coefficients (Kalpakis et al., 2001).

5.3. SIMILARITY 26

Qian et al. compare the transition matrices of HMM obtained from clustering the phase space
of time series (Qian et al., 2003).

The above models need long time series for a good estimation of their parameters. For short
smooth time series with varying lengths and irregular sampling Gaffney and Smyth propose to
use regression models (Gaffney and Smyth, 1999, 2003). Since the regression models represent
the shape of the time series with a function, this is a hybrid approach of model-based and
shape-based representations.

An approach that uses ideas from shape and feature-based representations is described in
(Megalooikonomou et al., 2005). Typical local shapes are extracted with vector quantization
(Gersho and Gray, 1992) and the time series are represented by histograms counting the occur-
rences of these shapes at several resolutions. The weighted distance between the histograms
determines the time series similarity.

The compression-based similarity of time series is a very recent idea. Inspired by results in
bioinformatics and computational theory, Keogh et al. define a distance measure based on the
conditional Kolmogorov complexity (Keogh et al., 2004b) called Compression-Based Dissimilar-
ity Measure (CDM). The Kolmogorov complexity is the length of the shortest program that is
able to generate the given data. This can be approximated by assuring that the data is in a
format suitable for compression and using the best compression algorithm available. The basic
idea is, that concatenating and compressing similar data should give higher compression ratios
than doing so with very different data. For time series they proposed to use discretization be-
fore compression. The presented results in clustering, anomaly detection and classification are
excellent. The method should only be applied to long time series, but similar to model-based
methods, they are allowed to have very different lengths.

Note that the compression-based method and the model-based likelihood methods only give
similarity or distance values between pairs of time series. They cannot be used to compute
prototypical time series that represent an average or centroid between two or more series. This
excludes the application of data mining methods designed to work in vector spaces, e.g., k-Means,
Self-Organizing Maps (SOM), Learning Vector Quantization (LVQ), see (Kohonen, 1995). For
model-based methods that compare the parameters of the models, it is not obvious whether the
average of two or more parameter sets will adequately represent the notion of an average model
that is useful as prototype for the other models.

Simple guidelines for choosing a distance for time series data mining problems are (Keogh,
2004): If the time series are relatively short, of similar lengths, and shape is a meaningful
description, DTW should be used. If the time series are long and few knowledge about the
structure is available, CDM should be tried. If prior knowledge about the structure of the data
is available, feature-based or model-based methods may provide a more meaningful abstraction
and better results.

5.3.2 Symbolic Time Series Distances

For series of symbols we identified four types of distances: proximity-based, feature-based,
model-based (Bicego et al., 2004), and compression-based (Keogh et al., 2004b). The categories
are shown in Figure 5.2 with some examples explained below.

Proximity-based methods measure the distance between two series directly from the sym-
bolic representation, e.g., by the Hamming distance (e.g. Gusfield (1997)), that simply counts
the number of positions where the sequences differ. The family of edit distances is motivated
by string matching. The similarity between two symbolic series is measured by determining
the cost of transforming one into the other. The edit operations are insertion, deletion, and
substitution of a symbol and can be given different costs. With unit costs for all three opera-
tions, the Levenshtein distance is obtained. Token-based distances are based on multisets of the

5.4. TIME SERIES REPRESENTATION 27

Figure 5.2: Categorization of symbolic time series distances. Proximity is measured by deter-
mining the cost of transforming one series into another. Features or models can be
derived and compared for long time series. The compression-based distance measures
how well the concatenation of two series can be compressed.

symbols (or short sub-series extracted with a sliding window) of the two series, thus loosening
or ignoring the order of the symbols. The Jaccard similarity is calculated by dividing the size of
the intersection by the size of the union of the two multisets. See (Cohen et al., 2003) for more
information on string matching distances, including hybrids of edit and token based measures.

Feature-based methods convert each symbolic series to a numeric feature vector capturing
the temporal information. These vectors can then be compared with the Euclidean distance or
similar distance functions. Mannila and Seppänen represent each symbol by a high dimensional
numerical random vector and a symbolic sequence by the sum of the vectors weighted by the
temporal distance of the symbols (Mannila and Seppänen, 2001). In (Flanagan, 2003) weighted
symbol histograms of consecutive symbols are used as features. These examples are termed
Random and Histogram in Figure 5.2.

Common choices for the model-based approach are Markov Chains (MC) (Reinert et al.,
2000; Ridgeway, 1997), HMM with discrete output distributions (Law and Kwok, 2000), and
grammar based models (Antunes, 2001). When using grammars the output is binary, depending
on whether a time series is recognized by a grammar or not. The other models return probability
values. Alternatively to calculating pairwise likelihood of two series and the corresponding
models, the Kullback Leibler divergence (Kullback and Leibler, 1951) can be used to compare
the models directly, e.g., for MC (Sebastiani et al., 1999; Ramoni et al., 2002).

Since the compression-based method for numeric time series includes discretizing the data,
the CDM (Keogh et al., 2004b) measure can also be used directly with symbolic time series.

The guidelines we want to give for choosing a symbolic distance are similar to those for nu-
meric time series. Using proximity-based methods requires the concept of, e.g., an edit distance
to be meaningful which will often be the case for short symbolic series. For long series, CDM
can be used in lack of knowledge, while feature- and model-based approaches may be justified
by the application domain.

5.4 Time Series Representation

The main motivation behind representing a time series in some form other than using the actual
values is to better represent the main characteristics of the data in a concise way. Additional
benefits can be compression and thus speedup of processing as well as noise removal and em-
phasis of important features. Often, the quality criterion is the reconstruction error aiming to
represent the original time series well. The selection of a suitable time series representation is
interconnected with the selection of a distance measure. Many common representations support
the approximate calculation of the Euclidean distance of the original time series. Only few sup-
port the weighted Euclidean distance (Keogh et al., 2001b). For numeric time series a taxonomy
inspired by (Lin et al., 2003a; Keogh, 2004) is shown in Figure 5.3. There are few alternative

5.4. TIME SERIES REPRESENTATION 28

representations for symbolic time series. We will mention them in the categories where they fit
best, but excluded them from the figure.

Figure 5.3: Categorization of time series representations. Models can be used to capture the
structure of the data generating process. Non data adaptive have a fixed size and
the comparison of representations from several time series is straightforward. Data
adaptive methods also have a fixed size. They can better approximate each series,
but the comparison of several series is more difficult. The size of data dictated
representations depends on the data.

5.4.1 Model-Based Representation

The model-based representations assume that the time series have been produced by a cer-
tain model. The models are fitted to the data and the resulting parameters of the models are
used for further mining tasks. A simple and common model for symbolic time series is a MC
(Sebastiani et al., 1999). A more flexible way of modelling is offered by HMM that can be
used for symbolic and numeric time series. HMM with numeric outputs are used in (Smyth,
1997) and (Panuccio et al., 2002). Another popular choice for numeric time series is statisti-
cal modelling with ARMA models, e.g., (Sebastiani and Ramoni, 2001; Kalpakis et al., 2001;
Xiong and Yeung, 2003). The statistical features extracted in (Nanopoulos et al., 2001) and
(Wang et al., 2004) can also be interpreted as a model of the process generating the time series.

5.4.2 Non Data-Adaptive Representation

The non data adaptive models transform the time series into a different space while the trans-
formation and the selection of a subset of the coefficients are independent of the data. Both
wavelet and spectral representations express numeric time series as coefficients in a function
space spanned by a set of basis functions. The DWT uses scaled and shifted versions of a
mother wavelet function, usually with compact support, to form an (bi-)orthonormal basis.
This gives a multi-resolution decomposition where low frequencies are measured over large in-
tervals and high frequencies over small intervals. A large number of basis functions exists, the
most prominent and simple is the Haar wavelet, other popular choices are Daubechies, Sym-
let, and Coiflets (Mallat, 1999). For applications in time series indexing see (Chan and Fu,
1999) and (Popivanov and Miller, 2002). The DFT uses complex exponential functions, repre-
senting sine and cosine functions in the real domain and is used in (Agrawal et al., 1993a) and
(Rafiei and Mendelzon, 1998). The Discrete Cosine Transform (DCT) only uses cosine functions.

5.4. TIME SERIES REPRESENTATION 29

It has not been used extensively in the literature and does not seem to offer any advantages over
the DFT (Keogh, 2004). Using the first coefficients of the DFT or DWT corresponds to keeping
the low frequency components of the time series and dropping high frequencies assumed to be
noise. Keeping only a small fraction of the coefficients leads to high compression ratios with low
reconstruction errors if the signals really do mainly contain low frequencies. Otherwise data-
adaptive methods should be used (Mörchen, 2003). Chebychev polynomials (Cai and Ng, 2004)
provide a low order polynomial approximation to polynomials that are minimal in the maximal
deviation. This representation can also trivially handle multivariate time series. The Piece-
wise Aggregate Approximation (PAA, Keogh et al. (2001b)) also known as Segmented Means
(Yi and Faloutsos, 2000) represents a numeric time series by the mean values on consecutive
fixed length segments. Analogous to DWT and DFT this can be interpreted as transforming it
into a space spanned by box basis functions. An extension to multi-resolution PAA (MPAA)
is proposed in (Lin et al., 2005). Random projection (Dasgupta, 2000) of time series is used
for representation in (Indyk et al., 2000). Each time series is convolved with k random vec-
tors drawn from a multivariate standard normal distribution of the same dimensionality. the
resulting vector of k checksums is called a sketch.

5.4.3 Data-Adaptive Representation

Data adaptive methods depend either locally on the values of one time series or globally on
the set of all time series. Many of the decompositions described above can be used in a data
adaptive manner by choosing the largest coefficients instead of the first coefficients. For DFT
this corresponds to keeping the most dominant frequencies and is optimal in the sense of energy
preservation (Wu et al., 2000). This principle can be applied locally, for each time series sepa-
rately (Vlachos et al., 2004b), or globally for a set of time series (Mörchen, 2003). An inherently
data adaptive wavelet representation based on the Continuous Wavelet Transform (CWT) and
the Wavelet Transform Modulus Maxima (WTMM, Mallat (1999)), respectively, is presented
in (Struzik and Siebes, 1999). The largest singular features of a time series are extracted and
represented by their position, the local roughness, and the sign of the wavelet coefficient.

Singular Value Decomposition (SVD, Jolliffe (1986)), the main processing step in PCA, is
the optimal linear transform in the sense of energy preservation. In the context of time series the
eigenvectors are commonly called eigenwaves. SVD is used in (Korn et al., 1997) to represent
time series, an extension to outlier handling is also proposed. In (Ravi Kanth et al., 1998) a fast
method to recompute the SVD upon the arrival of new data is described.

A relational tree representation is used in (Shaw and DeFigueiredo, 1990). Non-terminal
nodes of the tree correspond to valleys and terminal nodes to peaks in the time series. The
tree is invariant to monotonic axis transformations and used to perform classification. Similarly,
Bakshi and Stephanopoulos propose to extract pivotal temporal features using wavelet multi-
scale filtering for segmentation (see Chapter 5.8) and represent each interval by one of seven
primitives describing the curvature of the segment (Bakshi and Stephanopoulos, 1995). An
extended the set of 13 shapes is used in (Colomer et al., 2002).

For piecewise polynomial models the signal is segmented (see Chapter 5.8) and a poly-
nomial is calculated per segment. Piecewise Linear Approximation (PLA) is commonly used
by either performing interpolation (Shatkay and Zdonik, 1996; Keogh and Pazzani, 1998) or
regression (Morinaka et al., 2001) to obtain a linear trend. Constant approximations per seg-
ment were independently proposed in (Geurts, 2001) and (Keogh et al., 2001a), called Adaptive
Piecewise Constant Approximations (APCA) by the latter. A data adaptive version of PAA
is proposed in (Megalooikonomou et al., 2004). Instead of using the mean on fixed length
segments, vector quantization is used to create a codebook and each segment is represented

5.4. TIME SERIES REPRESENTATION 30

by the index of the closest codebook vector. The idea is extended to multiple resolutions in
(Megalooikonomou et al., 2005).

Symbolic methods convert numeric time series to symbolic time series or even textual de-
scriptions. In the context of knowledge discovery this can be a crucial step, therefore we will
put special emphasis on the interpretability of the obtained symbolic representation. The most
interpretable form of symbolic description is textual description, obtained by Natural Language
Generation (NLG) in (Boyd, 1998) and (Sripada et al., 2003b). The Trend (Boyd, 1998) sys-
tem uses the scale space representation of the CWT to identify important trends in univariate
time series. The most important trends are those persisting over multiple scales. The resulting
descriptions are found to be similar to the ones given by experts. Sripada et al. observe that the
changes they needed to make to standard data processing methods in order to better describe
time series to humans corresponded to the Gricean Maxims of quality, quantity, relevance, and
manner. For example, interpolation instead of regression is used to estimate the slope of a time
series segment. This way truly observed values are reported for interval boundaries. For some
applications relevant patterns like a spike or a step (Yu et al., 2002) have been identified by ex-
perts and were used in further processing. To make the descriptions brief and orderly, unchanged
states states or repetitions are not reported, very close time points are not distinguished, and
reports are ordered consistently either by time or by attributes. The resulting descriptions are
further processed by NLG systems to produce a textual description of time series (Sripada et al.,
2003b). The concept is applied in the areas of weather forecasts (Sripada et al., 2003a), process
control (Yu et al., 2002), and intensive care (Sripada et al., 2003c).

The conversion of a numeric time series to a symbolic time series can also be seen as a form of
noise removal by complexity reduction. Overviews of supervised and unsupervised discretization
methods for static data are given in (Dougherty et al., 1995) and (Kohavi and Sahami, 1996).
Daw et al. discuss methods geared towards time series data (Daw et al., 2003). We will concen-
trate on unsupervised methods, that can be mapped to linguistic descriptions like high or low
and where the symbols correspond to fixed length segments of the numeric time series.

The most obvious method to assign symbols to single values is range partitioning (Daw et al.,
2003), e.g., by histograms. Equal width and equal frequency histograms are the most commonly
used value based discretizations. The former method chooses equally spaced cuts between the
minimum and maximum values, each bin of the latter contains almost the same number of data
points. The cut points of the histogram can also be determined by statistics like the mean
plus/minus one or two standard deviations or other application dependent choices, like certain
percentiles in (Tino et al., 2000). In case of multi modal distributions of the time series values all
these methods may not give intuitive results, because the boundaries of the histogram bins could
be placed in high density regions. An estimate of the probability density approximation and
Gaussian mixture models were used to manually obtain meaningful intervals in (Mörchen et al.,
2006). This is cumbersome and not feasible for a large amount of data sets that show different
characteristics, however. The Persist algorithm (Mörchen and Ultsch, 2005b) automatically
chooses bins optimizing the persistence of the resulting symbolic states.

The symbolic aggregate approximation (SAX) (Lin et al., 2003a) uses equal frequency his-
tograms on sliding windows to create a sequence of short words of symbols. Repeating words are
dropped. The key feature of this method is the lower bounding approximation to the Euclidean
distance, useful for indexing (see Chapter 5.12).

In (Chmielewski and Grzynala-Busse, 1996) the histogram bins are adjusted trying to de-
crease the entropy at the boundaries. Another approach to tackle the problem is using clustering
and vector quantization (Dougherty et al., 1995). In (Giles et al., 2001) a one dimensional SOM
is used, where each map neuron correspond to one output symbol. The topological ordering of
the symbols can be of advantage for further processing.

Flexer and Bauer discretize multivariate time series using k-Means for vector quantization

5.5. VISUALIZATION 31

and perform a one dimensional Sammon’s mapping (Sammon, 1969) to obtain an ordering of
the symbols.

Using short segments of the time series, higher order descriptions can be obtained, e.g.,
the trend by fitting a linear function. This is similar to PLA, but the segments are all of the
same length and given a priori. In (Agrawal et al., 1995b) the shape definition language (SDL)
is defined using the discretized slope values obtained from connecting consecutive values as
terminal symbols. This was generalized in (Qu et al., 1998) to lines on unit length segments
with user specified width.

In (Das et al., 1998) the discretization symbols represent short primitive shapes found by
clustering segments of the time series obtained using a sliding window (see also Chapter 5.7.2).

The recently proposed time series bitmaps (Kumar et al., 2005) further compress a sym-
bolic time series into a bitmap where each pixel corresponds to the frequency of a fixed length
subsequence (see also Chapter 5.5).

5.4.4 Data-Dictated Representation

For data-dictated representations you cannot choose the level of detail, the size of the rep-
resentation is automatically determined (Ratanamahatana et al., 2004, 2005). The grid-based
representation (An et al., 2003, 2005) places a two dimensional regular grid over the time series.
The value axis is quantized into a fixed number of equal width bins, the time axis bins corre-
spond to the time points. Values that are in the same bin or within a small error tolerance of
the last value’s bin are omitted. The final representation is a bit string describing which values
were kept and which bins they were in. For reasonable smooth time series a reduction of 90% is
reported.

Discretizing a time series to a binary string is called clipping. In (Bagnall et al., 2003) this
is done using the median as the clipping threshold and the representation is compressed using
run length encoding at the bit level. The main advantage of this representation is the scalability
to huge data sets due to low memory requirements and fast processing. It has also been shown
to be robust against outliers (Bagnall and Janacek, 2005). The mean is used as a threshold in
(Ratanamahatana et al., 2005).

The phase space representation (Takens, 1981) of a signal is a method from nonlinear time
series analysis (Kantz and Schreiber, 1997). It offers a reconstruction of the state space of
the dynamical system producing the observed time series. The time series is transformed
into a set of vectors. If the time series is {xi|i = 1, ..., n} then the phase space vectors are
{(xi, xi+l, ..., xi+(d−1)l)|i = 1, ..., n − (d − 1)l} where l is the lag and d the dimension of the
embedding. The dimension of the phase space can be chosen with the false nearest neighbor
method (Kennel et al., 1992) while the lag is suggested to be chosen from first minimum of
the auto-mutual information curve (Kantz and Schreiber, 1997). The phase space represen-
tation is larger than the original time series. Further transformation can be used to achieve
a more compact representation, for example using Gaussian mixture models (Lindgren et al.,
2004; Povinelli et al., 2004; Zimmerman et al., 2003). In (Bauer et al., 1998; Morik et al., 2000)
a two dimensional phase space representation is used to detect outliers and level shifts.

5.5 Visualization

Visualization is an important part of data mining because humans have remarkable abilities to
spot hidden patterns (Shneiderman, 1996). Surprisingly, there has not been a lot of research
effort in the data mining community targeted to visualization of time series. The most common
form is a line graph where the horizontal axis represents the time. An early approach linked
time series clustering results with a calendar based representation to show patterns in daily

5.6. PREDICTION 32

power consumption (van Wijk and van Selow, 1999). Hochheiser developed the paradigm of
Timeboxes to visually and interactively specify a query against a large time series database. A
similar approach for a single long time series is presented in (Haigh et al., 2004). A tool for
linking spatial time series with other plots is described in (Andrienko et al., 2004).

The periodicity of time series can be visualized using spirals (Weber et al., 2001). The spiral
display can reveal periodic structure much better than linear graphs. The value of a time series
can be shown on the spiral using color or line thickness. Intertwined spirals can represent
multivariate data.

The visualization of continuous dynamic systems with pipe diagrams is proposed in
(Alonso and Rodriguez, 1999). The visualization of different regimes in the system as a di-
rected acyclic graph is said to be end user compatible.

The Viz-Tree (Lin et al., 2004) is a tree showing all fixed length subsequences of a symbolic
time series obtained by SAX discretization. It is shown to be useful for various time series
data mining tasks, namely interactive (sub-)sequence matching (Chapter 5.12), motif discovery
(Chapter 5.10), and anomaly detection (Chapter 5.11). The tree is linked with conventional
time series displays to display the original values of the patterns selected by the user. The same
discretization is used in (Kumar et al., 2005) and combined with the chaos game representation
(Jeffrey, 1992) to generate small bitmaps for time series. The bitmaps can be integrated in
standard file browsers and offer a similarity based visualization of time series files (Kumar et al.,
2005).

5.6 Prediction

Prediction is usually understood as forecasting the next few values of a numeric or symbolic
series. For the prediction of numeric time series there is a huge amount of literature espe-
cially in the field of statistics. Common methods for time series modelling and prediction
are ARIMA (Auto Regressive Integrated Moving Average) (Box et al., 1994) models for sta-
tionary processes and GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
(Brockwell and Davis, 2002) models for processes with non-stationary variance.

More simple techniques like regression or more complicated techniques like supervised neural
nets (Tang and Fishwick, 1991), unsupervised neural nets (Koskela, 2003), or Support Vec-
tor Machines (SVM) (Burges, 1998; Müller et al., 1997) can also be used. In (Armstrong,
2001) many different approaches and aspects of forecasting are treated. Recently, a hybrid
technique combining clustering and function approximation per cluster has been proposed in
(Sfetsos and Siriopoulos, 2004).

The prediction of symbolic time series or sequences is sometimes called classification. Similar
to numeric time series the underlying process, producing the series of symbols is modelled and
the model is used to predict the next outcome. MC and HMM are commonly used. Techniques
from association rules (Lu et al., 1998) or recurrent neural networks and grammatical inference
(Giles et al., 2001) have been used to predict the movement of financial symbolic time series
obtained from numeric time series by discretization.

If one is not interested in all future outcomes, but rather in predicting the occurrence of
a certain symbol or pattern, supervised rule generation approaches (see Chapter 5.13) can be
used.

5.7 Clustering

There are three different time series clustering problems. One can cluster a set of numeric
time series based on some similarity measure and standard clustering algorithms. We call this

5.7. CLUSTERING 33

whole series clustering. The set of time series can be created from a single long time series by
extracting short segments, we call this sub-series clustering. Finally, the time points of a time
series can be clustered according to a combination of temporal proximity of the time points
and the similarity of the corresponding values. This is similar to time series segmentation (see
Chapter 5.8), we call it time point clustering.

5.7.1 Whole Series Clustering

There are numerous examples for clustering a set of univariate numeric time series. Das et al.
calculate a complete similarity matrix with a robust LCSS metric for clustering 34 time se-
ries of telecommunication data (Das et al., 1997). Clustering of handwritten signatures is per-
formed in (Chappelier and Grumbach, 1996) using the Euclidean distance and a small SOM
with nine neurons. Debregeas and Hebrail also use very small maps (25 neurons)2 in a soft-
ware that visualizes clusters in electric load curves (Debregeas and Hebrail, 1998). (Smyth,
1997) uses a mixture of HMMs. The model is optimized with Expectation Maximization (EM)
(Dempster et al., 1977) and cross-validation is used to determine the number of clusters. Hi-
erarchical and partitional clustering is applied based on the precalculated similarity matrix.
(Schmill et al., 1999; Oates et al., 2000) use the DTW distance and (van Wijk and van Selow,
1999) the Euclidean distance with hierarchical clustering. In (Oates et al., 2001) DTW is used
to initialize HMM based clustering, because HMM training is sensitive to initial conditions and
a HMM mixture cannot distinguish qualitatively different regimes per se. A fuzzy variant is
used in (Alon et al., 2003), each time series is allowed to belong to each cluster to a certain
degree. Several initialization methods are compared. In (Li and Biswas, 1999) Bayesian cluster-
ing with a mixture model of HMM is performed simultaneously selecting the number of clusters
and the number of hidden states per model. In contrast to classification, where a discrimi-
native border is modeled, this method is said to create interpretable characterizations for the
clusters. This is demonstrated using plant growth data from mosquito control (Li and Biswas,
2002). A regression mixture model with an EM algorithm is used to cluster trajectories of
hand movements (Gaffney and Smyth, 1999) and cyclone paths (Gaffney and Smyth, 2003). A
distance measure for time series based on parameters derived from ARIMA models is proposed
in (Kalpakis et al., 2001) and used with the partition around mediods clustering method. In
(Sebastiani and Ramoni, 2001) an agglomerative clustering algorithm is described using the
Kullback-Leibler divergence for AR models as a similarity measure. (Panuccio et al., 2002)
calculate a pairwise similarity matrix using relative normalized likelihood distance of HMM.
Xiong and Yeung use an EM clustering algorithm based on the likelihood distance of ARMA
models together with Bayesian model selection (Xiong and Yeung, 2003). The method is ap-
plied to several different data sets in (Xiong and Yeung, 2004). The Euclidean distance of the
ARMA parameters is used in (Bagnall and Janacek, 2004). In the experiments the method by
Kalpakis et al. is not found to perform better than Euclidean distance if model selection with
the Akaike Information Criterion (AIC, Hastie et al. (2001)) is used.

Clustering of time series from data streams is done in (Beringer and Hüllermeyer, 2003)
using the Euclidean distance on the first few DFT coefficients and k-Means. Vlachos et al. de-
veloped an extension to the k-Means algorithm for time series based on DWT decomposition
(Vlachos et al., 2003). Starting from coarse representations of the time series, more and more
detail levels are used during the clustering process. In (Lin et al., 2003a) hierarchical and par-
titional clustering is used together with a symbolic representation of a numeric time series. In
(Keogh et al., 2004b) the same representation is used together with a compression-based distance
function. The clipped data representations is used for clustering in (Bagnall and Janacek, 2005).

2Note, that using small maps is essentially the same as running k-Means with k equal to the number or neurons
(Ultsch, 1996a).

5.7. CLUSTERING 34

A SOM is combined with time series features for clustering in (Wang et al., 2004). An EM algo-
rithms for the joint clustering and alignment of time series is described in (Gaffney and Smyth,
2004).

The method of (Keogh et al., 2004b) can also be used to cluster symbolic times series . Other
approaches use the similarity functions for symbolic series (Chapter 5.3.2) in combination with
clustering algorithms. A Gibbs sampling (e.g. Casella and George (1992)) and an EM method
are developed for a mixture model of MCs in (Ridgeway, 1997). In (Sebastiani et al., 1999) a
model-based distance for MCs is used to cluster symbolic sequences. The full Bayesian formula-
tion including the number of clusters is given in (Ramoni et al., 2002). Law and Kwok formulate
a version of Rival Penalized Competitive Learning (Xu et al., 1993) for HMM representation of
symbolic sequences (Law and Kwok, 2000). Fischer and Zell use a fast approximation the Leven-
shtein string edit distance to speed up clustering of strings with a SOM (Fischer and Zell, 2000;
Kohonen, 1999). Flanagan also uses a SOM with a feature-based distance function (Flanagan,
2003). In (Bicego et al., 2004) a mixture of the model-based and the feature-base approach is
explored by training a HMM for a set of prototypical series and assigning each symbolic series
the feature vector composed of the HMM output probabilities. A recent review of median strings
as representatives for a set of strings is given in (Jiang et al., 2004).

5.7.2 Sub-Series Clustering

If there is just a single long time series, an obvious idea is to extract short series with a sliding
window and cluster the resulting set of time series as described above. Care has to be taken
though in the choice of the window width and the time delay between consecutive windows. The
window width depends on the application, it could be some larger time unit, e.g., an hour for time
series sampled in minutes. Using overlapping windows has been shown to produce meaningless
results (Lin et al., 2003b). When using a time delay of one, almost all time points contribute
equally to each position within the sliding window. Experiments with k-Means showed that
clusters of sine waves are produced, the prototypes of which add up to the constant function.
Using larger time delays for placing the windows does not really solve the problem as long
as there is some overlap. Also, the less overlap, the more problematic the choice of the offsets
becomes. If the delay is equal to the window width, the problem is essentially converted to whole
series clustering (Lin et al., 2003b). We describe some historical approaches, an approach based
on symbolic (sub-)sequences, and suggested solutions to make sub-series clustering meaningful.

(Das et al., 1998) is the most prominent example of meaningless sub-series clustering. They
use a sliding window with unit delay to discretize time series and employ rule searching methods
(see Chapter 5.13). Similarly in (Rosenstein and Cohen, 1998) robot sensor series are clustered
using a delay of one. In (Fu et al., 2001b) sliding windows of different sizes are used in a multi-
resolution manner and clustered with a small SOM (100 neurons), again the time delay is one.
Ohsaki et al. use half the window width as the time delay.

In (Hebrail and Hugueney, 2000) non-overlapping windows are used. The width of the win-
dows is chosen by investigating the periodical structure of the time series with the Fast Fourier
Transform (FFT, Shatkay (1995b)). The offset of the first window was chosen such that the
start is in a stable region. The resulting windows are clustered with a SOM of unreported size.

Denton presents a first approach to overcome the meaningless problem even when using
overlapping subsequences by not forcing the algorithm to use all subsequences. A density-based
clustering method with Gaussian kernels is used to find dense regions in the high dimensional
space populated by the subsequences (Denton, 2004). Based on a random walk noise model, re-
gions are identified that are significantly more dense than to be expected. The cluster prototypes
represent shapes present in the original time series.

Hierarchical clustering of sub-sequences of a symbolic sequence is performed in (Ronkainen,

5.8. SEGMENTATION 35

1998) based on an adapted edit distance. The sub-sequences are chosen as all symbols within
an interval preceding a certain symbol of interest. The method is applied to telecommunication
events and web log data.

5.7.3 Time Point Clustering

The clustering of time points is very similar to time series segmentation. One major difference is
that with clustering not all points need to be assigned a cluster label. Many clustering algorithms
allow for points to be labeled as noise (Berkhin, 2002), while segmentation algorithms usually
produce a partition of the time points. Another important difference is that clustering usually
produces recurrent labels (Gionis and Mannila, 2003), i.e., the points of separated segments can
belong to the same cluster. In contrast, segmentation produces unrelated intervals. The time
point clustering problem is described formally in (Gionis and Mannila, 2003): The problem of
finding h hidden sources occurring k times within a sequence is called (k, h)-segmentation. For
k > h this is time point clustering, for k = h we call it segmentation.

Any clustering algorithm can be used to cluster the values of a univariate time series or the
vectors of a multivariate time series ignoring the temporal order. If the time points of each cluster
appear as consecutive stretches instead of being randomly permutated, this can be seen as a vali-
dation of the found clusters. Emergent SOM (ESOM, Ultsch (1993); Ultsch and Mörchen (2005))
clustering of the time points of a multivariate time series was used in (Guimarães and Ultsch,
1999) and (Mörchen et al., 2006). In (Flexer and Bauer, 1999) the vectors of a multivariate time
series were clustered with k-Means to obtain a set of codebook vectors for further processing.
Poliker and Geva use fuzzy clustering of the data space and project the membership functions on
the time axis to model time series with continuous change in regime (Poliker and Geva, 1998).
The membership functions are averaged over short periods of time.

In order to incorporate the time aspect more systematically, the Viterbi (Rabiner, 1989)
algorithm can be used to obtain a state sequence from a HMM trained on the time series.
Gaussian output distributions can be used for a piecewise constant model or regression curves
for more complex shapes (Ge and Smyth, 2000).

Gionis and Mannila show that the (k, h)-segmentation problem is NP-hard in the general
case (Gionis and Mannila, 2003). They propose two simple algorithms and a combined iter-
ative algorithm inspired by EM. Theoretical bounds for the approximation capabilities of the
algorithms are given.

5.8 Segmentation

A good review on the most common segmentation methods for univariate time series in the con-
text of piecewise linear representation is given in (Keogh et al., 2004a). Three basic approaches
are distinguished: ”Sliding Windows: A segment is grown until it exceeds some error bound”,
”Top-Down: The time series is recursively partitioned until some stopping criteria is met”, and
”Bottom-Up: Starting from the finest possible approximation, segments are merged until some
stopping criteria is met”. These algorithms are commonly used in favor of the optimal but
computationally expensive solution (Bellman, 1961).

The Sliding Window approach is generally problematic because the performance heavily
depends on the data set used (Shatkay, 1995a; Keogh et al., 2004a). Choosing the right window
size can be difficult depending on the scale of the interesting shapes in the time series and the
amount of noise present. It also showed poor performance in an evaluation with many real
life data sets (Keogh et al., 2004a). The Top-Down approach (Shatkay, 1995a; Li et al., 1998;
Park et al., 1999; Lavrenko et al., 2000) has time complexity O(n2) where n is the size of the time
series. It is usually qualitatively outperformed by Bottom-Up (e.g. Keogh and Smyth (1997);

5.8. SEGMENTATION 36

Keogh and Pazzani (1998); Hunter and McIntosh (1999); Last et al. (2001)), which further only
scales linearly with the size of the data set. In contrast to sliding windows, the latter two
approaches can only be run in batch mode, however. Based on these observations the Sliding
Window and Bottom-Up approach was developed to combine the incremental nature of Sliding-
Window with the more global view of Bottom-Up (Keogh et al., 2004a).

Himberg et al. present fast greedy algorithms to improve a segmentation found by other
methods or simply by initial uniform placing of cut points. Local and global approaches are
used to reconsider the placement of cut points, moving them into local minima of the cost
function (Himberg et al., 2001a). The global approached performed best on data from context
recognition.

All methods mentioned so far need to be given either the number of segments or an error
threshold a priori. Both can be difficult to select, especially with very long time series. A
statistical method for choosing the number of segments based on permutation tests is described
in (Vasko and Toivonen, 2002). The idea is to look at the relative reduction of the cost function
when going from k − 1 to k segments and compare this to permutated versions of the time
series. The criterion outperformed other common model selection techniques on artificial data
and a time series from archeology. It can be combined with any segmentation method. In
(Salvador et al., 2004) scree plots are used to automatically select the number of segments.

In order to decide which shape features of a time series are important and which are caused
by noise a multi-scale analysis can be used (Lindeberg, 1993; Bakshi and Stephanopoulos, 1995;
Mallat, 1999; Höppner, 2002c, 2003). Bakshi and Stephanopoulos use a first order bi-cubic
spline DWT to detect the inflexion points of a time series at several resolutions. This creates a
so-called interval tree of scales, a hierarchical tiling of the time frequency plane. The importance
of an interval is measured using a heuristic based on the lifetime of an interval in the scale-space
(Witkin, 1983). For a detailed discussion of the advantages of scale space filtering over other
segmentation methods see Chapter 2.2 of (Höppner, 2003). Sripada et al. especially discuss the
interpretation aspect of segmented time series. They observe, that different error thresholds can
be necessary depending on the range of the variable. The stopping criterion is also very user
dependent (Sripada et al., 2002).

Usually the time series is modeled with a low order polynomial on each segment. Sometimes
more complex shapes are sought, e.g., domes or ramps for data from gas turbines (Sripada et al.,
2002) or complex patterns in stock prices (Fu et al., 2001a). The latter approach uses evolu-
tionary algorithms to segment a time series with the goal of finding such arbitrarily shaped
patterns.

Few approaches consider multivariate time series. The problem can be formulated as clus-
tering with the constraint that all time points of a cluster need to be continuous in time. This is
used in (Mäntyjärvi et al., 2001) to segment sensor data from mobile phones. A fuzzy clustering
algorithm is used in (Abonyi et al., 2004) to segment a multivariate series from an industrial
process. The cost function is modified to favor clusters contiguous in time. It is noted that
choosing the number of segments, is problematic. In (Gionis et al., 2004) the problem is ex-
tended to find a partition of the dimensions and segment each subset individually. Compared
to segmentations of the complete multivariate time series with the same number of parameters,
the so called clustered segmentations found with a k-Means like algorithms are generally bet-
ter w.r.t. the variance on the segments. For a real life example a meaningful grouping of the
dimensions was found.

Time series segmentation is related to change point detection. Statistical change point
methods usually depend on an assumed model of a stochastic process producing the time se-
ries. A more simple method based the model of linear functions per segment is described in
(Guralnik and Srivastava, 1999). In (Oliver et al., 1998) a time series is assumed to be produced
by a Gaussian distribution per segment. The number and location of the segments and the dis-

5.9. CLASSIFICATION 37

tributions are estimated simultaneously. Approximations for large data sets are described in
(Fitzgibbon et al., 2002).

By changing the underlying probability distributions, these methods can easily be applied to
symbolic time series as well. But the problem of specifying a model remains. An entropy based
approach for symbolic data without model assumptions is described in (Cohen and Adams,
2001). The task is to separate a series of symbols into meaningful segments. The intuition is
that within such a segment the series is more predictable than at the borders. The approach is
successfully applied to discover words in a text with spaces and punctuation removed.

5.9 Classification

There are two types of classification in time series data mining. The first is time series classifi-
cation similar to whole series clustering. Given a set of time series with a single label for each,
the task is to train a classifier and label new time series. In time point classification problems
there are labels for each time point. A classifier is trained using the values and labels from the
time points of the training set. Given a new time series, the task is to label all time points. This
is called sequential supervised learning in (Dietterich, 2002) and related to prediction (see 5.6).

5.9.1 Time Series Classification

An early approach to time series classification is presented in (Bakshi and Stephanopoulos,
1994). The time series are represented by shape primitives derived from a multi scale anal-
ysis. This results in a combination of qualitative and quantitative features. Decision trees are
induced in an iterative process going from coarse to more detailed time series representations
as necessary. The method is applied to the classification of chemical process trends. Only few
records were used, but the results could be interpreted meaningfully.

Many approaches are basically a combination of temporal feature extraction and a con-
ventional classification scheme. A piecewise polynomial representation is used with Bayesian
classification in (Manganaris, 1995). Each class is represented by a set of models. A piecewise
linear representation including weights per segment is proposed in (Keogh and Pazzani, 1998).
The weights can be used in relevance feedback, e.g., for classification. The same representation
is used in (Geurts, 2001) where classification rules are induced with decision trees.

(Deng et al., 1997) use ARMA models and perform nearest neighbor classification using the
Euclidean distance of the model parameters. The order of the models is estimated globally
using the AIC criterion. HMM representations are used in (Zhong and Ghosh, 2002). Neural
networks are trained on statistical features in (Nanopoulos et al., 2001). In (Povinelli et al.,
2004) a phase space representation is combined with Bayesian classification based on Gaussian
mixture models.

The FeatureMine method (Lesh et al., 1998) searches sequential patterns in symbolic se-
quences (see Chapter 4.2) that are frequent, distinctive, and non-redundant. The boolean fea-
tures indicate the presence of a pattern in a symbolic time series and are used to train a static
classifier. In (Oates, 1999) sub-series of multivariate numerical time series that are distinctive
for a given class are searched.

Wavelet features are used with recurrent neural networks in (Roverso, 2000) to classify short
multivariate time series. The wavelet coefficients with the lowest global reconstruction error
are used in (Mörchen, 2003) with rule generation approaches to obtain classification rules. In
(Zhang et al., 2004) the Haar wavelet is used to determine the appropriate scale using the entropy
of the detail coefficients. The extracted features are tested with nearest neighbor classification.
The classification of symbolic time series with wavelet features is described in (Aggarwal, 2002).

5.9. CLASSIFICATION 38

The TClass method for time series classification with comprehensible descriptions for multi-
variate time series has been proposed in (Kadous, 1999) and was later extended (Kadous, 2003;
Kadous and Sammut, 2004, 2005). The first step is the extraction of global features, like the
mean of the time series. The temporal structure is described, e.g., by trends and local minima
and maxima. The second step is a clustering of the features. The cluster centroids are used
as inputs for the training conventional classifiers, e.g., C4.5. The classification rules produced
by C4.5 were post processed to convert rules about the cluster centroids back to the original
features. The method is applied to time series describing the Australian sign language and the
class descriptions were said to correspond to the official sign definition. A tradeoff between more
comprehensible descriptions using simple classifiers and accuracy using bagging or boosting (e.g.
Quinlan (1996)) is observed (Kadous and Sammut, 2005).

Another method targeted at comprehensible descriptions of time series is described in
(Rodriguez et al., 2000; Rodriguez and Alonso, 2000; Alonso and Rodriguez, 2000). The time
series are described with interval and distance based predicates and first order logic. This creates
representations like mostly increasing on interval [5, 12]. Classification rules are created with
inductive logic programming (Lavrac and Dzeroski, 1994). The accuracy was optimized using
boosting (Schapire, 1999) of the base literals. The results were competitive on several bench-
mark data sets and the Australian sign language data set. The ensemble classifiers created with
boosting sacrifice interpretability of the logical predicates, however. The method was recently
extended to variable length time series and to provide early classification based on a prefix of
the time series (Alonso and Rodriguez, 2004).

Most of the above approaches have a separated (temporal) feature extraction and apply a
static learning scheme to the result. Recently more tighter integration of temporal structure into
the learning algorithms have been proposed. Yamada and Suzuki use a decision tree with a modi-
fied split test (Yamada and Suzuki, 2003). No features are extracted, whole time series are stored
in the tree nodes compared with the DTW distance. They note that the complete time series can
be more comprehensible to experts than extracted features. Ratanamahatana and Keogh also
use DTW distances with nearest neighbor classification. The class information on the training
set is used to learn class wise constraints of the DTW warping path. This results in excellent
accuracies on several data sets (Ratanamahatana and Keogh, 2004b).

5.9.2 Time Point Classification

Time point classification methods label time points. Not all time points need to be labeled if only
certain interesting events need to be detected. Several methods for time point classification are
reviewed in (Dietterich, 2002). Simple methods use vectors of values extracted from the time
series with a sliding window and apply conventional learners. The recurrent sliding window
approach also uses the labels of already classified points. This includes recurrent decision trees
and recurrent neural networks. Further, the application of HMM variants, Conditional Random
Fields, and Graph Transfer Networks to time point classification are described (Dietterich, 2002).

Cotofrei and Stoffel developed a point classification method based on first order logic
(Cotofrei and Stoffel, 2002c,a, 2005). Each time series is discretized using equal frequency his-
tograms on the first order differences or segmentation to describe local shapes. This creates a
symbolic feature vector for each time point. Classification trees are trained with these feature
vectors using a sliding window to incorporate temporal order. The variation of parameters like
the number of symbols per time series or the width of the sliding window creates multiple train-
ing sets. The rules for a class derived from the corresponding trees are combined with logical
operators. The method is extended with higher order mining in (Cotofrei and Stoffel, 2002b,
2005). A two step generalization is performed on the extracted classification rules. Rules with

5.10. MOTIF DISCOVERY 39

a confidence value below a statistically derived threshold are deleted. The remaining rules are
merged and further pruned using the MDL principle.

5.10 Motif Discovery

The discovery of time series motifs was motivated by the observation that sub-series clustering
with overlapping sliding windows produces meaningless results (Lin et al., 2003b). The idea
of motifs was transferred from symbolic gene time series in bioinformatics to numerical time
series. Motifs are defined in (Lin et al., 2002; Patel et al., 2002) as typical non-overlapping
subsequences.

An extension to motifs with gaps is proposed in (Chiu et al., 2003) inspired by the usage of
random projection for the discovery of DNA motifs (Buhler and Tompa, 2001). The time series
are represented with PAA and fixed length sub-series are extracted. Several projections using a
random subset of symbol positions of the sub-series are created and collisions of similar patterns
are counted. Two similar patterns will have more collisions than different patterns.

The SAX representation is combined in (Lin et al., 2004) with a tree visualization of sub-
series to identify Motifs manually. (Tanaka and Uehara, 2003) extend Motif discovery to mul-
tivariate time series using PCA and MDL. In (Liu et al., 2005) motifs are found with a density
based method.

5.11 Anomaly Detection

The detection of anomalies, also commonly called novelty detection, has applications like fault
detection in machine monitoring or intrusion detection in computer networks. The events of
interest are usually rare. A good discussion on the difficulties of mining rare events is given in
(Weiss, 2004). Common quality measures like accuracy or information gain are not well suited,
because of the extreme difference in the size of the classes to be predicted. Many data mining
algorithms are found to have the wrong induction bias, e.g., greedy search. Weiss proposes to
use precision and recall as quality scores and non greedy search methods like genetic algorithms.

One approach to detect anomalies is to create a model of the normal state of a time series.
Incoming data that does not fit the model well is characterized as abnormal. This is done
in (Ypma and Duin, 1997) using SOM models of the normal data. If the projection error of
new data on the SOM is larger than a threshold it is classified as an anomaly. A framework
for (online) novelty detection is defined in (Ma and Perkins, 2003) and implemented based on
Support Vector Regression (SVR) (Müller et al., 1997).

The principle of negative selection from immunology is used in (Dasgupta and Forrest, 1996)
for anomaly detection. A set of detectors that fail to detect the training time series is gener-
ated. These detectors are later used for monitoring. If incoming data triggers a detector,
it is classified as an anomaly. The negative selection is extended to numerical time series in
(Gonzalez and Dasgupta, 2002). Supervised Multi Layer Perceptron (MLP) neural networks
and unsupervised SOM are compared. A genetic algorithm is used in (Gomez et al., 2003)
to generate fuzzy rules describing non-self. In (Oliveira et al., 2004) anomalous examples are
generated to train MLP and RBF neural networks.

(Eskin, 2000) does not require supervised training, but assumes anomalies to be rare. A
mixture model is trained on all incoming data. Anomalies are detected by a statistical test
against this model. The approach is applied to symbolic time series from computer monitoring
(Eskin, 2000).

A wavelet decomposition of time series is used in (Shahabi et al., 2000) to support queries
for surprises at different resolution levels. The Tarzan algorithm (Keogh et al., 2002) is based

5.12. RETRIEVAL BY CONTENT 40

on a MC model of a discretized version of the time series. Suffix trees are used to store fixed
length sub series along with the occurrence probabilities. If incoming data does not fit the
model trained with normal data, it is labeled as a surprise. Experimental results show superior
performance over the immunology and wavelet methods.

A state based approach is taken in (Salvador et al., 2004) that consist of several processing
steps. First, the time series are segmented using time point clustering. The clusters are assumed
to be states of the process generating the time series. The Ripper (Cohen, 1995) algorithm is
used to generate characterization rules for the clusters. A finite state automaton is constructed
with one state per cluster plus an abnormal error state. The state transitions are determined
by the cluster rules. If no cluster rule is triggered by incoming data, the error state is activated.
If the error state occurs too many times consecutively or totally, an anomaly is reported.

Time series bitmaps are used in (Wei et al., 2005) for a simple unsupervised anomaly de-
tection algorithm. The Euclidean distance between the bitmap representations of two windows
leading up to and following a time point is used as an anomaly score.

5.12 Retrieval by Content

The task of retrieving a set of time series from a database that are similar to a given example
is a common problem in the database community. It is often combined with an indexing strat-
egy to speed up the retrieval. In early stages time series data mining was almost exclusively
occupied with this topic starting with the seminal work of Agrawal et al.. It remains an active
area of research with recent developments like indexing based on the DTW distance function
(Keogh and Ratanamahatana, 2005; Zhu and Shasha, 2003; Sakurai et al., 2005). Many publi-
cations are composed of a particular time series representation (see Chapter 5.4), a similarity
measure invariant under some transformations (see Chapter 5.3), and an indexing method. A
recent survey covering retrieval and indexing of time series can be found in (Hetland, 2004).

In (Agrawal et al., 1993a) the time series were represented by the first few coefficients of the
DFT to reduce the dimensionality by a large factor. The feature representation was queried with
a R∗-Tree (Beckmann et al., 1990) index. Since the Euclidean distance of the DFT coefficients
lower bounds the Euclidean distance of the original time series, there are no false dismissals.
False hits were removed in a post-processing step using the original data. Many papers extended
this approach, e.g., by changing the feature representation. In (Rafiei and Mendelzon, 1998) the
first and the last k DFT coefficients were used exploiting the conjugate property of the DFT on
real valued signals. The first few coefficients of the DWT were used in (Chan and Fu, 1999).
A comparison of DFT and Haar DWT (Wu et al., 2000) showed, that they are comparable in
energy preservation, while DWT is faster to calculate and offers a multi-resolution decompo-
sition. In addition there are approaches that combine DWT with time warping (Chan et al.,
2003). In general, DFT will be better for time series with a strong periodic structure, while
DWT will be better for time series with important local shapes and singularities (Mörchen,
2003). Popivanov and Miller pursued the suggestion by Chan and Fu, that wavelet bases other
than Haar, might be better for certain data sets. They showed that the contraction property
needed for indexing holds for all (bi-)orthogonal wavelet transforms, making a large family of
transforms available for the feature extraction (Popivanov and Miller, 2002). In particular the
Daubechies wavelet family (Daubechies, 1992) was shown to have good energy preservation on
several real life and synthetic data sets. Recently, random projections (Indyk et al., 2000) and
Chebychev polynomials (Cai and Ng, 2004) have been used as feature representations for time
series retrieval.

A simple symbolic representation based on a shape alphabet with fixed resolution was pro-
posed in (Agrawal et al., 1995b). An index structure for queries supporting regular expression
is described. (Qu et al., 1998) present an extension to user specified scales. The piecewise

5.13. RULE DISCOVERY 41

linear approximation (PLA) is used in (Shatkay and Zdonik, 1996), similar representations are
proposed in (Perng et al., 2000; Pratt and Fink, 2002; Fink and Pratt, 2004). An extension of
PLA to deformations and gaps is described in (Keogh and Smyth, 1997). The advantage of more
flexible distance functions is shared by the piecewise constant PAA and APCA representations
(Keogh et al., 2001b; Yi and Faloutsos, 2000; Keogh et al., 2001a). APCA is also shown to have
more pruning power than DWT or DFT features (Keogh et al., 2001a). The most recent repre-
sentation in this line of work is SAX, the only symbolic representation with a distance function
lower bounding the Euclidean distance (Lin et al., 2003a).

Other important extensions to the general approach of (Agrawal et al., 1993a) include the
handling of scaling and gaps (Agrawal et al., 1995a; Vlachos et al., 2002), noise (Vlachos et al.,
2004a), formalizing query constraints and incorporating them into the indexing procedure
(Goldin and Kanellakis, 1995; Rafiei and Mendelzon, 1997; Goldin et al., 2003) and subsequence
matching (Faloutsos et al., 1994; Moon et al., 2001; Kahveci and Singh, 2001). The most inter-
esting transformation to handle is time warping. Since the DTW distance does not satisfy
the triangle inequality (Yi et al., 1998) it is difficult to index. An early approach achieved a
significant speedup but allowed false dismissals (Yi et al., 1998). A lower bounding distance
for DTW was claimed in (Park et al., 1999), but retracted in (Park et al., 2000). A segment
based calculation was then used to speedup the processing. Lower bounding distances without
false dismissals for DTW were then proposed in (Kim et al., 2001) and (Keogh, 2002). Ex-
tensive experiments in (Keogh and Ratanamahatana, 2005) show the lower bounding distance
of Keogh and Ratanamahatana to be superior to that of Kim et al. and the approximation of
Yi et al.. The method was further improved in (Zhu and Shasha, 2003). The lower bound
relies on commonly used constraints of the warping path. The Fast Time Warping (FTW,
Sakurai et al. (2005)) method can be used without constraints and is shown to outperform the
method of (Keogh and Ratanamahatana, 2005) on some data sets. In (Fu et al., 2005) a lower
bound for DTW combined with uniform scaling is given.

Other recent trends in time series retrieval include multivariate time series and specialized
index structures. Extensions of the DTW indexing to multivariate time series are reported in
(Rath and Manmatha, 2003). The indexing method for Euclidean distance from (Agrawal et al.,
1993a) is applied to multivariate time series in (Lee et al., 2000). The method proposed in
(Cai and Ng, 2004) can trivially handle multiple dimensions. (Kahveci et al., 2002) also covers
the multivariate case handling scaling and shifting in a specialized indexing structure called
ConeSlice. The Skyline index (Li et al., 2004) for time series can be combined with several
time series representations and introduces bounding regions in the time series space instead of
typically used minimum bounding rectangles in the feature space (Faloutsos et al., 1994). The
DDR index (An et al., 2005) uses a grid based representation to overcome the problems of spatial
indexing methods with high dimensionalities. In (Cheng et al., 2005) an indexing method for
symbolic sequences based on sequential patterns is described.

5.13 Rule Discovery

Rule discovery is a crucial task for knowledge discovery, because the output is often directly
aimed at humans providing insights into the data. Even though in some cases the presentation
of the original time series to an expert might be useful (Yamada and Suzuki, 2003), generally
knowledge discovery requires an abstraction mechanism that creates symbolic rules close to
natural language or easily convertible to natural language.

Rule discovery from time series can be done supervised and unsupervised. In supervised
approaches something about the rule to be found is known a priori, at least for part of the data.
This mainly involves prediction of known events. Unsupervised approaches search for typical
temporal patterns that can be described by rules. Similar to association rules a rule pattern

5.14. OTHER APPROACHES 42

is sometimes transformed to an implication rule with premise and conclusion. We will only
describe supervised approaches in this chapter. The unsupervised discovery of rules from time
series is deferred to Chapter 6.

5.13.1 Supervised Rule Discovery

The prediction of known rare symbols in symbolic time series is performed by the TimeWeaver
method (Weiss and Hirsh, 1998; Weiss, 1999; Weiss and Hirsh, 2000). The prediction rules are
expressed in a simple rule language with wild cards covering the temporal concepts of order and
concurrency.

(Sun et al., 2003) searched for so-called event oriented patterns that frequently occur in a
window prior to the target symbol. The patterns are based on Episodes (Mannila et al. (1997),
Chapter 6) and cover the temporal concepts of order and concurrency. The search for negative
patterns, i.e., patterns that rarely occur before the target symbol is described in (Sun et al.,
2004b). If a pattern occurs far less than expected in a window before the symbol of interested
this can just as well be used as a predictor as frequent patterns. Patterns frequently occurring
in windows not preceding a target symbol are searched in (Sun et al., 2004a). (Sun et al., 2005)
describes an extension to mine the minimum time window for the patterns to be still considered
interesting.

In (Bettini et al., 1998) temporal patterns with a pre-specified structure are searched. The
patterns consist of symbolic variables connected with temporal constraints in a finite automaton.
The temporal constraints are defined w.r.t. user defined granularities, e.g., business days. The
search for pattern instances includes instantiation of the variables and counting of the occur-
rences. The first symbol in the patterns needs to be specified a priori. The authors suggest to
interactively mine simple patterns first and move towards more complex patterns based on the
findings. A similar approach is described in (Li et al., 2001) supporting multiple granularities
and comparing several mining algorithms.

Interval sequences obtained from videos are described with rules in (Fern et al., 2002). The
rules consist of logic formulas based on the AMA language (see Chapter 3.2.3) and are learned
using inductive logic programming. Based on positive examples only, the least general covering
formulas of each example are combined to obtain the least general generalization of all examples.
The rules are comparable in accuracy to a hand coded set of rules for the same application, but
not as comprehensible.

A complex system for temporal rules based on heterogeneous data including time points and
time intervals is described in (Shahar, 1997). Higher level patterns are obtained from lower
level information using temporal reasoning techniques and systematically incorporating domain
knowledge. We therefore consider it a supervised approach. The usefulness is demonstrated,
e.g., for clinical domains (Y. and M.A., 1996).

5.14 Other Approaches

The following approaches did not clearly fit in any of the above categories for time series data
mining tasks. In (Oates, 1999) numerical patterns are searched in time series to distinguish
instances likely to lead to a pre-specified event. In (Oates, 2002) multivariate patterns are
described by a temporal sequence of normal probability distributions. A supervised EM based
algorithm and an unsupervised dynamic programming based learning method are described.

The framework proposed by Povinelli uses sub-series patterns to predict a given event, e.g.,
the sudden rise of a stock price (Povinelli, 2001). A genetic algorithm is used to find patterns
based on a phase space representation (Povinelli and Feng, 2003).

5.15. DISCUSSION 43

In (Savnik et al., 2000; Lausen et al., 2000) a method for finding the common characteristics
of a set of time series is described. For each predefined interval, a model is constructed using
classification with, e.g., C4.5. The model can be used to align undated time series with the set
of training time series.

5.15 Discussion

After describing the various different TSDM tasks, we recall the main problems and comment
on the state of the art.

A fundamental concept is that of time series similarity, strongly interconnected with time
series representation. Many common tasks, e.g., retrieval, directly depend on a good specification
of the similarity measure and an accompanying representation supporting efficient processing.
Many different similarity measures and representations have been proposed (Keogh and Kasetty,
2002). For certain applications there is surely still room for improvement. Especially feature and
model based representations are highly problem dependent. For the discovery of understandable
knowledge it is important to choose a representation that can be interpreted by the expert.

Retrieval, being the first highly researched topic in TSDM, is in a rather mature state. Never-
theless, there are recent publications specializing on time series (Li et al., 2004; An et al., 2005)
instead of plugging together standard methods with feature based time series representations.
The understandability is usually of minor importance when retrieving approximate matches.

Clustering relies strongly on a good choice of the similarity measure. There are many publi-
cations on whole series clustering, with a recent trend towards methods that better integrate the
temporal aspects (Vlachos et al., 2003). Whether sub series clustering can produce meaningful
results is still being disputed (Lin et al., 2003b; Struzik, 2003; Denton, 2004). There seems to be
hope in not using all possible windows. Time point clustering is very similar to segmentation,
the main difference being that clusters are usually recurring. This is an important difference for
rule discovery, because often frequently repeating patterns are searched. For time series segmen-
tation there are several established algorithms (Keogh et al., 2004a). First solutions have been
proposed to select the number of segments (Vasko and Toivonen, 2002; Salvador et al., 2004).

Motif discovery is a new research topic with few publications. The set of most frequent
motifs can be used to summarize a time series or generate rules. Motifs can further solve the
sub-series clustering problem because they are non overlapping by definition.

Time series description can sometimes be done directly based on the representation, e.g.,
using feature based or model based representations. For shape based problems the work of
(Sripada et al., 2003b) offers an end-user compatible natural language representation that has
high potential for successful knowledge discovery.

Classification is dominated by approaches combining classifiers for static data with prepro-
cessing techniques transforming the time series into a suitable representation (Kadous, 1999;
Nanopoulos et al., 2001). Few methods are explicitly designed for time series (Rodriguez et al.,
2000; Yamada and Suzuki, 2003; Ratanamahatana and Keogh, 2004b). It is surprising that the
early approach of (Bakshi and Stephanopoulos, 1994) offering a sound methodology for inter-
pretable representation and classification of time series does not seem to be widely known. Also,
there is a lack of studies comparing different approaches in accuracy and interpretability.

Time point classification is far less common, a promising method w.r.t interpretability is
(Cotofrei and Stoffel, 2002c). There is a strong relation to prediction, where only future points
are of interest. In anomaly detection the focus is only on the time points of where anomalies
occur. Here, several methods have been proposed but are hardly ever compared to each other
(Keogh et al., 2002). Supervised rule discovery can be seen as a general form of time point
classification, if it is concerned with the time points. But rule discovery in general has usually
the aim of producing understandable results, not necessarily the most accurate predictions.

5.15. DISCUSSION 44

In summary, a lot of work has been done in TSDM. Starting with approaches in retrieval
a variety of different tasks has been recognized and solutions have been proposed. As already
mentioned in (Keogh and Kasetty, 2002), there is still the need for more comparative studies
that evaluate different methods on several data sets with different characteristics. It seems that
only recently researchers have gone beyond simply combining conventional methods with time
series feature extraction and start to integrate the temporal characteristics of the data more
tightly into the mining algorithms.

Unfortunately, the results of many time series data mining methods can not be directly used
for knowledge discovery, because they are hard to interpret. A neural network classifier based on
a statistical feature vector (Nanopoulos et al., 2001) makes it hard to understand the decision
for a particular class. Even methods claiming to achieve high interpretability, sometimes fail to
achieve this goal. The classification rules generated in (Kadous, 1999) can only be interpreted
meaningfully, if the intermediate feature based representation of the time series is manually
designed to be descriptive and understandable. (Rodriguez et al., 2000) use logical predicates
describing aspects of the time series, but the classification is done using boosting. To help
understand a decision for a class, one would have to look at all weights per predicate and class.
For anomaly detection the approach in (Salvador et al., 2004) offers interpretation of the normal
states with rules, but not for the anomalous states.

The generation of natural language descriptions for complete time series (Sripada et al.,
2003b) is an important step on the way to extract useful and understandable knowledge from
time series. But the representation always needs to be adjusted to the users experiences and
capabilities (Sripada et al., 2003b). Often only certain parts of a time series are relevant or
interesting. The unsupervised discovery of symbolic rules from time series offers understandable
description of local phenomena, existing approaches will be discussed next.

Chapter 6

Unsupervised Mining of Temporal

Rules from Time Series

In this chapter we describe existing approaches to unsupervised rule discovery in time series.
The rule discovery methods are categorized by the data model they use for rule generation (see
Chapter 3.1) and the temporal concepts the rules can express (see Chapter 3.3). Many of the
following approaches have been developed with a certain application in mind and use only few
temporal concepts. There are two types of data models used for rule mining, namely time point
and time interval data types, almost exclusively of the symbolic kind.

Numerical time series are often converted to symbolic time series or interval time series
in a preprocessing and feature extraction stage (Das et al., 1998; Guimarães and Ultsch, 1999;
Villafane et al., 1999; Last et al., 2001; Höppner, 2001; Harms et al., 2002; Himberg et al., 2003;
Saetrom and Hetland, 2003). Various methods for this conversion were described in Chapter 5
and are reviewed briefly.

For univariate numeric time series the conversion to symbolic form can be performed based
on single values or local shape of the time series. Value-based discretization is most commonly
used. The resulting symbols can be mapped to linguistic descriptions like high or low. Shape-
based discretizations describe the development of a time series on an interval. The intervals can
be overlapping or consecutive and can be of equal or varying length. Variable length intervals
can be obtained by time series segmentation (Chapter 5.8). Fitting linear or quadratic functions
and discretizing the values of slope and curvature corresponds to descriptions like increasing or
convexly decreasing. Alternatively, the sub-series can be clustered (Chapter 5.7.1) to create a
codebook of prototypes. Meaningful descriptions for the symbols corresponding to the cluster
centers have to be found separately, e.g., with (Sripada et al., 2003b).

For multivariate numeric time series time point clustering (Chapter 5.7.3) can be used to
obtain a symbolic time series. To enable interpretation of the symbols, rules characterizing the
clusters can be generated (Ultsch, 1999; Witten and Frank, 1999).

The Viterbi algorithm can be used to obtain a symbolic time series from a Hidden Markov
Model (HMM, Rabiner (1989)) trained on a univariate or multivariate numeric time series.
HMM models are harder to interpret than range partitioning for univariate data or clustering
and rule generation for multivariate data, however.

In the following examples for rules obtained from symbolic time point or time interval data,
t will be used to indicate a time point, δ for time lags, and upper case variables for rule parts,
i.e., single symbols, intervals, or more complex patterns. All example rules usually hold with a
certain confidence or probability.

45

6.1. TIME POINT RULES 46

6.1 Time Point Rules

The most commonly searched temporal concept in univariate symbolic time series is order, i.e.,
characteristic short sub series of symbols occurring sequentially. This is a typical problem of
string matching and computational biology, (e.g. Gusfield (1997)). Many approaches in the anal-
ysis of gene data are concerned with multiple alignment and patterns present in several symbolic
time series, however. The discovery of typical patterns in a single symbolic time series can be
done by constructing a suffix tree or a variant thereof. The method described by Vilo supports
patterns with wild cards and group characters. A pattern trie with statistics in the tree nodes
is built to efficiently find the most frequent patterns in a long symbolic time series (Vilo, 1998,
2002). The higher the minimum frequency is set, the faster the algorithm runs. The efficient cal-
culation of several interestingness measures for subsequences is described in (Apostolico et al.,
2000). Over- and underrepresented sequences w.r.t. a binomial or Markov background model
can be found. The visualization of the interestingness can be done with suffix trees and different
font sizes and colors for the nodes (Apostolico et al., 2003). In (Jiang and Hamilton, 2003) sev-
eral traversal strategies of a suffix trie are compared for efficiency. In (Cohen et al., 2001) a tree
is built from a multivariate binary time series including mismatch costs of the binary vectors
based on the Hamming distance.

Symbolic time series and sequences can be viewed as a special case of itemset sequences
where each itemset is of cardinality one. The methods for mining sequential patterns in itemset
data (see Chapter 4.2) can also be used to discover the concept of order. A long sequence needs
to be split into many short sequences, however.

In (Cohen and Adams, 2001) patterns in symbolic time series are distinguished from so-
called Episodes. Note that this is different from the Episodes in the line of research following
(Mannila et al., 1995) described below. While a pattern is an arbitrary sequence of symbols,
an Episode is defined by (Cohen and Adams, 2001) as a pattern with a semantic meaning to
the expert. To avoid confusion we will therefore call them Semantic Patterns in the further
discussion. The search for the borders of such a Semantic Pattern is based on the entropy of the
probability distributions of symbols following a subsequence. Within a Semantic Pattern the
entropy for the next position starts high and decreases because the following symbols become
more predictable. At the end of a Semantic Pattern this entropy should peak. A simple algorithm
for finding these boundaries using several window widths and a scoring theme is described. The
resulting patterns can be arbitrarily long but do not contain group characters or wild cards.

In (Das et al., 1998) the concept or order is mined in univariate symbolic time series with
simple rules expressing the relation of two symbols only. Sequential occurrences of two symbols
with a maximum temporal distance are searched. A rule can be read as: if A occurs at time t,
then B occurs before t + δ. The rules are evaluated with the J-measure (Smyth and Goodman,
1991). The method is said to be easily applicable to multivariate symbolic time series by
considering single symbols from all dimensions. In the same way it could also be applied to
symbolic sequences. An extension to more than two symbols in a rule is discussed as more
difficult and computationally expensive.

Oates et al. describe a similar approach to discover the concept of order in multivariate
symbolic time series, the Multi Stream Dependency Detection (MSDD) (Oates et al., 1996,
1997). Each rule element contains a symbol or a wild card for each dimension of the time
series. A rule consists of two such elements and reads: if A occurs at time t, then B occurs
at t + δ. Thus for d dimensions a rule consists of at least two and at most 2d symbols. Note,
that the temporal constraint is more strict than in (Das et al., 1998). The related method Multi
Event Dependency Detection (MEDD) (Oates et al., 1997, 1998) discovers rules representing
the concept of concurrency in symbolic time sequences. The same basic patterns are used but
the rules express: if A occurs at time t, B occurs between t− δ

2 and t + δ
2 . In both methods, the

6.1. TIME POINT RULES 47

rules are defined as interesting if the probability is far from expectation. This is measured with
contingency tables of the (co-)occurrences of both rule parts. The search space is systematically
searched in a general to specific manner. Possible performance problems can be overcome
by parallel implementations (Oates et al., 1996). MEDD can also be applied to univariate or
multivariate symbolic time series, mining the concept of concurrency instead of order.

The Episode patterns of (Mannila et al., 1995, 1997) describe a partial order of elements in
a symbolic time sequences and represent the concepts of order and concurrency. Serial Episodes
express order, because all symbols must occur sequentially. The length of the pattern is restricted
by a maximum temporal distance between the first and the last symbol. In parallel Episodes
the symbols of a pattern can occur in any order within the window, representing the concept
of concurrency. Partially ordered Episodes mix these two temporal concepts. An Apriori style
algorithm is used to build longer candidate patterns from frequent short patterns. The type
of patterns and the width of a sliding window in which to search needs to be specified by the
user. An Episode rule is built from a frequent Episode similar to association rules by looking
at sub patterns. Let the following simple serial Episode be frequent: symbol A followed by B

followed by C within at most δ time points. A possible Episode rule generated from this reads:
if A occurs at time t followed by B, then C will occur before t + δ. Given the frequent parallel
Episode: A,B,C occur within a window of length δ, a parallel Episodes rule could be: if A occurs
with B in a window of length δ then so does C. Note that the premise of Episode rules doesn’t
necessarily occur temporally before the conclusion, even for serial Episodes. Thus the usability
of such rules for prediction is not always given. Typical applications for Episode rules include
analysis of telecommunication data or web server logs, where the interest is mostly in several
events happening temporally close but in no particular order.

Determining support and confidence of Episode rules requires counting the occurrences of
Episode patterns in windows. The WINEPI (Mannila et al., 1995) method uses the relative
frequency, i.e., the number of windows with the pattern divided by the total number of windows.
The MINEPI (Mannila and Toivonen, 1996) method uses the concept of minimal occurrences,
i.e., a window around the pattern that does not contain sub windows with the same pattern.
In (Baixeries et al., 2001; Casas-Garriga, 2003) these approaches are criticized for the need
of a fixed maximum window length. Instead they constrain the maximum distance between
successive symbols in a pattern. This way an Episode pattern can be arbitrarily long. The
frequency counting is performed with respect to the pattern length. Méger and Rigotti show
that the method of (Casas-Garriga, 2003) is incomplete and proposed the WinMiner algorithm
to fix this problem (Méger and Rigotti, 2004).

An extension of Episodes expressed as temporal logic programs with operators like until or
since is described in (Padmanabhan and Tuzhilin, 1996). A generative approach to episode min-
ing is described in (Mannila and Meek, 2000). (Harms et al., 2001) uses closed sets of Episodes
to create representative Episode rules. Efficient matching of found Episodes in new data can be
done using directed acyclic subsequence graphs (Trońıček, 2001).

In (Harms et al., 2002) the author presents a method mining for Episode association rules
using minimal occurrences with constraints and time lag (MOWCATL) from multivariate sym-
bolic time series or symbolic time sequences (Harms et al., 2002; Harms and Deogun, 2004).
Instead of generating Episode rules in a post processing step from frequent Episode patterns,
the algorithms directly mines rules with an antecedent part and a consequent part separated by
a time lag. This way the rules can always be used for prediction. Separate maximum length
constraints can be specified for the both rule parts. An example rule involving a serial Episode
in the antecedent and a parallel Episode in the consequent could be: if A at time t is followed by
B before t+δ1 then C and D occur in a window of length δ2 before t+δ3. Further constraints can
be integrated to restrict the search to interesting rules. In addition to order and concurrency,
synchronicity is supported by so called combined event types in multivariate time series. For

6.1. TIME POINT RULES 48

each combination of the symbols from different dimensions of the time series occuring at the
same time point, an additional event symbol is generated.

Casas-Garriga describes a different way of finding partial orders in a set of sequences, the
so-called transactions. First, an algorithm for mining closed sequential patterns is applied
(Yan et al., 2003; Wang and Han, 2004; Tzvetkov et al., 2003). The resulting sequential pat-
terns are closed in the sense that there is no super-pattern with the same support. They do
not, however, form a lattice structure as closed itemsets do, because there can be sequential
patterns occuring in the same transactions that are not contained in one another. In the next
step pairs consisting of a set of closed sequential patterns and a set of transactions in which all
these patterns occur are formed. The algorithm ensures maximality of these pairs in the sense
that no additional sequence occurs in all the transactions and there is no additional transaction
in which all the sequences occur. These maximal pairs form a lattice structure and each of them
is converted into a partial order resulting in a lattice of closed Episodes.

In (Mooney and Roddick, 2004) Episodes are combined with a subset of Allen’s relations to
express more temporal relations among Episodes than co-occurrence within a window. First,
frequent episode patterns are mined. Then within each Episode so-called interacting Episodes
are searched, that is sub patterns of the Episode for which the during, overlaps, or meets
relation holds. This doesn’t really add any new temporal concepts according to our definition
(see Chapter 3.3), but increases the expressiveness of the resulting Episode rules. Given the
frequent serial Episode A followed by B followed by C followed by D an example rule reads (A
followed by C) overlaps (B followed by D).

The first approach for partial periodic patterns in symbolic time series is described in
(Han et al., 1998). Partial periodicity means that the repetition does not necessarily occur
on the whole time series, but only on segments. Given a period length, patterns are mined with
an Apriori algorithm. For a period k the patterns consist of k positions filled with symbols or
wild cards and cover the temporal concepts of order and periodicity. Yang et al. also mine the
period along with the patterns (Yang et al., 2000). The method allows missing occurrences as
well as shifted periods between segments of occurrence. In subsequent work surprising patterns
are mined using an information measure rather than support (Yang et al., 2001b, 2002). Re-
cently, extensions for more robust pattern matching allowing random replacements (Yang et al.,
2003) and meta patterns (Yang et al., 2004) have been proposed. In (Berberidis et al., 2002)
the Fast Fourier Transform (FFT, Shatkay (1995b)) of binary vectors for each symbol is used to
obtain candidates for the algorithm of (Han et al., 1998). In contrast (Elfeky et al., 2004) uses a
single pass of the data to mine periodic patterns with a similar method. An incremental version
of (Han et al., 1998) is proposed in (Aref et al., 2004). A different approach to periodicity min-
ing based on inter arrival times of a symbol is presented in (Ma and Hellerstein, 2001). Mining
candidate periods before association rules is fast, while the opposite is more robust, because
random occurrences of a pattern are less likely than those of a single symbol. Periodical pat-
terns are typically searched in retail data, where discovered periodicity can be used for supply
chain management or advertisement.

Saetrom and Hetland criticize the restrictive rule languages, e.g., for Episodes, needed to
make many mining approaches feasible. The Interagon Query Language (IQL, Interagon (2002)),
a general rule language that includes many others as special cases, is proposed. It is defined over
univariate symbolic time series and symbolic time sequences. It covers the concepts of order,
concurrency, and duration. Duration is modelled by allowing repetition of symbols. Similar to
(Harms et al., 2002) a time lag between the antecedent and the consequent of a rule is allowed.
The patterns are mined using Genetic Programming (Koza, 1998) where each individual is the
syntax tree of a candidate pattern. The candidates are evaluated using special hardware to
speed up the search. The patterns are mined directly optimizing an interestingness measure,
instead of the more commonly used support and confidence combination. It is mainly the need

6.1. TIME POINT RULES 49

for special hardware that restricts this approach. It would be interesting to see, whether it is
still feasible with standard, possibly parallel, hardware.

A hierarchical method that is less concerned with implication rules but more with the recog-
nition of typical high level states comes from the field of ubiquitous computing (Schmitt, 2002).
The goal is to recognize the context of the user of a mobile phone from sensor measurements
integrated in the phone (Himberg et al., 2003). The symbolic vectors from a multivariate sym-
bolic time series are clustered with the Symbol Clustering Map (SCM, (Flanagan, 2003)). This
expresses the concept of synchronicity and creates a univariate symbolic time series. Repeating
symbols are dropped, therefore neglecting concept of duration at this level. A triplet encoding of
the symbols is again clustered with the SCM to obtain patterns similar to Episodes representing
a mixture of the concepts order and concurrency. Consecutive symbols of the same cluster label
somewhat represent the concept of duration. Many of the scenarios present in the training data
were successfully recognized. More details on the method are given in (Mäntyjärvi, 2003).

The approaches for rule discovery in symbolic time series and sequences are summarized in
Table 6.1 roughly ordered by increasing expressivity of the rule language. For several contribut-
ing authors the earlier publication is listed. The first four methods can only model the concept
of order. The Semantic Patterns do not allow gaps. The wild cards of the approach in (Vilo,
1998) can model short gaps. The Association rules of (Das et al., 1998) explicitly model gaps,
but use only two symbols per rule. The patterns of MSDD allow gaps via wild cards, but also
relate only two points in time.

Author(s)/Year Method/Keyword Data model Temporal concepts

u
n
iv

ar
ia

te
sy

m
b
ol

ic
ti

m
e

se
ri

es

m
u
lt

iv
ar

ia
te

sy
m

b
ol

ic
ti

m
e

se
ri

es

sy
m

b
ol

ic
ti

m
e

se
q
u
en

ce

d
u
ra

ti
on

or
d
er

p
er

io
d
ic

it
y

co
n
cu

rr
en

cy

sy
n
ch

ro
n
ic

it
y

Vilo (1998) Suffix Trie × ×

Cohen et al. (2001) Semantic Patterns × ×

Das et al. (1998) Associations × × × ×

Oates et al. (1996) MSDD × × ×

Oates et al. (1997) MEDD × × × ×

Mannila et al. (1995) Episodes × × × × ×

Harms et al. (2002) MOWCATL × × × × × ×

Mooney et al. (2004) Interacting Episodes × × × × ×

Han et al. (1998) Partial Periodicity × × ×

Saetrom et al. (2003) IQL × × × × ×

Himberg et al. (2003) SCM × × × × ×

Table 6.1: Categorization of unsupervised rule mining methods based on time point data models,
i.e., symbolic time series and sequences.

The concept of concurrency is important for time sequences and discovered by the next four
methods starting with MEDD. All except MEDD also represent order. In contrast to traditional
Episode rules, MOWCATL is specifically designed to produce prediction rules and introduces
a method to represent synchronicity of symbols from multivariate time series. All methods for

6.2. TIME INTERVAL RULES 50

symbolic time sequences can also be applied to univariate symbolic time series. An extension to
multivariate symbolic time series is usually possible as well.

Periodical patterns include the concept of order within a pattern. Periodicity is not com-
monly mined from time sequences. The IQL approach offers a rich rule language that even
represents duration of symbols by modelling repetition. It is not clear, however, whether it
is easily extendable to multivariate time series. The SCM method offers the most temporal
concepts, but unfortunately they are not clearly separated in the method. Duration is partly
neglected and partly represented in the results. Only local order represented by the triplet
encoding. Clustering the triplets represents concurrency.

6.2 Time Interval Rules

The following approaches are all based on interval data models. This implicitly models the
concept of duration. The length of the intervals, however, is not always used.

Villafane et al. search for containments of intervals in a multivariate symbolic interval series
(Villafane et al., 1999). This represents the temporal concept of coincidence. A containment
lattice is constructed from the intervals and rules are mined with the so called Growing Snake
Traversal to reduce the storage space required by the naive algorithm. The following example
rule is given ”when network usage is at or above 55%, disk usage is at or above 40%, and when
such disk usage is observed, CPU usage during that time dips below 30%” (Villafane et al., 1999).
The duration of the intervals is not used.

Last et al. mine rules in a univariate contiguous numeric interval series (Last et al., 2001).
Each interval is associated with several numeric or symbolic features and a single symbolic
target attribute. Association rules on pairs of adjacent intervals are mined using the Info-Fuzzy
Network (IFN, Maimon and Last (2000)), an integrated feature selection and association rule
mining algorithm without candidate generation using conditional mutual information. Since the
number of rules with quantitative features is usually large, the rule set is reduced using fuzzy
theory. The final rules are association rules on labeled intervals interpreted as prediction rules
for the symbolic target attribute of the second interval in a pair. An example from weather
analysis reads: ”if this years precipitation is decreasing and was high, it is likely to be low next
year” (Last et al., 2001). Even though several features per interval are used, the interval series
itself is univariate. The only temporal concept directly expressed by the rules is order. Duration
can be explicitly expressed by using it as a numerical feature for the intervals.

In (Kam and Fu, 2000) interval rules are composed with Allen’s relations and searched with
an Apriori algorithm. The rule language therefore covers the concepts of coincidence, syn-
chronicity, and order. The duration of an interval is not explicitly used. The search space is
restricted to right concatenation of intervals to existing patterns, so-called A1 patterns, and by
a threshold for the maximum length of a pattern. An example pattern is ”(((A overlaps B)
before C) overlaps D)”. No implication rules are generated. The underlying data model is a set
of interval sequences. The support of a pattern is determined by counting the sequences of a
set of sequences in which it appears. This can easily be generalized to counting the occurrences
within sliding windows of a single long interval sequence.

In (Cohen, 2001) a subset of Allen’s relations is used to mine association rules, called Fluents,
in multivariate contiguous binary interval time series (Cohen, 2001; Cohen et al., 2002). This
data model can also be interpreted as a symbolic interval sequence. The meets and before
relations are merged into one. All three concepts expressible by Allen’s relations are covered,
but duration is not modelled. Significance of associations is determined with contingency tables
similar to (Oates et al., 1997), thus based on counting occurrences as in (Kam and Fu, 2000).
During learning the search is restricted to a sliding window and composites of single intervals
and/or already significant patterns. The associations over time are interpreted as cause and

6.2. TIME INTERVAL RULES 51

effect rules, an example from robot data reads: ”if the gripper is closed while an object is in the
gripper then the holding object state will be observed next” (Cohen, 2001).

The TCon method for temporal knowledge conversion presented in (Guimarães, 1998;
Guimarães and Ultsch, 1999; Guimarães et al., 2001) does not use Allen’s interval relations.
They are criticized for the strictness w.r.t. interval boundaries. The patterns are expressed with
the Unification-based Temporal Grammar (UTG) (Ultsch, 1996b; Guimarães and Ultsch, 1997;
Ultsch, 2004), a hierarchical rule language developed for the description of patterns in multivari-
ate time series. So-called Temporal Complex Patterns are constructed via several abstraction
levels. At the level corresponding to the data model of symbolic interval series, they consider
patterns of several intervals that are more or less simultaneous, called Events. The duration
of Events is modelled explicitly recording minimum, maximum, and mean duration. The sig-
nificance of Events is measured by conditional probability estimates. Since interval lengths are
also considered, this covers the temporal concepts of duration and synchronicity. The next level
expresses the concept of order among Events with so-called Sequences. A distinction between
follows and immediately follows is made. At each level a linguistic representation with temporal
grammatical rules is provided to enable the interpretation by experts. An example rule from the
analysis of sleeping disorders reads ”no air flow and no respiratory movement without snoring
is followed by no air flow and reduced chest and no abdominal movements without snoring is
after at most five seconds followed by strong breathing with snoring” (Guimarães, 1998). The
results of this analysis are validated with a questionnaire of experts and rule based systems
(Guimarães, 1998; Guimarães et al., 2001). Most steps of TCon are performed manually based
on visualizations and statistical summaries of the patterns of the previous levels, no algorithms
for the automatic discovery of the temporal concepts of synchronicity and order are described.
U-Matrix (Ultsch, 1993) visualizations of ESOM Ultsch and Mörchen (2005) are used to aid the
discovery of symbolic states from the numerical time series and to group similar Event patterns
(Guimarães, 1998; Ultsch, 1999). The temporal concept of coincidence is not expressible by the
UTG patterns, because the intervals are required to start and end almost simultaneously.

Another method using Allen’s relations to mine rules in symbolic interval sequences is de-
scribed in (Höppner, 2001, 2003). The search space is restricted by using a sliding window.
The patterns are mined with an Apriori algorithm. In contrast to (Kam and Fu, 2000) impli-
cation rules are generated and support and confidence are not based on counting occurrences
but rather on the lifetime of a pattern within the sliding window. The rule generation from
frequent patterns works similar to association rules, but only forward in time to ensure the use
for prediction. An example rule reads: if (A starts at time t, ends before B starts and the gap
is covered by C) then (B overlaps D) occurs before t + δ. The usage of quantitative attributes,
e.g., the length of the intervals or gaps and ranking of the rules by the J-measure are proposed
in (Höppner and Klawonn, 2002). This way duration is expressible in addition to the concepts
of coincidence, synchronicity, and order covered by Allen’s relations. Further extensions for
handling feature ambiguity (Höppner, 2002b) and rule set condensation (Höppner, 2002a) are
proposed.

In Table 6.2 the properties of the described approaches for rule discovery in interval series
and sequences are listed in order of increasing expressivity of the rule language and earlier
publication. All except the second method work on multivariate interval series and the almost
equivalent data type of interval sequences. The first two methods are rather simple in that they
only model few temporal concepts. (Last et al., 2001) is further restricted by the need to specify
a target attribute and the use of a contiguous interval series. Allen’s interval relations provide a
higher temporal expressivity of the resulting patterns and rules. In contrast to (Höppner, 2001)
the methods of (Kam and Fu, 2000) and (Cohen, 2001) do not model duration. The UTG/TCon
also offers duration but not coincidence.

6.2. TIME INTERVAL RULES 52

Author(s)/Year Method/Keyword Data model Temporal concepts

u
n
iv

ar
ia

te
n
u
m

er
ic

in
te

rv
al

se
ri

es

m
u
lt

iv
ar

ia
te

sy
m

b
ol

ic
in

te
rv

al
se

ri
es

sy
m

b
ol

ic
in

te
rv

al
se

q
u
en

ce

d
u
ra

ti
on

or
d
er

co
in

ci
d
en

ce

sy
n
ch

ro
n
ic

it
y

Villafane et al. (1999) Containments × × ×

Last et al. (2001) IFN × × ×

Kam and Fu (2000) Allen/A1 × × × × ×

Cohen (2001) Allen/Fluents × × × × ×

Guimarães and Ultsch (1999) UTG/TCon × × × × ×

Höppner (2001) Allen/Window × × × × × ×

Table 6.2: Categorization of unsupervised rule mining methods based on time interval data
models, i.e., symbolic interval series and sequences.

Chapter 7

Time Series Knowledge

Representation

We present the Time Series Knowledge Representation (TSKR), a pattern language for knowl-
edge discovery from multivariate time series and symbolic interval data. We first motivate the
need for a new flexible but concise way of describing temporal phenomena in Chapter 7.1 by
pointing out deficiencies of existing methods through examples. We then proceed with the
definition of the data models and the pattern language for the representation of duration, co-
incidence, and partial order in Chapter 7.2. The TSKR is analyzed and compared to Allen’s
relations and the UTG in Chapter 7.3. Efficient algorithms to mine the TSKR patterns are
presented in Chapter 8 completing the Time Series Knowledge Mining methodology.

7.1 Motivation

The aim of this thesis is to develop a methodology for the unsupervised discovery of inter-
pretable patterns from numeric multivariate time series supporting knowledge discovery tasks.
The representation of temporal knowledge should be rich in temporal expressivity covering many
temporal concepts. The patterns should be easily comprehensible by humans to support manual
analysis. For unsupervised mining only the subsequent human interpretation of the results can
determine the novelty and usefulness. Symbolic data models should be used, as each symbol is
commonly associated with a qualitative description of parts of the time series. Neither the size
of the patterns, nor the amount of patterns should overwhelm the user. The presence of noise
in the data should be graciously handled. Finally, it should be possible to efficiently mine the
patterns with computer programs.

The most common symbolic temporal data models and expressible temporal concepts of ex-
isting rule generation approaches have been compared in Chapter 6. Time point based methods
are not adequate for time series data with persisting states, because the concept of duration is
not well representable. Only IQL can model duration by repetition. The most expressive time
point based method SCM expresses a total of four temporal concepts, but it is not aimed at
creating understandable rules.

For time interval data there are in principle two qualitatively different approaches that offer
many temporal concepts: the rules based on Allen’s relations and the UTG. We claim that both
have major disadvantages in expressivity, robustness, or interpretability for mining patterns
from time series. We briefly formulate and justify our claims, a more formal analysis is given in
Chapter 7.3.

53

7.1. MOTIVATION 54

Claim 1. UTG patterns cannot express all patterns expressible with Allen’s interval relations.

A simple example of a pattern with two overlapping intervals that has a long prefix and
suffix where only one interval is present is shown in Figure 7.1. This cannot be expressed
by a combination of UTG Events and Sequences (Chapter 6.2) under all sensible choices of the
threshold parameter for Events determining almost synchronicity. The distance between the two
start points (or end points) would need to be much shorter than the duration of the overlapping
part for this pattern to be considered almost synchronous. An extension to cover the concept
of coincidence is needed.

Figure 7.1: Example of an interval pattern expressible with Allen’s overlaps relations but not
with the UTG.

Claim 2. Patterns expressed with Allen’s interval relations are not robust.

Several of Allen’s relations require the equality of two or more interval endpoints. If the
original time series data is collected from sensors, noise is almost always present and hard to be
removed completely. Any interval sequence obtained by discretization or segmentation will be
inherently noisy w.r.t. the start and end points of the intervals. Noise in the relative positions of
interval boundaries can lead to patterns that intuitively describe the same relationship between
intervals, but are fragmented into different relations as defined by Allen. Figure 7.2 shows three
examples of almost equal intervals represented by different relations.

(a) overlaps (b) during (c) finishes

Figure 7.2: Three different relations of Allen represent fragments of a pattern with almost equals
intervals.

Claim 3. Patterns expressed with Allen’s interval relations are ambiguous.

The same relation of Allen’s interval relations can represent intuitively very different situa-
tions. In Figure 7.3 three intuitively very different versions of the overlaps relation are shown as
an example. Even more ambiguous is the compact representation of patterns based on Allen’s
relations (Kam and Fu, 2000; Cohen, 2001), because different descriptions are valid for the exact
same pattern (see Chapter 7.3).

Claim 4. Patterns expressed with Allen’s interval relations are not easily comprehensible.

The patterns in (Höppner, 2001) are expressed by listing the pairwise relations of all intervals.

This can quickly lead to lengthy pattern descriptions with k(k−1)
2 pairwise relations for a pattern

with k intervals.

7.2. DEFINITIONS 55

(a) small overlap (b) medium overlap (c) large overlap

Figure 7.3: Three different instances of Allen’s overlaps relation that have quite distinct appear-
ances.

In summary, Allen’s relations seem not well suited for mining patterns from imprecise inter-
val data, because they are ambiguous, not robust, and potentially hard to interpret. The UTG
Event patterns are designed to be more robust, by matching interval endpoint with a threshold.
In contrast, the distinction between two versions of the followed by operator in UTG Sequences
is also sensitive to small disturbances of interval endpoints. Event pattern cannot express coin-
cidence and the restriction to a fixed number of intervals further limits the search space. The
hierarchical structure of the UTG and the separation of temporal concepts over several mining
steps, however, offers advantages for the knowledge discovery process. The intermediate pat-
terns can be analyzed before more complex patterns are searched. The TSKR utilizes these core
ideas (Ultsch, 1996b, 2004) inheriting the advantages while fixing the identified discrepancies
of the UTG. We define a hierarchical pattern language that covers the temporal concepts of
coincidence and partial order achieving higher expressivity than the UTG and Allen’s relations.

7.2 Definitions

The TSKR consists of a hierarchy of patterns each describing single temporal concepts. Patterns
are built in a bottom-up process. Each level of the hierarchy inhibits an increase in complex-
ity and temporal abstraction compared to the previous level. In this Chapter the semantic of
each pattern is defined. In order to make the patterns more easily comprehensible for interpre-
tation, we further propose a rule syntax for the qualitative description as well as a graphical
representation of the constructs through examples.

As a running example we will use the Skating data set, described in more detail in Chap-
ter A.1. It consists of physiological and mechanical measurements of professional Inline Speed
Skating under controlled conditions.

7.2.1 Data Models

We first define the data models used in the different mining stages. The input time series are
required to be uniformly sampled. We assume an underlying process generating the time series
that is observed at discrete time points.

Definition 7.1. A Chronon τ ∈ R is the sample interval.

Definition 7.2. A uniformly spaced series of time points of length N w.r.t. a Chronon τ and a
start time τ0 ∈ R is the finite set {θi = τ0 + iτ, i ∈ X} where X = {1, ..., N} ⊂ N are the indices
i of the time points are called ticks.

Without loss of generality, we will define the following data models and patterns based on
the natural numbering of the time points, the ticks X.

Definition 7.3. A time interval is a pair [s, e] ∈ X
2 with s ≤ e that corresponds to the interval

[θs, θe+1) ⊂ R. The finite set of all time intervals over X is noted I = {[s, e] ∈ X
2|s ≤ e}. We

7.2. DEFINITIONS 56

write [s, e] ⊆ [s′, e′] if s′ ≤ s and e ≤ e′ with equality if and only if s = s′ and e = e′. The
duration of an interval in units of ticks is d([s, e]) = e− s + 1 and in units of time τd([s, e]).

Definition 7.4. Two interval [s, e] and [s′, e′] overlap if {s, ..., e} ∩ {s′, ..., e′} 6= ∅.

Definition 7.5. We define a partial order ≺ of intervals as [s1, e1] ≺ [s2, e2]⇔ e1 < s2. We say
that [s1, e1] is before [s2, e2].

Note that our notion of partial order among intervals considers overlapping intervals as not
related. Figure 7.4(a) shows an example of two related intervals, while in Figure 7.4(b) A and
B are not related.

(a) A ≺ B (b) A 6≺ B ∧ A 6≻ B

Figure 7.4: Two examples demonstrating the partial order on intervals. Intervals that overlap
are not related.

Let Σ be a finite set of symbols σ. We attach symbols to intervals, representing the pattern
classes described below.

Definition 7.6. A symbolic time interval is a triple [σ, s, e] with σ ∈ Σ and [s, e] ∈ I.

Definition 7.7. A symbolic interval series is a finite set of non overlapping symbolic time
intervals I = {[σi, si, ei]|σi ∈ Σ, [si, ei] ∈ I, i = 1, ..., N ; ej < sj+1, j = 1, ..., N−1}. The duration
of a symbolic interval series is d(I) = ΣN

i=1d([si, ei]).

Definition 7.8. A symbolic interval sequence is a finite set of symbolic time intervals I =
{[σi, si, ei]|σi ∈ Σ, [si, ei] ∈ I, i = 1, ..., N}

An interval sequence can contain overlapping intervals and equal time intervals. Exact
duplicates of the symbolic intervals are excluded, however, intervals with the same start and
end points are only allowed if their symbols differ.

Definition 7.9. A d-dimensional time series w.r.t. a series of time points X = {x1, ..., xN} of
length N ∈ N is Y = {(xi, yi)|yi = 〈yi,1, ..., yi,d〉

T ∈ R
d, xi ∈ X, i = 1, ..., N}. If d = 1, Y is called

univariate, for d > 1 it is a multivariate time series.

Definition 7.10. An itemset is a subset S = {σ1, ..., σn} ⊆ Σ of all symbols.

Definition 7.11. An itemset sequence is a vector of itemsets s = 〈S1, ..., Sk〉 with Si ⊆ Σ for
i = 1, ..., k. We say that s is a subsequence of s′ = 〈S′

1, ..., S
′
l〉 and write s ⊆ s′ if k ≤ l and

∃j1 < ... < jk such that Si ⊆ S′
ji

for i = 1, ..., k.

Definition 7.12. We write s ⋄ s′ = 〈S1, ..., Sk, S
′
1, ..., S

′
l〉 for the concatenation of the itemset

sequences s = 〈S1, ..., Sk〉 and s′ = 〈S′
1, ..., S

′
l〉.

Definition 7.13. An itemset time interval is a triple [S, s, e] with S ⊆ Σ and [s, e] ∈ I.

Definition 7.14. An itemset interval series is a finite set of non overlapping itemset time
intervals I = {[Si, si, ei]|Si ⊆ Σ, [si, ei] ∈ I, i = 1, ..., N ; ej < sj+1, j = 1, ..., N−1}. The duration
of an itemset interval series is d(I) = ΣN

i=1d([si, ei]). We write I|[s,e] = {[Sj , sj , ej]|[Sj , sj , ej] ∈
I ∧ sj ≥ s∧ ej ≤ e} for all itemset intervals valid during the interval [s, e]. If used in the context
of itemset sequences, an itemset interval series is reduced to the itemsets sequence 〈S1, ..., SN 〉,
dropping the information on the time intervals.

7.2. DEFINITIONS 57

Definition 7.15. The support of an itemset sequence s in an itemset interval series I w.r.t. a
time interval sequence W is supW (s) = |{w|w ∈ W ∧ s ⊆ I|w}|, i.e., the number of intervals
from W in which it occurs.

7.2.2 Pattern Model

We now turn to the core structure of the knowledge representation, namely the patterns and
the occurrences of patterns in the input data.

Definition 7.16. Let Λ be a finite set of labels λ. Let l : Σ 7→ Λ be the function assigning each
symbol a label. Let Φ be a set of characteristic functions φX : I→ {True,False}, where X is
some arbitrary input data. A pattern (σ, λ, φX) is a semiotic triple (Ultsch, 1996b) composed
of:

• σ ∈ Σ, a unique symbol representing the pattern in higher levels constructs (syntax),

• λ = l(σ) ∈ Λ, a label providing a textual description of the practical meaning of the
pattern (pragmatic),

• φX ∈ Φ, a characteristic function determining when the pattern occurs (semantic).

The semantic of φ and the data type of X will differ for the various mining tasks defined below.
We write φ for φ = True and ¬φ for φ = False.

The concept of semiotic triples is consistently used on all levels of the TSKR pattern hier-
archy. It enables the pragmatic annotation of each pattern with labels to aid the later interpre-
tation when used as parts of larger patterns.

Definition 7.17. An occurrence of a pattern is an interval [s, e] ∈ I with φX ([s, e]). A maximal
occurrence is an occurrence [s, e] such that ∀[s′, e′] ⊃ [s, e] ¬φX ([s′, e′]). A marginally interrupted
occurrence is an interval [s, e] such that

∃s < e′ < s′ < e with φX ([s, e′]) ∧ φX ([s′, e]) (7.1)

and
d({[s′′, e′′]|[s′′, e′′] ⊂ [s, e], φX ([s′′, e′′]), [s′′, e′′] maximal})

d([s, e])
≥ 1− α (7.2)

and
max({d([s′′, e′′])|[s′′, e′′] ⊂ [s, e],¬φX ([s′′, e′′])}) ≤ dmax (7.3)

where α < 1 is a parameter specifying the maximum percentage of the total length of all
allowed interruptions and dmax is a parameter specifying the maximum absolute length of a
single interruption.

A marginally interrupted occurrence is thus required to start and end with a maximal oc-
currence (Property 7.1).

7.2.3 Grouping of input data (Aspects)

The input data model for the first mining step is a multivariate time series of possibly high
dimensionality. Following the divide-and-conquer approach the dimensions of the time series
should be split into several groups for separate processing during the first few mining steps.

7.2. DEFINITIONS 58

Definition 7.18. An Aspect A = (λ, V) of a time series Y is a named a-dimensional time
series of the same length but with possibly reduced dimensionality, i.e., V = {(xi, vi)|vi =
〈v1, ..., va〉

T = 〈yi,j1 , ..., yi,ja〉
T ∈ R

a, j1 < j2 < ... < ja, jk ∈ {1, ..., d}, k = 1, ..., a, i = 1, ..., N}.
We write A ⊂ Y for an Aspect A of Y . If a = 1, A is called univariate, for a > 1 it is a
multivariate Aspect. We write A|[s,e] for the Aspect with the sub-series of V on the interval
[s, e].

An Aspect describes a semantic property of the multivariate input time series represented
by a subset of the dimensions. This is particularly useful if the dimensionality is large and
correlation exists within subsets of the variables. Having less semantical dimensions to consider
in the further processing steps eases the interpretation of the patterns.

Example 7.1. For the Skating data set 11 time series were recorded with sensors, the labels of
which are shown in the first column of Table 7.1. The first row corresponds to a pressure sensor
in the shoe and was placed in a univariate Aspect. The next three rows are angle measurements
at the joints of the leg. They describe the leg’s movement and are grouped in a three dimensional
Aspect. The last seven rows describe the activity of different muscles of the skater’s leg. The
grouping of the muscles can be done using the physiological functions. The third and forth
column show a coarse grouping into flexor and extensor muscles. The last six columns show a
more fine grained grouping of flexor and extensor functionality for the three joints. Note, that
several muscles serve more than one purpose and make some Aspects overlap, e.g., the Tensor
Fasciae Latae muscle in the last row is an extensor for the knee and a flexor for the hip. A
primary and secondary function may be described, the latter is parenthesized in Table 7.1.

Time Series Variables Aspects

F
o
ot

co
n
ta

ct

L
eg

p
os

it
io

n

F
le

x
or

m
u
sc

le
s

E
x
te

n
so

r
m

u
sc

le
s

A
n
k
le

fl
ex

or
s

A
n
k
le

ex
te

n
so

rs

K
n
ee

fl
ex

or
s

K
n
ee

ex
te

n
so

rs

H
ip

fl
ex

or
s

H
ip

ex
te

n
so

rs

Foot contact ×

Ankle angle ×

Knee angle ×

Hip angle ×

Tibialis Anterior muscle × ×

Medial Gastrocnemius muscle (×) × × ×

Vastus Medialis muscle × ×

Rectus Femoris muscle (×) × × ×

Semitendinosus muscle × (×) × ×

Gluteus Maximus muscle × × ×

Tensor Fasciae Latae muscle (×) × × ×

Table 7.1: Possible groupings of the variables from the Skating data into Aspects. The muscle
activities can be grouped on different abstraction levels, e.g., using only their main
functionality (flexor or extensor), additionally considering the involved joints (ankle,
knee, and hip), or simply using seven univariate Aspects.

7.2. DEFINITIONS 59

7.2.4 Representing duration (Tones)

The first pattern type covers the temporal concept of duration. It represents a persisting state
or property present in the input time series with a symbolic interval.

Definition 7.19. A Tone1 pattern is a semiotic triple t = (σ, λ, φA) with σ ∈ Σ, λ ∈ Λ, and a
characteristic function φA ∈ Φ indicating the occurrence of a state in an Aspect A on a given
time interval. Let the set of all Tones be T.

We explicitly allow arbitrary characteristic functions for detecting a property of the input
time series, but the preference is on easily interpretable functions. For univariate time series
we give some examples that list common notions of persisting properties in the numerical time
series.

Example 7.2. A value-based Tone for a univariate Aspect can be specified with an interval
condition on the values of the time series:

φA([s, e])← vmin < vi ≤ vmax i = s, ..., e (7.4)

Example 7.3. A textual rule for a value-based Tone from the Skating data set is given in
Figure 7.5. The muscle activity of the Gluteus Maximus muscle is defined to be high if the time
series values rise above 0.7. The label is chosen as a compact summary of the rule. For the
graphical representation of a Tone we simple use a box with the label as shown in Figure 7.6.

’GM is high’ when ’Activity of Gluteus Maximus muscle’ is greater than 0.7.

Figure 7.5: Textual representation of a Tone from the Skating data. The activity of the muscle
is defined as high if it is larger than a threshold.

GM is high

Figure 7.6: Graphical representation of a Tone from the Skating data.

Example 7.4. A trend-based Tone for a univariate Aspect can be specified with an interval
condition on the slope of an interpolation of the values. Let S be an interval series representing
a segmentation of the Aspect.

φA([s, e])← ∃[s′, e′] ∈ S [s, e] ⊇ [s′, e′] s.t. bmin < b̂ ≤ bmax where b̂ =
v′e − v′s
e′ − s′

(7.5)

Note that a larger interval from the given segmentation is used for the definition of the
trend-based Tone to ensure that the function holds on all subintervals of [s, e]. The same is
needed for the following example.

Example 7.5. A shape-based Tone for a univariate Aspect A can be specified with a threshold
on the distance between a sub-series and a prototype. Let S be an interval series representing
a segmentation of the Aspect.

φA([s, e])← ∃[s′, e′] ∈ S [s, e] ⊇ [s′, e′] s.t. D(A|[s′,e′], m) < Dmax (7.6)

where m is a prototypical time series and D is a shaped-based time series distance function (see
Chapter 5.3).

1From Greek tonos; literally, act of stretching; vocal or musical sound of a specific quality; a sound of definite
pitch and vibration (Merriam-Webster, 2005).

7.2. DEFINITIONS 60

Value-based Tones for multivariate Aspects can be specified with a conjunction of interval
conditions.

Example 7.6. A value-based Tone for a multivariate Aspect describing a hypercube in R
a:

φA([s, e])← vi,j < vj
max ∧ vi,j > v

j
min i = s, ..., e; j = 1, ..., a (7.7)

7.2.5 Representing coincidence (Chords)

The second pattern type expresses the temporal concept of coincidence. An interval where
several Tones occur simultaneously, is described by a new pattern.

Definition 7.20. A Chord2 pattern is a semiotic triple c = (σ, λ, φT
T) with σ ∈ Σ, λ ∈ Λ, and

a characteristic function φT
T ∈ Φ indicating the simultaneous occurrences of k Tones T = {ti =

(σi, λi, φi)|i = 1, ..., k, k > 0} on a given time interval according to the interval series T with
occurrences of the Tones T :

φT
T ([s, e])← φi([s, e]) i = 1, ..., k (7.8)

A Chord consisting of k Tones is called a k-Chord, k is the size of the Chord. A 1-Chord is
simply a copy of a Tone and is called a trivial Chord. Let the set of all Chords be C.

Example 7.7. A textual rule for a Chord from the Skating data set is listed Figure 7.7. The
Active gliding phase during Inline skating is characterized by the foot touching the ground, the
leg’s position corresponding to the gliding movement phase, and two major leg muscles showing
high activity. For the graphical representation of a Chord we stack the Tone boxes with the
label of the Chord on top as shown in Figure 7.8.

Chord ’Active gliding’ when ’Foot on ground’ and ’Gliding movement phase’
and ’Vastus is high’ and ’Gluteus is high’ coincide.

Figure 7.7: Textual representation of a Chord from the Skating data. The foot contact during
the gliding phase coincides with high activity of two muscles.

Active gliding:

Foot on ground

Gliding movement

Vastus is high

Gluteus is high

Figure 7.8: Graphical representation of a Chord from the Skating data.

Definition 7.21. We define a partial order ⊂ on C such that ci ⊂ cj ⇔ Ti ⊂ Tj where

ci = (σi, λi, φ
Ti

T) and cj = (σj , λj , φ
Tj

T), i.e., ci describes the coincidence of a subset of the Tones
from cj . We say that ci is a sub-Chord of cj and cj is a super -Chord of ci. We write the
combination of two Chords obtained by merging their respective sets of Tones ci ∪ cj .

2Three or more musical tones sounded simultaneously (Merriam-Webster, 2005).

7.2. DEFINITIONS 61

Example 7.8. The Chord listed in Figure 7.9 is a sub-Chord of the Chord from Figure 7.7.
Only one muscle is considered. This means, that each instance of this smaller Chord can possibly
have a longer duration and that there can be more instances, because it is less restrictive than
the Chord in Figure 7.7 involving four aspects. In the graphical representation of Chords we
indicate this relationship by a line connecting the two Chords in a top down manner as shown
in Figure 7.10.

Chord ’Gliding’ when ’Foot on ground’ and ’Gliding movement phase’ and
’Vastus is high’ coincide.

Figure 7.9: Textual representation of a sub-Chord of Figure 7.7 from the Skating data.

Gliding:

Foot on ground

Gliding movement

Vastus is high

Active gliding:

Foot on ground

Gliding movement

Vastus is high

Gluteus is high

Figure 7.10: Graphical representation of a sub-Chord relationship for two Chords from the Skat-
ing data.

Definition 7.22. Let the support set of a Chord c = (σ, λ, φ) be the symbolic interval se-
ries of all maximal occurrences with duration of at least δ, written Sδ(c) = {[σ, s, e]|[s, e] ∈
I, φT

T ([s, e]), [s, e] maximal, d([s, e]) ≥ δ}. The support of a Chord is supδ(P) = d(Sδ(c)), i.e., the
duration of the support set.

The occurrence of a Chord pattern implies the occurrence of all sub-Chords on the same
interval. The number of sub-Chords grows quickly with the size of a Chord. Usually, larger
Chords are more interesting, because they are more specific. If a sub-Chord only occurs whenever
a certain super-Chord is also valid, it is redundant. It need not be listed separately in the result
of mining Chords, because its presence is implied by the super-Chord. We therefore introduce the
concept of closedness to provide a way to compactly and non redundantly represent a finite set of
Chords. This is motivated by the concept of closedness for frequent itemsets (e.g. Pasquier et al.
(1999); Boulicaut and Bykowski (2000); Pei et al. (2000); Zaki and Hsiao (2002)). The set of all
closed frequent itemsets is lossless and can be orders of magnitudes smaller than all frequent
itemsets. Just like itemsets represent a subset of a given set of items, Chords represent a subset
of all symbols present in the symbolic interval series. We can thus easily transfer the concept of
closedness to Chords.

Definition 7.23. A Chord ci is closed if there are no super-Chords that have the same support,
i.e., ∀cj ⊃ ci, sup(cj) < sup(ci).

7.2. DEFINITIONS 62

The definition of closedness considers a Chord as closed even if a larger Chord has only a
slightly smaller support set. Two Chords could appear on almost the same intervals, with the
intervals of the sub-Chord being only slightly longer in some places. Still, the smaller Chord
would be considered closed in the sense of the definition above. With Tone patterns mined from
possibly inexact and erroneous time series this is a harsh restriction. We therefore introduce the
relaxed concept of margin-closedness to handle noisy interval data in a more robust way.

Definition 7.24. A Chord ci is margin-closed w.r.t. a threshold α < 1 if there are no super-

Chords that have almost the same support, i.e., ∀cj ⊃ ci,
sup(cj)
sup(ci)

< 1− α.

The margin-closed Chords are a subset of the exactly closed Chords, because Definition 7.23
is stricter than Definition 7.24. There is a margin of support around each pattern, caused by
pruning sub-patterns with similar support.

7.2.6 Representing partial order (Phrases)

The third pattern type expresses the temporal concept of partial order. Several Chords that
occur in a particular partial order, are described by a new pattern.

Definition 7.25. A Phrase3 pattern is a semiotic triple p = (σ, λ, φ
C,E
C) with σ ∈ Σ, λ ∈ Λ,

and a characteristic function φ
C,E
C ∈ Φ indicating the occurrences of the k Chords C = {ci =

(σi, λi, φi)|i = 1, ..., k, k > 0} according to a partial order E ⊆ {σi}
2 on a given time interval.

φC([s, e]) ← (∀i = 1, ..., k ∃[si, ei] ⊆ [s, e] φi([s, e])) (7.9)

∧(∃i ∈ {1, ..., k} si = s) (7.10)

∧(∃i ∈ {1, ..., k} ei = e) (7.11)

∧(∀i 6= j ∈ {1, ..., k}2 [σi, si, ei] ≺ [σj , sj , ej]⇔ (σi, σj) ∈ E) (7.12)

A Phrase consisting of k Chords is called a k-Phrase, k is the size of the Phrase. Let the set of
all Phrases be P.

The characteristic function for a Phrase consists of four necessary conditions. Property 7.9
ensures that the intervals of all Chords are within the Phrase interval, while Property 7.10 and
Property 7.11 prevent extra room before the first and after the last Chord, respectively. The
occurrence of a Phrase is thus maximal by definition. A Phrase occurs on a particular interval but
not on the sub-intervals. Property 7.12 requires the Chords to be in the partial order specified by
E. Note, that any two intervals that have an order relation in E are not allowed to overlap. This
restriction makes sense, because Chords already describe the concept of coincidence. Allowing
overlapping Chords within a Phrase in general would mean to repeatedly represent the same
concept and can in fact be equally represented by a larger Chord on the interval where two
Chords overlap.

Example 7.9. Three overlapping Tones are shown at the top of Figure 7.11. The maximal
Chords involving at least two Tones are shown below. The 2-Chords AB and BC overlap
exactly on the occurrence interval of the 3-Chord ABC. Overlapping Chords are not allowed
in Phrases if they are related by an order relation. Therefore only the first part of AB and the
last part of BC are considered in the Phrase shown in the bottom row. This Phrase contains
all information about the three Tones without containing overlapping Chords.

3Latin phrasis; from Greek phrazein: to point out, explain, tell; a characteristic manner or style of expres-
sion; a brief expression; a short musical thought typically two to four measures long closing with a cadence
(Merriam-Webster, 2005).

7.2. DEFINITIONS 63

Figure 7.11: Maximal Chords obtained from Tones can overlap. Within a Phrase, only non-
overlapping parts of Chords are used in the partial order relations.

Example 7.10. A Phrase from the Skating data set is shown in Figure 7.12. The order of the
three Chords Swing, Pre-activation, and Active gliding was identified as the Preparation phase for
the push-off during the repetitive skating movement. In the graphical representation we usually
collapse the Chords to single blocks with only the label and indicate the order relationships with
arrows in a left to right manner (see Figure 7.13).

Phrase ’Preparation’ when ’Swing’ then ’Pre-activation’ then ’Active gliding’.

Figure 7.12: Textual representation of a Phrase for the Skating data.

Swing Pre-activation Active
gliding

Figure 7.13: Graphical representation of a Phrase from the Skating data.

Definition 7.26. We define a partial order ⊂ on P such that pi ⊂ pj if and only if 1) Ci ⊂ Cj

where pi = (σi, λi, φ
Ci,Ei

C) and pj = (σj , λj , φ
Cj ,Ej

C), i.e., pi describes the partial order of a subset
of the Chords of pj and 2) (σa, σb) ∈ Ei ⇔ (σa, σb) ∈ Ej where σa and σb are symbols of Chords
from Ci, i.e., the common Chords must have the same partial order in both Phrases. We say
that pi is a sub-Phrase of pj and pj is a super-Phrase of pi.

Example 7.11. The Phrase shown in Figure 7.15 is a super-Phrase of the Phrase from Fig-
ure 7.13. It offers more details by adding the Chord Preparation of foot contact and more order
relations. No total order between the four distinct chords can be observed, but the total orders of
three Chords each can be merged into a Phrase. For partial orders the graphical representation
significantly aids the interpretation of the textual listing in Figure 7.14. Again, the relationship
among sub- and super-Phrases is indicated by a vertical line.

Definition 7.27. Let the support set of a Phrase p = (σ, λ, φ
C,E
C) be the symbolic interval series

of all (maximal) occurrences S(p) = {[σ, s, e]|[s, e] ∈ I, φ
C,E
C ([s, e])}. The support of a Phrase is

sup(p) = |S(p)|, i.e., the number of occurrences.

The support of Phrases is determined by counting the occurrences, instead of summing up the
durations of the maximal occurrence intervals as for Chords. This is necessary for the definition

7.2. DEFINITIONS 64

Phrase ’Detailed preparation’ when
’Preparation of foot contact’ then ’Pre-activation’ then ’Active gliding’
and ’Swing’ then ’Pre-activation’ then ’Active gliding’
and ’Swing’ then ’Preparation of foot contact’ then ’Active gliding’.

Figure 7.14: Textual representation of a super-Phrase of Figure 7.12 for the Skating data.

Swing Pre-activation Active
gliding

Swing

Pre-activation

Preparation
foot contact

Active
gliding

Preparation
foot contact

Figure 7.15: Graphical representation of a sub-Phrase relationship for two Phrases from the
Skating data.

of closed Phrases below. Using the same notion as for Chords would not give an intuitive
concept of closedness. Imagine an extension of a Phrase by an additional Chord occuring before
the first Chord that is possible for each occurrence of the smaller Phrase pattern. The smaller
pattern is redundant, because each time it appears, the larger pattern can also be observed.
The occurrence intervals will all grow to cover the additional Chord up front, but the number
of intervals will stay the same. The closedness of Phrases is thus defined using frequency, not
duration. Just as Chords relate to itemsets, Phrases relate to sequential patterns in particular
and partial orders in general and where closedness has been proposed recently (Yan et al., 2003;
Casas-Garriga, 2005).

Definition 7.28. A Phrase pi is closed if there are no super-Phrases that have the same support,
i.e., ∀pj ⊃ pi, sup(pi) = sup(pj).

The restriction for closedness is again rather strict. With large data set and many Phrase
patterns found, a small difference in frequency does not justify keeping the smaller of two related
patterns.

Definition 7.29. A Phrase pi is margin-closed w.r.t. a threshold α < 1 if there are no super-

Phrases that have almost the same support, i.e., ∀pj ⊃ pi,
sup(pj)
sup(pi)

< 1− α.

The margin-closed Phrases are a subset of the exactly closed Phrases, because Definition 7.28
is stricter than Definition 7.29.

7.2.7 Summary of pattern hierarchy

The presented TSKR pattern language builds up an abstraction hierarchy in which the three
temporal concepts duration, coincidence, and partial order are added at successive levels. The
dimensions of a multivariate time series are first grouped into several semantically meaningful
groups, the Aspects. The pattern hierarchy starts with Tones representing duration. Tones

7.3. ANALYSIS 65

describe time intervals where one Aspect persists in a qualitative state. Simultaneously occuring
Tones form a Chord, representing coincidence. Several Chords connected with a partial order
form a Phrase.

All patterns are accompanied by linguistic descriptions to better support interpretation. The
hierarchical structure inherited from the UTG offers unique possibilities in relevance feedback
during the knowledge discovery process and in the analysis of the results. The expert can zoom
into the patterns found, and guide the mining process by filtering out irrelevant or uninteresting
information at lower levels.

The names of the different constructs of the TSKR are taken from musicology. This was
done to avoid confusion with existing definitions in the literature. The Chords are an exten-
sion of the Events in the UTG. While Events in the UTG represent intervals, many other
publications refer to events as temporal elements occuring at time points without duration
(e.g. Jensen et al. (1994); Mannila et al. (1997); Bettini et al. (1998); Guralnik and Srivastava
(1999); Weiss (1999); Povinelli (2001); Cotofrei and Stoffel (2005)). The Phrase patterns repre-
sent a partial order of intervals. This is very similar to Episodes (see Chapter 6.1), describing
a partial order of time points. Nevertheless we decided to use a new term, because the word
Episode has also been used in different contexts for interval patterns (Höppner, 2002a), primi-
tive shapes in time series (Colomer et al., 2002), and meaningful short subsequences of symbolic
time series (Cohen and Adams, 2001).

7.3 Analysis

Having introduced a new language for the description of interval patterns, we discuss the relation
of the TSKR to Allen’s interval relations and the UTG. We show that the pattern language of the
TSKR has a higher temporal expressivity than the other approaches. We introduce a concept of
robustness for symbolic interval patterns and use it to evaluate the pattern languages. Different
aspects of interpretability are described according to the Gricean conversational maxims (Grice,
1989; Sripada et al., 2003b). The comparison concludes with a consideration of the availability
and feasibility of algorithms for mining of patterns in the different representations.

7.3.1 Expressivity

The interval relations of Allen are widely used in temporal data mining (see Chapter 3.2.2). They
can be used to solve the constraint satisfaction problem in temporal reasoning (see Chapter 4.7).
But this problem does not occur in the data mining context: the interval data is usually given
(Höppner, 2003). As more important for mining patterns from data, we consider the temporal
concepts (see Chapter 3) expressible by the relations. Interval rules based on Allen’s relations
can express the concepts or order, coincidence, and synchronicity. We show that the UTG is a
weaker representation, while the TSKR is slightly richer. We use the notation ⊂ (⊆) for smaller
(smaller or equal) temporal expressivity.

Theorem 7.30. UTG ⊂ Allen, i.e., the UTG cannot express all patterns expressible with
Allen’s interval relations.

Proof: By counter-example: Consider the pattern in Figure 7.16 that can be described using
Allen’s relations, e.g., as (A equals B) overlaps (C equals D). It cannot, however, be expressed
by a combination of Events and Sequences of the UTG. The leading part of the first interval
pair and the trailing part of the second interval pair are too long for this combination of four
intervals to be considered synchronous under all sensible choices of the threshold parameters
(Guimarães (1998), p. 41, Definition 3.1.6). All UTG patterns, however, can easily be expressed

7.3. ANALYSIS 66

with Allen’s relations. For intervals within an Event the pairwise relations of the intervals can
be overlaps, starts, during, ends, the corresponding inverse relations, or equals. For intervals
from different Events within a Sequence, the relations are before, meets, or the corresponding
inverses. �

Figure 7.16: Example of interval pattern expressible with Allen’s relations but not with the
UTG. The intervals cannot be considered almost synchronous.

What is missing in the UTG is the temporal concept of coincidence. Changing the semantic of
Event patterns from (almost) synchronicity to coincidence was proposed in (Mörchen and Ultsch,
2005a). Only the center region between the dashed lines in Figure 7.1 was considered for Event
patterns. This does not completely alleviate the problem of lower expressivity. An Event was
still required to involve intervals from all or all but one of the dimensions (Aspects) describing the
problem (Guimarães (1998), p. 42, Definition 3.1.7). The possible leading pattern A coincides
with B is not allowed in the UTG because it only involves two of the four dimensions of the
time series. The Chord patterns of the TSKR not only relax the strict concept of synchronicity
to coincidence but further allow groupings of an arbitrary number of intervals. This way the
pattern from Figure 7.16 can be represented by a succession of three Chords in a Phrase: (A,B
coincide) then (A,B,C,D coincide) then (C,D coincide).

Theorem 7.31. Allen ⊆ TSKR, i.e., all patterns expressible with Allen’s interval relations can
also be expressed with the TSKR.

Proof: By construction: Let I = {(σi, si, ei)|i = 1, ..., k} be all involved intervals with
any pairwise relationship according to Allen. Let B = {bj} =

⋃k
i=1{si, ei} the set of all interval

boundaries. Construct |B|−1 Chords where the j-th Chord describes the coincidence of all Tone
instances (σi, si, ei) where si ≤ bj and ei ≤ bj+1. Empty Chords are removed, the remaining
Chords form a Phrase with the ordering according to the indices j. �

Example 7.12. The pattern shown in Figure 7.17 consist of six intervals and at least one
representative of each of Allen’s relations: A before E, B meets E, A overlaps B, B starts C, E
during F, E finishes C, and A equals D. The five resulting Chords are shown in the bottom row,
the Phrase pattern reads AD then ABCD then BC then BCF then ECF then F where AD is
the symbol for the Chord A and D coincide and the other Chords are labeled accordingly.

Theorem 7.32. Allen ⊂ TSKR, i.e., Allen’s pairwise interval relations cannot express all
patterns expressible with the TSKR.

Proof: By counter-example: Consider the Chords AB, ABC, BC, and AC as shown in
Figure 7.18(a) at the bottom resulting from the Tone patterns A, B, C in the top rows. In
Figure 7.18(b) the same Tones intervals result in the same Chords but with the middle two
Chords exchanged. Both versions can be captured in a single Phrase (see Figure 7.18(c)) using
the concept of partial order. The order relation of ABC and BC is simply not specified, both

7.3. ANALYSIS 67

Figure 7.17: Example for the conversion of a complex pattern containing all of Allen’s relations
to the TSKR pattern language. Whenever an interval starts or ends, a new Chords
is created, the sequence of Chords forms a Phrase.

versions of the pattern match this description. Patterns using Allen’s pairwise interval relations
cannot merge these patterns, because the relation of the first A interval to C changes from
overlaps to meets and the relation of B to the second A from meets to overlapped by. �

(a) Phrase instance.
(b) Slightly different
Phrase instance.

(c) Partial order of
Chords within Phrase.

Figure 7.18: Example of a Phrase with partial order among the Chords. The order of the two
middle Chords is unspecified. This is not expressible with common pattern formats
using Allen’s relations.

Corollary 7.33. UTG ⊂ TSKR, i.e., the UTG cannot express all patterns expressible with the
TSKR.

Proof: By transitivity: UTG ⊂ Allen ⊂ TSKR �

7.3.2 Robustness

Symbolic interval series or sequences obtained from numeric time series inherit the noise present
in the original data. The interval boundaries gained from preprocessing steps like discretization
or segmentation should not be considered exact, but rather approximate. Different parameter
settings in the discretization process can strongly influence interval boundaries. In (Höppner,
2002c) the authors mine Allen’s relations on weather data obtained from air pressure and wind
sensors even though they note that ”temporal processes are often subject to dilation in time”.
We discuss the implications of such noise present in the input data with examples and more
formally by introducing a measure of robustness for interval patterns.

The use of Allen’s relations is problematic with noisy interval data. Slight variations of in-
terval boundaries can create fragmented patterns that intuitively describe the same relationship
between intervals with different operators of Allen’s relations. In Figure 7.19 we give several

7.3. ANALYSIS 68

examples. If two intervals always appear consecutively but close in time, three different rela-
tions can be observed depending on the exact location of the first end point and the second
start point (see Figure 7.19(a)). Intuitively, the relation between the two intervals common to
all three examples could be called largely before or roughly meets. Similar examples are shown
for a pattern where the first interval starts almost synchronously with the second but ends
earlier (roughly starts, Figure 7.19(b)). The case of almost equal intervals is fragmented into
nine different patterns of Allen’s relations, the five relations shown in Figure 7.19(c) and the
corresponding inverses for the first four.

(a) largely before (b) roughly starts (c) almost equals

Figure 7.19: Three examples where intuitively similar situations are fragmented into different
relations of Allen due to slightly shifted interval boundaries.

There are approaches to relax the strictness of Allen’s relations by using a threshold to
consider temporally close interval endpoints equal (Aiello et al. (2002), see Chapter 3.2.2). This
effectively merges the problematic patterns in each of the cases shown in Figure 7.19, but it has
not been used in temporal pattern mining. Fragmented patterns are still possible if noise causes
interval boundaries to be shifted around the threshold value.

The temporal operators of the UTG also use thresholds: the Event patterns include limits
on the distances of the interval boundaries to determine whether intervals are more or less
simultaneous. The Sequence patterns of consecutive Events allow gaps up to a maximal length
between the Events. The final Temporal Patterns use disjunctions to allow variations in the
Sequence patterns. This way the UTG performs robust handling of noisy interval boundaries
by construction. Within the Sequences, however, a distinction between the followed by and
immediately followed by relations is made (Guimarães (1998), p. 45). Similar to Allen’s relations
this requires the equality of several interval endpoints and is problematic with noisy data.

In contrast to Allen’ relations and the UTG, the Chord and Phrase patterns of the TSKR
are designed to be insensitive to small changes of the boundaries of participating intervals. To
measure this robustness numerically, we introduce novel measures for the robustness of interval
operators. The robustness of statistical estimators is commonly described with the breakdown
value, i.e., the minimum fraction of the observations, that make the estimator infinite when set
to infinity. We define a similar notion of robustness for interval patterns to compare the rule
operators of Allen’s relations, the UTG, and the TSKR. For ease of demonstration we will only
consider simple patterns relating two symbolic intervals.

7.3. ANALYSIS 69

Definition 7.34. A pattern relating symbolic intervals has a positive breakdown value b+ if it
can be destroyed by enlarging one interval by at least b+ ticks and a negative breakdown value
b− if it can be destroyed by making one interval smaller by at least b− ticks.

In Table 7.2 we list the breakdown values for the three interval rule languages. All of Allen’s
relations that require equality of at least two interval boundaries can be destroyed by changing
one boundary by one tick only. It does not matter whether the intervals get larger or smaller, if
the equality is destroyed, so is the pattern. They achieve the lowest possible breakdown values
of 1 for both stretching and shrinking intervals. For before, overlaps, and during the amount of
change depends on the participating intervals. The further the intervals related with before are
apart, the larger the breakdown values b+ is. When shrinking the intervals the before patterns
does not break down until one of the interval disappears completely. Thus, b− is simply the
shorter length of the two intervals, the largest possible value. The breakdown value b+ for
overlaps and during depends on the length of the leading and trailing parts where only one
interval is present. The longer these parts are, the more robust the pattern w.r.t. stretching.
When making the intervals smaller, the overlaps operator breaks down if there are no more
overlapping parts and during breaks down as soon as the first, smaller interval disappears.

Interval operator b+ b−

Allen

meets 1 1
starts 1 1
finishes 1 1
equals 1 1
before s2 − e1 − 1 min(e1 − s1 + 1, e2 − s2 + 1)
overlaps min(s2 − s1, e2 − e1) e1 − s2 + 1
during min(s1 − s2, e2 − e1) e1 − s1 + 1

UTG
more or less simultaneous 1 ≤ b+ ≤ ǫ 1 ≤ b− ≤ ǫ

followed by 1 ≤ b+ ≤ ǫ 1 ≤ b− ≤ ǫ

immediately followed by 1 1

TSKR
coincides ∞ min(e1 − s1 + 1, e2 − s2 + 1)
then ∞ min(e1 − s1 + 1, e2 − s2 + 1)

Table 7.2: Breakdown values for Allen’s relations, the UTG, and the TSKR operators measuring
the robustness to noise in interval boundaries. Only patterns with two intervals [s1, e1]
and [s2, e2] are considered. The threshold parameter for UTG Events is ǫ.

For the more or less simultaneous operator from the UTG the amount of change needed
to break down the Events pattern depends on how close the maximum difference m among all
participating start points (or end points) is. If m is already equal to the threshold parameter ǫ,
constraining this maximum difference, a change by one tick will destroy the Event pattern. If
all intervals are completely simultaneous with all start and end points being equal, respectively,
the change needs to be as large as ǫ. This is true for both shrinking and expanding intervals.
The followed by operator of UTG Sequence patterns directly depends on the Event patterns. It
breaks down as soon as one of the participating Events breaks down. The immediately followed
by operator requires several endpoints to be equal and thus has the worst breakdown values
possible, similar to several of Allen’s relations.

The TSKR operator coincides is extremely robust when making intervals larger. Since it
only considers the intersection of all participating intervals, any interval can be stretched to
infinity without changing the pattern at all. When making intervals smaller, the pattern breaks
down as soon as the smallest interval disappears. Similar to the UTG, the then operator depends
on the coincides operator.

7.3. ANALYSIS 70

In summary, we can see that the TSKR patterns have excellent robustness properties accord-
ing to our definition of pattern breakdown. The coincides operator is only concerned about the
time interval where it is valid. Any change to the participating symbolic intervals outside of the
occurrence interval is irrelevant. The breakdown when making intervals smaller also achieves
the largest possible value. The UTG patterns are mostly robust, the amount of difference in the
interval boundaries is directly controlled by the threshold parameter for Events. Seven of the 13
relation of Allen have the worst breakdown values for both enlarging and shortening intervals.

7.3.3 Interpretability

Interpretability is hard to specify or measure. We are not trying to propose a general definition of
interpretability. Rather we want to look at different aspects of the pattern languages that influ-
ence how easily the patterns can be comprehended and interpreted by humans. (Sripada et al.,
2003b) suggests to use the Gricean conversational maxims (Grice, 1989) of quality, relevance,
manner, and quantity when communicating data mining results to experts for analysis. We
therefore describe the implications of the maxims in the context of interval patterns and judge
how well the different pattern languages support this paradigm.

The maxim of quality states that only well supported facts and no false descriptions should
be reported. The former is commonly achieved by reporting only the most frequent patterns.
None of the pattern languages can be said to report false patterns. As described in Chapter 7.3.2,
noisy interval data can lead to fragmented patterns expressed with Allen’s relations, however,
that might not be reported even if they are frequent.

The maxim of relevance requires, that only patterns relevant to the expert are listed. This
is a rather application dependent requirement, still there are differences in how the pattern
languages support this task. The hierarchical structure of the UTG and TSKR enables the user
to view and filter lower level patterns before the next level constructs are searched. E.g. mining
Phrases from only the relevant Chords will be much faster, fewer and smaller Phrase patterns
need to be analyzed in the next step. The patterns expressed with Allen’s relations are mined
in a single step. The possibly much larger set of patterns needs to be checked for relevance in a
single post-processing step.

The maxim of manner requires communication to be brief and orderly and to avoid obscurity
and ambiguity. The patterns of the UTG and TSKR are generally briefer than Allen patterns.
The hierarchical form hides the complexity of lower levels achieving a concise high level repre-
sentation. An expert can zoom into each rule to learn about how it is composed and what its
meaning and consequences might be. This form of pattern representation supports the human
analysis according to the zoom, filter, and details on demand paradigm (Shneiderman, 1996).

The UTG and TSKR also have an advantage in the number of operators needed for k

intervals. All of Allen’s relations are binary operators. A single pattern with k intervals consists
of k(k−1)

2 pairwise relations. A textual listing of these single relations is hard to grasp. In
Figure 7.20 we give an example of a pattern with six intervals that is expressible by Allen’s
relations, the UTG, and the TSKR. The pattern is described with 15 relations according to
Allen in Figure 7.21. It could be made slightly more compact by grouping the intervals A,B,C
and D,E,F, respectively and relating the groups with before. Such a grouping is not supported
by (Höppner, 2002c; Kam and Fu, 2000), however, and not explicitly sought in (Cohen et al.,
2002). The UTG and the TSKR descriptions of the pattern in Figure 7.20 are very similar for
this particular pattern (see Figure 7.22 and Figure 7.23, respectively). The Event and Chord
patterns group several intervals with a single operator, making the final pattern more compact.

The pairwise relations of patterns expressed with Allen’s relations can be ordered using the
order of the intervals according to start and end points. The Sequence and Phrase patterns of
the UTG and TSKR explicitly describe an ordering of the lower level constructs.

7.3. ANALYSIS 71

Figure 7.20: Example of a pattern expressible by Allen, UTG, and TSKR.

A during B B contains C C before D D overlaps E E contains F
A starts C B before D C before E D finished by F
A before D B before E C before F
A before E B before F
A before F

Figure 7.21: The textual representation of Figure 7.20 using Allen’s pairwise relations.

To avoid ambiguity, a fixed pattern description should semantically describe a single intu-
itive notion of the relationships of several intervals with each other. This is not the case for all
of Allen’s relation. The instances of a single pattern can vary significantly and represent intu-
itively different patterns. This was already demonstrated for the overlaps relation in Figure 7.3,
two more examples for the relations starts and during are given in Figure 7.24. The different
instances that are described by the same relation appear visually quite distinct. Whether these
different versions of a pattern are semantically equivalent depends on the application.

This high variation of patterns represented by a single relation of Allen is caused by the
mixture of the temporal concepts of order and coincidence. The problem can be weakened
by using the Allen’s relations modified with thresholds (see Chapter 3.2.2), but the potential
ambiguity persist, in particular for intervals of very different lengths.

In contrast to Allen’s relations, the UTG and TSKR clearly separate the temporal con-
cepts within the rules. Event patterns only describe almost equal intervals and the variation
of the instances is controlled by the threshold parameter. Chord patterns simply describe the
overlapping parts and ignore any variability of the interval boundaries. The parts of the Tone
intervals within the Chord occurrence interval always look exactly the same for all instances.
Sequence patterns express the concept of order, allowing variation only in the length of Events
and possible gaps. Similarly, Phrases handle partial order.

The ambiguity problem is even worse for the pattern format used in (Kam and Fu, 2000)
and (Cohen, 2001). Recall that while (Höppner, 2001) represents patterns by listing all pairwise
relations between participating intervals, the other two methods successively add new intervals
to a pattern by expressing the relation of the intervals to the complete previous pattern. A more
compact representation with only k−1 relations for k intervals is achieved. The problem is, that
the exact same instance of a pattern can be represented by many different compact formulas.
An example is given in Figure 7.25. To be precise, a pattern with k intervals can be written in
k!
2 ways by consecutively choosing an interval for the next position in the pattern and excluding
duplicates caused by inverse operators.

The maxim of quantity states that neither too much nor too few should be reported. Fewer
and shorter patterns are easier to read and comprehend. Achieving this maxim is again better
supported by the hierarchical languages. As described above the patterns are generally briefer.
Intermediate filtering steps during the pattern mining can be used to prune the search space
for the next step and reduce the number of patterns to be inspected. The margin-closedness
of the TSKR explicitly offers a powerful mechanism to reduce the number of reported patterns
without sacrificing variety. Implication rules generated from Allen patterns can be ranked by
interestingness measures (Höppner and Klawonn, 2002), but for the basic pattern considered

7.3. ANALYSIS 72

Sequence S ← ABC before DEF.
Event ABC ← A, B, and C are more or less simultaneous.
Event DEF ← D, E, and F are more or less simultaneous.

Figure 7.22: The textual representation of Figure 7.20 using the UTG.

Phrase S when ABC then DEF.
Chord ABC when A, B and C coincide.
Chord DEF when D, E and F coincide.

Figure 7.23: The textual representation of Figure 7.20 using the TSKR.

here, only the frequency can be used. It too many patterns are reported the frequency threshold
needs to be raised possibly filtering out rare but interesting patterns.

In summary, the UTG and especially the TSKR show more accordance with the Gricean
maxims than Allen’s relations. The maxim of quality can be violated by fragmented Allen
patterns. The maxim of relevance is better supported by the interactive filtering of patterns
possible for UTG and TSKR. For the maxim of manner brevity of representation is achieved
by the hierarchical structure of UTG and TSKR with operators grouping several intervals as
opposed to the pairwise listing of binary relations from Allen. The restriction to single temporal
concepts for each level of the hierarchical languages avoids ambiguity. The TSKR best supports
the maxim of quantity by effective pruning of the results using margin-closedness.

7.3.4 Algorithms

Höppner describes a mining algorithm for Allen’s relations based on the Apriori principle from
association rules (Höppner, 2001). The patterns are build in a breadth first manner creating
patterns with k intervals from two patterns with k − 1 intervals, k − 2 of which are equal. It
is well known, however, that this breadth first approach is inferior in performance to depth-
first search for long patterns (Wang and Han, 2004). Some authors criticize the concept of
candidate generation and subsequent support estimation for association rules and sequential
patterns in general (Han and Pei, 2001; Pei et al., 2001). Transferring the concepts of closedness
and maximality w.r.t. support (e.g. Pei et al. (2004)) to interval patterns expressed with Allen’s
relations might be a solution to reduce the number of patterns found. In any case, due to the
high expressivity of patterns expressed with Allen’s pairwise relations, the search space for such
patterns is large, making pruning techniques like using a minimum support threshold necessary.

Guimarães and Ultsch do not describe any algorithms to mine the Temporal Patterns of the
UTG, most processing steps are performed manually (Guimarães and Ultsch, 1999). This is
unfortunate, because the separation of temporal concepts will make the pattern spaces smaller
than when mining Allen patterns in one step. In a first attempt to automate the discovery
of UTG patterns, we have proposed two novel and several known algorithms for mining the
various temporal relations corresponding to the UTG hierarchy (Mörchen and Ultsch, 2005a).
Event patterns can be mined with a simple linear time algorithm, for Sequence patterns a suffix
trie method (Vilo, 1998) was used.

The algorithms for mining Events cannot be easily transferred to Chords, because in contrast
to Events the Chord patterns can overlap. The suffix trie method can only mine total order
and cannot be used to mine Phrases. We will describe efficient algorithms for mining TSKR
patterns in Chapter 8, completing the TSKM methodology.

7.3. ANALYSIS 73

(a) starts (b) during

Figure 7.24: Three different instances of Allen’s starts and during relation that have quite dis-
tinct appearances.

(a) Pattern with three
intervals

(A overlaps B) contains C
(A before C) overlaps B
(B contains C) overlapped by A

(b) Different representations of the same pat-
tern.

Figure 7.25: Example for the ambiguity of patterns represented with Allen’s relations in the
compact format of (Kam and Fu, 2000; Cohen, 2001). The same pattern can be
described with three different rules.

7.3.5 Summary

The summary of this analysis of interval pattern languages is listed in Table 7.3. Both Allen and
the UTG have major disadvantages. The main problem of the UTG is the lower expressivity
caused by restricting the number and alignment of the intervals in Event patterns. Many
simple Allen patterns are not expressible with the UTG. The TSKR has been proposed as a
solution, resulting in the highest temporal expressivity of the three languages. The missing
robustness of Allen’s relations can be compensated by introducing thresholds for the matching
of interval boundaries. This does not solve the problem of ambiguity, however. We think that
the interpretability of Allen is inferior because the pattern are ambiguous and potentially much
longer. The hierarchical structure of UTG and TSKR with consistent use of semiotic triples
creates shorter and more abstract patterns and provides early pruning and details on demand.
Ambiguity is avoided by the separation of temporal concepts.

Comparison Allen UTG TSKR

Expressivity + − ++

Robustness (−) + ++

Interpretability − + +

Algorithms + (−) +

Table 7.3: Summary of the comparison of Allen, UTG, and TSKR pattern languages for mining
temporal rules from time interval data.

Chapter 8

Algorithms for Mining Time Series

Knowledge

This chapter describes algorithms for finding temporal knowledge in multivariate time series
expressed with the TSKR. This completes our proposed method for Time Series Knowledge
Mining (TSKM). We define the mining tasks for each level of the TSKR hierarchy and describe
algorithms to solve these tasks. There are basically five processing steps in the TSKM shown
in Figure 8.1. Various methods for preprocessing are briefly explained in Chapter 8.1. The
benefits of grouping the dimensions into Aspects are highlighted in Chapter 8.2. For mining
Tones, many different algorithms can be used, we list some examples of existing methods in
Chapter 8.3. The main part of this Chapter follows in the description of novel algorithms for
the efficient discovery of Chords and Phrases in Chapter 8.4 and Chapter 8.5, respectively.

Figure 8.1: The five main steps for the discovery of TSKR patterns are depicted. After prepro-
cessing and Aspect grouping, the three pattern classes Tones, Chords, and Phrases
are subsequently mined. The dotted arrows represent revisions based on intermedi-
ate results.

As with knowledge discovery in general (see Chapter 2.1) iterations of previously executed
steps are often advisable. This is indicated by the dashed arrows at the bottom of Figure 8.1.
After mining patterns for one level of the TSKR hierarchy, a careful examination of the results
should be performed. Intermediate results can give insights into the data and temporal structures
and might suggest a revision of previously set parameters. Filtering out spurious or irrelevant
results helps do reduce the search space for patterns on the next level. Mining the TSKR
patterns involves not only finding the occurrences of the patterns, but also a symbol and label
to complete the semiotic triples. The unique symbols can easily be generated automatically
during the mining process. The labels can also be set automatically, but using meaningful
names, ideally chosen by a domain expert, will improve the interpretability of the higher levels
patterns.

74

8.1. PREPROCESSING 75

8.1 Preprocessing

Preprocessing and feature extraction techniques can be applied to the complete multivariate
time series or to each variable separately. This is a highly application dependent step, see
Chapter 5.2 for a description of common methods for the removal of noise and outliers or the
extraction of additional features. We give a real life example here to demonstrate the importance
and complexity of this step.

Example 8.1. The EMG1 signals of the Skating data (Chapter A.1) were measured with surface
electrodes attached to the skin above the major leg extensor muscles. The electrodes capture
small currents induced by the action potentials of different muscle fibers. An example signal of
five seconds is shown in Figure 8.2(a). The interesting information of the EMG signals is hidden
in the amplitude and frequency of the activation current. The frequency is related to type
and function of the muscle fiber and its corresponding motor unit. Fast-twitch, fast fatiguing
muscle fibers emit higher frequencies, while slow-twitch, slow fatiguing muscles contribute lower
frequency components to the EMG signal. The amplitude is related to the intensity of activation
and the number of muscles fibers being activated. An analysis of the time-frequency distribution
was performed using the Morlet CWT (Grossmann and Morlet, 1984) in the relevant frequency
range for EMG signals from 10Hz to 250Hz. The instantaneous energy was calculated as the
logarithm of the sum of all wavelet coefficients for a time point. The resulting time series
represents the muscle activation and was used for further processing. The excerpt for the
example is shown in Figure 8.2(b).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

0

0.1

Time (s)

E
M

G

(a) EMG signal

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−30

−20

−10

0

Time (s)

E
ne

rg
y

(b) Muscle activation

Figure 8.2: Preprocessing of EMG signal from the Skating data to derive instantaneous muscle
activation.

1Electromyography

8.2. ASPECTS 76

8.2 Aspects

Task 8.1. Mining Aspects

Description The tasks of finding k Aspects of a d-dimensional multivariate time series Y

is the selection of k subsets of the dimensions {1, ..., d} with an appropriate
labeling.

Input d-dimensional time series Y .

Output k Aspects Ai ⊂ Y, i = 1, ..., k.

Following the divide-and-conquer paradigm it is often advisable to group the dimensions
of a multivariate time series into semantical blocks, the Aspects. This tasks will usually be
performed manually using a priori knowledge about the domain. In lack of any information
about relations of the different dimensions, a trivial grouping into d univariate Aspects can be
performed. The subsets of the dimensions are allowed to be overlapping. Note, that this can
introduce undesired correlation between the Aspects.

After mining the Aspects of the input time series, another iteration of preprocessing should
be considered. Multivariate Aspects in particular can profit from further processing. In order
to prepare a multivariate Aspects for finding Tones by clustering, normalization of the mean
values and variances should be performed to avoid undesired emphasis of some variables within
the Aspect. The dimensionality of an Aspect consisting of highly correlated variables could be
reduced using PCA (Jolliffe, 1986), possibly even down to a univariate Aspect. Independent
influences can be revealed using ICA Hyvärinen (1999).

Example 8.2. In the Skating data (Chapter A.1) the movements of the skater’s leg are deter-
mined with three electrogoniometers measuring the angles of the ankle, knee, and hip joints.
There is a functional dependency between these three variables that is not of major interest for
the application. We did not want to analyze the relation of, e.g., the knee angle to the hip angle,
but rather the activation of muscles during different movement phases. The three angular time
series were therefore grouped into an Aspect called Movement collectively describing the leg’s
movement. The movements at each joint are repeatedly observed in two directions: extension
and flexion. This was incorporated into the Aspect with three time series measuring the signed
angular velocity, derived from the angle values with a differentiation filter. This resulted in a
6-dimensional time series describing the movement of the leg.

8.3 Finding Tones

Task 8.2. Mining Tones

Description The tasks of finding a Tone for an Aspect is the creation of a Tone and the
symbolic interval series with the maximal occurrences thereof.

Input Aspect A.

Output Tone t and a symbolic interval series T .

Tone patterns describe persisting properties of an Aspect occurring on time intervals. Since
we allowed arbitrary functions describing a Tone in Chapter 7.2.4 there are many algorithms
that can be used to find such patterns. We briefly describe several possible methods for mining
Tones based on value, trend, or shape.

8.3.1 Univariate value-based Tones

Value-based Tones for univariate time series can be found by partitioning the value axis into
bins. We have described various methods for this in Chapter 5.4.3. This results in Tone patterns

8.3. FINDING TONES 77

for each bin that can easily be labeled with linguistic descriptions like high or low. The intervals
are obtained by concatenating runs of values in the same bin.

Static discretization methods like equal frequency or equal width histograms ignore the
temporal order of the values, however. This is likely to produce noisy state intervals. One
possibility to incorporate the temporal structure of the values is the training of a HMM and
the extraction of the Viterbi state sequence. But the training of HMM (Rabiner, 1989) models
is slow and vulnerable to outliers. HMM models are also harder to interpret than the result of
binning methods. The Persist algorithm is a simple binning method that utilizes the temporal
order of values and has been shown to outperform many static methods and HMM in recovering
known states (Mörchen and Ultsch, 2005b).

8.3.2 Univariate trend-based Tones

Many time series segmentation methods create a series of intervals with linear functions per
interval approximating the local trend of the values (see Chapter 5.8). Each interval is an
instance of a Tone pattern according to a discretization of all observed slopes from the functions.
Descriptions for the Tones can accordingly be generated as increasing or flat. Second order
methods additionally incorporate the second derivative of the signal to distinguish convex from
concave trends (Höppner, 2001).

The Bottom-Up algorithm is a good candidate for producing the segmentation. It runs in
linear time, compared to the quadratic time complexity of Top-Down. Since the complete data
is available at the time of mining, the more global view of the Bottom-Up compared to the
sliding windows approach is advantageous (Keogh et al., 2004a). One practical problem with
Bottom-Up (and the other segmentation approaches) is that the number of segments or an error
threshold need to be specified a priori. Permutation tests can help in choosing the parameters
(Vasko and Toivonen, 2002). An alternative method is the multi-scale analysis described in
(Höppner, 2003). The time series is segmented using the most dominant features in the scale
space which is similar to how humans would describe time series. The number of segments is
determined automatically.

8.3.3 Univariate shape-based Tones

Shape-based Tones represent frequently occuring short sub-series and can be found, e.g., by
clustering segments of the time series (see Chapter 5.7.2). Each cluster corresponds to a Tone.
The segments can be obtained using a sliding window, but choosing the window size is prob-
lematic and overlapping sliding windows produce meaningless results (Lin et al., 2003b). Time
series segmentation methods create non-overlapping segments (see Chapter 5.8). Typically the
complete time series is segmented. If only the most frequent and typical shapes are of interest,
time series motif discovery (see Chapter 5.10) can be used to determine the shapes and their
locations simultaneously. If some shapes of interest are known a priori, the problem of find-
ing the Tones occurrences is simply that of retrieval by content (see Chapter 5.12) supporting
subsequence queries.

8.3.4 Multivariate value-based Tones

For multivariate time series time point clustering (see Chapter 5.7.3) can be used to find value-
based Tones. One Tone is created for each cluster, the cluster membership of the time points
determines the occurrence intervals. If the process alternates between several regimes or states,
these regions should form clusters in the high dimensional space of the features vectors per time
point. Persisting clusters are characterized by long intervals with the same cluster membership,
compared to randomly scattered cluster assignments on the time axis.

8.3. FINDING TONES 78

The cluster algorithm used for time point clustering should be able to cope with outliers and
offer a validation of the existence of clusters. One such powerful method is the use of Emergent
Self-organizing Maps (ESOM, Ultsch (1999)) with the U-Matrix (Ultsch, 1993) visualization.
Outliers are clearly visible on the maps. They can be removed and a new map is trained with
the remaining data. The U-Matrix visualizes clusters of arbitrary shape and size. A trained
and manually labeled ESOM can be used to classify new data based on the identified cluster
structure.

For the description of each Tone a symbolic rule should to be generated. This provides a
meaningful basis for the further discovery of temporal rules. A method explicitly designed to
describe clusters with interval conditions using only the most relevant variables per cluster is
the Sig∗ algorithm (Ultsch, 1991). Other rule generation methods (see Witten and Frank (1999)
for an overview) can be used as well, but they are mostly designed to create discrimination rules
that focus on the differences of the clusters.

If there is some training data available on which the assignment of the time points to known
states is known, Tones can also be learned with a classifier. Interpretable classifiers like decision
trees are to be preferred over methods like SVM (Burges, 1998) in the context of knowledge
discovery.

8.3.5 Finding marginally interrupted occurrences

Task 8.3. Mining marginally interrupted Tones

Description The tasks of finding the marginally interrupted occurrences of several Tones is
the filtering of short gaps from the symbolic interval series with the maximal
occurrences of the Tones.

Input Tones T and symbolic interval series T .

Output Symbolic interval series T ′.

Parameters Maximum relative total length α of all interruptions.
Maximum absolute length dmin of any interruption.

The instances of any Tone pattern can be interrupted by noise. An occurrence of a value-
based Tone can be interrupted by an outlying value, splitting the potentially longer interval in
two parts. Similar, for trend-based patterns an outlier during an otherwise flat segment can lead
to two surrounding segments with large slopes. In order to filter out such short interruptions from
the maximal occurrences of Tones we propose a filtering algorithm that ensures the conditions
for marginally interrupted occurrences.

Algorithm 8.1, called MarginalGapFilter, first searches for all pairs of intervals with the
same symbol separated by a short enough gap (Lines 1-6). The gaps are sorted in increasing
order by duration to process shorter gaps first. If a long interval is interrupted by several short
gaps of different lengths and the relative total length of all gaps exceeds the threshold α we
rather want to remove many short gaps until the threshold is met, than to remove few large
gaps and leave the small gaps in the data. In Line 8 the output interval series is initialized
with the input intervals augmented with their respective duration. This is needed because after
replacing gaps and creating longer intervals, we still need the information about the original
lengths of the merged intervals to prevent more than only marginal interruptions. For all gaps
we check in Line 10 whether there still exist two intervals immediately to the left and right of
the gap. Further we compare the sum of all durations from the original intervals contained in
the left and right intervals to the duration of the long interval obtained by removing the gap. If
the threshold condition posed by α is not violated the gap is removed in Line 11 by replacing
the two intervals with a single long interval adding up the stored original interval durations.

8.3. FINDING TONES 79

Algorithm 8.1 MarginalGapFilter finds marginally interrupted occurrences from maximal
occurrences.
Input:

Symbolic interval series T = {(si, ei, σi)|i = 1, ..., n}.
Total maximum relative interruption length α, default α = 0.1.
Maximum absolute interruption length dmax.

Output:

Symbolic interval series T ′.

1: G := ∅// the set of all short gaps
2: for i = 1 to n do

3: for all j < i with σj = σi ∧ (si − ej + 1 ≤ dmax) do

4: G := G ∪ {(ej , si)}
5: end for

6: end for

7: Sort gaps G by increasing duration
8: T ′ := T extending (si, ei, σi) to (si, ei, σi, di = ei + si + 1)
9: for all (li, ri) ∈ G do

10: if ∃(s1, e1, σ1, d1), (s2, e2, σ2, d2) ∈ T
′ with (e1 = li) ∧ (s2 = ri) ∧

(

d1+d2

e2−s1+1 ≥ 1− α
)

then

11: T ′ := {(s1, e2, σ1, d1 + d2)} ∪ T
′ \ {(s1, e1, σ1, d1), (s2, e2, σ2, d2)}

12: end if

13: end for

The time complexity of the MarginalGapFilter algorithm is O(n log n) where n is the
number of intervals. The search for all short gaps can be implemented with a linear scan of the
interval series keeping track of the most recent intervals for each symbol in a hash table. Since
only gaps between temporally close intervals with the same symbol are considered, the number
of gaps is linear in the number of intervals. The processing of the gaps in the second part of the
algorithm is thus also linear. The sorting of the gaps, however, lifts the total time complexity
to O(n log n).

As a default choice α = 0.1 can be used, i.e., at most 10% of a symbolic interval are allowed
to be disturbed by interruptions. The dmax parameter has to be chosen w.r.t. the application.
Often, some knowledge on the minimum duration of a phenomena to be considered interesting
is available.

Example 8.3. Value based Tones were generated for the muscle activation of the Skating data
(see Chapter A.1) with the Persist algorithm and three bins corresponding to the states low,
high, and very high. A example of 1.3 seconds is shown in the top panel of Figure 8.3. The
two bin boundaries are shown as horizontal lines. The upper bar of shaded intervals (labeled
before) corresponds to the maximal Tones found by Persist. In places where the activation
crosses a bin boundary frequently, short intervals are obtained, for example between 3000ms
and 3200ms. These short interruptions of the surrounding longer intervals were filtered with
the MarginalGapFilter algorithm using a maximum gap length of 50ms. Short bursts of
muscle activation below this threshold are physiologically not plausible and likely to be caused
by measurement inaccuracy. The obtained marginally interrupted Tones are shown in the lower
bar, labeled after.

8.4. FINDING CHORDS 80

2800 3000 3200 3400 3600 3800 4000
Time (ms)

before

after

high
on
off

Figure 8.3: The muscle activation of the Skating data is discretized into three states. The
maximal Tones are shown in the top row of intervals labeled before. After filtering
out short gaps, the marginally interrupted Tones in the bottom row labeled after
are obtained.

8.4 Finding Chords

Task 8.4. Mining Chords

Description The tasks of finding (margin-closed) Chords in a symbolic interval sequence is
the creation of k (margin-closed) Chords and the symbolic interval sequence
with the maximal occurrences thereof.

Input Symbolic interval sequence T representing occurrences of a set of Tones.

Parameters Threshold δ for the minimum duration of a Chord.
Minimum support of a Chord.
Minimum and maximum size of a Chord.
Flag whether to mine closed Chords.
Threshold α for mining margin-closed Chords.

Output k Chords Ci and a symbolic interval sequence C.

Chords represent the concept of coincidence and are thus mined from the interval series of
Tone occurrences from all Aspects collectively. As described in Chapter 7.2 a Chord is quite
similar to an itemset used in association rules mining. We will therefore adapt the depth-first
approach of CHARM (Zaki and Hsiao, 2002), an algorithm for mining closed itemsets that has
recently been demonstrated to outperform many other competing methods (Zaki and Hsiao,
2005). Another benefit of this method is the possibility to simultaneously construct a lattice
structure of the closed itemsets for visualization purposes. We will only describe the core algo-
rithm and refer the interested reader for performance optimizations and lattice construction to
(Zaki and Hsiao, 2005).

Let us first point out the differences of the novel task of mining closed Chords compared
to mining closed itemsets. The core part of a Chord is the set of Tone symbols that coincide.
Only one Tone symbol per Aspect is allowed in a Chord, because a single Aspect cannot be
in two states at the same time. This reduces the search space because not all combinations
of small Chords form a valid larger Chord. For a Aspects with k Tones each, there are

(

a
s

)

ks

possible Chord patterns of size s < a. The support of an itemsets is measured with the number
of database transactions in which all items of the set occur. In our setting we can imagine
one transaction per time point containing the symbols of all currently valid Tones. Simply
counting the points is not enough however, we sum up the lengths of all occurrence intervals
that meet the minimum duration threshold δ. Finally, the concept of margin-closedness needs
to be incorporated in the algorithm to further reduce the number of patterns found.

8.4. FINDING CHORDS 81

Algorithm 8.2, called ClosedChordMining, searches for margin-closed Chords. The search
tree defined by the partial order on Chords is explored in a depth-first manner. The function
EXTEND is recursively called given a prefix Chord cp and a set of super-Chords S. The
recursion is started with an empty Chord and all trivial frequent Chords as possible extensions
in Line 1. The prefix Chord cp is extended by all combinations of super-Chords from the set
S in the double loop starting in Line 3. The variable ĉi (Line 4) stores the initial super-Chord
extension by ci. The extensions are filtered for valid Chords with only one Tone per Aspect and
by the minimum support in Line 7. The core part of the algorithm is the comparison of the
support of the super-Chord ĉi∪ cj with the support of both sub-Chords ĉi and cj . The following
four cases (Lines 8, 11, 13, and 16) are generalizations of the four properties for itemsets in
(Zaki and Hsiao, 2005) to margin-closed Chords and will be explained in detail below. In Line 22
the current Chord ĉi is added to the set of closed Chords if it is not subsumed by an already
found closed Chord. The function EXTEND is called recursively in Line 25 unless the maximum
Chord size is reached. The recursion stops as soon as the set of extensions S is empty.

The four different cases of the support comparison are depicted for an example in Figure 8.4.
Let A, B, C be some Tone patterns. Only one instance of each Tone pattern is shown for
demonstration purposes, the length and overlaps of the intervals are meant to be representative
for the whole data set. For our example, let the arguments to the EXTEND function be the
trivial Chord cp = A and the set of super-Chords be S = {AB, AC}. For the first extension
ĉi = A ∪ AB = AB the support of ĉi ∪ cj = AB ∪ AC = ABC needs to be compared to the
support of ĉi = AB and cj = AC.

The first case in Line 8 is shown in Figure 8.4(a). The super-Chord ABC has almost the
same support as both sub-Chords. When AB or AC are observed, so is almost always ABC.
We can effectively replace both sub-Chords with the super-Chord by adding cj = AC to the
current extension ĉi and excluding it from further processing in the inner loop.

The second case in Line 11 is shown in Figure 8.4(b). While AB has the same support as
ABC, AC has significantly more. Again we can add AC to the current extension ĉi because
whenever AB occurs, so does AC. We can not delete AC from E in this case, however, because
combinations with other Chords still need to be considered.

The third case in Line 13 is shown in Figure 8.4(c). The Chord AB has significantly more
support than ABC, while AC does not. The super-Chord ABC is possibly a closed Chord, it
needs to be added to the set of immediate super-Chords of ĉi = AB for the recursive function
call. The Chord AC can be excluded from further processing, because whenever it is observed,
so is AB.

The last case in Line 16 is shown in Figure 8.4(d). Both AB and AC have significantly more
support than ABC. ABC is added to the set of possibly closed super-Chords for the recursion
and no pruning can be performed.

The time complexity of Algorithm 8.2 is hard to analyze due to the recursion and the
dynamic content of S determining the iterations of the double loop. In (Zaki and Hsiao, 2005)
the CHARM algorithm is reported to scale up linearly with the number of transactions. We
expect similar behavior with ClosedChordMining, because the number of possible Chord
patterns does not depend on the number of symbolic Tone intervals, but rather on the number
of different Tone patterns.

The parameter δ needs to be chosen according to the application domain. The minimum
duration of a Chord needs to be long enough for an expert to consider the coincidence of several
properties meaningful. Similar, information on useful minimum and possibly maximum size
constraints of a Chord can be obtained from an expert. The maximum size is of course always
bounded by the number of Aspects. The minimum support and the threshold for margin-
closedness directly control the number of found Chords. Just like for Tones, the maximal
occurrences of Chords can be filtered for gaps to create marginally interrupted occurrences

8.4. FINDING CHORDS 82

Algorithm 8.2 ClosedChordMining finds margin-closed Chords by depth-first search.

Input:

Symbolic interval sequence T .
Minimum Chord duration δ.
Minimum Chord support supmin, default supmin = 0.01.
Minimum Chord size smin, default smin = 2.
Maximum Chord size smax, default smax = a.
Threshold α determining margin-closedness, default α = 0.1.

Output:

Set of Chords and symbolic interval sequence C.

1: S := {t ∈ T |sup(t) >= supmin}
2: R := EXTEND(∅, S, ∅)

EXTEND(cp, S, R)
3: for all ci ∈ S do

4: ĉi := cp ∪ ci

5: Ŝ := ∅
6: for all cj ∈ S with j > i do

7: if ĉi ∪ cj is a valid Chord and supδ(ĉi ∪ cj) ≥ supmin then

8: if
supδ(ĉi∪cj)

max(supδ(ĉi),supδ(cj))
≥ 1− α then

9: ĉi := ĉi ∪ cj

10: S := S \ {cj}

11: else if
supδ(ĉi∪cj)

supδ(ĉi)
≥ 1− α and

supδ(ĉi∪cj)
supδ(cj)

< 1− α then

12: ĉi := ĉi ∪ cj

13: else if
supδ(ĉi∪cj)

supδ(ĉi)
< 1− α and

supδ(ĉi∪cj)
supδ(cj)

≥ 1− α then

14: Ŝ := Ŝ ∪ {ĉi ∪ cj}
15: S := S \ {cj}
16: else

17: Ŝ := Ŝ ∪ {ĉi ∪ cj}
18: end if

19: end if

20: end for

21: if |ĉi| ≥ smin and ∀c ∈ R with ĉi ⊆ c holds supδ(c)
supδ(ĉi)

< 1− α then

22: R := R ∪ {ĉi}
23: end if

24: if |ĉi| < smax then

25: R := EXTEND(ĉi, Ŝ, R)
26: end if

27: end for

8.5. FINDING PHRASES 83

(a) Both AB and AC

have almost the same
support as ABC.

(b) Only AC has sig-
nificantly more support
than ABC.

(c) Only AB has sig-
nificantly more support
than ABC.

(d) Both AB and AC

have significantly more
support than ABC.

Figure 8.4: The four cases of Algorithm 8.2 for mining margin-closed Chords. The support of
the Chords AB and AC is compared to the support of the common super-Chord
ABC.

similar to the Algorithm 8.1 described in Chapter 8.3.5. The main difference is that no intervals
within the gap are deleted, as Chords are allowed to overlap.

8.5 Finding Phrases

Task 8.5. Mining Phrases

Description The tasks of finding (margin-closed) Phrases in a symbolic interval sequence is
the creation of k (margin-closed) Phrases and the symbolic interval sequence
of the occurrences thereof.

Input Symbolic interval sequence C representing occurrences of a set of Chords.

Parameters Minimum support of a Phrase.
Minimum length of the paths in a Phrases.
Flag whether to mine closed Phrases.
Threshold α for mining margin-closed Phrases.

Output k Phrases Pi and a symbolic interval sequence P.

Phrases represent the temporal concept of partial order. There are many algorithms that
can mine partial order from symbolic time series and sequences in the form of Episodes (see
Chapter 6.1). They are not immediately applicable to the problem of mining partial order
from interval sequences, however. We cannot transform the occurrence intervals of Chords to a
symbolic time series, as was possible for the Events in the UTG (see Mörchen and Ultsch (2004)),
because Chords can and often do overlap. The solution is to transform Chord occurrences to
another well known data model, a sequence of itemsets.

8.5. FINDING PHRASES 84

Based on a set of itemset sequences, partial order can be mined with the method recently
described in (Casas-Garriga, 2005). The original method was already described in Section 6.1.
We will discuss the relevant parts in this Section, but concentrate on the additions and modi-
fications needed to mine Phrases instead of partial orders of itemsets. The interested reader is
referred to (Casas-Garriga, 2005) for the theoretic background and algorithmic details.

Algorithm 8.3 shows the high level overview of our proposal to find closed Phrases from
the interval sequence of Chords, the details of each step will be described in the forthcoming
sections. First the data model conversion to an itemsets interval series is performed (Line 1,
Chapter 8.5.1). Next, the single long itemset interval series needs to be implicitly converted to
a set of shorter sub series by creating a sequence of intervals (Line 2). This is necessary, because
the algorithms for mining closed sequential patterns and closed partial order require a set of
itemset sequences as their input. Each itemset sequence is called a transaction and support is
defined as the number of transactions in which a pattern occurs. For now we assume such a
segmentation is given and discuss possible ways to obtain one in Chapter 8.5.5.

For the mining of closed sequential patterns (Line 3, Chapter 8.5.2) any standard algorithm,
e.g., CloSpan (Yan et al., 2003), can be used with only slight modifications. The mining of
margin-closed partial orders (Line 4, Chapter 8.5.3) is the largest deviation from the methods of
(Casas-Garriga, 2005). We show that the problem of mining partial orders can again be viewed
as an itemset problem similar to the mining of Chords. We thus use another modified version
of the CHARM algorithm. For the last step of converting a set of sequences into a partial
order (Chapter 8.5.4) necessary conditions are given in (Casas-Garriga, 2005). We describe a
straightforward construction for the final Phrase representation using these conditions.

Algorithm 8.3 High level algorithm to find margin-closed Phrases.

Input:

Symbolic interval sequence C.
Minimum duration of Chord fragments in Phrase δ.
Minimum Phrase support supmin, default supmin = 1.
Minimum path length in Phrase smin, default smin = 2.
Threshold α determining margin-closedness, default α = 0.1.

Output:

Set of Phrases and symbolic interval sequence P.

1: Convert C to itemset interval series I using δ.
2: Create transaction windows W = {[si, ei]|i = 1, ..., w}.
3: Mine pairs (s, T) composed of a closed sequential pattern s occuring within the transaction

windows T ⊆W using supmin and smin

4: Create margin-closed maximal pairs (S, T) where S is a set of all closed sequential patterns
occuring in all transaction windows T ⊆ W using supmin and α and create occurrence
intervals P accordingly.

5: Build partial order of Chords for each set S.

8.5.1 Data model conversion

In order to apply algorithms from itemset mining, we convert the symbolic interval sequence of
Chord occurrences to an itemset sequence, or to be more precise an itemset interval series (see
Chapter 7.2.1). Let C = {[σi, si, ei]|i = 1, ..., N} be the occurrences of a set of Chords C = {cj =
(σj , λj , φj)|j = 1, ..., M}. We convert C to an itemset interval series by considering each interval
of minimum duration where at least one Chord is valid as an itemset time interval and including

8.5. FINDING PHRASES 85

the symbols of all currently valid Chords as items to obtain I as defined in Equation 8.1.

I = {[Sk, sk, ek]|Sk ⊂ Σ,

σj ∈ Sk ⇔ ∃[σj , si, ei] ∈ C ∧ [sk, ek] ⊆ [si, ei],

sk ∈ {si|i = 1, ..., N} ∪ {ei + 1|i = 1, ..., N − 1}

ek ∈ {ei|i = 1, ..., N} ∪ {si − 1|i = 2, ..., N}} (8.1)

Example 8.4. In Figure 8.5 we give an example for the conversion of the interval sequence of
overlapping Chord occurrences to a series of non-overlapping itemset intervals. The top rows
show the occurrence intervals of three Tones indicated by the uppercase letters A, B, and C.
The maximal occurrences of all Chords with at least two Tones are shown in the middle rows.
Each Chord is assigned a unique symbol in form of a lower case letter (a-d). The bottom row
shows the intervals between all start and end points of all Tones. On each interval an itemset is
created including the symbols of all currently active Chords.

Figure 8.5: Example for the conversion of an interval sequence of Chords to an itemset interval
series. Whenever a Chord interval starts or ends, a new itemset interval is created,
each itemset contains the symbols of all Chords that overlap with this interval.

The parameter δ of Algorithm 8.3 for the minimum duration of Chord fragments in Phrases
is omitted from the construction in Equation 8.1 for clarity, it should be set slightly lower than
the minimum Chord duration.

8.5.2 Closed sequential pattern mining

The first step of the approach in (Casas-Garriga, 2005) consists of mining closed sequential
patterns with an algorithm of choice. Sequential patterns describe a total order among the
itemsets in the pattern. Closedness of sequential patterns is defined based upon support, i.e., a
sequential pattern is closed if there is no super pattern that occurs in the same transactions.

Recall, that we excluded overlapping Chord intervals with an order relation from Phrase
patterns (see Chapter 7.2.6). The reason was, that it would not be intuitive to mine the concept
of coincidence twice. We therefore need to restrict any algorithm used to mine closed sequential
patterns from the itemset interval series to picking at most one item per itemset. This will also
speed up the mining of closed sequential patterns, because it prunes the search space to total
orders of single items.

In (Casas-Garriga, 2005) it is shown how grouping of closed sequential patterns leads to closed
partial orders. It is tempting to assume that margin-closed sequential patterns will also lead to
margin-closed partial orders, but a simple example shows that this is not the case. Assume we

8.5. FINDING PHRASES 86

are given the 10 sequences summarized in the first three lines of Table 8.1 and want to mine
margin-closed partial orders with α = 0.2. The sequential pattern A, B, C is margin-closed as
it occurs 10 times, any longer sequence occurs much less frequent (5 or 4 times), any shorter
sequence occurs almost as often (10 or 9 times) according to the threshold α. The same is true
for the margin-closed sequential pattern A, D, C occuring 9 times. Grouping the margin-closed
sequences according to (Casas-Garriga, 2005) creates at least the groups {〈A, B, C〉} occuring
10 times and {〈A, B, C〉, 〈A, D, C〉} occuring 9 times. The former is a contained in the latter,
but the support differs by less than α.

Sequence Repetitions

A, D, B, C 5

A, B, D, C 4

A, B, C 1

A, D, C, E 91

Table 8.1: Example of two sets of sequences, one considering only the top three rows and one
using the complete table.

We have thus observed that when using margin-closed sequential patterns, the generated
partial orders are not necessarily margin-closed, there can be cases where too many groups
are reported. This cannot be fixed by subsequent filtering of the results, as another example
shows that is is also possible to miss margin-closed partial orders when using margin-closed
sequences for grouping. Consider the extended set of 101 sequences summarized with all four
rows of Table 8.1. The additional 91 occurrences of A, D, C raise the count of this sequential
pattern to 100. It is not margin-closed, however, because the longer pattern A, D, C, E is
almost as frequent. The exclusion of A, D, C from the grouping of sequential patterns also
excludes the group {〈A, B, C〉, 〈A, D, C〉}. But this group corresponds to a margin-closed partial
order, because it is not possible to add another sequence to this group occuring in any of the
transactions where it occurs, let alone in almost all. We thus have to resort to mine all strictly
closed sequential patterns and incorporate the concept of margin-closedness into the grouping
algorithm below.

In principle, the modification of picking only one item per itemset can be integrated in
any algorithm for closed sequential pattern mining, e.g., CloSpan (Yan et al., 2003) or BIDE

(Wang and Han, 2004). For simplicity of presentation we chose to modify the PrefixSpan algo-
rithm for finding frequent sequential patterns. This algorithm does not mine closed patterns per
se, we therefore included a straightforward brute force check for closedness upon adding new
patterns to the result. For more efficient solutions see (Yan et al., 2003; Wang and Han, 2004).

The algorithm ClosedSequenceMining listed in Algorithm 8.4 searches for closed se-
quential patterns with single item itemsets. The search tree defined by the partial order of the
subsequence relation is explored in a depth-first manner. The function EXTEND is recursively
called given a prefix sequence s, the itemset interval series I and a sequence of transaction
windows W for possible extensions of s. The recursion is started with an empty sequence and
the initial windows in Line 1. The possible extensions of the prefix sequence by an additional
item are explored in the loop starting in Line 6. All windows are checked for an occurrence of
an item i. If the item is found, the remaining part of the window is stored as a new window
for possible further extensions of s ⋄ i (Line 11). This correspond to the pseudo-projection of
transaction databases in (Pei et al., 2004). Since we only include itemsets in the new window,
that occur after item i, we are restricting the search to extensions of the sequential pattern
by a new itemset of a single item, so called S-Step extensions (Ayres et al., 2002). The I-Step
extensions, adding an item to an existing itemset of the prefix sequence are never pursued. If

8.5. FINDING PHRASES 87

the item is frequent, i.e., it occurs in more than supmin of the windows, the function EXTEND
is called recursively with s ⋄ i and the new windows in Line 15.

On each call, the EXTEND function uses the ADD-CLOSED function to check whether the
current prefix s should be added to the result set of closed patterns. First, all sequences that
are subsequences of s and have the same support are removed from S (Line 18). Next we search
for super-sequences of s in S with the same support. If none is found s is closed and added to
the result.

Algorithm 8.4 ClosedSequenceMining finds closed sequential patterns with one item per
itemset.
Input:

Itemset intervals series I = {[Si, si, ei]}.
Transaction windows W = {[sj , ej]}.
Minimum support supmin.

Output:

Set S of closed sequential patterns.

1: S := EXTEND(I, W, ∅, ∅)

EXTEND(I, W, s, S)
2: if s 6= ∅ then

3: S := ADD-CLOSED(s, S)
4: end if

5: Let I be the set of all unique items in I.
6: for all i ∈ I do

7: W ′ := ∅
8: for all w = [sj , ej] ∈W do

9: if i appears in I|w then

10: Let s be the start of the interval succeeding the first occurrence of i in w.
11: W ′ := W ′ ∪ {[s, ej]}
12: end if

13: end for

14: if
|W ′|
|W | ≥ supmin then

15: S := EXTEND(I, W ′, s ⋄ i, S)
16: end if

17: end for

ADD-CLOSED(s, S)
18: for all s′ ∈ S with sup(s) = sup(s′) and s′ ⊆ s do

19: S := S \ {s′}
20: end for

21: if ¬∃s′ ∈ S with sup(s′) = sup(s) and s ⊆ s′ then

22: S := S ∪ {s}
23: end if

The incorporation of the other parameters like the maximum gap between consecutive items
or the minimum size of a sequence is rather straightforward and omitted for clarity. All parame-
ters are application dependent, it is hard to give general suggestions. The minimum support and
the minimum path length influence the number of closed sequences found, lower values should be
tried first. For small data sets, the minimum support could be specified as an absolute number
instead of a percentage, with the according changes to the algorithm.

8.5. FINDING PHRASES 88

8.5.3 Creating margin-closed groups of sequential patterns

The mining of partial orders in (Casas-Garriga, 2005) mainly consist of creating pairs consisting
of a set of closed sequential patterns and the list of transactions in which they all occur. The
pairs are required to be maximal in the sense, that there is no additional sequential pattern, that
occurs in all transactions and no additional transaction in which all patterns occur. Further, the
sets of closed sequential patterns are required to be non-redundant, i.e., no sequential pattern
is allowed to be a sub-pattern of a pattern in the same set. Algorithm 1 in (Casas-Garriga,
2005) groups the sequential patterns by first considering all patterns with the same list of
transactions and then adding any pattern with a longer transaction list that does not make the
group redundant. The groups are closed w.r.t. frequency and form a concept lattice.

When adding the constraints for margin-closed pairs this algorithm cannot be used anymore.
For each initial group not only sequential patterns with exactly the same transaction lists need
to be considered, but also patterns with only slightly shorter lists. For a valid group of patterns,
the intersection of all transaction lists is allowed to be at most α percent shorter than the longest.
Since all sequential patterns in a group influence the intersection, the search space for the groups
consists of all 2k combinations of k closed sequences. This corresponds to the problem of finding
margin-closed itemsets, if we consider each closed sequential pattern an item and each group
of sequential patterns an itemset. We can again adapt the CHARM (Zaki and Hsiao, 2005)
algorithm to tackle this problem efficiently.

The algorithm ClosedPhraseMining listed in Algorithm 8.5 searches for margin-closed
groups of closed sequential patterns. Each group will then be merged into a Phrase representing
the partial order of a set of Chords in the next step. Only minor modifications needed to
be made to the CHARM algorithm. Each group of closed sequential patterns is required to
be non-redundant. Instead of checking this upon each combination of a group with possible
extensions, we decided to automatically include all subsequences of a sequence in a group and
remove this redundancy in a post-processing step. Further, the concept of margin-closedness
was incorporated.

The search tree defined by the partial order on Phrases is explored in a depth-first manner.
The function EXTEND is recursively called given a prefix Phrase p representing a set of se-
quential patterns and a set of super-Phrases. The recursion is started with an empty Phrase and
all Phrases obtained by using each sequential pattern as a seed and adding all its subsequences
in the loop starting in Line 2. The prefix group p is extended by all combinations of super-
Phrases from the set P in the double loop starting in Line 16. The variable p̂i (Line 17) stores
the super-set of p initially only extended by pi. The extensions are filtered by the minimum
support in Line 20. The core part of the algorithm is identical to Algorithm 8.2 checking for
margin-closedness and pruning the search where possible. In Line 35 the current Phrase p̂i is
added to the set of closed Phrases if it is not subsumed by an already found closed Phrase. The
function EXTEND is called recursively in Line 37. The recursion stops as soon as the set P is
empty, each Phrase is made non-redundant in the post-processing starting in Line 11.

The mining of margin-closed Phrases is the computationally most demanding task of time
series knowledge mining. Compared to the number of Tones determining the complexity of
the CHARM variant in Algorithm 8.2, for Algorithm 8.5 this corresponds to the number of
closed sequential patterns, which will usually be much larger. Care should be taken to keep
the number of closed sequential patterns small by imposing constraints on minimum length and
minimum frequency. As already explained in Chapter 8.5.2 we cannot resort to using margin-
closed sequential patterns. But using higher values of α for the margin-closedness of Phrases
will dramatically reduce the search space and the runtime of Algorithm 8.5.

8.5. FINDING PHRASES 89

Algorithm 8.5 ClosedPhraseMining finds margin-closed Phrases by depth-first search.

Input:

Set S of margin-closed sequential patterns s with transaction lists t(s).
Minimum Phrase support supmin, default supmin = 1.
Threshold α determining margin-closedness, default α = 0.1.

Output:

Set of Phrases and symbolic interval sequence P.

1: P := ∅
2: for all s ∈ S do

3: p := {s}
4: for all s′ ∈ S do

5: if s′ ⊂ s then

6: p := p ∪ {s′}
7: end if

8: end for

9: end for

10: R := EXTEND(∅, P, ∅)
11: for all p ∈ R, s ∈ p do

12: if ∃s′ ∈ p s ⊂ s′ then

13: p := p \ {s}
14: end if

15: end for

EXTEND(p, P, R)
16: for all pi ∈ P do

17: p̂i := p ∪ pi

18: P̂ := ∅
19: for all pj ∈ P with j > i do

20: if supδ(p̂i ∪ pj) ≥ supmin then

21: if
supδ(p̂i∪pj)

max(supδ(p̂i),supδ(pj))
≥ 1− α then

22: p̂i := p̂i ∪ pj

23: P := P \ {pj}

24: else if
supδ(p̂i∪pj)

supδ(p̂i)
≥ 1− α and

supδ(p̂i∪pj)
supδ(pj)

< 1− α then

25: p̂i := p̂i ∪ pj

26: else if
supδ(p̂i∪pj)

supδ(p̂i)
< 1− α and

supδ(p̂i∪pj)
supδ(pj)

≥ 1− α then

27: P̂ := P̂ ∪ {p̂i ∪ pj}
28: P := P \ {pj}
29: else

30: P̂ := P̂ ∪ {p̂i ∪ pj}
31: end if

32: end if

33: end for

34: if ∀p ∈ R with p̂i ⊆ p holds supδ(p)
supδ(p̂i)

< 1− α then

35: R := R ∪ {p̂i}
36: end if

37: R := EXTEND(p̂i, P̂ , R)
38: end for

8.5. FINDING PHRASES 90

8.5.4 Creating partial order from group of sequential patterns

The final step for mining Phrases is the conversion of a margin-closed set of sequential patterns
into a partial order structure. Algorithm 2 in (Casas-Garriga, 2005) describes how one can
determine for a pair of positions from two sequences, whether they should be joint in the partial
order structure. The idea is to exactly preserve the paths defined by the sequential patterns.
Each sequential pattern must be present in the partial order as a path and no additional maximal
paths are allowed.

The algorithm MergeSequences in Algorithm 8.6 completes the task of creating the partial
order. C is a vector of symbols that will hold all unique nodes of the partial order. E is a list
of pairs that will hold all edges of the partial order. Both are initialized with the empty set in
Lines 1-2. For all positions of all sequences pointers are initialized in Line 5 that will later point
to the nodes C of the partial order. The outer double loop of the algorithm processes all free
positions of all sequences in Lines 8-9. The current symbols is added to the end of C (Line 10)
while the function ADD takes care of updating the pointer (Line 21) and adding edges to the
predecessor and successor (Lines 23-26) in the sequence if they are already present in C. The
inner double loop compares all positions of all other sequences with the position of the current
sequence s for path preservation. The function ADD is called again to set the pointer to the
same element of C and add edges accordingly.

The complexity of this algorithm is rather high. It is quadratic in the number of sequences
and in the average length of the sequences. In practice both are rather small, so this is not a
big issue.

8.5.5 Windowing

The long itemset series I needs to be segmented into several short series to enable the concept
of transactions needed for mining closed sequential patterns and closed Phrases. The windows
can be overlapping or non-overlapping.

Ideally, non-overlapping windows are given a priori or suggested by the data. If there are very
regular occurrences of a Chord, windows could be placed between successive occurrences. For
the Skating data (see Chapter A.1) the separate movement cycles are easily recognized this way.
For the Video data (see Chapter A.2) there was already a set of interval series corresponding to
different scenarios. In other cases large gaps between successive Chords could be used to place
window boundaries irregularly. The segmentation method for symbolic sequences described in
(Cohen and Adams, 2001) could possibly be used to find meaningful windows of the Chord
sequence.

Non-overlapping windows have the advantage of producing less and non-redundant patterns.
If the placement of the window boundaries is not justified, however, pattern instances are missed
if they stretch over two or more windows. With overlapping windows of a fixed size shorter
sequential patterns will have higher support, because they are present in more windows. This
is a well known problem, e.g., in Episode mining (see Chapter 6.1). Possible solutions include
using minimal occurrences (Mannila and Toivonen, 1996), unbounded windows (Casas-Garriga,
2003), or allowing only patterns that start with an with an item from the first itemset in the
window (Chen et al., 2005). In all cases the concept of transactions and possible co-occurrences
within a transaction is lost, however, and the method of Chapter 8.5.3 cannot be applied using
the original sliding windows. Instead, new transaction windows need to be generated. Using each
maximal occurrence as one transaction window and checking which patterns are also contained
within larger windows leads to an assignment of closed sequences to transactions that can be
used to perform the grouping.

8.5. FINDING PHRASES 91

Algorithm 8.6 MergeSequences creates a Phrase representing a partial order the paths of
which correspond to the input set of sequences.

Input:

Set of sequences S.
Output:

Chords C and edges E of Phrase.

1: C := ∅
2: E := ∅
3: for all s ∈ S do

4: for i = 1 to |s| do

5: ps(i) := ∅
6: end for

7: end for

8: for all s ∈ S do

9: for ∀i = 1, ..., |s| with ps(i) = ∅ do

10: C(|C|+ 1) := s(i)
11: ADD(ps, i, |C|)
12: for all s′ 6= s ∈ S do

13: for ∀j = 1, ..., |s′| with p′s(j) = ∅ do

14: if s(p(i)) and s′(q(j)) are path preserving then

15: ADD(qs′ , j, |C|)
16: end if

17: end for

18: end for

19: end for

20: end for

ADD(ps, i, c)
21: ps(i) := c

22: if i > 0 ∧ ps(i− 1) 6= ∅ then

23: E := E ∪ (C(ps(i− 1)), C(c))
24: end if

25: if i + 1 ≤ |s| ∧ ps(i + 1) 6= ∅ then

26: E := E ∪ (C(c), C(ps(i + 1)))
27: end if

Chapter 9

Evaluation

In this chapter we demonstrate the power of the new framework for mining temporal knowl-
edge in multivariate time series and time interval sequences. We first describe two data sets in
Chapter 9.1 and present the result of the TSKM in Chapter 9.2. We describe how the various
parameters were selected during the mining process. The resulting patterns represent mean-
ingful descriptions of temporal phenomena in the data. For the larger data set we analyze the
influence of important parameters on the number of patterns returned and the effort of the
mining algorithms.

In the subsequent three sections we describe results obtained using Allen’s relations (Chap-
ter 9.3), the UTG (Chapter 9.4), and Hidden Markov Models (Chapter 9.5) on the same data
sets when applicable. In Chapter 9.6 we compare the TSKM with the other methods based on
the experimental findings.

9.1 Datasets

9.1.1 Skating data

The Skating data was collected from tests in professional In-Line Speed Skating by Dr. Olaf
Hoos1. The goal of the data analysis was to identify patterns explaining the correspondence of
limb movement and muscle activation. The understanding of complex muscle coordination is
an important goal in biomechanics and human movement science. The knowledge gained from
the muscle activation patterns can be used to further analyze the underlying mechanisms of an
athletic performance and help to optimize the training process. In other areas, as rehabilitation
medicine, explanations about limb movement and muscle activation patterns can be used to
detect and describe anomalies and help in the development of treatments. In robotics the
abstraction to interpretable rules can help to develop more realistic movement models. The
coordination process can be studied by observing complex, often cyclic movements, which are
dynamically repeated in an almost identical manner.

An athlete performed a standardized indoor test at a speed of 7,89m/s on a large motor
driven treadmill. EMG and kinematic data of the right body side were measured for 30 seconds,
corresponding to 19 complete movement cycles. The obtained multivariate time series was
converted to a 5-dimensional symbolic interval series. In Chapter A.1 the preprocessing of the
numerical values and the creation of symbolic time interval series is described.

Three interval series describe the activation based on EMG measurements of the muscles
mainly responsible for forward propulsion: Medial Gastrocnemius (Gastroc), Vastus Medialis
(Vastus), and Gluteus Maximus (Gluteus). The activation states were labeled low, high, and

1Department of Sports Medicine, Philipps-University Marburg, 35032 Marburg, Germany

92

9.2. EFFICACY AND EFFICIENCY OF TSKM 93

very high. One series describes the foot contact with states on and off obtained from a pressure
sensor in the skate, called Trigger. The last series describes the movement phase obtained by
clustering a 6-dimensional time series with angular displacements and angular speeds of the hip,
knee, and ankle joints. The phases were labeled swing, glide+push, and recovery.

9.1.2 Video data

The Video data was first used and described in the Leonard system for recognition of vi-
sual events from video camera input (Siskind, 2001). It is available as an online appendix of
(Fern et al., 2002)2. Different scenarios involving a human hand moving colored blocks were
first recorded on video. Using image segmentation and motion tracking algorithms a description
of each video in terms of primitive events valid on time intervals was generated (Siskind, 2001).
Automated analysis of video data is useful for applications like surveillance or quality assurance.

We preprocessed the descriptions by normalizing the argument order, filtering out some
redundant descriptions, and merging scenarios that were equivalent, see Chapter A.2 for details.
The resulting Tones are listed in Table 9.1. The eight qualitatively different scenarios are pick-
up, put-down, stack, unstack, assemble, and disassemble with 30 repetitions each, and move-left
and move-right with 15 repetitions each.

Label Description

contacts-blue-green The blue block and the green block have contact.
contacts-blue-red The blue block and the red block have contact.
contacts-green-red The green block and the red block have contact.
attached-blue-hand The hand holds the blue block.
attached-hand-red The hand holds the red block.
attached-blue-green The blue block and the green block have contact and are

part of a stack where the top block is held by the hand.
attached-blue-red The blue block and the red block have contact and are part

of a stack where the top block is held by the hand.
attached-green-red The green block and the red block have contact and are part

of a stack where the top block is held by the hand.

Table 9.1: Description of all Tones from the Video data.

In (Fern et al., 2002) each scene is described with a logical formula found by inductive logic
programming in a supervised process. We use the data in an unsupervised manner and use the
ground truth on the scenarios only for evaluation purposes. This is an example of interval data
that was not obtained from times series. Since no additional information on the eight Tones
was available, we can view this as eight different Aspects each with a single state that is valid
during the Tone intervals and not valid otherwise.

9.2 Efficacy and Efficiency of TSKM

9.2.1 Skating data

We first mined Chords with a minimum duration of 50ms. Shorter phenomena related to muscle
activation are physiologically not plausible. The minimum size was set to 3, the maximum size
is naturally bounded by the five dimensions of the interval series. With a minimum support of
2% and a minimum count of eight a total of 70 Chords was found. Restricting the patterns to
closed Chords reduced the number to 60, mining margin-closed Chords with α = 0.1 returned 18

2ftp://ftp.ecn.purdue.edu/qobi/ama.tar.Z

ftp://ftp.ecn.purdue.edu/qobi/ama.tar.Z

9.2. EFFICACY AND EFFICIENCY OF TSKM 94

patterns. At this point it is difficult to decide automatically whether rare large or small frequent
Chords are better. The lattice of the Chords annotated with frequency (#) and support (%)
was presented to the expert, who selected and labeled nine Chords as the most interesting. The
selected Chords are bold shown in Figure 9.1.

Using these nine Chords and non-overlapping windows corresponding to the 19 movement
cycles of the experiment we found 44 closed sequential patterns with a minimum length of three
and a minimum frequency of eight. Merging the closed sequences into groups according to
Casas-Garriga (2005) resulted in 25 closed Phrases, the Algorithm 8.5 from Chapter 8.5.3 with
α = 0.1 returned 15 margin-closed Phrases. Again we presented the lattice of Phrases, parts of
which are shown in Figure 9.2, to the expert. Two paths of sub-Phrase relationship are visible
between the most general pattern at the top and the most specific pattern at the bottom. From
top to bottom, Chords are successively added to the partial order patterns making them more
specific but less frequent.

The expert selected the top and bottom Phrases as the most interesting. The most general
Phrase at the top shows the partial order of six Chords present in 18 of the 19 movement cycles.
It summarizes the simultaneous occurrence of the three closed sequences of length four that
are obtained by traversing all maximal paths of the Phrase. The most detailed Phrase at the
bottom is present in eight cycles and represents the total order of eight out of the nine Chords.

The Phrases were considered valid and interesting by the expert. The general Phrase de-
scribes the most dominant components of the cyclical movement, the specific Phrase offers
additional information about the successive activation of the three muscles and the exact order
relation of the Chords occuring before active gliding. Of particular importance is the connection
of external variables describing the limb movement with the internal observations on muscle
activation made by the Chord patterns.

The pruning by margin-closedness largely reduced the number of patterns so they could
easily be analyzed manually to trade off pattern size vs. pattern frequency. We analyzed the
search space in dependence of the parameters to quantify the pruning effects. In Figure 9.3(a)
the number of Chords found is shown for different values of the parameter α determining margin-
closedness. The value of 0.1 as used for the analysis above, effectively prunes the size of the
result down to a manageable number of patterns that can be analyzed manually. Using lower
values would result in a dramatic increase of patterns, using higher values results in less than five
patterns for α > 0.18. We also measured the number of recursive calls to the EXTEND function
of Algorithm 8.2 as an estimate of the runtime of the algorithm independent of implementation
and hardware. As is visible in Figure 9.3(b) the concept of margin-closedness does not only
reduce the size of the result set, it also effectively prunes the search space during mining and
speeds up the computation. This is because changin the notion of strict closedness to margin-
closedness more often enables the activation of the cases 1-3 in Algorithm 8.2 that have a pruning
effect. For α = 0.2 less than 10% of the functions call of strict closed Chord mining are needed.

Similar observations were made for Phrase mining with Algorithm 8.5. The 25 strictly closed
Phrases already offer a good summarization of the 44 closed sequences, but using α = 0.1 further
reduces this down to 15, using α = 0.2 only six dominant Phrases remain. Again the pruning
of the result set is closely connected to the number of recursive function calls in the algorithm,
because both Chord and Phrase mining are performed by modified version of the CHARM

algorithm. For α > 0.2 less than half the number of function calls than for strictly closed
Phrases are needed. Interestingly, the number of function calls is not strictly decreasing with
larger values of α. This is likely caused by the data dependent structure of the search space. A
general downward trend is clearly visible, though.

9.2. EFFICACY AND EFFICIENCY OF TSKM 95

recovery (#20, 16%):

Trigger is off

Move is recovery

Gastroc is low

Vastus is low

Gluteus is low

prep foot cont (#20, 26%):

Trigger is off

Move is swing

Gastroc is low

C3 (#20, 21%):

Trigger is off

Move is swing

Gastroc is low

Vastus is low

C6 (#19, 7%):

Trigger is off

Move is swing

Gastroc is low

Gluteus is high

swing (#20, 18%):

Trigger is off

Move is swing

Gastroc is low

Vastus is low

Gluteus is low

pre-activation (#18, 5%):

Trigger is off

Move is swing

Gastroc is low

Vastus is high

Gluteus is high

C7 (#20, 36%):

Trigger is off

Gastroc is low

Vastus is low

Gluteus is low

C16 (#18, 5%):

Trigger is on

Move is swing

Gluteus is high

C17 (#16, 3%):

Trigger is on

Vastus is very high

Gluteus is high

C18 (#19, 8%):

Move is swing

Vastus is high

Gluteus is high

C8 (#20, 39%):

Trigger is on

Move is glide+push

Gastroc is high

Vastus is high

C9 (#20, 34%):

Trigger is on

Move is glide+push

Gastroc is high

Vastus is high

Gluteus is high

push (#13, 3%):

Trigger is on

Move is glide+push

Gastroc is high

Vastus is high

Gluteus is very high

push GA (#14, 4%):

Trigger is on

Move is glide+push

Gastroc is very high

C12 (#21, 44%):

Trigger is on

Move is glide+push

Vastus is high

active gliding (#22, 38%):

Trigger is on

Move is glide+push

Vastus is high

Gluteus is high

push VA (#15, 4%):

Trigger is on

Move is glide+push

Vastus is very high

push GM (#18, 5%):

Trigger is on

Move is glide+push

Gluteus is very high

Figure 9.1: The lattice of all margin-closed Chords from the Skating data. The expert labeled
and selected the nine Chords shown bold. The other Chords were either too similar
to one of the selected Chords or did not represent an interesting relation of Tones.

9
.2

.
E

F
F
IC

A
C

Y
A

N
D

E
F
F
IC

IE
N

C
Y

O
F

T
S
K

M
96

P5 (#9, 47%)

P6 (#8, 42%)

P8 (#12, 63%)

P9 (#9, 48%)

P10 (#13, 68%)

P12 (#16, 84%)

P14 (#16, 85%)

P15 (#18, 94%)

prep foot cont pre-activation

active gliding push GM push VA push GA recovery

swing prep foot cont

swing prep foot cont pre-activation active gliding push GM push VA push GA recovery

swing prep foot cont pre-activation active gliding push GA recovery

swing prep foot cont pre-activation active gliding push VA push GA recovery

prep foot cont pre-activation

active gliding push GM push VA recovery

swing prep foot cont

prep foot cont pre-activation

active gliding push GM recovery

swing prep foot cont

swing prep foot cont pre-activation active gliding recovery

prep foot cont pre-activation

active gliding recovery

swing prep foot cont

Figure 9.2: The lattice of some margin-closed Phrases for Skating data. The topmost and bottommost Phrases were selected by the expert as
most interesting. They provide a general and a detailed descriptions of the movement cycle during Inline-Speed Skating, respectively.

9.2. EFFICACY AND EFFICIENCY OF TSKM 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

N
um

be
r

of
 C

ho
rd

s

α

(a) Number of Chords found

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 fu

nc
tio

n
ca

lls

α

(b) Percentage of recursive function calls in
Chord mining.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

N
um

be
r

of
 P

hr
as

es

α

(c) Number of Phrases found

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 fu

nc
tio

n
ca

lls

α

(d) Percentage of recursive function calls in
Phrase mining.

Figure 9.3: Effects of different values of α on the size of the result and the complexity of the
search process for Chord and Phrase mining. Larger values of α effectively reduce
the amount of patterns reported and improve efficiency of the mining algorithms at
the same time.

9.2. EFFICACY AND EFFICIENCY OF TSKM 98

9.2.2 Video data

For the Video data no prior knowledge for the selection of the minimum duration of Chords
was available. Figure 9.4 shows the distribution of Tone durations in the Video data. Since the
majority of Tones has a duration of 10 or more ticks we chose five as the minimum duration for
Chords. The minimum size was set to one, allowing single Tones as trivial Chords. A single Tone
like the hand grabbing a block already represents an important fact that does not necessarily
need to be combined with other currently valid Tones. We further chose an arbitrary but small
minimum support of 1% and a minimum count of 10, considering that the move-left and the
move-right scenarios have only 15 repetitions in the data.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Duration of Tones

N
um

be
r

of
 T

on
es

Figure 9.4: Histogram showing the distribution of Tone durations in the Video data.

According to these parameters, there are 19 Chords in the data, all of which are closed. A
value of α = 0.1 for margin-closedness reduced the number of patterns down to 15. We further
dropped three trivial Chords of size one not involving the hand, but rather one of the contacts
Tones. These Tones are only interesting when combined with a hand action. The lattice of the
remaining Chords is shown in Figure 9.5. Since the Chords contain just a few Tones, we did not
relabel them, but will use the full Tone listing for the representation of Chords in the Phrases
below.

C2 (#44, 3%):

CONTACTS-BLUE-GREEN

CONTACTS-BLUE-RED

C3 (#57, 3%):

CONTACTS-BLUE-GREEN

CONTACTS-GREEN-RED

C4 (#124, 19%):

CONTACTS-BLUE-GREEN

ATTACHED-HAND-RED

C7 (#64, 16%):

ATTACHED-BLUE-HAND

C8 (#61, 5%):

ATTACHED-BLUE-HAND

ATTACHED-BLUE-GREEN

C9 (#213, 50%):

ATTACHED-HAND-RED

C10 (#116, 11%):

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

C13 (#89, 8%):

ATTACHED-HAND-RED

ATTACHED-BLUE-RED

C14 (#149, 12%):

ATTACHED-HAND-RED

ATTACHED-GREEN-RED

C11 (#57, 5%):

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

ATTACHED-BLUE-RED

C12 (#59, 5%):

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

ATTACHED-GREEN-RED

C15 (#176, 16%):

ATTACHED-BLUE-GREEN

Figure 9.5: The lattice of the most interesting margin-closed Chords from the Video data. The
three trivial Chords in the upper right represent the hand holding one of the three
blocks. The two most specific Chords with three Tones describe a stack of three
blocks with the hand holding the topmost block.

9.2. EFFICACY AND EFFICIENCY OF TSKM 99

The Chords C2 and C3 in the upper left represent a stack of three blocks not touched by
the hand. Without looking at the original Video data, it is unclear at this point however, which
block sits on top and which at the bottom. For C2 we only know that blue is in the middle,
because it is an argument of both contacts relations. The trivial Chord C9 describes the hand
holding the red block. This Chord has very high support, covering 50% of all time points and
has several super-Chords. C13 and C14 describe the hand holding the red block, while it sits on
top of the green or blue block, respectively. Both have further super-Chords C11 and C12 where
yet another block is part of the stack. Note, how the support of the super-Chords is always at
least 10% smaller than that of any immediate sub-Chords, according to α = 0.1.

The occurrences of the Chords within each known scenario are listed in Table 9.2. The
correspondences are striking. All Chords except C9 appear only during some scenarios and
all except C2 seem to appear in almost all repetitions3. C2 is only present in about half of
the assemble scenarios. C15 seems to appear twice within most assemble and disassemble
scenes. The Chord patterns are not sufficient, however, to discriminate the scenarios, because
they always appear in at least two different scenes. There are four pairs of scenarios that are
semantically reversed version of one another. In order to distinguish each pair, we need patterns
expressing an order among the Chords.

Scenes Chords

C2 C3 C4 C7 C8 C9 C10 C11 C12 C13 C14 C15

pick-up 0 0 0 0 0 30 0 0 0 0 30 0

put-down 0 0 0 0 0 30 0 0 0 0 31 0

move-left 0 0 0 0 0 15 0 0 0 15 15 0

move-right 0 0 0 0 0 15 0 0 0 14 14 0

stack 0 28 30 0 0 30 30 0 30 0 30 30

unstack 0 29 30 0 0 30 30 0 29 0 29 30

assemble 14 0 34 34 31 33 26 27 0 30 0 56

disassemble 30 0 30 30 30 30 30 30 0 30 0 60

Table 9.2: Occurrences of Chords in each of the scenes of the Video data.

During the conversion of the interval sequence of Chords to an itemset interval series we
applied an additional filtering step for this data set. From Figure 9.5 it is clear that in this
application more specific Chords are always more interesting. We thus removed all sub-Chords
of a larger Chord within each itemset. The smaller Chords are still present on intervals where
they appear without any concurrent super-Chord. Using a minimum frequency of 12, 20 closed
sequential patterns were found and grouped into the 10 margin-closed Phrases (α = 0.1) shown
in Figure 9.6. We added the labels of the represented scenarios to the Phrase names according
to the co-occurrence analysis described below.

The occurrences of the Phrases in the known scenarios in Table 9.3 shows an almost perfect
correspondence of the found Phrases with the underlying temporal phenomena in the data. For
most scenes the Phrase describing the actions in the video can easily be picked by using the
maximum of the corresponding row. In cases where this does not suffice it helps to look at the
Phrase relations in Figure 9.6. For move-left we picked Phrase P10. Even though P9 also occurs
in all move-left scenes, it is a less specific description than P10 and also describes the pick-up
scene. The pick-up scene is thus a sub-scene of move-left because blocks of the same colors were
used. Similar, for move-right P7 is the best description because it is more specific than the
super-Phrases P8 and P6, the latter describes the put-down scene. For assemble we picked the
the more specific Phrase P5 instead of the slightly more frequent P4.

3All occurrences within a window were counted.

9.2. EFFICACY AND EFFICIENCY OF TSKM 100

disassemble/P1 (#30, 0.24)

CONTACTS-BLUE-GREEN

CONTACTS-BLUE-RED

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

ATTACHED-BLUE-RED

CONTACTS-BLUE-GREEN

ATTACHED-HAND-RED

ATTACHED-BLUE-HAND

ATTACHED-BLUE-GREEN
ATTACHED-BLUE-HAND

unstack/P2 (#28, 0.06)

CONTACTS-BLUE-GREEN

CONTACTS-GREEN-RED

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

ATTACHED-GREEN-RED

CONTACTS-BLUE-GREEN

ATTACHED-HAND-RED

stack/P3 (#28, 0.07)

CONTACTS-BLUE-GREEN

ATTACHED-HAND-RED

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

ATTACHED-GREEN-RED

CONTACTS-BLUE-GREEN

CONTACTS-GREEN-RED

P4 (#28, 0.14)

assemble/P5 (#24, 0.14)

ATTACHED-BLUE-HAND
ATTACHED-BLUE-HAND

ATTACHED-BLUE-GREEN

CONTACTS-BLUE-GREEN

ATTACHED-HAND-RED

ATTACHED-BLUE-HAND
ATTACHED-BLUE-HAND

ATTACHED-BLUE-GREEN

CONTACTS-BLUE-GREEN

ATTACHED-HAND-RED

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

ATTACHED-BLUE-RED

put-down/P6 (#45, 0.09)

move-right/P7 (#13, 0.04)

P8 (#15, 0.03)

ATTACHED-HAND-RED
ATTACHED-HAND-RED

ATTACHED-GREEN-RED

ATTACHED-HAND-RED

ATTACHED-BLUE-RED
ATTACHED-HAND-RED

ATTACHED-HAND-RED

ATTACHED-GREEN-RED

ATTACHED-HAND-RED

ATTACHED-BLUE-RED
ATTACHED-HAND-RED

pick-up/P9 (#45, 0.08)

move-left/P10 (#15, 0.04)

ATTACHED-HAND-RED

ATTACHED-GREEN-RED
ATTACHED-HAND-RED

ATTACHED-HAND-RED

ATTACHED-GREEN-RED
ATTACHED-HAND-RED

ATTACHED-HAND-RED

ATTACHED-BLUE-RED

Figure 9.6: The lattice of all margin-closed Phrases from the Video data. The Phrases that best
represent each scenario were labeled accordingly.

9.3. ALLEN’S RELATIONS 101

Scenes Phrases

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

pick-up 0 0 0 0 0 1 0 0 30 0

put-down 0 0 0 0 0 30 0 0 0 0

move-left 0 0 0 0 0 0 0 1 15 15

move-right 0 0 0 0 0 14 13 14 0 0

stack 0 0 28 0 0 0 0 0 0 0

unstack 0 28 0 0 0 0 0 0 0 0

assemble 0 0 0 28 24 0 0 0 0 0

disassemble 30 0 0 0 0 0 0 0 0 0

Table 9.3: Occurrences of Phrases in each of the scenes of the Video data.

The selected Phrases do not only show high correspondence with the known classification
of segments in the data, they further explain the actions in the videos. In the pick-up Phrase
(P9) the hand first touches the red block, which is resting on the green block (attached-hand-red
and attached-green-red). Next, the hand is holding the red block (attached-hand-red) and the
relation of the red and green block has vanished. This is exactly what happens in the videos
for this scene. The put-down Phrase (P6) represents the reversed order of the same Chords,
indicating the hand holding the red block and placing it on top of the green block. The same
inverse relation is observed between the two move scenes (P7 and P10) where the red block is
placed on (taken off) the blue block. In the stack Phrase (P3) the hand is first holding the
red block, while the green block is already resting on the blue block (attached-hand-red and
contacts-blue-green). When the red block is placed on top of the stack, all three blocks and the
hand are connected with three attached relations. The third Chord in this Phrase describes the
final stack of three blocks with two contacts relations. The hand that has released the red block,
the attached-hand-red has disappeared. Again unstack Phrase (P2) is the exact reverse of the
stack scene. The most complex scenes, assemble and disassemble are also well described by the
Phrases P5 and P1, even though for assemble the final stack of three blocks is not recognized.

9.3 Allen’s Relations

In Chapter 7.3 we have shown many theoretical advantages of the TSKR over Allen’s relations.
We now demonstrate the problems of Allen’s relations on the two data sets where mining TSKR
patterns was successful. We used the pattern format of (Höppner, 2003) using all pairwise
Allen’s relations of the intervals within a pattern, because the compact formats are ambiguous
(see Chapter 7.3). The support of patterns was measured based on counting occurrences in
windows as in (Kam and Fu, 2000; Cohen, 2001) to be comparable with the Phrase mining that
also relies on a given windowing. We further pruned the set of patterns applying the concept of
margin-closedness in a brute force post-processing step.

9.3.1 Skating data

We searched the Skating data for patterns expressed with Allen’s relations using a minimum
frequency of eight and a minimum size of two resulting in 6844 patterns. Pruning by enforc-
ing margin-closed patterns with α = 0.1 returned 1073 patterns. The resulting pattern size
distribution is shown in Figure 9.7.

There were six patterns of the largest size nine, one example of each is shown in Figure 9.8.
The pattern A4 appeared in 10 out of 19 movement cycles, the others barely meet the minimum
frequency of eight. The pattern visualizations were presented to the expert, because the listing

9.3. ALLEN’S RELATIONS 102

2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

Number of intervals in pattern

P
er

ce
nt

ag
e

of
 p

at
te

rn
s

Figure 9.7: Histogram showing the distribution of sizes for margin-closed patterns expressed
with Allen’s relations in the Video data.

of all 36 pairwise relations did not offer a comprehensible description, see Figure 9.9 for pattern
A4.

The relation of the Gluteus muscle activity to the movement phases and the trigger states,
visible in many of the six patterns, was recognized as valid. But the extremely limited informa-
tion provided on the states of the Vastus and Gastroc muscles, mainly responsible for forward
propulsion, rendered the patterns useless to the expert. There are only two patterns containing
states of the Vastus muscle. In A3 (Figure 9.8(c)) only the very high state is included and no
information on Gastroc is given. In Figure 9.8(f) all three Vastus states are present, but no in-
formation on the foot contact (Trigger) is available. It is the connection of external information
like movement phase and foot contact with internal information on muscle activity, however,
that is of utmost importance for this application. The Gastroc muscle only appears with low
activity, if at all. Other facts provided by the patterns, e.g., the sequence of the three movement
phases in the displayed order and the two alternating Trigger states, are already obvious from
the input data and offer no additional information.

Because a correspondence of muscle activity to movement related information was sought
we filtered the pattern set explicitly for patterns containing the states high or very high for the
Vastus and Gluteus muscles and on for the Trigger. The results are listed in Table 9.4. With too
strict conditions, no patterns were found at all. Only if one of the states describing the Vastus
muscle to be active was not required to be part of the pattern, a few patterns with relatively
low support were found. Further, the Gluteus muscle states and the foot contact were almost
always related to the high or very high activation of Vastus with the before relation, which is
not as interesting as relations with overlapping intervals in this application.

Trigger Vastus Gluteus Number of Largest
on high very high high very high patterns support

× × × × 6 11

× × × × 3 8

× × × × 0 0

× × × × 0 0

× × × × × 0 0

Table 9.4: Number of patterns and maximum support for Allen patterns relating active states
of the two most important muscles with the foot contact.

9.3. ALLEN’S RELATIONS 103

Trigger (on,off)

Move (glide+push,recovery,swing)

Gastroc (low)

Vastus

Gluteus (very high,high,low)

(a) A1 found 8 times

Trigger (on,off)

Move (glide+push,recovery)

Gastroc (low,low)

Vastus

Gluteus (very high,high,low)

(b) A2 found 8 times

Trigger (on,off)

Move (glide+push,recovery,swing)

Gastroc

Vastus (very high)

Gluteus (very high,high,low)

(c) A3 found 8 times

Trigger (on,off)

Move (glide+push,recovery,swing)

Gastroc (low)

Vastus

Gluteus (very high,high,low)

(d) A4 found 10 times

Trigger (on,off)

Move (glide+push,recovery,swing)

Gastroc (low)

Vastus

Gluteus (high,very high,low)

(e) A5 found 8 times

Trigger

Move (glide+push,recovery,swing)

Gastroc (low)

Vastus (very high,high,low)

Gluteus (high,very high)

(f) A6 found 8 times

Figure 9.8: Example instances of the largest patterns found with Allen’s relations in the Skating
data. Each Aspect is shown in one row, the Tone labels for the intervals on the left
are listed in parenthesis.

9.3. ALLEN’S RELATIONS 104

Trigger is on overlaps Move is glide+push
Gluteus is very high during Trigger is on
Gluteus is high during Trigger is on
Trigger is on overlaps Gluteus is low
Trigger is on meets Trigger is off
Trigger is on before Gastroc is low
Trigger is on before Move is recovery
Trigger is on before Move is swing
Gluteus is very high during Move is glide+push
Gluteus is high during Move is glide+push
Move is glide+push overlaps Gluteus is low
Move is glide+push overlaps Trigger is off
Move is glide+push overlaps Gastroc is low
Move is glide+push meets Move is recovery
Move is glide+push before Move is swing
Gluteus is very high meets Gluteus is high
Gluteus is very high before Gluteus is low
Gluteus is very high before Trigger is off
Gluteus is very high before Gastroc is low
Gluteus is very high before Move is recovery
Gluteus is very high before Move is swing
Gluteus is high meets Gluteus is low
Gluteus is high before Trigger is off
Gluteus is high before Gastroc is low
Gluteus is high before Move is recovery
Gluteus is high before Move is swing
Gluteus is low overlaps Trigger is off
Gluteus is low overlaps Gastroc is low
Move is recovery during Gluteus is low
Gluteus is low overlaps Move is swing
Trigger is off overlaps Gastroc is low
Move is recovery during Trigger is off
Trigger is off overlaps Move is swing
Move is recovery during Gastroc is low
Gastroc is low overlaps Move is swing
Move is recovery meets Move is swing

Figure 9.9: Listing of pairwise relations for the most frequent large Allen pattern A4 found in
the Skating data.

9.3. ALLEN’S RELATIONS 105

Trigger (on)

Vastus (high,very high,high,very high,high)

Gluteus (high,very high,high)12

3 4

5 Trigger (on)

Vastus (high,very high,high,very high,high)

Gluteus (high,very high,high)12

3 4

5 Trigger (on)

Vastus (high,very high,high,very high,high)

Gluteus (high,very high,high)12

3 4

5 Trigger (on)

Vastus (high,very high,high,very high,high)

Gluteus (high,very high,high)12

3 4

5 Trigger (on)

Vastus (high,very high,high,very high,high)

Gluteus (high,very high,high)12

3 4

5

Figure 9.10: Example instance of a rare Allen pattern that contains information on Gluteus,
Vastus, and Trigger. The numbered intervals are referred to in Table 9.5.

There seemed to be a mutually exclusive relationship between internal and external infor-
mation that is contrary to the aim of the study. We looked at the relative positioning of the
interesting Gluteus, Vastus, and Trigger intervals in each movement cycle. An example is shown
in Figure 9.10. The first very high activation state of Vastus overlaps the foot contact (Trig-
ger on) and towards the end of the foot contact, first the Gluteus muscle and then the Vastus
muscle show very high activity followed by high activity. This pattern represents the expected
temporal relations of the very high states and the foot contact. It only occurs two times with
exactly the same relationships according to Allen, however. Many different fragmented versions
are present where either one of the short high activation intervals is missing, or one or more of
the overlaps relations change to the during or before relations. The occurrences considering all
possible combinations of the numbered intervals from Figure 9.10 are listed in Table 9.5.

3 missing 3 overlaps 5 3 during 5

1 or 4 missing 3 1 1

1 before 4 1 0 0

1 overlaps 4 4 overlaps 2 4 2 2

1 overlaps 4 4 during 2 2 0 2

1 during 4 0 0 1

Table 9.5: Occurrences of fragments of the Allen pattern shown in Figure 9.10 by considering
similar alternatives for the relations between the intervals.

9.3.2 Video data

For the video data we searched patterns expressed with Allen’s relation using a minimum size of
two and a minimum frequency of 10. This resulted in 363 patterns, 174 of which were margin-
closed for α = 0.1. This large amount of patterns could not be analyzed manually, some filtering
needed to be applied.

We first looked at the 14 largest patterns with five or more intervals. Patterns of these sizes
were only observed within the (dis)assemble scenes as shown in Table 9.6. From the valid TSKR
patterns for the scenes pick-up, put-down, and move (see Figure 9.6) we know, that there are
only three qualitatively different intervals, so no Allen patterns of size five or more were to be
expected. The (un)stack scenes however, consist of six intervals (counting the attached-hand-red
only once, since it is present in two consecutive Chords) and should have been found if the
pairwise interval relations were consistent enough for the frequency threshold.

The patterns L8 and L9 describe fragments of the assemble scenario. The rules for these
patterns are listed in Figure 9.11 and Figure 9.12. Five out of ten conditions are equal, the other
differ either in the relation or in the participating intervals.

A graphical representation of one example for each pattern is given in Figure 9.13. Going
from left to right, both patterns start with the hand holding the blue block when only the
attached-blue-hand interval is present in the second row. The placing of the blue on the green
block is described with the next interval in the top rows and Allen’s relation attached-blue-hand

9.3. ALLEN’S RELATIONS 106

Scenes Allen patterns

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14

pick-up 0 0 0 0 0 0 0 0 0 0 0 0 0 0

put-down 0 0 0 0 0 0 0 0 0 0 0 0 0 0

move-left 0 0 0 0 0 0 0 0 0 0 0 0 0 0

move-right 0 0 0 0 0 0 0 0 0 0 0 0 0 0

stack 0 0 0 0 0 0 0 0 0 0 0 0 0 0

unstack 0 0 0 0 0 0 0 0 0 0 0 0 0 0

assemble 0 0 0 0 0 0 0 10 10 0 0 0 0 0

disassemble 21 21 21 21 20 21 20 0 0 17 17 17 11 11

size 5 5 5 5 5 5 5 5 5 6 6 6 7 7

Table 9.6: Occurrences of large Allen patterns in each of the scenes of the Video data.

attached-blue-green ends attached-blue-hand
attached-blue-hand meets contacts-blue-green
attached-blue-hand before contacts-blue-green
attached-blue-hand before contacts-blue-red
attached-blue-green meets contacts-blue-green
attached-blue-green before contacts-blue-green
attached-blue-green before contacts-blue-red
contacts-blue-green before contacts-blue-green
contacts-blue-green before contacts-blue-red
contacts-blue-green equals contacts-blue-red

Figure 9.11: Listing of pairwise relations for the large Allen pattern L8 found in Video data.

ends attached-blue-hand. The remaining intervals describe only fractions of the actions in the
video, however, the subsequent placing of the red block on top of the stack is missing in both
patterns.

The patterns L13 and L14 shown in Figure 9.14 both almost completely describe the disas-
semble scene. L13 is started by two contacts relations in the two bottom rows indicating the
initial stack, L14 includes only one of the two. Next, when the hand touches the stack, in both
patterns three attached states are observed simultaneously in the top rows. When the hand
lifts up the top most block, only L14 contains the concurrent contacts-blue-green relation of the
other two blocks. Both patterns continue with the removal of the second block indicated by two
concurrent attached actions in the second and fourth row and finish with only the hand holding
one block (attached-blue-hand). Each pattern thus misses one interval that is contained in the
other one. There is no complete pattern of size eight found, even when lowering the frequency
threshold to five.

Since the largest patterns were not very useful we filtered the mining results by frequency.
Given the prior knowledge on 30 scenarios for most scenes we selected all patterns with at least
24 occurrences and a minimum size of three. A total of 28 patterns were found. The confusion
matrix with the known scenes is given in Table 9.7. We omitted 15 patterns that were only
present in the disassemble scenes. They were only of size three and four and better, larger
patterns have already been discovered for this scene above.

For the pick-up scene the patterns F8 and F9 give valid and quite similar descriptions of
the actions in the scene (see Figure 9.15). First, only the contacts-green-red state is observed.
Next, the hand is touching the stack of two blocks (attached-hand-red and attached-green-red
are valid) and finally only the attached-hand-red state is valid. The difference between the two

9.3. ALLEN’S RELATIONS 107

attached-blue-green ends attached-blue-hand
attached-blue-hand meets contacts-blue-green
attached-blue-hand before attached-blue-green
attached-blue-hand before contacts-blue-red
attached-blue-green meets contacts-blue-green
attached-blue-green before attached-blue-green
attached-blue-green before contacts-blue-green
contacts-blue-green meets attached-blue-green
contacts-blue-green before contacts-blue-green
attached-blue-green meets contacts-blue-green

Figure 9.12: Listing of pairwise relations for the large Allen pattern L9 found in Video data.

CONTACTS−BLUE−GREEN

CONTACTS−BLUE−RED

ATTACHED−BLUE−HAND

ATTACHED−BLUE−GREEN

(a) Example of L8

CONTACTS−BLUE−GREEN

ATTACHED−BLUE−HAND

ATTACHED−BLUE−GREEN

(b) Example of L9

Figure 9.13: Example instances the large Allen patterns L8 and L9 found in assemble scenes
of the Video data. The graphical representations are easier to compare than the
textual representations in Figure 9.11 and Figure 9.12.

9.3. ALLEN’S RELATIONS 108

CONTACTS−BLUE−GREEN

CONTACTS−BLUE−RED

ATTACHED−BLUE−HAND

ATTACHED−HAND−RED

ATTACHED−BLUE−GREEN

ATTACHED−BLUE−RED

(a) Example of L13

CONTACTS−BLUE−GREEN

CONTACTS−BLUE−RED

ATTACHED−BLUE−HAND

ATTACHED−HAND−RED

ATTACHED−BLUE−GREEN

ATTACHED−BLUE−RED

(b) Example of L14

Figure 9.14: Example instances the large Allen patterns L13 and L14 found in disassemble scenes
of the Video data. The patterns differ only in the bottom rows of intervals describ-
ing the contact of the blue and green block. No large pattern combining L13 and
L14 is found.

Scenes Allen patterns

F2 F6 F8 F9 F10 F12 F13 F14 F15 F16 F17 F19 F20

pick-up 0 0 11 15 0 0 0 0 0 0 0 0 0

put-down 0 0 0 0 0 0 0 18 0 0 0 0 0

move-left 0 0 3 11 0 0 13 0 0 0 0 0 0

move-right 0 8 0 0 0 0 0 9 0 0 0 0 0

stack 0 0 0 0 0 20 0 16 0 0 0 0 0

unstack 27 0 12 17 0 0 0 0 0 0 0 27 0

assemble 0 0 0 0 27 5 15 0 37 36 25 0 29

disassemble 21 26 0 0 0 0 0 0 1 0 0 0 0

size 3 3 3 3 3 3 3 3 3 3 3 3 3

Table 9.7: Occurrences of frequent Allen patterns in each of the scenes of the Video data.

patterns is the exact relation of the contacts-green-red and attached-hand-red intervals. In F8
they are related by the overlaps relation and in F9 by the meets relation. This is an example
of pattern fragmentation. The meets and overlaps relations are intuitively very similar in this
case, because the overlapping part is only one or two time units long. Both patterns would
not have been found with higher frequency thresholds, in fact they are only found because they
also appear in other scenes, which makes them less distinctive. A third version where the two
intervals are related with the before relation with a gap of only one time unit appears in the
remaining four pick-up scenes.

Both F8 and F9 patterns also appear quite often in the unstack scene. This was not observed
in the TSKR descriptions. The Chord describing the coincidence of attached-hand-red and
attached-green-red was found in both pick-up and unstack, but not the Phrase describing the
order of the former Chord and the trivial Chord attached-hand-red. A closer look at Figure 9.6
reveals, however, that the Phrase for pick-up is indeed contained in the Phrase for unstack. It
is not a sub-Phrase by definition, however, because the 2-Chord in pick-up/P9 is extended to a
3-Chord in unstack/P2.

For the put-down scene only one pattern (F14) shown in Figure 9.16 is observed. It is
the reversed version of the patterns for the pick-up scene. First, only the attached-hand-red is

9.3. ALLEN’S RELATIONS 109

CONTACTS−GREEN−RED

ATTACHED−HAND−RED

ATTACHED−GREEN−RED

(a) Example of F8

CONTACTS−GREEN−RED

ATTACHED−HAND−RED

ATTACHED−GREEN−RED

(b) Example of F9

Figure 9.15: Example instances the frequent Allen patterns F8 and F9 found in pick-up scenes
of the Video data. The two patterns are visually very similar, but the relations of
the intervals are different due to slightly shifted interval boundaries.

CONTACTS−GREEN−RED

ATTACHED−HAND−RED

ATTACHED−GREEN−RED

Figure 9.16: Example instances of the frequent Allen pattern F14 found in put-down scenes of
the Video data. The frequency of visually similar patterns with different relations
due to slightly shifted interval boundaries are listed in Table 9.8.

observed, then attached-green-red is valid simultaneously when the red block is placed on the
green block and finally the result is contacts-green-red, without the hand. The end points of
attached-hand-red and attached-green-red are aligned and occur exactly one time unit before
the contacts-green-red interval starts. This corresponds to the finished by and meets relations,
respectively. A closer look at the data revealed several infrequent fragments of this pattern.
Small shifts in the interval end points change the relations, the occurrences of all possible
combinations is listed in Table 9.8. Only one combination is frequent enough to appear in the
mining result in form of pattern F14. The remaining 12 scenarios of put-down are fragmented
into four different rare patterns.

We did not expect to find patterns for the move scenes, because there are only 15 repe-
titions. Nevertheless, some patterns are found because they also appear in some of the more
complex scenes. All patterns for move, (un)stack, and (dis)assemble only describe fragments
of the respective experimental setups, because they are simply too small. Using only three
intervals, the patterns for move recognize only one of the two stacks of two blocks present at
the beginning and the end of the scenes. Similarly, in the (un)stack and (dis)assemble scenes
the simultaneous presence of three intervals (the hand touching a stack of three blocks) is never
discovered. As an example we show pattern F20 found in 29 out of 30 of the assemble scenes in

9.4. UNIFICATION-BASED TEMPORAL GRAMMAR 110

attached-hand-red and attached-green-red
during finished by overlaps

attached-hand-red overlaps 6 0 0

and meets 2 18 0

contacts-green-red before 0 1 3

Table 9.8: Occurrences of fragments of Allen patterns in the put-down scenes by considering
similar alternatives for the relations between the intervals.

CONTACTS−BLUE−RED

ATTACHED−BLUE−GREEN

ATTACHED−BLUE−RED

Figure 9.17: Example instances the frequent Allen pattern F20 found in assemble scenes of the
Video data. Only fragments of this complex scene are explained by the pattern.

Figure 9.17. It merely consist of the sequential occurrence of attached-blue-green, attached-blue-
red, and contacts-blue-red, not even remotely explaining the complex scenario involving three
blocks and the hand.

9.4 Unification-based Temporal Grammar

One major difference between the TSKR pattern language and its ancestor UTG is the extension
of Event patterns from almost synchronicity of a fixed number of intervals to the arbitrary sized
Chord patterns expressing the more general temporal concept of coincidence. In Chapter 7.3 we
have shown how this leads to a higher temporal expressivity. We briefly demonstrate the effects
of restricting the search space to synchronous Event patterns on the two interval data sets.

The mining of Events was performed in two steps. We first mined Chord patterns with a
minimum size according to the definition of Events and then pruned all instances that could not
be considered almost synchronous in a post-processing step. Let sf and sl be the first and last
start points and ef and el be the first and last end points of all participating Tone intervals (see

Figure 9.18 for an example). If
sl−sf+1
ef−sl+1 > ǫ or

el−ef+1
ef−sl+1 > ǫ for a threshold ǫ determining the

strictness of synchronicity, the Chord instance was discarded.

Figure 9.18: The first and last start and end points are used to check the almost synchronicity
of a Chord to obtain UTG Events from Chords.

9.4. UNIFICATION-BASED TEMPORAL GRAMMAR 111

9.4.1 Skating data

The initial Chord mining was performed with the same parameters as in Chapter 9.2.1, except
for the minimum size 5 to enforce Event patterns providing state descriptions for all Aspects. A
total of five Chords was found. Four of these Chords had been selected and labeled by the expert
in Chapter 9.2.1. The effect of pruning the instances of each Chord with different values of the
synchronicity threshold to obtain Events is shown in Figure 9.19. As a reference, the number
of Chords is shown on the right, corresponding to no synchronicity restrictions (ǫ =∞). Up to
values of ǫ = 0.4 virtually no Event patterns are found. Note, that this already corresponds to
a very relaxed notion of synchronicity. The maximum temporal difference between the interval
start points (and end points, respectively) is allowed to be 40% of the duration of the core part of
the pattern where all intervals are valid simultaneously. Even for values up to ǫ = 1.0 none of the
interesting patterns is found as a frequent Event with a minimum frequency threshold of 8. Only
the swing pattern appears as an Event with about 25% of the occurrences of the corresponding
Chord. The Event labeled unknown is the only pattern that would have exceeded the minimum
frequency with ǫ > 0.5. It was not selected by the expert in Chapter 9.2.1, however, because
it appears only on 3% of the time points and does not represent an interesting combination of
Tone patterns. Further processing to find higher level patterns expressing order was not possible
with only one Event pattern.

0
10
20
30

recovery

0
10
20
30

swing

0
10
20
30

pre−activation

0
10
20
30

unknown

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10
20
30

push

ε
∞

Figure 9.19: The Frequency of UTG Events for different values of ǫ found in the Skating data.
The frequency of the unrestricted 5-Chords found with TSKM is shown on the
right hand side. The smaller the parameter ǫ, the more instances are dropped
because they are not considered almost synchronous. Only one Event is found for
reasonably small values of ǫ.

9.5. HIDDEN MARKOV MODELS 112

9.4.2 Video data

The Video data does not provide the notion of Aspects. For the mining of TSKR patterns
we resorted to eight Aspects with a single state each, but it would not make sense to require
Events to contain all eight states simultaneously. There would only be one possible Event that
never occurs. We therefore graciously allow Events to be of arbitrary size on this data set and
only raised the minimum size of the Chords to two intervals to be able to measure the amount
of synchronicity. This leads to nine Chord patterns. Figure 9.20 shows the effect of different
values of ǫ on the occurrences of the resulting Event patterns in comparison with the count for
the unrestricted Chord patterns, the participating Tone intervals for each pattern are listed in
Table 9.9

Event Tones

P1 contacts-blue-green, contacts-blue-red
P2 contacts-blue-green, contacts-green-red
P3 contacts-blue-green, attached-hand-red
P4 attached-blue-hand, attached-blue-green
P5 attached-hand-red, attached-blue-green
P6 attached-hand-red, attached-blue-green, attached-blue-red
P7 attached-hand-red, attached-blue-green, attached-green-red
P8 attached-hand-red, attached-blue-red
P9 attached-hand-red, attached-green-red

Table 9.9: Tones that appear almost synchronously as UTG Events in the Video.

Again, most patterns have very low frequencies for values as high as ǫ = 0.7. Only the
two top most patterns (P1 and P2) are almost as frequent as the unrestricted Chord even for
low values of ǫ. Both describe the co-occurrence of two contacts relations, i.e., a stack of three
blocks. Recall, that while the hand is touching the stack, all blocks in the stack are related
by attached relations, the two contacts relations thus disappear synchronously when the hand
touches the top most block and (re)appear when the hand releases it.

Pattern P3 is observed about half as often as the corresponding Chord for ǫ > 0.6. All other
patterns are not found for all reasonably low thresholds. They all consist exclusively of attached
relations including one with the hand holding a block. The attached relations involving colored
blocks describe the stack being touch by the hand. In these scenarios the hand holding a block
is always valid long before or long after the block is put on or taken off a stack, the intervals
can thus not be considered almost synchronous.

Trying to find order patterns (Sequences) using the two almost synchronous Event patterns
P1 and P2 was not possible, because only at most one of the two occurred within each scenario.

9.5 Hidden Markov Models

Hidden Markov Models (HMM) (Rabiner, 1989) are a very popular method for modelling multi-
variate time series with underlying states. We have described numerous applications of HMM in
Chapter 5. We evaluate how well a HMM can capture the temporal structure of the Skating data
and analyze the explanation capabilities of the model. Only the Skating data set is available for
this task, because the intervals of the Video data were directly obtained from the videos and
not from time series.

We used the 10-dimensional time series for HMM training obtained by merging the five
Aspects (see Chapter A.1.2). All time series except the angular displacements were rescaled
to the interval [0, 1] to obtain numerical values that can be interpreted as percentages of the

9.5. HIDDEN MARKOV MODELS 113

0

100

200
P1

0

100

200
P2

0

100

200
P3

0

100

200
P4

0

100

200
P5

0

100

200
P6

0

100

200
P7

0

100

200
P8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200
P9

ε
∞

Figure 9.20: The Frequency of UTG Events for different values of ǫ found in the Video data.
The frequency of the unrestricted 5-Chords found with TSKM is shown on the
right hand side. The smaller the parameter ǫ, the more instances are dropped
because they are not considered almost synchronous. Only two Events are found
for reasonably small values of ǫ.

9.5. HIDDEN MARKOV MODELS 114

maximum. A HMM with Gaussian mixture models (GMM) as output distributions was trained
with the HMM Toolbox4. The GMM were initialized using k-Means. The maximum number of
training iterations was set to 50, the best of ten runs was used.

The aim of building a HMM on the Skating data was interpretation of the underlying phe-
nomena, therefore we tried using 2-20 states. Considering, that the important structure of
the data was captured by nine Chords with the TSKM (Chapter 9.2.1) more states do not
seem plausible. To enable a one dimensional display of the GMM, a diagonal covariance was
used. The evaluation of the models was performed using the Bayes Information Criterion (BIC,
Hastie et al. (2001)) that trades of the likelihood of the model given the data and the number of
parameters used. In Figure 9.21 the BIC values are shown for HMM with one or two Gaussian
distributions per state. There is no clear local maximum within the range of states. For two
mixtures, there is a slight decrease from 16 to 17 states, for one mixture, there is no increase
from five to six states.

2 4 6 8 10 12 14 16 18 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

5

Number of states

B
IC

1 mixture per state
2 mixtures per state

Figure 9.21: BIC scores for HMM models with one or two output distributions per state and
several numbers of states trained on the Skating data. No clear maximum is visible
within this range, two output distributions are generally better.

The BIC values are in general better for the HMM with two GMM per state. These models
sometimes merge two qualitatively different value regions of a variable in a single state. In
Figure 9.22 we show the Gaussian output distributions for the Gluteus muscle of the 5-state
model with two mixtures. State 1 and 2 have one output distribution in the regions corresponding
to low and high muscle activity, respectively. This means that when one of these states is
observed no useful information on the Gluteus muscle is given, because it could be either active
or not. Similarly, state 4 merges high activation and very high activation.

We therefore used single Gaussian output distribution per state and picked the 5-state model
for further analysis. The state sequence obtained by the Viterbi algorithm is shown in Figure 9.23
with the shaded bars below the input time series. A continuously repeating sequence of the five
states is clearly visible.

The particular state transition probabilities are shown in Table 9.10. The very high self-
transition probabilities on the diagonal indicate typically very long states, the largest values off

4http://www.ai.mit.edu/~murphyk/Software/hmm.html

http://www.ai.mit.edu/~murphyk/Software/hmm.html

9.5. HIDDEN MARKOV MODELS 115

0.2 0.4 0.6 0.8
0

5

10

15

20

Gluteus

Li
ke

lih
oo

d

HMM state 1
HMM state 2
HMM state 3
HMM state 4
HMM state 5

Figure 9.22: Mixture of two Gaussian distributions per state for the Gluteus muscle and a 5-
state HMM trained on the Skating data. The mixtures for a single HMM state do
not necessarily describe the same qualitative state of the Variable.

1000 2000 3000 4000 5000 6000 7000
HMM states
Trigger

Ankle angle

Knee angle

Hip angle

Ankle speed

Knee speed

Hip speed

Gastroc

Vastus

Gluteus

Time (ms)

Figure 9.23: Five second excerpt from input time series and the Viterbi state sequence from a
5-state HMM with single Gaussian output distributions per state trained on the
Skating data.

9.6. COMPARISON OF METHODS 116

the diagonal shown bold indicate likely state transitions. The most typical circular order among
the states according to this estimation is 1, 3, 2, 4, 5.

State 1 2 3 4 5

1 0.9965 0.0000 0.0035 0.0000 0.0000

2 0.0000 0.9969 0.0000 0.0030 0.0002

3 0.0000 0.0026 0.9974 0.0000 0.0000

4 0.0000 0.0001 0.0000 0.9976 0.0023

5 0.0104 0.0000 0.0000 0.0000 0.9896

Table 9.10: Matrix of state transition probabilities for 5-state HMM trained on the Skating data.
The off-diagonal row maxima are shown bold.

We analyzed the Gaussian distributions of each state and each variable for possible interpre-
tations. All mean values and standard deviations describing the states are listed in Table 9.11.
The mean values within each row can be used to get an impression of the dominant value range
in comparison with the other states. For example, state 1 seems to correspond to low pressure
of the foot contact (Trigger) and state 2 seems to indicate the foot touching the ground. In
particular, for most muscles an assignment of HMM states and qualitative descriptions can be
made. In Figure 9.24(a) state 1 and 3 seem to correspond to low activity of the Gastroc mus-
cle, while states 2, 4, and 5 represent successively higher level with few pairwise overlap of the
distributions. For the Vastus muscle in Figure 9.24(b) the three levels of activation similar to
the analysis in Chapter A.1 are observed. States 1 and 3 correspond to low, 4 and 5 to high,
and 2 to very high activity, respectively.

In other cases the output distributions do not offer much explanation, since the output
distributions have large overlap and high variance. The standard deviations for many of the
angular displacement distributions in particular are very large and do not characterize a distinct
state for these variables, e.g., for the knee angle in Figure 9.24(c). For the hip angle two states
centered at about 150 and 170 degrees are observed, while the other states show very widespread
distributions.

Variable State 1 State 2 State 3 State 4 State 5

Trigger 0.16±0.03 0.99±0.01 0.64±0.02 0.83±0.03 0.76±0.10

Ankle angle 89.26±159.87 67.08±33.09 76.08±6.13 66.57±5.05 58.16±2.30

Knee angle 161.79±101.25 135.12±16.21 145.50±18.73 148.38±9.65 148.53±13.79

Hip angle 171.91±5.29 140.44±33.04 155.21±118.73 151.71±2.96 159.94±26.26

Ankle speed 0.41±0.07 0.33±0.01 0.36±0.01 0.35±0.01 0.37±0.01

Knee speed 0.54±0.06 0.57±0.02 0.58±0.02 0.60±0.01 0.71±0.02

Hip speed 0.42±0.03 0.52±0.02 0.19±0.02 0.43±0.02 0.83±0.02

Gastroc 0.37±0.02 0.53±0.02 0.39±0.01 0.63±0.02 0.77±0.02

Vastus 0.32±0.01 0.71±0.02 0.35±0.03 0.63±0.03 0.58±0.05

Gluteus 0.29±0.01 0.65±0.02 0.38±0.03 0.68±0.03 0.44±0.02

Table 9.11: Mean values and standard deviation of Gaussian distributions per variable and state
for 5-state HMM trained on the Skating data.

9.6 Comparison of Methods

The application of the TSKM to the skating data was highly successful. The two patterns
selected from the results offered a good description the cyclical movements at different levels

9.6. COMPARISON OF METHODS 117

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Gastroc

Li
ke

lih
oo

d

HMM state 1
HMM state 2
HMM state 3
HMM state 4
HMM state 5

(a) Gastroc

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Vastus

Li
ke

lih
oo

d

HMM state 1
HMM state 2
HMM state 3
HMM state 4
HMM state 5

(b) Vastus

130 140 150 160 170 180
0

1

2

3

4

5

6

7

8

9
x 10

−3

Knee angle

Li
ke

lih
oo

d

HMM state 1
HMM state 2
HMM state 3
HMM state 4
HMM state 5

(c) Knee angle

130 140 150 160 170
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Hip angle

Li
ke

lih
oo

d

HMM state 1
HMM state 2
HMM state 3
HMM state 4
HMM state 5

(d) Hip angle

Figure 9.24: Gaussian distributions per state for four variables and a 5-state HMM trained on
the Skating data. For the muscle activity (Gastroc and Vastus) the distributions
have small variances can be qualitatively described. For the angles (Knee and Hip)
much larger variances are observed.

9.6. COMPARISON OF METHODS 118

of detail. The next step could be an analysis of such patterns over several skaters and skating
speeds to investigate possible intra and inter subject variations. The semantics of the pattern
language were found to be easily comprehensible and meaningful within the domain. The usage
of the TSKR patterns with the final graphical representation of the Phrases offered a great
benefit over simply viewing the input time series, as is common practice in the analysis of such
data in sports medicine.

The descriptions found by the TSKM in the Video data in an unsupervised process corre-
sponded exactly to the known experimental setups. The Phrases directly explain the actions
without the need to look at the original videos. Reversed patterns were found for reversed sce-
narios. A possible application of the found patterns is classification. One could mine the TSKR
patterns on part of the data and classify the remaining scenes by occurrence of the selected
Phrases. It is obvious from Table 9.3 that this would give excellent results on the data set.

The relation of muscle activity states to movement states, all of which are subject to noise
from the recording process and the discretizations procedure, does not seem to be well repre-
sentable with Allen’s relations. The patterns mined with Allen’s relations from the Skating data
were not useful to the expert. For patterns involving many intervals the textual representation
was very long and hard to comprehend. The patterns were therefore presented graphically with
an example instance from the data. Looking at a pattern instance is almost equivalent, however,
to looking at the input data before even mining patterns. The only benefit is that the intervals
somewhat represent the most dominant structure of the 19 movement cycles. In order to avoid
the selection of an ambiguous pattern one has to check all instances of a pattern, though. A
detailed analysis of the relation between the two major leg muscles and the foot contact revealed,
that the pattern representation is susceptible to both missing intervals and slightly shifted end
points that cause pattern fragmentation. No consistent relationship of these muscles and the
foot contact was expressible with Allen’s relations.

In the Video data several valid patterns based on Allen’s relations were found. The relative
positions of the involved intervals corresponded to the known actions in the videos, but most
patterns explained only fragments of the scenarios. The most frequent Allen patterns did not
show as good a correspondence to the known scenarios as the TSKR patterns (compare Table 9.7
and Table 9.3). As for the Skating data, we did not find the long listings of pairwise relations
useful for interpretation. The graphical representation of two similar patterns in Figure 9.13
was used for comparison instead of the textual representations in Figure 9.11 and Figure 9.12.
A detailed analysis of the strongest pattern for the pick-up scene revealed another example of
pattern fragmentation. The most frequent pattern of the pick-up scenes was not recognized in
more than a third of the examples due to slightly shifted interval boundaries.

We further demonstrated, that the restriction to almost synchronous intervals as performed
by the Event patterns of the UTG is too harsh on both data sets. For all sensible values
of the threshold determining almost synchronicity hardly any patterns were found. Even when
stretching the concept of synchronicity with quite large threshold values, only one Event pattern
with low temporal support was found in the Skating data making it impossible to mine Sequence
patterns. In the Video data, two Events were found and recognized as valid examples for
synchronous temporal phenomena. In some applications the distinction between general Chords
and Events (i.e. almost synchronous Chords) might be useful. In the Video data, however,
many other important Chords that composed the Phrase patterns found in Chapter 9.2.2 are
not recognized as Events and no Sequence patterns involving the two remaining Events were
found.

The HMM for the Skating data was able to capture the circular movements with a consistent
sequence of states. There was no clear indication on the number of states, however, the five state
model was chosen rather arbitrarily. Without further processing the HMM does not offer an
easily comprehensible description of these states. Even for only five states the model consist of

9.6. COMPARISON OF METHODS 119

135 numerical parameters. In order to interpret these parameters, knowledge on the structure of
HMM is needed. One needs to be familiar with the concept of transition probabilities, as well as
Gaussian distributions in order to understand the tabular and graphical representations given in
Chapter 9.5. Gaussian distributions with very large variances can be seen as an indicator, that
this variable is not very characteristic for a state, but in principle the likelihood of each state
always depends on all variables, whether they are relevant or not. In contrast to the rule based
models, the HMM does not offer abstraction mechanisms over the numerical values. Further,
it is designed to model the complete time series, whereas the other methods list patterns that
describe frequently occuring local phenomena.

Chapter 10

Discussion

The aim of this thesis is to develop effective means for the description of local temporal phenom-
ena in multivariate time series. In order to use the results for knowledge discovery we required
them to be understandable to humans. For the matter of understandability we distinguish
symbolic and sub-symbolic methods (Ultsch and Korus, 1995).

Sub-symbolic methods model the structure of data using many numerical parameters. They
are usually aimed at prediction or classification. The output of sub-symbolic methods often
depends on the values and interactions of most or all model parameters. They fail to explain the
prediction or the classification. There are certainly areas of data mining where it is sufficient to
build such black-box models that can approximately reproduce a classification or predict future
data. An important requirement for knowledge discovery is the interpretability of the results. In
many domains the expert wants to know why a decision was made or what a frequently occuring
pattern describes. Comprehensible descriptions of the models are crucial for the success in this
case.

As an example, consider the sub-symbolic method of Hidden Markov Models (HMM)
(Rabiner, 1989) applied to the Skating data. The HMM succeeded in capturing and reproducing
the temporal structure of the time series, but it failed to provide understandable explanations.
For this application the prediction of future behavior is useless. We did know that the person
repeats the same movement cycle, as it was an experiment under controlled conditions. Instead
we were interested in dominant patterns that explain the relations of the variables.

Symbolic methods are based on discrete data models. This provides the basis for under-
standability, as each data item can represent a qualitative description of small parts of the data.
We think that only symbolic representations can be easily understood by humans, especially if
they are not familiar with the complicated mathematical models used by many sub-symbolic
methods. However, models built with symbolic data are not necessarily understandable. If
too many or too large of patterns are produced, the human interpretation is hindered or made
impossible. We therefore further distinguish approaches aimed at automated data processing
or interactive knowledge discovery. For automated data processing methods, the results are not
meant to be analyzed manually, but provide input for other computer programs. In this case the
symbolic data is mainly of advantage for efficiency. Interactive knowledge discovery depends on
human analysis of the usefulness and novelty of the mined patterns. It is of utmost importance,
that neither the size of the patterns, nor the amount of patterns overwhelms the user. The
analyst will simple be lost and is less likely to continue the cooperation in the mining endeavor.
Successful data mining strives upon the communication between the experts in pattern mining
and the experts of the application domain. The former are needed to apply advanced techniques
and discover potentially interesting structures in the data, the latter are needed to evaluate and
utilize the results. We see our work in the scope of such symbolic methods aimed at human
interpretation.

120

121

We reviewed and analyzed many existing symbolic approaches for unsupervised mining of
temporal rules from time series data. Time point based methods were not found to be well
equipped for our purpose, because the important temporal concept of duration cannot be ex-
pressed by most methods. Interval based methods seemed more promising because duration is
modeled by the lengths of the intervals. The most powerful approaches for mining symbolic
interval patterns were carefully analyzed, namely the Unification-based Temporal Grammar
(UTG, Ultsch (1996b)) and patterns expressed with Allen’s relations (Allen, 1983; Höppner,
2003).

Based on the findings we designed a new representation that is inspired by the advantages of
both the UTG and Allen’s relations and compensates the identified problems. The TSKR pattern
language combines the high temporal expressivity of Allen’s relations with the robust matching
of interval boundaries of the UTG. By transferring the concept of partial order from the time
point based Episode (Mannila et al., 1995) patterns to interval data, a temporal expressivity
even beyond the patterns using Allen’s relations is obtained.

The hierarchical representation and the consistent use of semiotic triples for pattern represen-
tation, both inherited from the UTG, are highly promising for interactive knowledge discovery
tasks. Each pattern element describes a single temporal concept and is thus better compre-
hensible as a mixture of multiple concepts as represented by many of Allen’s relations. The
hierarchical composition of such elements to larger patterns offers a high level of abstraction
producing a compact representation that provides details on demand. The semiotic triples offer
an annotation of semantical and syntactical information with pragmatic descriptions to enable
better interpretation on higher, more abstract levels. The separate mining of single temporal
concepts leads to smaller search spaces and enables human interaction in analysis and filtering
of (partial) results.

The extensions of the UTG to the temporal concepts of coincidence and partial order posed
new algorithmic challenges. Similar to patterns mined with Allen’s relations we utilized well-
known methods from itemset mining. Both the mining of coincidence and of partial order were
formulated as frequent itemset problems, enabling the use of established efficient algorithms and
lattice-based visualization of pattern sets. The novel concept of margin-closedness effectively
prunes the results so they can be manually analyzed. From a set of similar patterns with almost
the same frequency, only the most specific pattern is retained. The amount of pruning is directly
controlled by a single parameter that ensures that all reported patterns have a minimum relative
difference in frequency. Rare specific as well as frequent general patterns are present in the result.
The pruning of the search space directly affects the runtime of the mining. Few patterns can be
found very fast and the parameter can be changed if the results are too coarse.

The detailed evaluation of the TSKM on two data sets showed the applicability and usefulness
of the new pattern language, the mining algorithms, and the graphical representations of the
results. The theoretical advantages in expressivity, robustness, and interpretability over other
interval rule languages were observed to be relevant in practice.

More insights on the properties of the TSKR and the mining algorithms could be obtained
by analyzing more datasets with different characteristics and with artificially generated data.
A preliminary analysis of several additional multivariate time series showed promising results.
The TSKR is only applicable, however, to multivariate time series that contain persisting states.
Only if some properties of the time series are observable during time intervals of a certain
minimum length (w.r.t. the time resolution of the measurements) we can extract Tones, Chords,
and Phrases. Chaotic time series as observed in some physical systems are probably not well
representable by the TSKR. For the TSKM algorithms we further require that the temporal
phenomena are repeatedly observed, as the most frequent patterns are searched.

In the remainder of this chapter we discuss the criteria we used to compare the TSKR
to other pattern languages and our choices of mining algorithms. In particular we reflect upon

122

interpretability according to the Gricean maxims (Grice, 1989). Existing and possible extensions
of the alternative interval pattern languages to increase the expressivity and robustness are
mentioned. We conclude with a comparison of our novel concept of margin-closedness to existing
approaches for condensed itemset representations and give hints to future work.

We are claiming higher interpretability for the TSKR pattern language in comparison with
patterns using Allen’s relations. For the Skating data an expert confirmed the results to be
easily comprehensible and more useful than the patterns expressed with Allen’s relations. For
the Video data set the patterns clearly described the known temporal phenomena in the data
whereas Allen’s relation captured only parts thereof. The concept of almost synchronicity of
the UTG turned out to be too restrictive for both data sets. The TSKM has further pro-
duced promising results for many additional data sets from various domains including stock
market data, music (Mörchen and Ultsch, 2004), robot sensors and Australian sign language
(Hettich and Bay, 1999) and cell phone sensors (Mäntyjärvi et al., 2004).

We used the Gricean maxims listed in Figure 10.11 to compare the interpretability of interval
pattern languages. This was suggested by Sripada et al. in a study where natural language
descriptions of time series were generated and the interpretability was evaluated by experts
in three different application domains (Sripada et al., 2003b). The authors noticed that the
suggested changes to the initial knowledge representation followed the Gricean Maxims. In our
comparison, the maxims of relevance and quantity as well as the aspect of ambiguity from the
maxim of manner revealed major differences between the pattern languages.

• Maxim of Quality: Truth

– Do not say what you believe to be false.

– Do not say that for which you lack adequate evidence.

• Maxim of Quantity: Information

– Make your contribution as informative as is required for the current pur-
poses of the exchange.

– Do not make your contribution more informative than is required.

• Maxim of Relation: Relevance

– Be relevant.

• Maxim of Manner: Clarity

– Avoid obscurity of expression.

– Avoid ambiguity.

– Be brief (avoid unnecessary prolixity).

– Be orderly.

Figure 10.1: The Gricean maxims of conversation (Grice, 1989) can be seen ”as presumptions
about utterances [...] that we as listeners rely on and as speakers exploit” (Bach,
2005).

The maxim of relevance is well supported by the hierarchical structure of the TSKR inherited
from the UTG. An expert can provide feedback on which patterns are relevant and interesting to

1Taken from http://en.wikipedia.org/wiki/Gricean_maxims

http://en.wikipedia.org/wiki/Gricean_maxims

123

him and discard valid but known patterns before the next level constructs are searched. Due to
the higher expressivity of the TSKR compared to the UTG, generally more patterns are found.
The usage of margin-closedness provides a powerful mechanism to reduce the size of the result
and produce a concise representation of the most important patterns supporting the maxim of
quantity.

Allen’s relations were shown to be prone to producing ambiguous patters, i.e., the same
rule describing quite different pattern instances. This could be prevented by splitting patterns
with potential high variability into several different patterns, e.g., using relations involving the
interval mid points (Roddick and Mooney, 2005). However, using 49 instead of 13 relations
with many additional conditions requiring equality of time points will in turn increase effects
of pattern fragmentation. Note that all pattern languages are vulnerable to ambiguity caused
by uniform warping, e.g., Chords involving the same coincidence of intervals but occuring with
widely differing durations. When observed, this can be avoided by using additional constraints
on minimal and maximum pattern duration.

In general it can be argued, whether the Gricean conversational maxims are good guidelines
for the design of knowledge representations in data mining. The interpretation of mining results
is not a conversation of humans, as many additional ways of expressing the meaning of language
are not available. The maxims are formulated as prescriptions, but according to Bach they are
”better construed as presumptions about utterances, presumptions that we as listeners rely on
and as speakers exploit” (Bach, 2005). We think that the output of data mining programs that is
targeted at humans for analysis, should take these presumptions into account in order to avoid
misinterpretation that cannot be recognized or corrected by the program. It is of particular
importance to report only true results according to the maxim of quality and to report only a
manageable amount of patterns according to the maxim of quantity, in order not to mislead or
overwhelm the user.

Less philosophical arguments for the comparison of interpretability of the pattern languages
could be drawn from user questionnaires (e.g. Guimarães (1998)) or psychological tests. This
is beyond the scope of this thesis. The participants of such a test could be asked to describe
given interval patterns with their own words and to draw examples of patterns described with
Allen’s relations or the TSKR. Imagine being given the listing of 15 pairwise Allen relations
in Figure 7.21 and the task to draw a qualitative example of the pattern. This is not at all a
trivial task, many dependencies need to be considered. In fact, this corresponds to the constraint
satisfaction problem of temporal reasoning which is NP-complete (Vilain et al., 1989). We think,
that the same task is rather easy given a description in the TSKR language and shouldn’t this
be the case in order to call a pattern understandable?

We proposed a novel measure for the robustness of interval patterns given noisy interval
boundaries. Only simple patterns were analyzed, as the main purpose of the measure was to
point out the conceptual differences of the pattern languages. The breakdown values only con-
sider shifted interval end points, other types of noise such as interruptions of intervals or missing
intervals are not accounted for. Extensions of the pattern languages to allow alternative labels
for positions in the pattern or to allow a certain amount of errors (Pei et al.; Yang et al., 2001a)
can be used to deal with these aspects of noise. The UTG already uses disjunctions on the most
abstract pattern level, called Temporal Patterns. For Allen’s relations, disjunctions of implica-
tion rules (Höppner, 2002a, 2003) and disjunctions of intervals within a rule (Höppner, 2002b,
2003) have been proposed. These method exploit the information content of rules, however, and
cannot be used with the basic interval patterns. For the TSKR we omitted such formulations for
clarity, the integration of disjunctions, negations, or error-tolerance into the pattern language
and the mining algorithms offers room for future explorations.

The dependence on exactly equal interval endpoints in many of Allen’s relations is the reason
for missing robustness on noisy interval data. There are certainly cases when the exact start and

124

end points of intervals matter. For example, in marketing it might be of interest, if consumption
went up during or after an advertising campaign started. In medicine the exact relation of
treatment periods and different health states of the patient can lead to insights about influence
of the medication. We think, however, that the use of Allen’s relations with inexact data is
conceptually flawed. Here, no distinction should be made between intervals starting or ending
exactly at the same time or within a small time window. Ignoring this fact leads to fragmented
patterns. Introducing thresholds for a more robust notion of equality of interval boundaries does
not completely solve the problem. The threshold needs to be chosen carefully to distinguish,
e.g., meeting intervals from overlapping intervals. The fragmentation problem is merely shifted
to variations of interval boundary differences slightly below or above the threshold value.

The problem of fragmented patterns has been recognized by Höppner for rules not contained
in the search space (Höppner, 2002a, 2003), but not for the more simple cases with interval
patterns we identified. As a solution, similar rules are merged using disjunctions but this makes
the patterns even longer than they already are for all but very simple cases. Note that such
large patterns were also observed in practice.

The lower expressivity of UTG Events in comparison to TSKR Chords was disastrous in
the two applications shown. The idea of synchronous intervals may be of interest in other
applications, though. In these cases it is easy to filter the more general Chords for approximate
synchronicity in a post-processing step to obtain the equivalent of UTG Events. The reason for
the TSKR being more expressive than Allen’s relation is the usage of partial order. In principle
it is possible to mine partially related patterns with Allen’s relations by allowing blanks in the
matrix of pairwise relations. We did not pursue this idea, because of the other disadvantages
w.r.t. robustness and interpretability.

The proposed algorithms for the TSKM provide an efficient methodology to mine TSKR
patterns based on established itemset mining techniques. It might be possible to further improve
the efficiency by utilizing the special structure of the data, namely itemset intervals and items
representing closed sequential patterns.

The problem of mining Chords and Phrases is quite similar to the well known sequential
pattern mining from itemset sequences. Each time point of a symbolic interval sequence could
be considered a transaction with an itemset holding one item for each symbolic interval that
contains the time point. The method of (Casas-Garriga, 2005) can be used to mine partial orders
of itemsets resulting in patterns similar in structure to our combination of Phrase and Chord
patterns. This way the selection of a subset of the intervals and the mining of order will be done
simultaneously. We think, that our methodology offers significant advantages. With time series
containing persisting states the long interval durations will cause a large waste of computing
resources. For the Skating data one transaction contains about 1,500 time point itemsets with
mostly five items and many exactly repeating itemsets. Using time interval data models that
represent states with duration largely reduces this complexity. Using the data model conversion
described in Chapter 8.5.1 directly on the interval sequence of Tones leads to much fewer itemsets
per transaction (for example about 15 itemsets for the Skating data). This still turned out to
be a very dense data set. The PrefixSpan (Pei et al., 2001) algorithm for sequential pattern
search did not terminate after more than one million function calls, whereas the search using
the interval itemset sequence of the nine selected margin-closed Chords finished with less than
a thousand calls.

The complexity of searching frequent itemsets is exponential in the total number of items. For
Chord mining this means that there might be performance problems with very high-dimensional
time series, for Phrase mining the complexity grows with the number of closed sequential pat-
terns. Searching margin-closed patterns is an effective way to control the complexity of the
search space. Nevertheless, there might be datasets where the TSKM algorithms become infea-

125

sible. It would be interesting to check, however, whether the number of Chords really grows at
an exponential rate for high dimensional data sets.

The separate mining of coincidence and the subsequent restriction to single picks from item-
sets of Chords in Phrase mining seems to largely reduce the problem complexity. Further, it
offers the possibility to interpret and filter the Chord patterns and revise parameter choices
before advancing to the next level. This way observations on the temporal structures of du-
ration and coincidence in the data as well as prior knowledge can be integrated in the mining
process. Using the pattern lattice (Zaki and Hsiao, 2005) or other itemset visualizations (e.g.
Steinbach et al. (2004)) the remarkable power of human perception (Shneiderman, 1996) can
be put to use. Recently, similar approaches integrating human interaction in data mining have
been suggested for classification (Ankerst et al., 2000) and clustering (Aggarwal, 2001).

The concept of margin-closedness was very valuable in the evaluation of the TSKM. It
largely reduced the amount of reported patterns, while preserving a variety of patterns ranging
from small patterns with high support to large patterns with low support. To the best of our
knowledge it represents a novel way of lossy compression for itemsets. There are numerous
methods available that provide condensed itemset representations, but they have mostly been
developed with different aims.

One common motivation is to find a small representation from which the support of all item-
sets can be exactly (Bykowski and Rigotti, 2001; Kryszkiewicz, 2001; Kryszkiewicz and Gajek,
2002; Calders and Goethals, 2002, 2003) or approximately (Boulicaut and Bykowski, 2000;
Pei et al., 2002; Boulicaut et al., 2003) derived. This makes frequent itemset mining feasible on
dense data sets where mining all frequent sets is prohibitively expensive. Association rules can be
generated based upon the condensed representation. The basic idea behind all these approaches
is to derive the support of an itemset given the support of all subsets (Calders and Goethals,
2003). If this is possible, the larger set does not need to be stored in the result. In TSKM we
are particularly interested in large itemsets, corresponding to specific patterns. It would be very
inconvenient to only present the list of smaller non-derivable patterns (Calders and Goethals,
2003) to the user and have him carry the burden of deriving the support for larger patterns.

Another line of work is motivated by the fact, that transaction data is often noisy. The strict
definition of support, requiring all items of an itemset to be present in a transaction, is relaxed.
Early approaches (Boulicaut and Bykowski, 2000; Pei et al.; Yang et al., 2001a) suffered mainly
from two problems (Seppänen and Mannila, 2004): smaller patterns could be less frequent than
larger patterns and the same item could be missing from all involved transactions. These prob-
lems were fixed by the definition of dense itemsets in (Seppänen and Mannila, 2004). Though
not directly designed for condensed representation, the experimental results are shown to be
of moderate size if the parameters are chosen accordingly. More directly aimed at summariz-
ing a collections of itemsets with a smaller number of representative sets are (Han et al., 2002;
Afrati et al., 2004; Yan et al., 2005). In (Han et al., 2002) only the most frequent, not the most
specific itemsets are reported. The motivation of (Yan et al., 2005) is quite similar to our notion
of margin-closedness, as it is noted that ”a user may not only be interested in a small set of pat-
terns, but also patterns that are significantly different” (Yan et al., 2005). All these approaches
for approximate itemset mining have one thing in common - they report false information and
thus violate the Gricean maxim of quality. They only report approximate support values and
possibly list itemsets that are not present in the collection at all (Afrati et al., 2004) or with
much smaller support. For the TSKM we rather present true information, i.e., exact patterns
with exact support. We simply reduce the amount of patterns reported preserving the variety
of the collection.

Most similar to margin-closedness are the generalized closed itemsets (Pudi and Haritsa,
2003). All supersets with approximately the same support as a smaller itemset are pruned. In

126

contrast, we prune the smaller subsets with support similar to a larger, more specific itemset.
This favors more detailed, thus generally more interesting patterns.

As the main challenges for future work we see the development of new interestingness mea-
sures and mining algorithms for the TSKR patterns. The proposed algorithms return a concise
representation of the most frequent patterns. The pattern language is not restricted to this
frequentist view of data mining.

For unsupervised mining measures of surprisingness could be developed in order to search
for the most unusual instead of the most frequent patterns. For Chords the conditional proba-
bility could be used (Guimarães, 1998), for Phrases recent results from time point data models
(Gwadera et al., 2005) could be transferred to time interval data.

Similar to association rules in general and temporal rules in particular (Harms et al., 2002;
Höppner, 2003), implication rules could be generated from TSKR patterns. This calls for mining
algorithms that directly optimize interestingness measures for rules (Hilderman and Hamilton,
1999), e.g., genetic programming (Saetrom and Hetland, 2003). Such rules could be used for the
prediction of qualitative states offering not only some measure of confidence in the implication
rule but also an explanation of the current and future temporal phenomena involved. Techniques
for rule generalization (Höppner, 2003) could be used to find disjunctive rules.

An important unsolved problem in time series data mining is the construction of under-
standable and reliable models for the classification of time series. Existing methods often fail to
explain the decision on a particular instance. In many application it is of utmost importance,
however, to present high level semantic description of the classes to the people that have col-
lected the data. Very fast or very accurate methods are of little merit, if the decision makers do
not understand them and do not base their actions on the results.

In the supervised mining context the most characteristic or discriminative patterns for a class
of time series could be searched. Based on probabilistic models of pattern likelihood, established
techniques like EM training (Dempster et al., 1977) or Gibbs sampling (Casella and George,
1992) are available for model building. Other algorithmic paradigms, like inductive logic pro-
gramming (Lavrac and Dzeroski, 1994), could also be used to mine the patterns from positive
examples only (Fern, 2004).

Recently, interest in data stream mining has been increasing. Similar to early time series
data mining research, few emphasis is put on understandability of the results. It would be
interesting to develop efficient methods for mining TSKR patterns from streaming time series.

Chapter 11

Summary

In this thesis we presented a novel way of extracting understandable patterns from multivariate
temporal data with the aim of knowledge discovery. We defined the Time Series Knowledge
Representation (TSKR), a new pattern language for expressing temporal knowledge. Efficient
algorithms for mining such patterns were presented, completing our proposed method called
Time Series Knowledge Mining (TSKM).

After an introduction to data mining and knowledge discovery in general and temporal data
mining in particular we presented an extensive survey of time series data mining. According to
our taxonomy of the field, this work falls into the category of unsupervised rule mining. We
reviewed existing rule mining methods for symbolic time point and time interval data models.
Two powerful existing approaches, the Unification-based Temporal Grammar (UTG) (Ultsch,
1996b) and Allen’s relations (Allen, 1983; Höppner, 2003) served as motivating examples in the
design of the TSKR pattern language.

Numerical data is first converted into qualitative descriptions of local structure represented
as intervals. Typical temporal relations of the intervals are extracted as patterns with a repre-
sentation close to human language. The patterns can express the temporal concepts of duration,
coincidence, and partial order.

The new representation of temporal knowledge was shown to have advantages in inter-
pretability, expressivity, and robustness. Interpretability in particular was thoroughly analyzed
according to the Gricean maxims (Grice, 1989). The maxim of quality states that only well
supported facts and no false descriptions should be reported. The maxim of relevance requires,
that only patterns relevant to the expert are listed. The maxim of manner requires communi-
cation to be brief and orderly and to avoid obscurity and ambiguity. The maxim of quantity
states that neither too much nor too few should be reported. According to these criteria many
theoretical advantages of the TSKR were shown. High interpretability is achieved by the hier-
archical structure of the patterns and the discovery process, consistent use of annotations, and
avoiding redundancy in the results.

The TSKR patterns can be efficiently mined with methods adapted from itemset mining.
The novel concept of margin-closedness enables the creation of concise pattern sets that explain
various aspects ot the temporal data ranging from more frequent and less specific to less frequent
but more detailed descriptions.

We have further demonstrated the superiority and usefulness of the TSKM by presenting
two detailed practical examples from different application domains. In an application to sports
medicine the results were recognized as valid and useful by an expert of the field. In the other
example the patterns discovered from qualitative descriptions of actions observed in videos
exactly described the corresponding experimental setups. More promising results have been
obtained on a variety of data sets including stock market data, music (Mörchen and Ultsch,

127

128

2004), robot sensors and Australian sign language (Hettich and Bay, 1999) and cell phone sensors
(Mäntyjärvi et al., 2004).

Our methods are very general and will most likely be useful in other domains and for other
data mining tasks like classification or prediction. We believe that these areas could profit from
our highly understandable representation of temporal knowledge.

Appendix A

Datasets

A.1 Skating Data: Muscle Coordination during Inline-Speed-

Skating

In this chapter we describe the preprocessing of the skating data introduced in Chapter 9.1.
Originally, six athletes performed standardized indoor test of graded speed levels at 6 different
speeds (3.72, 4.56, 5.39, 6.22, 7.05, 7.89, 8.72 m/s) on a large motor driven treadmill. On
each speed level electromyography (EMG) and kinematic data were measured for 30 seconds,
corresponding to 12-20 movement cycles depending on selected athlete and skating speed. For
this study we selected a single skater running at 7,89m/s performing 19 movement cycles. We
collected data from professional athletes, because highly trained individuals show less variation
among the single cycles.

The EMG data of 7 major leg extensor and flexor muscles of the right body side were
collected using bipolar surface electrodes attached to the relevant muscles. EMG signals were
pre-amplified with a gain of 2500 and band-pass filtered (low cut-off: 10 Hz, high cut-off: 700 Hz).
Lower extremity kinematics were recorded with 3 angle sensors (electrogoniometers) attached
to the ankle, the knee, and the hip. An inertia switch produced a time series indicating the first
ground contact. All sensors were sampled at a rate of 1kHz. Table A.1 summarizes the input
data. The short names in the first column will be used in the rest of this Chapter.

Name Description

Trigger Pressure sensor determining foot contact.
Ankle Displacement angle of ankle joint.
Knee Displacement angle of knee joint.
Hip Displacement angle of hip joint.
Tibial EMG of Tibialis Anterior (muscle of the anterior compartment of the lower leg).
Gastroc EMG of Medial Gastrocnemius (posterior part of calf muscle).
Vastus EMG of Vastus Medialis (medial part of quadriceps femoris).
Rectus EMG of Rectus Femoris (middle part of quadriceps femoris).
Semiten EMG of Semitendinosus (medial part of hamstrings).
Gluteus EMG of Gluteus Maximus (large part of buttock muscle).
Tensor EMG of Tensor Fasciae Latae (muscle of the anterior compartment of the thigh).

Table A.1: Original input time series for the Skating data sets.

129

A.1. SKATING DATA: MUSCLE COORDINATION DURING INLINE-SPEED-SKATING130

A.1.1 Preprocessing

The angular displacement time series were low-pass filtered with a 2nd order Butterworth filter
to remove noise from the recording process. The cutoff frequency was set to 20Hz for the ankle
and knee sensor and to 10Hz for the more noisy hip angle sensor. The numerical values were
converted from the measurement scale into degrees for a better interpretation. The angular
velocity was derived with a 2nd order, 5 point Savitzky-Golay differentiation filter. We also
estimated the angular acceleration, but the expert decided it did not offer much additional
information. In addition to the regions influenced by the boundaries, another 100ms at the
beginning were skipped, because of lead-in effects.

The Morlet CWT was used to analyze the time-frequency distribution of energy in the
EMG signals. The relevant frequency range for EMG signals from 10Hz to 1kHz was covered
by 64 equally spaced wavelet scales. The maximum width of the wavelet filter in the time
domain, corresponding to 2 standard deviations, was set to 150ms. The instantaneous energy
and mean frequency were extracted from the magnitude of the wavelet transform. The energy
values were log transformed to deemphasize very large values and achieve a more symmetric
distribution. The instantaneous mean frequency was very noisy. Especially in regions with low
muscle activity, the estimates do not contain any useful information, because if a muscle is not
active the measured frequency corresponds to recording noise. The frequency time series were
thus discarded at this point.

A.1.2 Aspects

The 6 angular displacement and angular velocity time series were grouped into one Aspect to
describe the current leg movement. We will refer to this as the Movement Aspect. For each
EMG series a univariate Aspect was created, describing the muscle activity via the instantaneous
energy. This way patterns describing the activity of the individual muscles can be found.

A.1.3 Tones

The Aspect for the inertia sensor was discretized into two states, namely on and off, by thresh-
olding at 95% of the maximum.

A common method of discretizing muscle activation into states like low or high is to use
thresholds at certain percentages of the maximum value. We think this methodology is highly
problematic for several reasons. The maximum value and thus the thresholds are very sensitive
to outliers produced by the recording process. The temporal order of values and the structure
of the empirical probability density of the values, that can contain important information about
possible states of the random variable, are not used by this method. Interval borders are thus
possibly placed in high density regions resulting in noisy state sequences. The resulting intervals
will not correspond to meaningful states of the underlying process.

The Tones were thus created using the the Persist (Mörchen and Ultsch, 2005b) algorithm
for time series discretization. Consulting an expert we chose k = 3 states even though the per-
sistence score for 4 was slightly higher. The resulting bin boundaries are shown in Figure A.1(a)
as vertical lines on top of a probability density estimation plot. Note, how Persist places a cut
to the right of the second peak. This results in a state for very high activation. The validity
of this state can also be seen from Figure A.1(b), where the horizontal lines correspond to the
bins selected by Persist. The very high values are not randomly scattered during the interval
of high activation but rather concentrate toward the end of each activation phase.

The long interval of high activation is the gliding phase, where the muscle is needed to
stabilize the body’s center of gravity while gliding forward. The culmination of energy at the

A.1. SKATING DATA: MUSCLE COORDINATION DURING INLINE-SPEED-SKATING131

−30 −25 −20 −15 −10 −5 0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

log(Energy(EMG))

Li
ke

lih
oo

d

(a) Pareto Density Estimation

2000 3000 4000 5000 6000
−30

−25

−20

−15

−10

−5

0

Time (ms)

lo
g(

E
ne

rg
y(

E
M

G
))

(b) Time series

Figure A.1: The activation of the Gluteus muscle is discretized with bins chosen by the Persist

algorithm.

end is explained by the push off with the foot to generate forward propulsion. The three states
were labeled low, high, and very high, accordingly.

The Tones for the muscles Gastroc, Gluteus, and Vastus were selected for further analysis.
The remaining muscles were dropped. Even though some of them showed clear states of muscle
activity, they were not regarded as relevant for the major function of forward propulsion by the
expert. In general, flexor muscles mainly stabilize an optimized position of the body’s center
of gravity with respect to the supporting area, e.g., the in-line skate. The muscles Tibial and
Semiten mainly serve this purpose, therefore they constantly need to adjust and turn on and off
frequently. Extensor muscles are more directly involved in forward propulsion.

The multivariate Movement Aspect was discretized using time point clustering. It can be
assumed that the multivariate time series contains states corresponding to movement phases.
This implies a very difficult problem for clustering algorithms, because the movement is contin-
uous with transitions between the states. Clustering with the well known k-Means algorithm
is not advisable here, because it will always find exactly as many clusters as requested, but it
will not be clear whether the cluster boundaries are justified by the data. Therefore we used
clustering with ESOM (Ultsch, 1999; Ultsch and Mörchen, 2005) and the accompanying U-Map
(Ultsch, 1993, 2003b) visualizations.

When using ESOM, possible cluster boundaries based on distance and/or density information
can be visually detected. Also, not every point needs to be assigned to a class, allowing for
transition points. The goal was to find a state assignment for different movement phases, like
gliding. The the angles and velocities were normalized to the range [0..1], i.e., the scales were
transformed relative to the maximum and minimum angle or speed, respectively. A manual
clustering of the ESOM was performed, Figure A.2 shows the U-Map (Ultsch, 2003b) with the
3 clusters.

Even though these clusters were found using no time information, the resulting cluster as-
signments are almost continuous in time, as shown in Figure A.2. The shaded bars at the
bottom show the cluster membership of each time point. This validates the manual clustering
of the ESOM. Using this visualization and cluster descriptions generated by the Sig∗ algorithm
(Ultsch, 1991) an expert was able to identify and label the clusters as the following movement
phases: recovery, glide and push, and swing.

A.1. SKATING DATA: MUSCLE COORDINATION DURING INLINE-SPEED-SKATING132

Figure A.2: The U-Map of an ESOM trained with the Movement Aspect. The ESOM cre-
ates a topology preserving projection of the high-dimensional data space onto a
2-dimensional grid. The dark shades in the background represent large distances
in the data space, bright shades indicate small distances. The data vectors of each
time point are shown as a squares. Three clusters were identified manually and
colored accordingly.

1000 2000 3000 4000 5000 6000 7000
Tones

Ankle angle

Knee angle

Hip angle

Ankle speed

Knee speed

Hip speed

Time (ms)

Figure A.3: Five second excerpt from Movement Aspect and the Tones obtained by ESOM
clustering. The cluster memberships of the time points at the bottom forms long
persisting intervals.

A.2. VIDEO DATA: RECOGNITION OF TASKS FROM VIDEO RECORDINGS 133

A.2 Video data: Recognition of Tasks from Video Recordings

This section briefly lists some filtering steps that we applied upon converting the original interval
data into a set of Tones describing the actions observed in the video and the labeled segments
corresponding to the different scenarios.

All predicates with the relation supports or supported were dropped, because they correspond
to disjunctions of the remaining relations contacts and attached. Keeping the disjunctions would
have resulted in a lot of obvious coincidences when mining Chords. We also normalized the order
of the arguments in the relations by alphabetical order, e.g., converting contacts-green-blue
to contacts-blue-green to obtain the exact same labels for these semantically equal situations.
Finally, we replaced the term moving with hand to obtain slightly better understandable labels.

The original data contains 14 different scenarios, two version of pick-up, put-down, stack,
unstack, move, assemble, and disassemble each. The two versions are labeled with the suffixes
-left and right -right indicating reversed sides of the experimental setup. For all but the move
scene this does not make a difference in the qualitative descriptions describing the hand and the
blocks. We therefore used eight different class labels, keeping the distinction between left and
right only for move.

The eight Tones show a promising correlation with the known scenarios in the data. Table A.2
shows the confusion matrix of Tones and scenes. The pick-up and put-down scenarios contain
only tones involving the hand and the green and red block, suggesting that these experiments
have exclusively been carried out using these colors. The move scenarios also seem to involve
a blue block touching the red block but not the green block and the other way around for the
(un)stack scenarios. The most complex (dis)assemble scenes contain other scenarios as sub
steps. They involve all Tones from the move and (un)stack) scenes. In addition, the hand
touching the blue block occurs exclusively during (dis)assemble scenes. The simple pick-up and
put-down scenarios are not subtasks of the (dis)assemble scenes, because of interchanged block
colors.

Scenes Tones

co
n
ta

ct
s-

bl
u
e-

gr
ee

n

co
n
ta

ct
s-

bl
u
e-

re
d

co
n
ta

ct
s-

gr
ee

n
-r

ed

a
tt
a
ch

ed
-b

lu
e-

h
a
n
d

a
tt
a
ch

ed
-h

a
n
d
-r

ed

a
tt
a
ch

ed
-b

lu
e-

gr
ee

n

a
tt
a
ch

ed
-b

lu
e-

re
d

a
tt
a
ch

ed
-g

re
en

-r
ed

pick-up 0 0 31 0 30 0 0 31

put-down 0 0 31 0 30 0 0 32

move-left 0 15 15 0 15 0 15 15

move-right 0 15 16 0 15 0 15 16

stack 60 0 30 0 30 31 0 30

unstack 60 0 31 0 30 31 0 30

assemble 63 36 0 34 34 63 34 0

disassemble 61 30 0 30 30 60 32 0

Table A.2: Occurrences of Tones in each of the scenes of the Video data.

List of Figures

3.1 Allen’s interval relations. 12
3.2 Temporal concepts of duration and order. 14
3.3 Temporal concept of concurrency. 15
3.4 Temporal concept of coincidence. 15
3.5 Temporal concept of synchronicity. 16
3.6 Relationships of time point and time interval operators to temporal concepts. . . 16

4.1 Outline of Chapters 4 through 6. 18

5.1 Numeric time series distances. 23
5.2 Symbolic time series distances. 27
5.3 Time series representations. 28

7.1 Pattern expressible with Allen’s relations but not with the UTG. 54
7.2 Pattern fragmentation of Allen’s relations for almost equals intervals. 54
7.3 Ambiguity of Allen’s relations for overlapping intervals. 55
7.4 Partial order of intervals. 56
7.5 Example for the textual representation of Tones. 59
7.6 Example for the graphical representation of Tones. 59
7.7 Example for the textual representation of Chords. 60
7.8 Example for the graphical representation of Chords. 60
7.9 Textual representation of a sub-Chord. 61
7.10 Example for the graphical representation of sub-Chords. 61
7.11 Example of a Phrase excluding overlapping Chords. 63
7.12 Example for the textual representation of Phrases. 63
7.13 Example for the graphical representation of Phrases. 63
7.14 Textual representation of a super-Phrase. 64
7.15 Example for the graphical representation of super-Phrases. 64
7.16 Pattern expressible with Allen’s relations but not with the UTG. 66
7.17 Example for the conversion of patterns from Allen’s relations to TSKR. 67
7.18 Example of Phrase not expressible with Allen’s relations. 67
7.19 Examples of pattern fragmentation with Allen’s relations. 68
7.20 Pattern expressible with Allen, UTG, and TSKR. 71
7.21 Allen’s relations of Figure 7.20 . 71
7.22 UTG pattern of Figure 7.20 . 72
7.23 TSKR pattern of Figure 7.20 . 72
7.24 Ambiguity of Allen’s relations for the starts and during relation. 73
7.25 Ambiguity of Allen’s relations for compact pattern formats. 73

8.1 Data processing steps of Time Series Knowledge Mining 74

134

LIST OF FIGURES 135

8.2 Example for preprocessing a multivariate time series. 75
8.3 Example of marginally interrupted Tones. 80
8.4 Examples for search space pruning during Chord mining. 83
8.5 Conversion of an interval sequence to an itemset interval series. 85

9.1 Lattice of margin-closed Chords from the Skating data. 95
9.2 Lattice of margin-closed Phrases from the Skating data. 96
9.3 Parameter study for Chord and Phrase mining on Skating data. 97
9.4 Durations of Tones from the Video data. 98
9.5 Lattice of margin-closed Chords from the Video data. 98
9.6 Lattice of margin-closed Phrases from the Video data. 100
9.7 Sizes of Allen patterns from the Skating data. 102
9.8 Large Allen patterns from the Skating data. 103
9.9 Large Allen pattern from the Skating data. 104
9.10 Rare Allen pattern describing muscle interaction from the Skating data. 105
9.11 Large Allen pattern L8 from the Video data. 106
9.12 Large Allen pattern L9 from the Video data. 107
9.13 Examples for two large Allen patterns from assemble scenes of the Video data. . 107
9.14 Examples for two large Allen patterns from disassemble scenes of the Video data. 108
9.15 Examples for two frequent Allen patterns from pick-up scenes of the Video data. 109
9.16 Examples of frequent Allen pattern from put-down scenes of the Video data. . . . 109
9.17 Examples of frequent Allen pattern from assemble scenes of the Video data. . . . 110
9.18 Conversion of Chords to Events. 110
9.19 Frequency of UTG Events found in the Skating data. 111
9.20 Frequency of UTG Events found in the Video data. 113
9.21 BIC for different HMM models trained on the Skating data. 114
9.22 Gaussian mixtures for Gluteus muscle from HMM trained on the Skating data. . 115
9.23 Viterbi state sequence of HMM trained on the Skating data. 115
9.24 Gaussian distributions for four variables from HMM trained on the Skating data. 117

10.1 Gricean maxims of conversation . 122

A.1 Discretization of muscle activity from the Skating data. 131
A.2 U-Map for ESOM trained with Movement Aspect of the Skating data. 132
A.3 Tones of Movement Aspect from the Skating data. 132

List of Tables

6.1 Rule mining methods for time point data models. 49
6.2 Rule mining methods for time interval data models. 52

7.1 Example for multivariate and overlapping Aspects. 58
7.2 Breakdown values for interval pattern languages. 69
7.3 Comparison of interval pattern languages. 73

8.1 Example sets of sequences. 86

9.1 Tones from the Video data. 93
9.2 Occurrences of Chords in scenes of Video data. 99
9.3 Occurrences of Phrases in scenes of Video data. 101
9.4 Summary of Allen patterns describing muscle interaction. 102
9.5 Occurrences of fragments for an Allen pattern from the Skating data. 105
9.6 Occurrences of large Allen patterns in scenes of Video data. 106
9.7 Occurrences of frequent Allen patterns in scenes of Video data. 108
9.8 Occurrences of fragments for an Allen pattern from the Video data. 110
9.9 Tones of almost synchronous Events from the Video data. 112
9.10 Transition matrix of HMM trained on the Skating data. 116
9.11 Parameters of Gaussian distributions of HMM trained on the Skating data. . . . 116

A.1 Original variables of the Skating data. 129
A.2 Occurrences of Tones in scenes of Video data. 133

136

List of Algorithms

8.1 MarginalGapFilter for removing gaps from Tones. 79
8.2 ClosedChordMining for finding margin-closed Chords. 82
8.3 High level algorithm to find margin-closed Phrases. 84
8.4 ClosedSequenceMining for finding closed sequential patterns. 87
8.5 ClosedPhraseMining for finding margin-closed Phrases. 89
8.6 MergeSequences creates the partial order within a Phrase. 91

137

List of Abbreviations

AIC Akaike Information Criterion
AMA And Meets And
APCA Adaptive Piecewise Constant Approximation
AR Auto Regressive
ARIMA Auto Regressive Integrated Moving Average
ARMA Auto Regressive Moving Average
BIC Bayes Information Criterion
CDM Compression-Based Dissimilarity Measure
CWT Continuous Wavelet Transform
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DTW Dynamic Time Warping
DWT Discrete Wavelet Transform
EM Expectation Maximization
EMG Electromyography
ESOM Emergent Self-organizing Maps
FOL First Order Logic
FOTL First Temporal Order Logic
GARCH Generalized Autoregressive Conditional Heteroskedasticity
GMM Gaussian Mixture Model
GSP Generalized Sequential Patterns
HMM Hidden Markov Model
ICA Independent Component Analysis
IFN Info-Fuzzy Network
IQL Interagon Query Language
KDD Knowledge Discovery in Databases
LCSS Longest Common Subsequence
LTL Linear Temporal Logic
LVQ Learning Vector Quantization
MA Moving Average
MC Markov Chain
MDL Minimum Description Length
MLP Multi Layer Perceptron
MOWCATL Minimal Occurrences With Constraints And Time Lags
MSDD Multi Stream Dependency Detection
MEDD Multi Event Dependency Detection
NLG Natural Language Generation
PAA Piecewise Aggregate Approximation
PCA Principal Component Analysis
PLA Piecewise Linear Approximation

138

LIST OF ALGORITHMS 139

SAX Symbolic Aggregate Approximation
SCM Symbol Clustering Map
SDL Shape Definition Language
SPADE Sequential Pattern Discovery using Equivalence classes
SPAM Sequential Pattern Mining
SOM Self-organizing Map
STFT Short Time Fourier Transform
SQL Structured Query Language
SVD Singular Value Decomposition
SVM Support Vector Machine
SVR Support Vector Regression
TDM Temporal Data Mining
TSDM Time Series Data Mining
TSKM Time Series Knowledge Mining
TSKR Time Series Knowledge Representation
UTG Unification-based Temporal Grammar
WTMM Wavelet Transform Modulus Maxima

Bibliography

J. Abonyi, B. Feil, S. Németh, and A. Peter. Modified gath-geva clustering for fuzzy segmentation
of multivariate time-series. Fuzzy Sets and Systems, Data Mining Special Issue, 149(1):39–56,
2004.

F. Afrati, A. Gionis, and H. Mannila. Approximating a collection of frequent sets. In W. Kim,
R. Kohavi, J. Gehrke, and W. DuMouchel, editors, Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’04), pages 12–19.
ACM Press, 2004.

C. C. Aggarwal. A human-computer cooperative system for effective high dimensional clustering.
In F. Provost and R. Srikant, editors, Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’01), pages 221–226. ACM Press,
2001.

C. C. Aggarwal. On effective classification of strings with wavelets. In D. Hand, D. Keim, and
R. Ng, editors, Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’02), pages 163–172. ACM Press, 2002.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB’94), pages 487–499. Morgan Kaufmann, 1994.

R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. S. P. Chen, editors,
Proceedings of the 11th International Conference on Data Engineering (ICDE’95), pages 3–14.
IEEE Press, 1995.

R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence databases.
In D. Lomet, editor, Proceedings of the 4th International Conference of Foundations of Data
Organization and Algorithms (FODO’93), pages 69–84. Springer, 1993a.

R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in
large databases. In P. Buneman and S. Jajodia, editors, Proceedings of the 1993 ACM SIG-
MOD International Conference on Management of data, pages 207–216. ACM Press, 1993b.

R. Agrawal, K. I. Lin, H. S. Sawhney, and K. Shim. Fast similarity search in the presence of
noise, scaling, and translation in times-series databases. In U. Dayal, P. M. D. Gray, and
S. Nishio, editors, Proceedings of the 21st International Conference on Very Large Data Bases
(VLDB’95), pages 490–500. Morgan Kaufmann, 1995a.

R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zaot. Querying shapes of histories. In U. Dayal,
P. M. D. Gray, and S. Nishio, editors, Proceedings of the 21st International Conference on
Very Large Data Bases (VLDB’95), pages 502–514. Morgan Kaufmann, 1995b.

140

BIBLIOGRAPHY 141

M. Aiello, C. Monz, L. Todoran, and M. Worring. Document understanding for a broad class of
documents. International Journal on Document Analysis and Recognition, 5(1):1–16, 2002.

J. M. Ale and G. H. Rossi. An approach to discovering temporal association rules. In Proceedings
of the 2000 ACM Symposium on Applied Computing (SAC’00), pages 294–300. ACM Press,
2000.

J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26
(11):832–843, 1983.

J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering clusters in motion time-series
data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’03), pages 375–381. IEEE Press, 2003.

C. J. Alonso and J. J. Rodriguez. Time series classification by boosting interval based literals.
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, 1(11):2–11, 2000.

C. J. Alonso and J. J. Rodriguez. Boosting interval-based literals: Variable length and early
classification. In M. Last, A. Kandel, and H. Bunke, editors, Data Mining In Time Series
Databases, pages 145–166. World Scientific, 2004.

C. J. Alonso and J. J. Rodriguez. A graphical rule language for continuous dynamic systems. In
M. Mohammadian, editor, Computational Intelligence for Modelling, Control and Automation,
pages 482–487. IOS Press, 1999.

J. An, H. Chen, K. Furuse, N. Ohbo, and E. Keogh. Grid-based indexing for large time series
databases. In J. Liu, Y. ming Cheung, and H. Yin, editors, Proceedings of the 4th International
Conference on Intelligent Data Engineering and Automated Learning (IDEAL’03), pages 614–
621. Springer, 2003.

J. An, Y.-P. P. Chen, and H. Chen. DDR: An index method for large time series datasets.
Information Systems, 30(5):333–348, 2005.

G. Andrienko, N. Andrienko, and P. Gatasky. Visual mining of spatial time series data. In J.-F.
Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, editors, Proceedings of the 8th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’04),
pages 524–527. Springer, 2004.

M. Ankerst, M. Ester, and H.-P. Kriegel. Towards an effective cooperation of the user and the
computer for classification. In R. Ramakrishnan, S. Stolfo, R. Bayardo, and I. Parsa, editors,
Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’00), pages 179–188. ACM Press, 2000.

O. Antunes. Temporal data mining: An overview. In Workshop on Temporal Data Min-
ing, 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’01). ACM Press, 2001.

A. Apostolico, M. E. Bock, S. Lonardi, and X. Xu. Efficient detection of unusual words. Journal
of Computational Biology, 7(1-2):71–94, 2000.

A. Apostolico, F. Gong, and S. Lonardi. Verbumculus and the discovery of unusual words.
Journal of Computer Science and Technology, 19(1):22–41, 2003.

W. G. Aref, M. G. Elfeky, and A. K. Elmagarmid. Incremental, online, and merge mining of
partial periodic patterns in time-series databases. IEEE Transactions on Knowledge and Data
Engineering, 16(3):332–342, 2004.

BIBLIOGRAPHY 142

T. Argyros and C. Ermopoulos. Efficient subsequence matching in time series databases under
time and amplitude transformations. In Proceedings of the 3rd IEEE International Conference
on Data Mining (ICDM’03), pages 481–484. IEEE Press, 2003.

J. S. Armstrong. Principles Of Forecasting: A Handbook for Researchers and Practitioners.
Kluwer, 2001.

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap repre-
sentation. In D. Hand, D. Keim, and R. Ng, editors, Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’02), pages 429–
435. ACM Press, 2002.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream
systems. In L. Popa, editor, Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems (PODS’02), pages 1–16. ACM Press, 2002.

F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for
planning. Artificial Intelligence, 16(1-2):123–191, 2000.

K. Bach. The Top 10 Misconceptions about Implicature, for a festschrift for Larry
Horn, edited by Betty Birner and Gregory Ward, published by John Benjamins, 2005.
http://userwww.sfsu.edu/˜kbach/TopTen.pdf.

S. Badaloni and M. Giacomin. A fuzzy extension of Allen’s interval algebra. In E. Lamma and
P. Mello, editors, AI*IA99: Advances in Artificial Intelligence, pages 155–165. Springer, 2000.

A. Bagnall, G. Janakec, and M. Zhang. Clustering time series from mixture polynomial models
with discretised data. Technical Report CMP-C03-17, School of Computing Sciences, Univer-
sity of East Anglia, Norwich, UK, 2003.

A. J. Bagnall and G. A. Janacek. Clustering time series from ARMA models with clipped
data. In W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel, editors, Proceedings of the
10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’04), pages 49–58. ACM Press, 2004.

A. J. Bagnall and G. J. Janacek. Clustering time series with clipped data. Machine Learning,
58(2-3):151–178, 2005.

J. Baixeries, G. Casas-Garriga, and J. L. Balcazar. Mining unbounded episodes from sequential
data. Technical Report NC-TR-01-091, NeuroCOLT, Royal Holloway University of London,
UK, 2001.

B. R. Bakshi and G. Stephanopoulos. Representation of process trends - IV. Induction of
real-time patterns from operating data for diagnosis and supervisory control. Computers &
Chemical Engineering, 18(4):303–332, 1994.

B. R. Bakshi and G. Stephanopoulos. Reasoning in time: Modeling, analysis and pattern
recognition of temporal process trends. In G. Stephanopoulos and C. Han, editors, Advances
in Chemical Engineering: Paradigms of Intelligent Systems in Process Engineering, volume 22,
pages 485–547. Academic Press, 1995.

M. Bauer, U. Gather, and M. Imhoff. Analysis of high dimensional data from intensive care
medicine. In R. Payne and P. Green, editors, Proceedings in Computational Statistics, pages
185–190. Physica, 1998.

BIBLIOGRAPHY 143

M. Baumgarten, , A. G. Büchner, S. S. Anand, M. D. Mulvenna, and J. G. Hughes. Navigation
pattern discovery from internet data. In Workshop on Web Usage Analysis and User Profil-
ing, 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’99), pages 74–91. Springer, 1999.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. In H. Garcia-Molina and H. V. Jagadish, editors,
Proceedings of the 1990 ACM SIGMOD International Conference on Management of data,
pages 322–331. ACM Press, 1990.

R. Bellman. On the approximation of curves by line segments using dynamic programming.
Communications of the ACM, 4(6):284, 1961.

C. Berberidis, I. Vlahavas, W. G. Aref, M. Atallah, and A. K. Elmagarmid. On the discovery of
weak periodicities in large time series. In T. Elomaa, H. Mannila, and H. Toivonen, editors,
Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge
Discovery (PKDD’02), pages 51–61. Springer, 2002.

J. Beringer and E. Hüllermeyer. Online clustering of data streams. Technical Report 31, Depart-
ment of Mathematics and Computer Science, Philipps-University Marburg, Germany, 2003.

P. Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Software,
San Jose, CA, USA, 2002.

D. J. Berndt and J. Clifford. Finding patterns in time series: A dynamic programming approach.
In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, pages 229–248. AAAI Press, 1996.

C. Bettini, X. Sean Wang, S. Jajodia, and J.-L. Lin. Discovering frequent event patterns with
multiple granularities in time sequences. IEEE Transactions on Knowledge and Data Engi-
neering, 10(2):222–237, 1998.

M. Bicego, V. Murino, and M. Figueiredo. Similarity-based classification of sequences using
Hidden Markov Models. Pattern Recognition, 37(12):2281–2291, 2004.

M. H. Böhlen, R. Busatto, and C. S. Jensen. Point- versus interval-based temporal data models.
In Proceedings of the 14th International Conference on Data Engineering (ICDE’98), pages
192–200. IEEE Press, 1998.

B. Bollobas, G. Das, D. Gunopulos, and H. Mannila. Time-series similarity problems and well-
separated geometric sets. Nordic Journal on Computing, 8(4):409–423, 2001.

J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation for binary data
mining. In T. Terano, H. Liu, and A. L. P. Chen, editors, Proceedings of the 4th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD’00), pages 62–73. Springer,
2000.

J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: A condensed representation of boolean
data for the approximation of frequency queries. Data Mining and Knowledge Discovery, 7
(1):5–22, 2003.

G. Box, G. M. Jenkins, and G. Reinsel. Time Series Analysis: Forecasting & Control. Prentice
Hall, 3rd edition, 1994.

BIBLIOGRAPHY 144

S. Boyd. TREND: A system for generating intelligent descriptions of time-series data. In Pro-
ceedings of the IEEE International Conference on Intelligent Processing Systems (ICIPS’98).
IEEE Press, 1998.

P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting. Springer, 2nd
edition, 2002.

J. Buhler and M. Tompa. Finding motifs using random projections. In Proceedings of the
5th Annual International Conference on Research in Computational Molecular Biology (RE-
COMB’01), pages 69–76. ACM Press, 2001.

C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2):167, 1998.

A. Bykowski and C. Rigotti. A condensed representation to find frequent patterns. In W. Fan,
editor, Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems (PODS’01), pages 267–273. ACM Press, 2001.

Y. Cai and R. Ng. Indexing spatio-temporal trajectories with Chebyshev polynomials. In
G. Weikum, A. C. König, and S. Deßloch, editors, Proceedings of the 2004 ACM SIGMOD
International Conference on Management of data, pages 599–610. ACM Press, 2004.

T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In T. Elomaa, H. Man-
nila, and H. Toivonen, editors, Proceedings of the 6th European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD’02), pages 74–85. Springer, 2002.

T. Calders and B. Goethals. Minimal k-free representations of frequent sets. In N. Lavrac,
D. Gamberger, H. Blockeel, and L. Todorovski, editors, Proceedings of the 7th European
Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’03),
pages 71–82. Springer, 2003.

M. Calin and D. Galea. A fuzzy relation for comparing intervals. In B. Reusch, editor, Proceed-
ings of the 7th Fuzzy Days on Computational Intelligence, Theory and Applications, pages
904–916. Springer, 2001.

G. Casas-Garriga. Discovering unbounded episodes in sequential data. In N. Lavrac, D. Gam-
berger, H. Blockeel, and L. Todorovski, editors, Proceedings of the 7th European Conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD’03), pages 83–94.
Springer, 2003.

G. Casas-Garriga. Summarizing sequential data with closed partial orders. In H. Kargupta,
J. Srivastava, C. Kamath, , and A. Goodman, editors, Proceedings of the 5th SIAM Interna-
tional Conference on Data Mining (SDM’05), pages 380–391. SIAM, 2005.

G. Casella and E. I. George. Explaining the Gibbs sampler. The American Statistician, 46:
167–174, 1992.

S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using temporal description
length. In A. Gupta, O. Shmueli, and J. Widom, editors, Proceedings of the 24th International
Conference on Very Large Data Bases (VLDB’98), pages 606–617. Morgan Kaufmann, 1998.

K. Chan and A. W. Fu. Efficient time series matching by wavelets. In Proceedings of the 15th
International Conference on Data Engineering (ICDE’99), pages 126–133. IEEE Press, 1999.

BIBLIOGRAPHY 145

K.-P. Chan, A. W.-C. Fu, and C. T. Yu. Haar wavelets for efficient similarity search of time-series:
With and without time warping. IEEE Transactions on Knowledge and Data Engineering, 15
(3):686–705, 2003.

J. C. Chappelier and A. Grumbach. A Kohonen map for temporal sequences. In Proceedings
of 1st International Conference on Neural Networks and Their Applications (NEURAP’95),
pages 104–110. Domaine University Saint-Jerome, 1996.

G. Chen, X. Wu, and X. Zhu. Mining sequential patterns across data streams. Technical Report
CS-05-04, University of Vermont, Burlington, VT, USA, 2005.

X. Chen and I. Petrounias. A framework for temporal data mining. In G. Quirchmayr,
E. Schweighofer, and T. J. M. Bench-Capon, editors, Proceedings 9h International Conference
on Database and Expert Systems Applications (DEXA’98), pages 796–805. Springer, 1998.

X. Chen and I. Petrounias. Mining temporal features in association rules. In J. M. Zytkow and
J. Rauch, editors, Proceedings of the 3rd European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD’99), pages 295–300. Springer, 1999.

X. Chen, I. Petrounias, and H. Heathfield. Discovering temporal association rules in temporal
databases. In M. T. Özsu, A. Dogac, and Ö. Ulusoy, editors, Proceedings 3rd International
Workshop on Issues and Applications of Database Technology (IADT’98), pages 312–319.
Society for Design and Process Science, 1998.

H. Cheng, X. Yan, and J. Han. SeqIndex: Indexing sequences by sequential pattern analysis.
In H. Kargupta, J. Srivastava, C. Kamath, , and A. Goodman, editors, Proceedings of the 5th
SIAM International Conference on Data Mining (SDM’05), pages 84–93. SIAM, 2005.

D. W.-L. Cheung, S. D. Lee, and B. Kao. A general incremental technique for maintaining
discovered association rules. In R. W. Topor and K. Tanaka, editors, Proceedings of the
5th International Conference on Database Systems for Advanced Applications (DASFAA’97),
pages 185–194. World Scientific, 1997.

B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series motifs. In L. Getoor,
T. E. Senator, P. Domingos, and C. Faloutsos, editors, Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’03), pages 493–
498. ACM Press, 2003.

M. R. Chmielewski and J. W. Grzynala-Busse. Global discretization of continuous attributes
as preprocessing for machine learning. International Journal of Approximate Reasoning, 15:
319–331, 1996.

K. K. W. Chu and M. H. Wong. Fast time-series searching with scaling and shifting. In Pro-
ceedings of the 18th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems (PODS’99), pages 237–248. ACM Press, 1999.

P. R. Cohen. Fluent learning: Elucidating the structure of episodes. In F. Hoffmann, D. Hand,
N. Adams, D. Fisher, and G. Guimarães, editors, Proceedings of the 4th International Con-
ference in Intelligent Data Analysis (IDA’01), pages 268–277. Springer, 2001.

P. R. Cohen and N. Adams. An algorithm for segmenting categorical time series into mean-
ingful episodes. In F. Hoffmann, D. Hand, N. Adams, D. Fisher, and G. Guimarães, editors,
Proceedings of the 4th International Conference in Intelligent Data Analysis (IDA’01), pages
197–205. Springer, 2001.

BIBLIOGRAPHY 146

P. R. Cohen, N. Adams, and D. J. Hand. Finding patterns that correspond to episodes. Tech-
nical Report UM-CS-2001-011, Experimental Knowledge Systems Laboratory, University of
Massachusetts Amherst, MA, USA, 2001.

P. R. Cohen, C. Sutton, and B. Burns. Learning effects of robot actions using temporal asso-
ciations. In Proceedings of the 2nd International Conference on Development and Learning,
pages 96–101. IEEE Press, 2002.

W. W. Cohen. Fast effective rule induction. In A. Prieditis and S. J. Russell, editors, Proceedings
of the 12th International Conference on Machine Learning (ICML’95), pages 115–123. Morgan
Kaufmann, 1995.

W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics
for name-matching tasks. In S. Kambhampati and C. A. Knoblock, editors, Workshop on
Information Integration on the Web at the 18th International Joint Conference on Artificial
Intelligence (IJCAI’03), pages 73–78, 2003.

J. Colomer, J. Melendez, and F. Gamero. Pattern recognition based on episodes and DTW.
Application to diagnosis of a level control system. In Proceedings 16th International Workshop
on Qualitative Reasoning (QR’02), pages 37–43, 2002.

P. Cotofrei and K. Stoffel. Classification rules + time = temporal rules. In P. M. A. Sloot,
C. J. K. Tan, J. Dongarra, and A. G. Hoekstra, editors, Proceedings of the 2002 International
Conference on Computational Science, volume I, pages 572–581. Springer, 2002a.

P. Cotofrei and K. Stoffel. First-order logic based formalism for temporal data mining. In
Workshop on Foundations of Data Mining and Knowledge Discovery at the the 2nd IEEE
International Conference on Data Mining (ICDM’02), pages 101–106. IEEE Press, 2002b.

P. Cotofrei and K. Stoffel. Rule extraction from time series databases using classification trees.
In Proceedings of the 20th IASTED Conference on Applied Informatics, pages 327–332. ACTA
Press, 2002c.

P. Cotofrei and K. Stoffel. First-order logic based formalism for temporal data mining. In
T. Lin, S. Ohsuga, C.-J. Liau, X. Hu, and S. Tsumoto, editors, Foundations of Data Mining
and Knowledge Discovery, pages 193–218. Springer, 2005.

G. Das, D. Gunopulos, and H. Mannila. Finding similar time series. In H. J. Komorowski
and J. M. Zytkow, editors, Proceedings of the 1st European Symposium on Principles of Data
Mining and Knowledge Discovery (PKDD’97), pages 88–100. Springer, 1997.

G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery from time
series. In R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the 4th
International Conference on Knowledge Discovery and Data Mining (KDD’98), pages 16–22.
AAAI Press, 1998.

D. Dasgupta and S. Forrest. Novelty detection in time series data using ideas from immunology.
In Proceedings of the 5th International Conference on Intelligent Systems, 1996.

S. Dasgupta. Experiments with random projection. In Proceedings 16th Conference Uncertainty
in Artificial Intelligence (UAI’00), pages 143–151. Morgan Kaufmann, 2000.

I. Daubechies. Ten lectures on Wavelets. SIAM, 1992.

C. S. Daw, C. E. A. Finney, and E. R. Tracy. A review of symbolic analysis of experimental
data. Review of Scientific Instruments, 74(2):916–930, 2003.

BIBLIOGRAPHY 147

E. de Bodt, J. Rynkiewicz, and M. Cottrell. Some known facts about financial data. In M. Verley-
sen, editor, Proceedings 9th European Symposium on Artificial Neural Networks (ESANN’01),
pages 223–236. D-Facto, 2001.

A. Debregeas and G. Hebrail. Interactive interpretation of Kohonen maps applied to curves.
In R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the 4th In-
ternational Conference on Knowledge Discovery and Data Mining (KDD’98), pages 179–183.
AAAI Press, 1998.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B(39):1–38, 1977.

K. Deng, A. Moore, and M. C. Nechyba. Learning to recognize time series: Combining ARMA
models with memory-based learning. In Proceedings IEEE International Symposium on Com-
putational Intelligence in Robotics and Automation, pages 246–250. IEEE Press, 1997.

A. Denton. Density-based clustering of time series subsequences. In Workshop on Mining
Temporal and Sequential Data, 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’04). ACM Press, 2004.

T. G. Dietterich. Machine learning for sequential data: A review. In T. Caelli, editor, Structural,
Syntactic, and Statistical Pattern Recognition, pages 15–30. Springer, 2002.

P. Domingos and G. Hulten. Mining high-speed data streams. In R. Ramakrishnan, S. Stolfo,
R. Bayardo, and I. Parsa, editors, Proceedings of the 6th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD’00), pages 71–80. ACM Press, 2000.

P. Domingos and G. Hulten. A general framework for mining massive data streams. Journal of
Computational and Graphical Statistics, 12:945–949, 2003.

G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and differences.
In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’99), pages 43–52. ACM Press, 1999.

J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of contin-
uous features. In A. Prieditis and S. J. Russell, editors, Proceedings of the 12th International
Conference on Machine Learning (ICML’95), pages 194–202. Morgan Kaufmann, 1995.

D. DuBois and H. Prade. Processing fuzzy temporal knowledge. IEEE Transactions on Systems,
Man and Cybernetics, 19(4):729–744, 1989.

A. Dugarjapov and G. Lausen. Mining sets of time series: Description of time points. In
M. Schwaiger and O. Opitz, editors, Proceedings of the 25th Annual Conference of the German
Classification Society (GfKl’01), pages 41–49. Springer, 2002.

M. H. Dunham. Data Mining - Introductory and Advanced Topics. Prentice Hall, 2002.

M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Using convolution to mine obscure periodic
patterns in one pass. In E. Bertino, S. Christodoulakis, D. Plexousakis, V. C. andManolis
Koubarakis, K. Böhm, and E. Ferrari, editors, Proceedings of the 9th International Conference
on Extending Database Technology (EDBT’04), pages 605–620. Springer, 2004.

E. Eskin. Anomaly detection over noisy data using learned probability distributions. In P. Lang-
ley, editor, Proceedings of the 17th International Conference on Machine Learning (ICML’00),
pages 255–262. Morgan Kaufmann, 2000.

BIBLIOGRAPHY 148

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithms for discovering
clusters in large spatial databases with noise. In E. Simoudis, J. Han, and U. M. Fayyad,
editors, Proceedings of the 2nd International Conference on Knowledge Discovery and Data
Mining (KDD’96), pages 226–231. AAAI Press, 1996.

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-
series databases. In R. T. Snodgrass and M. Winslett, editors, Proceedings of the 1994 ACM
SIGMOD International Conference on Management of data, pages 419–429. ACM Press, 1994.

U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery: an
overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages 1–34. AAAI Press, 1996.

A. Fern. Learning Models and Formulas of a Temporal Event Logic. PhD thesis, Purdue Uni-
versity, West Lafayette, IN, USA, 2004.

A. Fern, R. Givan, and J. M. Siskind. Specific-to-general learning for temporal events with
application to video event recognition. Journal of Artificial Intelligence Research, 17:379–449,
2002.

E. Fink and K. B. Pratt. Indexing of compressed time series. In M. Last, A. Kandel, and
H. Bunke, editors, Data Mining In Time Series Databases, pages 43–64. World Scientific,
2004.

I. Fischer and A. Zell. String averages and self-organizing maps for strings. In H. Bothe and
R. Rojas, editors, Proceeding of the ICSC Symposia on Neural Computation (NC’2000), pages
208–215. ICSC Academic Press, 2000.

L. J. Fitzgibbon, D. L. Dowe, and L. Allison. Change-point estimation using new minimum
message length approximations. In M. Ishizuka and A. Sattar, editors, Proceedings of the 7th
Pacific Rim International Conference on Artificial Intelligence (PRICAI’02), pages 244–254.
Springer, 2002.

J. A. Flanagan. A non-parametric approach to unsupervised learning and clustering of symbol
strings and sequences. In T. Yamakawa, editor, Proceedings of the 4th Workshop on Self-
Organizing Maps (WSOM’03), pages 128–133, 2003.

A. Flexer and H. Bauer. Monitoring human information processing via intelligent data analysis
of EEG recordings. In D. J. Hand, J. N. Kok, and M. R. Berthold, editors, Proceedings of the
3rd International Conference in Intelligent Data Analysis (IDA’99), pages 137–148. Springer,
1999.

C. Freksa. Temporal reasoning based on semi-intervals. Artificial Intelligence, 54(1):199–227,
1992.

A. W.-C. Fu, E. Keogh, Y. H. Lau, and C. A. Ratanamahatana. Scaling and time warping in
time series querying. In K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson,
and B. C. Ooi, editors, Proceedings of the 31st International Conference on Very Large Data
Bases (VLDB’05), pages 649–660. Morgan Kaufmann, 2005.

T. Fu, F. Chung, V. Ng, and R. Luk. Evolutionary segmentation of financial time series into
subsequences. In Proceedings of 2001 Congress on Evolutionary Computation (CEC2001),
pages 426–430. IEEE Press, 2001a.

BIBLIOGRAPHY 149

T. C. Fu, F. L. Chung, V. Ng, and R. Luk. Pattern discovery from stock time series using self-
organizing maps. In Workshop on Temporal Data Mining, 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’01), pages 27–37. ACM Press,
2001b.

S. Gaffney and P. Smyth. Curve clustering with random effects regression mixtures. In C. M.
Bishop and B. J. Frey, editors, Proceedings of the 9th International Workshop on Artificial
Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2003.

S. Gaffney and P. Smyth. Joint probabilistic curve clustering and alignment. In L. K. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems, num-
ber 17, pages 473–480. MIT Press, 2004.

S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression models. In Proceed-
ings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD’99), pages 63–72. ACM Press, 1999.

X. Ge and P. Smyth. Deformable Markov model templates for time-series pattern matching. In
R. Ramakrishnan, S. Stolfo, R. Bayardo, and I. Parsa, editors, Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’00),
pages 81–90. ACM Press, 2000.

R. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer, 1992.

P. Geurts. Pattern extraction for time series classification. In L. D. Raedt and A. Siebes, editors,
Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge
Discovery (PKDD’01), pages 115–127. Springer, 2001.

C. L. Giles, S. Lawrence, and A. C. Tsoi. Noisy time series prediction using recurrent neural
networks and grammatical inference. Machine Learning, 44(1/2):161–183, 2001.

A. Gionis and H. Mannila. Finding recurrent sources in sequences. In Proceedings of the
7th Annual International Conference on Research in Computational Molecular Biology (RE-
COMB’03), pages 123–130. ACM Press, 2003.

A. Gionis, H. Mannila, and E. Terzi. Clustered segmentations. In Workshop on Mining Temporal
and Sequential Data, 10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’04). ACM Press, 2004.

D. Goldin, T. Millstein, and A. Kutlu. Flexible and efficient similarity querying for time-series
data. Technical Report TR-03-4, BECAT/CSE, University of Connecticut, CN, USA, 2003.

D. Q. Goldin and P. C. Kanellakis. On similarity queries for time-series data: Constraint speci-
fication and implementation. In Proceedings of the 1st International Conference on Principles
and Practice of Constraint Programming (CP’95), pages 137–153. Springer, 1995.

J. Gomez, F. Gonzalez, and D. Dasgupta. An immuno-fuzzy approach to anomaly detection. In
Proceedings of The IEEE International Conference on Fuzzy Systems (FUZZIEEE), volume 2,
pages 1219–1224. IEEE Press, 2003.

F. Gonzalez and D. Dasgupta. Neuro-immune and self-organizing map approaches to anomaly
detection: A comparison. In J. Timmis and P. Bentley, editors, Proceedings of the 1st Inter-
national Conference on Artificial Immune Systems (ICARIS’02), pages 203–211. University
of Kent at Canterbury, 2002.

BIBLIOGRAPHY 150

M. Goto. A predominant-f0 estimation method for polyphonic musical audio signals. In Proceed-
ings of the 18th International Congress on Acoustics (ICA’04), pages 1085–1088. Acoustical
Society of Japan, 2004.

H. Grice. Studies in the Way of Words. Harvard University Press, 1989.

A. Grossmann and J. Morlet. Decomposition of hardy functions into square integrable wavelets
of constant shape. SIAM Journal on Mathematical Analysis, 15:723–736, 1984.

G. Guimarães. Eine Methode zur Entdeckung von komplexen Mustern in Zeitreihen mit Neu-
ronalen Netzen und deren Überführung in eine symbolische Wissensrepräsentation. PhD the-
sis, Philipps-University Marburg, Germany, 1998. German.

G. Guimarães and A. Ultsch. A symbolic representation for pattern in time series using definitive
clause grammars. In R. Klar and O. Opitz, editors, Proceedings of the 20th Annual Conference
of the German Classification Society (GfKl’96), pages 105–111. Springer, 1997.

G. Guimarães and A. Ultsch. A method for temporal knowledge conversion. In D. J. Hand,
J. N. Kok, and M. R. Berthold, editors, Proceedings of the 3rd International Conference in
Intelligent Data Analysis (IDA’99), pages 369–380. Springer, 1999.

G. Guimarães, J. Peter, T. Penzel, and A. Ultsch. A method for automated temporal knowledge
acquisition applied to sleep-related breathing disorders. Artificial Intelligence in Medicine, 23
(3):211–237, 2001.

V. Guralnik and J. Srivastava. Event detection from time series data. In Proceedings of
the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’99), pages 33–42. ACM Press, 1999.

D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computational
biology. Cambridge University Press, 1997.

R. Gwadera, M. J. Atallah, and W. Szpankowski. Markov models for identification of significant
episodes. In H. Kargupta, J. Srivastava, C. Kamath, , and A. Goodman, editors, Proceedings
of the 5th SIAM International Conference on Data Mining (SDM’05). SIAM, 2005.

K. Haigh, W. Foslien, and V. Guralnik. Visual query language: Finding patterns in and rela-
tionships among time series data. In Workshop on Mining Scientific and Engineering Datasets
at the 4th SIAM International Conference on Data Mining (SDM’04), 2004.

J. Han and J. Pei. Pattern growth methods for sequential pattern mining: Principles and exten-
sions. In Workshop on Temporal Data Mining, 7th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’01). ACM Press, 2001.

J. Han, W. Gong, and Y. Yin. Mining segment-wise periodic patterns in time-related databases.
In R. Agrawal, P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the 4th In-
ternational Conference on Knowledge Discovery and Data Mining (KDD’98), pages 214–218.
AAAI Press, 1998.

J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without
minimum support. In Proceedings of the 2nd IEEE International Conference on Data Mining
(ICDM’02), pages 211–218. IEEE Press, 2002.

D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.

BIBLIOGRAPHY 151

S. K. Harms and J. Deogun. Sequential association rule mining with time lags. Journal of
Intelligent Information Systems, Special issue on Data Mining, 22(1):7–22, 2004.

S. K. Harms, J. S. Deogun, J. Saquer, and T. Tadesse. Discovering representative episodal
association rules from event sequences using frequent closed episode sets and event constraints.
In N. Cercone, T. Y. Lin, and X. Wu, editors, Proceedings of the 1st IEEE International
Conference on Data Mining (ICDM’01), pages 603–606. IEEE Press, 2001.

S. K. Harms, J. S. Deogun, and T. Tadesse. Discovering sequential association rules with
constraints and time lags in multiple sequences. In Proceedings of the 13th International
Symposium on Foundations of Intelligent Systems, pages 432–441. Springer, 2002.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.

S. Haykin. Neural Networks: A Comprehensive Foundation. MacMillan College Publishing
Company, 1994.

G. Hebrail and B. Hugueney. Symbolic representation of long time-series. In Workshop on
Symbolic Data Analysis at the 4th European Conference on Principles of Data Mining and
Knowledge Discovery (PKDD’00), 2000.

M. L. Hetland. A survey of recent methods for efficient retrieval of similar time sequences. In
M. Last, A. Kandel, and H. Bunke, editors, Data Mining In Time Series Databases, pages
23–42. World Scientific, 2004.

S. Hettich and S. D. Bay. The UCI KDD Archive, University of California, Irvine, CA, USA,
1999. http://kdd.ics.uci.edu.

R. J. Hilderman and H. J. Hamilton. Knowledge discovery and interestingness measures: A
survey. Technical Report CS 99-04, Department of Computer Science, University of Regina,
Canada, 1999.

J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmäki, and H. T. Toivonen. Time series seg-
mentation for context recognition in mobile devices. In N. Cercone, T. Y. Lin, and X. Wu,
editors, Proceedings of the 1st IEEE International Conference on Data Mining (ICDM’01),
pages 203–210. IEEE Press, 2001a.

J. Himberg, J. Mäntyjärvi, and P. Korpipää. Using PCA and ICA for exploratory data analysis in
situation awareness. In Proceedings of the 2001 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI’01), pages 127–131. IEEE Press, 2001b.

J. Himberg, J. A. Flanagan, and J. Mäntyjärvi. Towards context awareness using symbol clus-
tering map. In T. Yamakawa, editor, Proceedings of the 4th Workshop on Self-Organizing
Maps (WSOM’03), pages 249–254, 2003.

H. Hochheiser. Interactive Graphical Querying of Time Series and Linear Sequence Data Sets.
PhD thesis, HCIL, University of Maryland, College Park, MD, USA, 2003.

F. Höppner. Discovery of temporal patterns - learning rules about the qualitative behaviour of
time series. In L. D. Raedt and A. Siebes, editors, Proceedings of the 5th European Conference
on Principles of Data Mining and Knowledge Discovery (PKDD’01), pages 192–203. Springer,
2001.

BIBLIOGRAPHY 152

F. Höppner. Discovery of core episodes from sequences - using generalization for defragmentation
of rule sets. In D. Hand, R. Bolton, and N. Adams, editors, Proceedings ESF Exploratory
Workshop on Pattern Detection and Discovery in Data Mining, pages 199–213. Springer,
2002a.

F. Höppner. Handling feature ambiguity in knowledge discovery from time series. In Proceedings
of the 7th International Conference on Discovery Science (DS’02), pages 398–405. Springer,
2002b.

F. Höppner. Learning dependencies in multivariate time series. In Workshop on Knowledge Dis-
covery in (Spatio-) Temporal Data at the 15th Eureopean Conference on Artificial Intelligence
(ECAI’02), pages 25–31, 2002c.

F. Höppner. Knowledge Discovery from Sequential Data. PhD thesis, Technical University
Braunschweig, Germany, 2003.

F. Höppner and F. Klawonn. Finding informative rules in interval sequences. Intelligent Data
Analysis, 6(3):237–255, 2002.

K.-Y. Huang, C.-H. Chang, and K.-Z. Lin. Cocoa: Compressed continuity analysis for temporal
databases. In J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, editors, Proceed-
ings of the 8th European Conference on Principles and Practice of Knowledge Discovery in
Databases (PKDD’04), pages 509–511. Springer, 2004.

G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In F. Provost
and R. Srikant, editors, Proceedings of the 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’01), pages 97–106. ACM Press, 2001.

J. Hunter and N. McIntosh. Knowledge-based event detection in complex time series data. In
W. Horn, Y. Shahar, G. Lindberg, S. Andreassen, and J. Wyatt, editors, Artificial Intelligence
in Medicine: Proceedings Joint European Conference on Artificial Intelligence in Medicine and
Medical Decision Making (AIMDM’99), pages 271–280. Springer, 1999.

A. Hyvärinen. Survey on independent component analysis. Neural Computing Surveys, 2:94–128,
1999.

T. Idé and K. Inoue. Knowledge discovery from heterogeneous dynamic systems using change-
point correlations. In H. Kargupta, J. Srivastava, C. Kamath, , and A. Goodman, editors,
Proceedings of the 5th SIAM International Conference on Data Mining (SDM’05). SIAM,
2005.

P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative trends in massive time
series data sets using sketches. In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal,
N. Kamel, G. Schlageter, and K.-Y. Whang, editors, Proceedings of the 26th International
Conference on Very Large Data Bases (VLDB’00), pages 363–372. Morgan Kaufmann, 2000.

Interagon. The Interagon Query Language - A reference guide, 2002. Interagon AS, Trondheim,
Norway, http://www.interagon.com/pub/whitepapers/IQL.reference-latest.pdf.

G. J. Janacek, A. J. Bagnall, and M. Powell. A likelihood ratio distance measure for the
similarity between the Fourier transform of time series. In T. B. Ho, D. Cheung, and H. Liu,
editors, Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD’05), pages 737–743. Springer, 2005.

M. Jansen. Noise Reduction by Wavelet Thresholding. Springer, 2001.

BIBLIOGRAPHY 153

H. Jeffrey. Chaos game visualization of sequences. Computer & Graphics, 16(1):25–33, 1992.

C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, S. J. (editors), C. Dyreson, F. Grandi,
W. Käfer, N. Kline, N. Lorentzos, Y. Mitsopoulos, A. Montanari, D. Nonen, E. Peressi,
B. Pernici, J. F. Roddick, N. L. Sarda, M. R. Scalas, A. Segev, R. T. Snodgrass, M. D.
Soo, A. Tansel, P. Tiberio, and G. Wiederhold. A consensus glossary of temporal database
concepts. ACM SIGMOD Record, 23(1):52–64, 1994.

L. Jiang and H. J. Hamilton. Methods for mining frequent sequential patterns. In Y. Xiang
and B. Chaib-draa, editors, Proceedings of the 16th Conference of the Canadian Society for
Computational Studies of Intelligence (AI’03), pages 486–491. Springer, 2003.

X. Jiang, H. Bunke, and J. Csirik. Median strings: A review. In M. Last, A. Kandel, and
H. Bunke, editors, Data Mining In Time Series Databases, pages 167–192. World Scientific,
2004.

I. T. Jolliffe. Principal Component Analysis. Springer, 1986.

M. W. Kadous. Temporal Classification: Extending the Classification Paradigm to Multivariate
Time Series. PhD thesis, University of New South Wales, Australia, 2003.

M. W. Kadous. Learning comprehensible descriptions of multivariate time series. In I. Bratko and
S. Dzeroski, editors, Proceedings of the 16th International Conference on Machine Learning
(ICML’99), pages 454–463. Morgan Kaufmann, 1999.

M. W. Kadous and C. Sammut. Constructive induction for classifying time series. In J.-
F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, editors, Proceedings of the 15th
European Conference on Machine Learning (ECML’04), pages 192–204. Springer, 2004.

M. W. Kadous and C. Sammut. Classification of multivariate time series and structured data
using constructive induction. Machine Learning, 58(2-3):179–216, 2005.

T. Kahveci and A. K. Singh. Variable length queries for time series data. In Proceedings of the
17th International Conference on Data Engineering (ICDE’01), pages 273–282. IEEE Press,
2001.

T. Kahveci, A. Singh, and A. Gürel. Similarity searching for multi-attribute sequences. In
Proceedings of the 14th International Conference on Scientific and Statistical Database Man-
agement (SSDBM’02), page 175. IEEE Press, 2002.

K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effective clustering of ARIMA
time-series. In N. Cercone, T. Y. Lin, and X. Wu, editors, Proceedings of the 1st IEEE
International Conference on Data Mining (ICDM’01), pages 273–280. IEEE Press, 2001.

P.-S. Kam and A. W.-C. Fu. Discovering temporal patterns for interval-based events. In Y. Kam-
bayashi, M. K. Mohania, and A. M. Tjoa, editors, Proceedings of the 2nd International Confer-
ence on Data Warehousing and Knowledge Discovery (DaWaK’00), pages 317–326. Springer,
2000.

H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge University Press, 1997.

M. B. Kennel, R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-
space reconstruction using a geometrical construction. Physical Review A, 45:3403, 1992.

E. Keogh. Exact indexing of dynamic time warping. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB’02), pages 406–417. Morgan Kaufmann, 2002.

BIBLIOGRAPHY 154

E. Keogh. Indexing and data mining in time series databases. personal communication, 2004.

E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: A survey
and empirical demonstration. In D. Hand, D. Keim, and R. Ng, editors, Proceedings of
the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’02), pages 102–111. ACM Press, 2002.

E. Keogh and M. Pazzani. An enhanced representation of time series which allows fast and
accurate classification, clustering, and relevance feedback. In R. Agrawal, P. E. Stolorz, and
G. Piatetsky-Shapiro, editors, Proceedings of the 4th International Conference on Knowledge
Discovery and Data Mining (KDD’98), pages 239–241. AAAI Press, 1998.

E. Keogh and M. J. Pazzani. Scaling up dynamic time warping to massive datasets. In J. M.
Zytkow and J. Rauch, editors, Proceedings of the 3rd European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD’99), pages 1–11. Springer, 1999.

E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge
and Information Systems, 7(3):358–386, 2005.

E. Keogh and P. Smyth. A probabilistic approach to fast pattern matching in time series
databases. In D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy, editors, Proceed-
ings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD’97),
pages 24–20. AAAI Press, 1997.

E. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani. Locally adaptive dimensionality
reduction for indexing large time series databases. In W. G. Aref, editor, Proceedings of the
2001 ACM SIGMOD International Conference on Management of data, pages 151–162. ACM
Press, 2001a.

E. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra. Dimensionality reduction for fast
similarity search in large time series databases. Knowledge and Information Systems, 3(3):
263–286, 2001b.

E. Keogh, S. Lonardi, and B. Chiu. Finding surprising patterns in a time series database in
linear time and space. In D. Hand, D. Keim, and R. Ng, editors, Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02),
pages 550–556. ACM Press, 2002.

E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time series: A survey and novel
approach. In M. Last, A. Kandel, and H. Bunke, editors, Data Mining In Time Series
Databases, pages 1–22. World Scientific, 2004a.

E. Keogh, S. Lonardi, and C. Ratanamahatana. Towards parameter-free data mining. In W. Kim,
R. Kohavi, J. Gehrke, and W. DuMouchel, editors, Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’04), pages 206–
215. ACM Press, 2004b.

S.-W. Kim, S. Park, and W. W. Chu. An index-based approach for similarity search supporting
time warping in large sequence databases. In Proceedings of the 17th International Conference
on Data Engineering (ICDE’01), pages 607–614. IEEE Press, 2001.

R. Kohavi and M. Sahami. Error-based and entropy-based discretization of continuous features.
In E. Simoudis, J. Han, and U. M. Fayyad, editors, Proceedings of the 2nd International
Conference on Knowledge Discovery and Data Mining (KDD’96), pages 114–119. AAAI Press,
1996.

BIBLIOGRAPHY 155

T. Kohonen. Self-Organizing Maps. Springer, 1995.

T. Kohonen. Self-organizing map of symbol strings. Neurocomputing, 21(1-3):19–30, 1999.

F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries in large
datasets of time sequences. In J. Peckham, editor, Proceedings of the 1997 ACM SIGMOD
International Conference on Management of data, pages 289–300. ACM Press, 1997.

T. Koskela. Neural Network Methods In Analysing And Modelling Time Varying Processes. PhD
thesis, Helsinki University of Technology, Espoo, Finland, 2003.

J. R. Koza. Genetic programming. In J. G. Williams and A. Kent, editors, Encyclopedia of
Computer Science and Technology, volume 39, pages 29–43. Marcel-Dekker, 1998.

M. Kryszkiewicz. Concise representation of frequent patterns based on disjunction-free genera-
tors. In N. Cercone, T. Y. Lin, and X. Wu, editors, Proceedings of the 1st IEEE International
Conference on Data Mining (ICDM’01), pages 305–312. IEEE Press, 2001.

M. Kryszkiewicz and M. Gajek. Concise representation of frequent patterns based on generalized
disjunction-free generators. In M.-S. Cheng, P. S. Yu, and B. Liu, editors, Proceedings of the
6th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’02), pages
159–171. Springer, 2002.

S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical Statistics,
22:79–86, 1951.

N. Kumar, V. Lolla, E. Keogh, S. Lonardi, C. Ratanamahatana, and L. Wei. Time-series
bitmaps: a practical visualization tool for working with large time series databases. In H. Kar-
gupta, J. Srivastava, C. Kamath, , and A. Goodman, editors, Proceedings of the 5th SIAM
International Conference on Data Mining (SDM’05), pages 531–535. SIAM, 2005.

M. Last, Y. Klein, and A. Kandel. Knowledge discovery in time series databases. IEEE Trans-
actions on Systems, Man, and Cybernetics, 31(1):160–169, 2001.

G. Lausen, I. Savnik, and A. Dougarjapov. A system for mining sets of time series. In D. A.
Zighed, H. J. Komorowski, and J. M. Zytkow, editors, Proceedings of the 4th European Con-
ference on Principles of Data Mining and Knowledge Discovery (PKDD’00), pages 289–298.
Springer, 2000.

N. Lavrac and S. Dzeroski. Inductive Logic Programming. Ellis Horwood, 1994.

V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, and J. Allan. Mining of concurrent
text and time series. In R. Ramakrishnan, S. Stolfo, R. Bayardo, and I. Parsa, editors,
Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’00), pages 37–44. ACM Press, 2000.

M. H. Law and J. T. Kwok. Rival penalized competitive learning for model-based sequence clus-
tering. In Proceedings of the 15th International Conference on Pattern Recognition (ICPR’00),
volume 2, pages 195–198. IEEE Press, 2000.

S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W. Chung. Similarity search for multi-
dimensional data sequences. In Proceedings of the 16th International Conference on Data
Engineering (ICDE’00), pages 599–608. IEEE Press, 2000.

BIBLIOGRAPHY 156

N. Lesh, M. Zaki, and M. Ogihara. Mining features for sequence classification. In R. Agrawal,
P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the 4th International Con-
ference on Knowledge Discovery and Data Mining (KDD’98), pages 342–346. AAAI Press,
1998.

C. Li and G. Biswas. Applying the Hidden Markov Model methodology for unsupervised learning
of temporal data. International Journal of Knowledge-based Intelligent Engineering Systems,
6(3):152–160, 2002.

C. Li and G. Biswas. Temporal pattern generation using Hidden Markov Model based unsuper-
vised classification. In D. J. Hand, J. N. Kok, and M. R. Berthold, editors, Proceedings of the
3rd International Conference in Intelligent Data Analysis (IDA’99), pages 245–256. Springer,
1999.

C. Li, P. S. Yu, and V. Castelli. MALM: a framework for mining sequence database at multiple
abstraction levels. In G. Gardarin, J. C. French, N. Pissinou, K. Makki, and L. Bouganim,
editors, Proceedings of the 7th International Conference on Information and Knowledge Man-
agement (CIKM’98), pages 267–272. ACM Press, 1998.

Q. Li, B. Moon, and I. Lopez. Skyline index for time series data. IEEE Transactions on
Knowledge and Data Engineering, 16(6):669–684, 2004.

Y. Li, X. S. Wang, and S. Jajodia. Discovering temporal patterns in multiple granularities.
In J. F. Roddick and K. Hornsby, editors, Proceedings of the 1st International Workshop on
Temporal, Spatial, and Spatio-Temporal Data Mining, pages 5–19. Springer, 2001.

J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding motifs in time series. In D. Hand, D. Keim,
and R. Ng, editors, Workshop on Temporal Data Mining, 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’02), 2002.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with
implications for streaming algorithms. In Proceedings of the 2003 ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, pages 2–11. ACM Press, 2003a.

J. Lin, E. Keogh, and W. Truppel. Clustering of streaming time series is meaningless. In
Proceedings of the 2003 ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, pages 56–65. ACM Press, 2003b.

J. Lin, E. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom. Visually mining and mon-
itoring massive time series. In W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel, editors,
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’04), pages 460–469. ACM Press, 2004.

J. Lin, M. Vlachos, E. Keogh, and D. Gunopulos. A MPAA-based iterative clustering algorithm
augmented by nearest neighbors search for time-series data streams. In T. B. Ho, D. Cheung,
and H. Liu, editors, Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD’05), pages 333–342. Springer, 2005.

W. Lin, M. Orgun, and G. Williams. Temporal data mining using Hidden Markov-local polyno-
mial models. In D. Cheung, G. Williams, and Q. Li, editors, Proceedings of the 5th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD’01), pages 324–335. Springer,
2001.

T. Lindeberg. Effective scale: A natural unit for measuring scale-space lifetime. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 15(10):1068–1074, 1993.

BIBLIOGRAPHY 157

A. Lindgren, M. T. Johnson, and R. J. Povinelli. Joint frequency domain and reconstructed
phase space features for speech recognition. In Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP’04), pages 533–536. IEEE Press, 2004.

Z. Liu, J. X. Yu, X. Lin, H. Lu, and W. Wang. Locating motifs in time-series data. In T. B. Ho,
D. Cheung, and H. Liu, editors, Proceedings of the 9th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD’05), pages 343–353. Springer, 2005.

H. Lu, J. Han, and L. Feng. Stock movement prediction and n-dimensional inter-transaction
association rules. In Proceedings of the 1998 ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, pages 12:1–12:7, 1998.

J. Ma and S. Perkins. Online novelty detection on temporal sequences. In L. Getoor, T. E.
Senator, P. Domingos, and C. Faloutsos, editors, Proceedings of the 9th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD’03), pages 613–618.
ACM Press, 2003.

S. Ma and J. L. Hellerstein. Mining partially periodic event patterns with unknown periods.
In Proceedings of the 17th International Conference on Data Engineering (ICDE’01), pages
205–214. IEEE Press, 2001.

J. B. MacQueen. On convergence of k-means and partitions with minimum average variance.
Annals of Mathematical Statistics, 36(1084):1084, 1965.

O. Maimon and M. Last. Knowledge Discovery and Data Mining, the Info-Fuzzy Network (IFN)
Methodology. Kluwer, 2000.

S. G. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

S. Manganaris. Learning to classify sensor data. Technical Report CS-95-10, Vanderbilt Uni-
versity, Nashville, TN, USA, 1995.

H. Mannila and C. Meek. Global partial orders from sequential data. In R. Ramakrishnan,
S. Stolfo, R. Bayardo, and I. Parsa, editors, Proceedings of the 6th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’00), pages 161–168. ACM
Press, 2000.

H. Mannila and M. Salmenkivi. Finding simple intensity descriptions from event sequence data.
In F. Provost and R. Srikant, editors, Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’01), pages 341–346. ACM Press,
2001.

H. Mannila and J. Seppänen. Recognizing similar situations from event sequences. In R. L.
Grossman, J. Han, and V. Kumar, editors, Proceedings of the 1st SIAM International Con-
ference on Data Mining (SDM’01). SIAM, 2001.

H. Mannila and H. Toivonen. Discovering generalized episodes using minimal occurrences. In
E. Simoudis, J. Han, and U. M. Fayyad, editors, Proceedings of the 2nd International Con-
ference on Knowledge Discovery and Data Mining (KDD’96), pages 146–151. AAAI Press,
1996.

H. Mannila, H. Toivonen, and I. Verkamo. Discovery of frequent episodes in event sequences.
In U. M. Fayyad and R. Uthurusamy, editors, Proceedings of the 1st International Conference
on Knowledge Discovery and Data Mining (KDD’96), pages 210–215. AAAI Press, 1995.

BIBLIOGRAPHY 158

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences.
Data Mining and Knowledge Discovery, 1(3):259–289, 1997.

J. Mäntyjärvi. Sensor-based Context Recognition for Mobile Applications. PhD thesis, Oulu
University, Finland, 2003.

J. Mäntyjärvi, J. Himberg, P. Korpipää, and H. Mannila. Extracting the context of a mobile
device user. In Proceedings of the 8th IFAC IFAC/IFIP/IFORS/IEA Symposium on Analysis,
Design, and Evaluation of Human-Machine Systems (IFAC HMS 2001), pages 450–455, 2001.

V. Megalooikonomou, G. Li, and Q. Wang. A dimensionality reduction technique for efficient
similarity analysis of time series databases. In D. Grossman, L. Gravano, C. Zhai, O. Herzog,
and D. A. Evans, editors, Proceedings of the 13th International Conference on Information
and Knowledge Management (CIKM’04), pages 160–161. ACM Press, 2004.

V. Megalooikonomou, Q. Wang, G. Li, and C. Faloutsos. Multiresolution symbolic representation
of time series. In Proceedings of the 21st International Conference on Data Engineering
(ICDE’05), pages 668–679. IEEE Press, 2005.

N. Méger and C. Rigotti. Constraint-based mining of episode rules and optimal window sizes.
In J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, editors, Proceedings of the
8th European Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD’04), pages 313–324. Springer, 2004.

Merriam-Webster. Online dictionary, 2005. http://www.m-w.com.

C. S. Möller-Levet, K.-H. Cho, H. Yin, and O. Wolkenhauer. Clustering of gene expression
time-series data. Technical Report 11-2003, SBI, University Rostock, Germany, 2003.

Y.-S. Moon, K.-Y. Whang, and W.-K. Loh. Efficient time-series subsequence matching using
duality in constructing windows. Information Systems, 26(4):279–293, 2001.

C. Mooney and J. F. Roddick. Mining relationships between interacting episodes. In M. W.
Berry, U. Dayal, C. Kamath, and D. B. Skillicorn, editors, Proceedings of the 4th SIAM
International Conference on Data Mining (SDM’04). SIAM, 2004.

F. Mörchen. Time series feature extraction for data mining using DWT and DFT. Technical
Report 33, Department of Mathematics and Computer Science, Philipps-University Marburg,
Germany, 2003.

F. Mörchen and A. Ultsch. Discovering temporal knowledge in multivariate time series. In
C. Weihs and W. Gaul, editors, Proceedings of the 28th Annual Conference of the German
Classification Society (GfKl’04), pages 272–279. Springer, 2005a.

F. Mörchen and A. Ultsch. Mining hierarchical temporal patterns in multivariate time series. In
S. Biundo, T. W. Frühwirth, and G. Palm, editors, Proceedings of the 27th Annual German
Conference in Artificial Intelligence (KI’04), pages 127–140. Springer, 2004.

F. Mörchen and A. Ultsch. Optimizing time series discretization for knowledge discovery. In
R. Grossman, R. Bayardo, and K. P. Bennett, editors, Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’05), pages 660–
665. ACM Press, 2005b.

BIBLIOGRAPHY 159

F. Mörchen, A. Ultsch, M. Thies, I. Löhken, M. Nöcker, C. Stamm, N. Efthymiou, and
M. Kümmerer. MusicMiner: Visualizing timbre distances of music as topographical maps.
Technical Report 47, Department of Computer Sciences, Philipps-University Marburg, Ger-
many, 2005.

F. Mörchen, A. Ultsch, and O. Hoos. Extracting interpretable muscle activation patterns with
Time Series Knowledge Mining. International Journal of Knowledge-Based & Intelligent En-
gineering Systems, 2006. to appear.

K. Morik. The representation race - preprocessing for handling time phenomena. In R. L.
de Mántaras and E. Plaza, editors, Proceedings of the 11th European Conference on Machine
Learning (ECML’00), pages 4–19. Springer, 2000.

K. Morik, M. Imboff, P. Brockhausen, T. Joachims, and U. Gather. Knowledge discovery and
knowledge validation in intensive care. Artificial Intelligence in Medicine, 19(3):225–249, 2000.

Y. Morinaka, M. Yoshikawa, T. Amagasa, and S. Uemura. The L-index: An indexing structure
for efficient subsequence matching in time sequence databases. In Workshop on Mining Spatial
and Temporal data at the 5th Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD’01), pages 51–60, 2001.

K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik. Predicting
time series with support vector machines. In W. Gerstner, A. Germond, M. Hasler, and J.-D.
Nicoud, editors, Proceedings of the 7th International Conference on Artificial Neural Networks
(ICANN’97), pages 999–1004. Springer, 1997.

J. Mäntyjärvi, J. Himberg, P. Kangas, U. Tuomela, and P. Huuskonen. Sensor signal data set for
exploring context recognition of mobile devices. In Workshop ”Benchmarks and a database
for context recognition” in conjuction with the 2nd International Conference on Pervasive
Computing (PERVASIVE’04), 2004.

G. Nagypal and B. Motik. A fuzzy model for representing uncertain, subjective and vague
temporal knowledge in ontologies. In R. Meersman, Z. Tari, and D. C. Schmidt, editors,
Proceedings International Conference on Ontologies, Databases and Applications of Semantics,
(ODBASE’03), pages 906–923. Springer, 2003.

A. Nanopoulos, R. Alcock, and Y. Manolopoulos. Feature-based classification of time-series data.
In N. Mastorakis and S. D. Nikolopoulos, editors, Information processing and technology, pages
49–61. Nova Science, 2001.

B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal tractable sub-
class of allen’s interval algebra. In Proceedings of the 11th National Conference on Artificial
Intelligence (AAAI’94), pages 356–361. AAAI Press, 1994.

T. Oates. PERUSE: An unsupervised algorithm for finding recurring patterns in time series.
In Proceedings of the 2nd IEEE International Conference on Data Mining (ICDM’02), pages
330–337. IEEE Press, 2002.

T. Oates. Identifying distinctive subsequences in multivariate time series by clustering. In
S. Chaudhuri and D. Madigan, editors, Fifth International Conference on Knowledge Discov-
ery and Data Mining, pages 322–326. ACM Press, 1999.

T. Oates, M. D. Schmill, and P. R. Cohen. Parallel and distributed search for structure in mul-
tivariate time series. Technical Report UM-CS-1996-023, Experimental Knowledge Systems
Laboratory, University of Massachusetts Amherst, MA, USA, 1996.

BIBLIOGRAPHY 160

T. Oates, M. D. Schmill, D. Jensen, and P. R. Cohen. A family of algorithms for finding temporal
structure in data. In Proceedings 6th International Workshop on Artificial Intelligence and
Statistics, 1997.

T. Oates, D. Jensen, and P. Cohen. Discovering rules for clustering and predicting asynchronous
events. In Predicting the Future: AI Approaches to Time-Series Problems, Proceedings of the
1998 Joint AAAI-ICML Workshop on Time Series Analysis, pages 73–79. AAAI Press, 1998.

T. Oates, M. D. Schmill, and P. R. Cohen. A method for clustering the experiences of a mobile
robot that accords with human judgments. In Proceedings of the 17th National Conference
on Artificial Intelligence (AAAI’00), pages 846–851. AAAI Press / MIT Press, 2000.

T. Oates, L. Firoiu, and P. R. Cohen. Using dynamic time warping to bootstrap HMM-based
clustering of time series. In R. Sun and C. L. Giles, editors, Sequence Learning - Paradigms,
Algorithms, and Applications, pages 35–52. Springer, 2001.

H. J. Ohlbach. Relations between fuzzy time intervals. In Proceedings 11th International Sym-
posium on Temporal Representation and Reasoning (TIME’04), pages 44–51. IEEE Press,
2004.

M. Ohsaki, Y. Sato, H. Yokoi, and T. Yamaguchi. A rule discovery support system for sequential
medical data – in the case study of a chronic hepatitis dataset. In Workshop on Active Mining
at the 2nd IEEE International Conference on Data Mining (ICDM’02), pages 97–102, 2002.

A. L. Oliveira, F. B. Neto, , and S. R. Meira. Combining MLP and RBF neural networks for
novelty detection in short time series. In R. Monroy, G. Arroyo-Figueroa, and L. E. Sucar,
editors, Advances in Artificial Intelligence: Proceedings 3rd Mexican International Conference
on Artificial Intelligence (MICAI 2004), pages 844–853, Mexico City, Mexico, 2004. Springer.

J. J. Oliver, R. A. Baxter, and C. S. Wallace. Minimum message length segmentation. In X. Wu,
K. Ramamohanarao, and K. B. Korb, editors, Proceedings of the 2nd Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD’98), pages 222–233. Springer, 1998.

P. Ormerod and C. Mounfield. Localised structures in the temporal evolution of asset prices. In
New Approaches to financial Economics, Sante Fe Conference, 2000.

B. Özden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In Proceedings of the
14th International Conference on Data Engineering (ICDE’98), pages 412–421. IEEE Press,
1998.

G. Ozsoyoglu and R. T. Snodgrass. Temporal and real-time databases: A survey. IEEE Trans-
actions on Knowledge and Data Engineering, 7(4):513–532, 1995.

B. Padmanabhan and A. Tuzhilin. Pattern discovery in temporal databases: a temporal logic
approach. In E. Simoudis, J. Han, and U. M. Fayyad, editors, Proceedings of the 2nd In-
ternational Conference on Knowledge Discovery and Data Mining (KDD’96), pages 351–354.
AAAI Press, 1996.

T. Palpanas, M. Cardle, D. Gunopulos, E. Keogh, and V. B. Zordan. Indexing large human
motion databases. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A.
Blakeley, and K. B. Schiefer, editors, Proceedings of the 30th International Conference on
Very Large Data Bases (VLDB’04), pages 780–791. Morgan Kaufmann, 2004.

BIBLIOGRAPHY 161

A. Panuccio, M. Bicego, and V. Murino. A Hidden Markov Model-based approach to sequential
data clustering. In T. Caelli, A. Amin, R. P. W. Duin, M. S. Kamel, and D. de Ridder,
editors, Proceedings Joint IAPR International Workshops Structural, Syntactic, and Statistical
Pattern Recognition, pages 734–742. Springer, 2002.

S. Park, D. Lee, and W. W. Chu. Fast retrieval of similar subsequences in long sequence
databases. In Proceedings of the 3rd IEEE Knowledge and Data Engineering Exchange Work-
shop, pages 60–67. IEEE Press, 1999.

S. Park, S. Kim, and W. W. Chu. Segment-based approach for subsequence searches in sequence
databases. Technical Report UCLA-CSD-TR-200022, Computer Science Department, UCLA,
Los Angeles, CA, USA, 2000.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for
association rules. In Proceeding of the 7th International Conference on Database Theory
(ICDT’99), pages 398–416. Springer, 1999.

P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive time series databases.
In Proceedings of the 2nd IEEE International Conference on Data Mining (ICDM’02), pages
370–377. IEEE Press, 2002.

J. Pei, A. K. Tung, and J. Han. Fault-tolerant frequent pattern mining: Problems and chal-
lenges. In Workshop on Research Issues in Data Mining and Knowledge Discovery, 20th ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS’01).

J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent closed itemsets.
In Proceedings of the 2000 ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery. ACM Press, 2000.

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. PrefixSpan:
Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceedings of the
17th International Conference on Data Engineering (ICDE’01), pages 215–224. IEEE Press,
2001.

J. Pei, G. Dong, W. Zou, and J. Han. On computing condensed frequent pattern bases. In
Proceedings of the 2nd IEEE International Conference on Data Mining (ICDM’02), pages
378–385. IEEE Press, 2002.

J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Mining
sequential patterns by pattern-growth: The PrefixSpan approach. IEEE Transactions on
Knowledge and Data Engineering, 16(11):1424–1440, 2004.

C. S. Perng, H. Wang, S. R. Zhang, and D. S. Parker. Landmarks: A new model for similarity-
based pattern querying in time series databases. In Proceedings of the 16th International
Conference on Data Engineering (ICDE’00), pages 33–42. IEEE Press, 2000.

M. P. Perrone and S. D. Connell. K-means clustering for Hidden Markov Models. In L. R. B.
Schomaker and L. G. Vuurpijl, editors, Proceedings of the 7th International Workshop on
Frontiers in Handwriting Recognition, pages 229–238, 2000.

S. Poliker and A. B. Geva. Non-stationary signal analysis using temporal clustering. In The
1998 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing,
pages 304–312, Cambridge, England, 1998. IEEE Press.

BIBLIOGRAPHY 162

I. Popivanov and R. J. Miller. Similarity search over time-series data using wavelets. In Proceed-
ings of the 18th International Conference on Data Engineering (ICDE’02), pages 212–242.
IEEE Press, 2002.

R. Povinelli. Time Series Data Mining: Identifying Temporal Patterns for Characterization and
Prediction of Time Series Events. PhD thesis, Marquette University, Milwaukee, WI, USA,
1999.

R. J. Povinelli. Identifying temporal patterns for characterization and prediction of financial time
series events. In J. F. Roddick and K. Hornsby, editors, Proceedings of the 1st International
Workshop on Temporal, Spatial, and Spatio-Temporal Data Mining, pages 46–61. Springer,
2001.

R. J. Povinelli and X. Feng. A new temporal pattern identification method for characterization
and prediction of complex time series events. In IEEE Transactions on Knowledge and Data
Engineering, volume 15, pages 339–352. IEEE Press, 2003.

R. J. Povinelli, M. T. Johnson, A. C. Lindgren, and J. Ye. Time series classification using
Gaussian mixture models of reconstructed phase spaces. IEEE Transactions on Knowledge
and Data Engineering, 16(6):779–783, 2004.

K. B. Pratt and E. Fink. Search for patterns in compressed time series. International Journal
of Image and Graphics, 2(1):89–106, 2002.

V. Pudi and J. R. Haritsa. Generalized closed itemsets for association rule mining. In U. Dayal,
K. Ramamritham, and T. M. Vijayaraman, editors, Proceedings of the 19th International
Conference on Data Engineering (ICDE’03), pages 714–716. IEEE Press, 2003.

Y.-T. Qian, S. Jia, and W. Si. Markov model based time series similarity measuring. In
Proceedings of the 2nd IEEE International Conference on Machine Learning and Cybernetics
(ICMLC’03), pages 278–283. IEEE Press, 2003.

Y. Qu, C. Wang, and X. S. Wang. Supporting fast search in time series for movement patterns in
multiple scales. In G. Gardarin, J. C. French, N. Pissinou, K. Makki, and L. Bouganim, editors,
Proceedings of the 7th International Conference on Information and Knowledge Management
(CIKM’98), pages 251–258. ACM Press, 1998.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993.

R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI’96), pages 725–730. AAAI Press / MIT Press, 1996.

L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recog-
nition. Proceedings of IEEE, 77(2):257–286, 1989.

D. Rafiei and A. O. Mendelzon. Similarity-based queries for time series data. In J. Peckham,
editor, Proceedings of the 1997 ACM SIGMOD International Conference on Management of
data, pages 13–25. ACM Press, 1997.

D. Rafiei and A. O. Mendelzon. Efficient retrieval of similar time sequences using DFT. In
K. Tanaka and S. Ghandeharizadeh, editors, Proceedings of the 5th International Conference
of Foundations of Data Organization and Algorithms (FODO’98), pages 249–257. Springer,
1998.

BIBLIOGRAPHY 163

C. Rainsford and J. Roddick. Adding temporal semantics to association rules. In J. M. Zytkow
and J. Rauch, editors, Proceedings of the 3rd European Conference on Principles of Data
Mining and Knowledge Discovery (PKDD’99), pages 504–509. Springer, 1999.

C. P. Rainsford and J. F. Roddick. Visualisation of temporal interval association rules. In
N. Shatin, editor, Proceedings 2nd International Conference on Intelligent Data Engineering
and Automated Learning (IDEAL’00), pages 91–96. Springer, 2000.

M. Ramoni, P. Sebastiani, and P. R. Cohen. Bayesian clustering by dynamics. Machine Learning,
47(1):91–121, 2002.

C. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi. A novel bit level time series
representation with implication of similarity search and clustering. In T. B. Ho, D. Cheung,
and H. Liu, editors, Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD’05), pages 771–777. Springer, 2005.

C. A. Ratanamahatana and E. Keogh. Everything you know about dynamic time warping is
wrong. In Workshop on Mining Temporal and Sequential Data at the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’04). ACM Press,
2004a.

C. A. Ratanamahatana and E. Keogh. Making time-series classification more accurate using
learned constraints. In M. W. Berry, U. Dayal, C. Kamath, and D. B. Skillicorn, editors,
Proceedings of the 4th SIAM International Conference on Data Mining (SDM’04), pages 11–
22. SIAM, 2004b.

C. A. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi. A novel bit level time se-
ries representation with implications for similarity search and clustering. Technical report,
University of California - Riverside, CA, USA, 2004.

T. M. Rath and R. Manmatha. Lower-bounding of dynamic time warping distances for multi-
variate time series. Technical Report MM-40, CIIR, University of Massachusetts at Amherst,
MA, USA, 2003.

K. V. Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for similarity searching
in dynamic databases. ACM SIGMOD Records, 27(2):166–176, 1998.

G. Reinert, S. Schbath, and M. S. Waterman. Probabilistic and statistical properties of words:
An overview. Journal of Computational Biology, 7(1-2):1–46, 2000.

G. Ridgeway. Finite discrete Markov process clustering. Technical Report MSR-TR-97-24,
Microsoft, Redmond, WA, USA, 1997.

J. Rissanen. Stochastic complexity in statistical inquiry. World Scientific, 1989.

J. F. Roddick and C. H. Mooney. Linear temporal sequences and their interpretation using
midpoint relationships. IEEE Transactions on Knowledge and Data Engineering, 17(1):133–
135, 2005.

J. F. Roddick and M. Spiliopoulou. A survey of temporal knowledge discovery paradigms and
methods. IEEE Transactions on Knowledge and Data Engineering, 14(4):750–767, 2002.

J. J. Rodriguez and C. J. Alonso. Applying boosting to similarity literals for time series clas-
sification. In First International Workshop on Multiple Classifier Systems, pages 210–219.
Springer, 2000.

BIBLIOGRAPHY 164

J. J. Rodriguez, C. J. Alonso, and H. Boström. Learning first order logic time series classifiers:
Rules and boosting. In D. A. Zighed, H. J. Komorowski, and J. M. Zytkow, editors, Proceed-
ings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD’00), pages 299–308. Springer, 2000.

P. Ronkainen. Attribute Similarity and Event Sequence Similarity in Data Mining. PhD thesis,
Department of Computer Science, University of Helsinki, Finland, 1998.

M. T. Rosenstein and P. R. Cohen. Concepts from time series. In Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI’98), pages 739–745. AAAI Press / MIT
Press, 1998.

D. Roverso. Multivariate temporal classification by windowed wavelet decomposition and recur-
rent neural networks. In Proceedings of the 3rd ANS International Topical Meeting on Nuclear
Plant Instrumentation, Control and Human-Machine Interface Technologies, NPIC & HMIT
2000. ANS, 2000.

P. Saetrom and M. L. Hetland. Unsupervised temporal rule mining with genetic programming
and specialized hardware. In M. A. Wani, K. J. Cios, and K. Hafeez, editors, Proceedings of
the 2003 International Conference on Machine Learning and Applications (ICMLA’03), pages
145–151. CSREA Press, 2003.

Y. Sakurai, M. Yoshikawa, and C. Faloutsos. FTW: Fast similarity search under the time
warping distance. In F. Afrati, editor, Proceedings of the 24th ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems (PODS’05), pages 326–337. ACM
Press, 2005.

S. Salvador and P. Chan. FastDTW: Toward accurate dynamic time warping in linear time
and space. In Workshop on Mining Temporal and Sequential Data, 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’04). ACM Press,
2004.

S. Salvador, P. Chan, and J. Brodie. Learning states and rules for time series anomaly detection.
In V. Barr and Z. Markov, editors, Proceedings 17th International Florida AI Research Society
Conference (FLAIRS’04). AAAI Press, 2004.

J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Com-
putation, C-18(5):401–409, 1969.

I. Savnik, G. Lausen, H.-P. Kahle, H. Spiecker, and S. Hein. Algorithm for matching sets of time
series. In D. A. Zighed, H. J. Komorowski, and J. M. Zytkow, editors, Proceedings of the 4th
European Conference on Principles of Data Mining and Knowledge Discovery (PKDD’00),
pages 277–288. Springer, 2000.

R. E. Schapire. A brief introduction to boosting. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI’99), pages 1401–1406. Morgan Kaufmann, 1999.

M. Schmill, T. Oates, and P. Cohen. Learned models for continuous planning. In Proceedings
of Uncertainty 99: The 7th International Workshop on Artificial Intelligence and Statistics,
pages 278–282. Morgan Kaufmann, 1999.

A. Schmitt. Ubiquitous computing - computing in context. PhD thesis, Lancaster University,
UK, 2002.

BIBLIOGRAPHY 165

E. Schwalb. Temporal Reasoning With Constraints. PhD thesis, ICS, University of California
at Irvine, CA, USA, 1998.

E. Schwalb and L. Vila. Temporal constraints: A survey. Technical report, ICS, University of
California at Irvine, CA, USA, 1997.

P. Sebastiani and M. Ramoni. Clustering continuous time series. In C. E. Brodley and A. P.
Danyluk, editors, Proceedings of the 18th International Conference on Machine Learning
(ICML’01), pages 497–504. Morgan Kaufmann, 2001.

P. Sebastiani, M. Ramoni, P. R. Cohen, J. Warwick, and J. Davis. Discovering dynamics using
Bayesian clustering. In D. J. Hand, J. N. Kok, and M. R. Berthold, editors, Proceedings of the
3rd International Conference in Intelligent Data Analysis (IDA’99), pages 199–210. Springer,
1999.

J. K. Seppänen and H. Mannila. Dense itemsets. In W. Kim, R. Kohavi, J. Gehrke, and
W. DuMouchel, editors, Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’04), pages 683–688. ACM Press, 2004.

A. Sfetsos and C. Siriopoulos. Time series forecasting with a hybrid clustering scheme and
pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, 34(3):399–405,
2004.

C. Shahabi, X. Tian, and W. Zhao. TSA-tree: A wavelet-based approach to improve the effi-
ciency of multi-level surprise and trend queries on time-series data. In Proceedings of the 12th
International Conference on Scientific and Statistical Database Management (SSDBM’00),
pages 55–68. IEEE Press, 2000.

Y. Shahar. A framework for knowledge-based temporal abstraction. Artificial Intelligence, 90
(1-2):79–133, 1997.

H. Shatkay. Approximate queries and representations for large data sequences. Technical Report
CS-95-03, Department of Computer Science, Brown University, Providence, RI, USA, 1995a.

H. Shatkay. The Fourier transform - A primer. Technical Report CS-95-37, Department of
Computer Science, Brown University, Providence, RI, USA, 1995b.

H. Shatkay and S. B. Zdonik. Approximate queries and representations for large data sequences.
In S. Y. W. Su, editor, Proceedings of the 12th International Conference on Data Engineering
(ICDE’96), pages 536–545. IEEE Press, 1996.

S. W. Shaw and R. J. P. DeFigueiredo. Structural processing of waveforms as trees. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 38(2):328–338, 1990.

B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations.
In Proceedings of the 1996 IEEE Symposium on Visual Languages, page 336. IEEE Press, 1996.

J. M. Siskind. Grounding the lexical semantics of verbs in visual perception using force dynamics
and event logic. Journal of Artificial Intelligence Research, 15:31–90, 2001.

S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. California
Technical Publishing, 1997.

P. Smyth. Clustering sequences with Hidden Markov Models. In M. C. Mozer, M. I. Jordan,
and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, page
648. MIT Press, 1997.

BIBLIOGRAPHY 166

P. Smyth and R. M. Goodman. Rule induction using information theory. In Knowledge Discovery
in Databases, pages 159–176. AAAI Press / MIT Press, 1991.

C. Snoek and M. Worring. Multimedia event based video indexing using time intervals. IEEE
Transactions on Multimedia, 7(4):638–647, 2004.

M. Spiliopoulou and L. C. Faulstich. WUM: A tool for WebUtilization analysis. In Proceedings
Extending Database Technology Workshop (WebDB ’98), pages 184–203. Springer, 1999.

M. Spiliopoulou and J. F. Roddick. Higher order mining: Modelling and mining the results of
knowledge discovery. In N. Ebecken and C. A. Brebbia, editors, Data Mining II - Proceedings
Second International Conference on Data Mining Methods and Databases, pages 309–320.
WIT Press, 2000.

R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance im-
provements. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, editors, Proceedings of
the 5th International Conference on Extending Database Technology (EDBT’96), pages 3–17.
Springer, 1996.

S. Sripada, E. Reiter, and I. Davy. SumTime-Mousam: Configurable marine weather forecast
generator. Expert Update, 6(3):4–10, 2003a.

S. G. Sripada, E. Reiter, J. Hunter, and J. Yu. Segmenting time series for weather forecasting.
In A. Macintosh, R. Ellis, and F. Coenen, editors, Applications And Innovations in Intelligent
Systems X, pages 193–206. Springer, 2002.

S. G. Sripada, E. Reiter, and J. Hunter. Generating English summaries of time series data using
the Gricean maxims. In L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos, editors,
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’03), pages 187–196. ACM Press, 2003b.

S. G. Sripada, E. Reiter, J. Hunter, and J. Yu. Summarizing neonatal time series data. In
Proceedings of the research note sessions of the 10th Conference of the European Chapter of
the Association for Computational Linguistics, pages 167–170, 2003c.

J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web usage mining: discovery and
applications of usage patterns from web data. ACM SIGKDD Explorations Newsletter, 1(2):
12–23, 2000.

M. Steinbach, P.-N. Tan, and V. Kumar. Support envelopes: A technique for exploring the struc-
ture of association patterns. In W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel, editors,
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’04), pages 296–305. ACM Press, 2004.

Z. R. Struzik. Time series rule discovery: Tough, not meaningless. In Proceedings of the
International Symposium on Methologies for Intelligent Systems. Springer, 2003.

Z. R. Struzik and A. P. J. M. Siebes. Measuring time series’ similarity through large singular
features revealed with wavelet transformation. In Proceedings of the International Workshop
on Database and Expert Systems Application, pages 162–166. IEEE Press, 1999.

X. Sun, M. E. Orlowska, and X. Zhou. Finding event-oriented patterns in long temporal se-
quences. In K.-Y. Whang, J. Jeon, K. Shim, and J. Srivastava, editors, Proceedings of the
7th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’03), pages
15–26. Springer, 2003.

BIBLIOGRAPHY 167

X. Sun, M. Orlowska, and X. Li. Extending negative event-oriented patterns in long temporal
sequences. In Workshop at the 8th Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD’04), 2004a.

X. Sun, M. Orlowska, and X. Li. Finding negative event-oriented patterns in long temporal
sequences. In H. Dai, R. Srikant, and C. Zhang, editors, Proceedings of the 8th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD’04), pages 212–221. Springer,
2004b.

X. Sun, M. E. Orlowska, and X. Li. Finding temporal features of event-oriented patterns. In
T. B. Ho, D. Cheung, and H. Liu, editors, Proceedings of the 9th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD’05), pages 778–784. Springer, 2005.

F. Takens. Detecting strange attractors in turbulence. In D. Rand and L. Young, editors,
Dynamical systems and turbulences, pages 366–381. Springer, 1981.

Y. Tanaka and K. Uehara. Discover motifs in multi-dimensional time-series using the principal
component analysis and the MDL principle. In P. Perner and A. Rosenfeld, editors, Proceed-
ings of the 3rd International Conference on Machine Learning and Data Mining in Pattern
Recognition (MLDM’03), pages 252–265. Springer, 2003.

Z. Tang and P. A. Fishwick. Feed-forward neural nets as models for time series forecasting.
Technical Report TR91-008, University of Florida, Gainesville, FL, USA, 1991.

P. Tino, C. Schittenkopf, and G. Dorffner. Temporal pattern recognition in noisy non-stationary
time series based on quantization into symbolic streams: Lessons learned from financial volatil-
ity trading. Technical Report 46, SFB Adaptive Information Systems and Modelling in Eco-
nomics and Management Science, University Vienna, Austria, 2000.

Z. Trońıček. Episode matching. In A. Amir and G. M. Landau, editors, Proceedings of the 12th
Annual Symposium of Combinatorial Pattern Matching, pages 143–146. Springer, 2001.

A. K. H. Tung, H. Lu, J. Han, and L. Feng. Breaking the barrier of transactions: Mining
inter-transaction association rules. In Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’99), pages 297–301. ACM Press,
1999.

P. Tzvetkov, X. Yan, and J. Han. TSP: Mining Top-K closed sequential patterns. In Proceedings
of the 3rd IEEE International Conference on Data Mining (ICDM’03), pages 347–354. IEEE
Press, 2003.

A. Ultsch. Knowledge discovery, lecture notes, 2003a. German.

A. Ultsch. Maps for the visualization of high dimensional data spaces. In T. Yamakawa, editor,
Proceedings of the 4th Workshop on Self-Organizing Maps (WSOM’03), pages 225–230, 2003b.

A. Ultsch. Unification-based temporal grammar. Technical Report 37, Department of Mathe-
matics and Computer Science, Philipps-University Marburg, Germany, 2004.

A. Ultsch. Konnektionistische Modelle und ihre Integration mit wissensbasierten Systemen.
Habilitationsschrift, University Dortmund, Germany, 1991.

A. Ultsch. Self-organizing neural networks for visualization and classification. In O. Opitz,
B. Lausen, and R. Klar, editors, Proceedings of the 16th Annual Conference of the German
Classification Society (GfKl’92), pages 307–313. Springer, 1993.

BIBLIOGRAPHY 168

A. Ultsch. Self organizing neural networks perform different from statistical k-means clustering.
In H. H. Bock and W. Polasek, editors, Proceedings of the 19th Annual Conference of the
German Classification Society (GfKl’95), pages 1–13. Springer, 1996a.

A. Ultsch. Eine unifikationsbasierte Grammatik zur Beschreibung von komplexen Mustern in
multivariaten Zeitreihen. personal notes, 1996b. German.

A. Ultsch. Data mining and knowledge discovery with emergent self-organizing feature maps
for multivariate time series. In E. Oja and S. Kaski, editors, Kohonen Maps, pages 33–46.
Elsevier, 1999.

A. Ultsch and D. Korus. Automatic acquisition of symbolic knowledge from subsymbolic neural
networks. In Proceedings 3rd European Congress on Intelligent Techniques and Soft Computing
(EUFIT’95), pages 326–331, 1995.

A. Ultsch and F. Mörchen. ESOM-maps: Tools for clustering, visualization, and classifica-
tion with Emergent SOM. Technical Report 46, Department of Mathematics and Computer
Science, Philipps-University Marburg, Germany, 2005.

J. J. van Wijk and E. R. van Selow. Cluster and calendar based visualization of time series
data. In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS’99),
pages 4–9. IEEE Press, 1999.

K. Vasko and H. T. T. Toivonen. Estimating the number of segments in time series data using
permutation tests. In Proceedings of the 2nd IEEE International Conference on Data Mining
(ICDM’02), pages 466–473. IEEE Press, 2002.

M. Vilain. A system for reasoning about time. In Proceedings of the 2nd National Conference
on Artificial Intelligence (AAAI’82), pages 197–201. AAAI Press / MIT Press, 1982.

M. Vilain, H. A. Kautz, and P. G. van Beek. Constraint propagation algorithms for temporal
reasoning: A revised report. In Readings in Qualitative Reasoning about Physical Systems,
pages 373–381. Morgan Kaufmann, 1989.

R. Villafane, K. A. Hua, D. Tran, and B. Maulik. Mining interval time series. In Proceed-
ings of the 1st International Conference on Data Warehousing and Knowledge Discovery
(DaWaK’99), pages 318–330. Springer, 1999.

J. Vilo. Pattern Discovery from Biosequences. PhD thesis, Department of Computer Science,
University of Helsinki, Finland, 2002.

J. Vilo. Discovering frequent patterns from strings. Technical Report C-1998-9, Department of
Computer Science, University of Helsinki, Finland, 1998.

M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional trajectories.
In Proceedings of the 18th International Conference on Data Engineering (ICDE’02), pages
673–684. IEEE Press, 2002.

M. Vlachos, J. Lin, E. Keogh, and D. Gunopulos. A wavelet-based anytime algorithm for k-
means clustering of time series. In Workshop on Clustering High Dimensionality Data and Its
Applications at the 3rd SIAM International Conference on Data Mining (SDM’03), 2003.

M. Vlachos, D. Gunopulos, and G. Das. Indexing time-series under conditions of noise. In
M. Last, A. Kandel, and H. Bunke, editors, Data Mining In Time Series Databases, pages
65–98. World Scientific, 2004a.

BIBLIOGRAPHY 169

M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying similarities, periodicities and
bursts for online search queries. In G. Weikum, A. C. König, and S. Deßloch, editors, Pro-
ceedings of the 2004 ACM SIGMOD International Conference on Management of data, pages
131–142. ACM Press, 2004b.

M. Vlachos, P. S. Yu, and V. Castelli. On periodicity detection and structural periodic similarity.
In H. Kargupta, J. Srivastava, C. Kamath, , and A. Goodman, editors, Proceedings of the 5th
SIAM International Conference on Data Mining (SDM’05). SIAM, 2005.

J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In Proceedings of
the 20th International Conference on Data Engineering (ICDE’04), pages 79–90. IEEE Press,
2004.

W. Wang, J. Yang, and R. Muntz. TAR: Temporal association rules on evolving numerical at-
tributes. In Proceedings of the 17th International Conference on Data Engineering (ICDE’01),
pages 283–292, Heidelberg, Germany, 2001. IEEE Press.

X. Wang, K. A. Smith, R. Hyndman, and D. Alahakoon. A scalable method for time series
clustering. Technical report, Department of Econometrics and Business Statistics, Monash
University, Victoria, Australia, 2004.

M. Weber, M. Alexa, and W. Müller. Visualizing time-series on spirals. In Proceedings of the
IEEE Symposium on Information Visualization (INFOVIS’01), page 7. IEEE Press, 2001.

R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In A. Gupta, O. Shmueli, and
J. Widom, editors, Proceedings of the 24th International Conference on Very Large Data
Bases (VLDB’98), pages 194–205. Morgan Kaufmann, 1998.

L. Wei, N. Kumar, V. Lolla, E. Keogh, S. Lonardi, and C. Ratanamahatana. Assumption-free
anomaly detection in time series. In J. Frew, editor, Proceedings of the 17th International
Conference on Scientific and Statistical Database Management (SSDBM’05), pages 237–242,
2005.

G. M. Weiss. Mining with rarity: A unifying framework. ACM SIGKDD Explorations Newsletter,
6(1):7–19, 2004.

G. M. Weiss. Timeweaver: A genetic algorithm for identifying predictive patterns in sequences
of events. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
99), pages 718–725. Morgan Kaufmann, 1999.

G. M. Weiss and H. Hirsh. Learning to predict extremely rare events. In Proceedings of the 2000
AAAI Workshop on Learning from Imbalanced Data Sets, pages 64–68. AAAI Press, 2000.

G. M. Weiss and H. Hirsh. Learning to predict rare events in event sequences. In R. Agrawal,
P. E. Stolorz, and G. Piatetsky-Shapiro, editors, Proceedings of the 4th International Con-
ference on Knowledge Discovery and Data Mining (KDD’98), pages 359–363. AAAI Press,
1998.

J. Wijsen. On the complexity of mining temporal trends. Technical Report 97-07, Department
of Computer Science, University of British Columbia, Vancouver, Canada, 1997.

A. P. Witkin. Scale space filtering: A new approach to multi-scale description. In S. Ulmmna
and R. W., editors, Image Understanding, pages 79–95. Ablex, 1983.

BIBLIOGRAPHY 170

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations. Morgan Kaufmann, 1999.

Y.-L. Wu, D. Agrawal, and A. E. Abbadi. A comparison of DFT and DWT based similar-
ity search in time-series databases. In Proceedings of the 9th International Conference on
Information and Knowledge Management (CIKM’00), pages 488–495. ACM Press, 2000.

Y. Xiong and D. Yeung. Model-based clustering of sequential data using ARMA mixtures. In
Proceedings of the 4th ACM Postgraduate Research Day, pages 203–210, 2003.

Y. Xiong and D. Yeung. Time series clustering with ARMA mixtures. Pattern Recognition, 37
(8):1675–1689, 2004.

L. Xu, A. Krzyzak, and E. Oja. Rival penalized competitive learning for clustering analysis,
RBF net, and curve detection. IEEE Transactions on Neural Networks, 4(4):636–648, 1993.

S. Y. and M. M.A. Knowledge-based temporal abstraction in clinical domains. Artifical Intelli-
gende in Medicine, 8(3):267–98, 1996.

Y. Yamada and E. Suzuki. Decision-tree induction from time-series data based on a standard-
example split test. In T. Fawcett and N. Mishra, editors, Proceedings of the 20th International
Conference on Machine Learning (ICML’03), pages 840–847. Morgan Kaufmann, 2003.

X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large datasets. In
D. Barbará and C. Kamath, editors, Proceedings of the 3rd SIAM International Conference
on Data Mining (SDM’03), pages 166–177. SIAM, 2003.

X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing itemset patterns: a profile-based approach.
In R. Grossman, R. Bayardo, and K. P. Bennett, editors, Proceedings of the 11th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’05),
pages 314–323. ACM Press, 2005.

C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent itemsets in
high dimensions. In F. Provost and R. Srikant, editors, Proceedings of the 7th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’01), pages 194–
203. ACM Press, 2001a.

J. Yang, W. Wang, and P. S. Yu. Mining asynchronous periodic patterns in time series data. In
R. Ramakrishnan, S. Stolfo, R. Bayardo, and I. Parsa, editors, Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’00),
pages 275–279. ACM Press, 2000.

J. Yang, W. Wang, and P. S. Yu. InfoMiner: Mining surprising periodic patterns. In F. Provost
and R. Srikant, editors, Proceedings of the 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’01), pages 395–400. ACM Press, 2001b.

J. Yang, W. Wang, and P. S. Yu. InfoMiner+: Mining partial periodic patterns with gap penal-
ties. In Proceedings of the 2nd IEEE International Conference on Data Mining (ICDM’02),
pages 725–728. IEEE Press, 2002.

J. Yang, W. Wang, and P. Yu. STAMP: Discovery of statistically important pattern repeats
in a long sequence. In D. Barbará and C. Kamath, editors, Proceedings of the 3rd SIAM
International Conference on Data Mining (SDM’03), pages 224–238. SIAM, 2003.

J. Yang, W. Wang, and P. Yu. Discovering high order periodic patterns. Knowledge and
Information Systems, 6(3):243–268, 2004.

BIBLIOGRAPHY 171

B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary Lp norms. In A. E. Abbadi,
M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang, editors,
Proceedings of the 26th International Conference on Very Large Data Bases (VLDB’00), pages
385–394. Morgan Kaufmann, 2000.

B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences un-
der time warping. In Proceedings of the 14th International Conference on Data Engineering
(ICDE’98), pages 201–208. IEEE Press, 1998.

A. Ypma and R. P. W. Duin. Novelty detection using self-organizing maps. In K. et al.,
editor, Progress in Connectionist-Based Information Systems - Proceedings of ICONIP97,
pages 1322–1325. Springer, 1997.

C.-C. Yu and Y.-L. Chen. Mining sequential patterns from multidimensional sequence data.
IEEE Transactions on Knowledge and Data Engineering, 17(1):136–140, 2005.

J. Yu, J. Hunter, E. Reiter, and S. Sripada. Recognising visual patterns to communicate gas
turbine time-series data. In A. Macintosh, R. Ellis, and F. Coenen, editors, Applications And
Innovations in Intelligent Systems X, pages 105–118. Springer, 2002.

M. J. Zaki. Efficient enumeration of frequent sequences. In G. Gardarin, J. C. French, N. Pissi-
nou, K. Makki, and L. Bouganim, editors, Proceedings of the 7th International Conference on
Information and Knowledge Management (CIKM’98), pages 68–75. ACM Press, 1998.

M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed itemset mining. In R. L.
Grossman, J. Han, V. Kumar, H. Mannila, and R. Motwani, editors, Proceedings of the 2nd
SIAM International Conference on Data Mining (SDM’02), pages 457–473. SIAM, 2002.

M. J. Zaki and C.-J. Hsiao. Efficient algorithms for mining closed itemsets and their lattice
structure. IEEE Transaction on Knowledge and Data Engineering, 17(4):462–478, 2005.

H. Zhang, T. B. Ho, and M. S. Lin. A non-parametric wavelet feature extractor for time-series
classification. In H. Dai, R. Srikant, and C. Zhang, editors, Proceedings of the 8th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD’04), pages 595–603. Springer,
2004.

Y. Zhao, C. Zhang, and S. Zhang. A recent-biased dimension reduction technique for time
series data. In T. B. Ho, D. Cheung, and H. Liu, editors, Proceedings of the 9th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD’05), pages 751–757. Springer,
2005.

S. Zhong and J. Ghosh. HMMs and coupled HMMs for multi-channel EEG classification.
In IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN’02), vol-
ume 2, pages 1154–1159. IEEE Press, 2002.

Y. Zhu and D. Shasha. Warping indexes with envelope transforms for query by humming. In
A. Y. Halevy, Z. G. Ives, and A. Doan, editors, Proceedings of the 2003 ACM SIGMOD
International Conference on Management of data, pages 181–192. ACM Press, 2003.

M. Zimmerman, R. J. Povinelli, M. T. Johnson, and K. Ropella. A reconstructed phase space
approach for distinguishing ischemic from non-ischemic ST changes using Holter ECG data.
In Proceedings Computers in Cardiology, 2003.

Index

Allen’s interval relations, 11, 16, 101
Aspect, 58, 76
association rules, 8

temporal, 18

characteristic function, 57
Chord, 60, 80

closed, 61
margin-closed, 62
overlapping, 62, 85
partial order, 60, 81
sub-, 60
super-, 60
support, 61
support set, 61
trivial, 60

classification, 8
time series, 37

clustering, 8
time series, 32

coincidence, 15, 51, 60
concurrency, 14, 49

data mining, 7
data stream, 19
distance, 8

time series, 23
numeric, 23
symbolic, 26

duration, 14, 49, 51, 59

Episode, 18, 47
expressivity, 65

feature extraction, 23

Gricean maxims, 65, 70, 122
manner, 70, 122
quality, 70
quantity, 71, 122
relevance, 70, 122

interpretability, 70
interval

partial order, 56
interval sequence, 10

numeric, 10
symbolic, 10

interval series, 10
contiguous, 10
duration, 56
numeric, 10
symbolic, 10, 56

itemset, 8, 56
closed, 8
interval series, 56, 84
maximal, 8
sequence, 11, 56

support, 57
time interval, 56

knowledge discovery, 7

label, 57

margin-closedness, 62, 64

occurrence, 57
marginally interrupted, 57, 78
maximal, 57

order, 14, 49, 51
partial, 62

pattern, 57
periodicity, 16, 49
Phrase, 62, 83, 88

closed, 64
margin-closed, 64
partial order, 63
sub-, 63
super-, 63
support, 63
support set, 63

pragmatic, 57
preprocessing, 7

time series, 22, 75

retrieval by content, 9

172

INDEX 173

time series, 40
robustness, 67
rule discovery, 41

supervised, 42
unsupervised, 45

semantic, 57
semiotic triple, 57
sequential pattern, 17
sub-symbolic, 120
symbol, 56, 57
symbolic, 120
synchronicity, 15, 49, 51
syntax, 57

temporal
concept, 14, 45
data mining, 17
logic, 13
reasoning, 11, 20

ticks, 55
time interval, 10, 55

duration, 56
equality, 56
overlap, 56
symbolic, 56

time point, 10
series, 55

time sequence, 10
numeric, 10
symbolic, 10

time series, 10, 56
motif, 39
multivariate, 56
numeric, 10
prediction, 32
representation, 27
segmentation, 35
symbolic, 10
univariate, 56
visualization, 31

Time Series Knowledge Representation, 53,
55, 65

Tone, 59, 76
shape-based, 59, 77
trend-based, 59, 77
value based, 76
value-based, 59, 60, 77

Unification-based Temporal Grammar, 13,
110

Curriculum vitae

Fabian Mörchen, born 28 November 1976 in Lich, Hessen, Germany.

Education

2002 - 2006 Ph.D. Computer Science
Philipps-University Marburg, Germany.

2001 - 2002 M.S. Mathematics
University of Wisconsin Milwaukee, USA.

1999 Vordiplom (B.S.) Mathematics and Computer Science
Justus-Liebig-University, Giessen, Germany.

1997 - 2001 Studies of Mathematics and Computer Science
Justus-Liebig-University, Giessen, Germany.

1996 Abitur (university-entrance diploma)
Wilhelm-von-Oranien Gymnasium, Dillenburg, Germany.

Employment

2002 - 2006 Teaching assistant for Computer Science
Philipps-University Marburg, Germany.

2001 - 2002 Teaching assistant for Mathematics
University of Wisconsin Milwaukee, USA.

2001 Internship and freelancer
Theron Business Consulting, Cologne, Germany.

2000 Internship
IBM Development Germany GmbH, Heidelberg, Germany.

1999 - 2001 Programmer
Justus-Liebig-Universiy Giessen, Germany.

1997 - 1999 Programmer
Data Becker, Germany and GData, Germany.

174

	Introduction
	Fundamentals
	Data Mining and Knowledge Discovery
	Typical Data Mining Tasks

	Representations of Temporal Data
	Temporal Data Models
	Temporal Operators
	Temporal Concepts

	Temporal Data Mining
	Introduction
	Sequential Pattern Mining
	Temporal Association Rules
	Data Streams
	Web Usage Mining
	Pattern Evolution
	Temporal Reasoning
	Temporal Databases

	Time Series Data Mining
	Introduction
	Preprocessing
	Similarity
	Time Series Representation
	Visualization
	Prediction
	Clustering
	Segmentation
	Classification
	Motif Discovery
	Anomaly Detection
	Retrieval by Content
	Rule Discovery
	Other Approaches
	Discussion

	Unsupervised Mining of Temporal Rules from Time Series
	Time Point Rules
	Time Interval Rules

	Time Series Knowledge Representation
	Motivation
	Definitions
	Analysis

	Algorithms for Mining Time Series Knowledge
	Preprocessing
	Aspects
	Finding Tones
	Finding Chords
	Finding Phrases

	Evaluation
	Datasets
	Efficacy and Efficiency of TSKM
	Allen's Relations
	Unification-based Temporal Grammar
	Hidden Markov Models
	Comparison of Methods

	Discussion
	Summary
	Datasets
	Skating Data: Muscle Coordination during Inline-Speed-Skating
	Video data: Recognition of Tasks from Video Recordings

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Index
	Curriculum vitae

