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Time series models with an EGB2

conditional distribution

Michele Caivano and Andrew Harvey*

Bank of Italy and Faculty of Economics, Cambridge University

May 27, 2014

Abstract

A time series model in which the signal is buried in noise that is

non-Gaussian may throw up observations that, when judged by the

Gaussian yardstick, are outliers. We describe an observation driven

model, based on an exponential generalized beta distribution of the

second kind (EGB2), in which the signal is a linear function of past

values of the score of the conditional distribution. This speci�cation

produces a model that is not only easy to implement, but which also

facilitates the development of a comprehensive and relatively straight-
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forward theory for the asymptotic distribution of the maximum likeli-

hood estimator. Score driven models of this kind can also be based on

conditional t-distributions, but whereas these models carry out what,

in the robustness literature, is called a soft form of trimming, the

EGB2 distribution leads to a soft form of Winsorizing.

An EGARCH model based on the EGB2 distribution is also de-

veloped. This model complements the score driven EGARCH model

with a conditional t-distribution. Finally dynamic location and scale

models are combined and applied to data on the UK rate of in�ation.

KEYWORDS: beta distribution, EGARCH; outlier; robustness;

score; Winsorizing.

JEL classi�cation; C22, G17.

*michele.caivano@bancaditalia.it; ach34@cam.ac.uk

1 Introduction

The changing level, or location, of a time series is usually modelled by an

Autoregressive Integrated Moving Average (ARIMA) process or a linear un-

observed components model. The statistical treatment of linear Gaussian

models is straightforward, with the Kalman �lter playing a key role in han-
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dling unobserved components. However, time series are often subject to

observations that, when judged by the Gaussian yardstick, are outliers.

In an unobserved components signal plus noise model, additive outliers

may be captured by letting the noise have a non-normal distribution. Harvey

and Luati (2014) provide an alternative approach which is observation-driven

in that the conditional distribution of the observations is speci�ed. Their

model, which is based on a t-distribution, belongs to a class of models in

which the dynamics are driven by the score of the conditional distribution

of the observations; see Creal et al (2011, 2013) and Harvey (2013). These

Dynamic Conditional Score (DCS) models are relatively easy to implement

and their form facilitates the development of a comprehensive and relatively

straightforward theory for the asymptotic distribution of the maximum like-

lihood estimator.

The attractions of using the t-distribution to guard against outliers in

static models is well-documented. Such a parametric approach may be com-

pared and contrasted with the methods in the robustness literature; see, for

example, Maronna, Martin and Yohai (2006, ch 8). Robust procedures for

guarding against additive outliers typically respond to large observations in

one of two ways: either the response function converges to a positive (nega-
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tive) constant for observations tending to plus (or minus) in�nity or it goes to

zero. These two approaches are usually classi�ed as Winsorizing or as trim-

ming. As is well-known, the score for a t-distribution converges to zero and

so can be regarded as a parametric form of trimming. This connection then

raises the question as to whether there is a distribution whose score function

exhibits some form of Winsorizing and which is amenable to treatment as

a DCS model. It turns out that one such distribution is the exponential

generalized beta distribution of the second kind (EGB2). This distribution

was �rst analyzed in Prentice (1975) and further explored by McDonald and

Xu (1995). The aim of this article is to set out the theory for the DCS lo-

cation model with an EGB2 distribution and to illustrate its practical value.

Because the dynamics are driven by the score, the estimator of location is a

weighted moving average of past Winsorized observations. It is worth noting

that the need to Winsorize observations is often thought to be desirable in

applied work; see Lui, Mitchell and Weale (2011, p. 333-4) where the tech-

nique is used on UK data. For more complex econometric modelling, using

DCS location models to pre-adjust the data may be a more attractive option

than arbitrarily carrying out trimming or Winsorizing.

A DCS EGB2 model for dynamic scale can also be developed. This
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model belongs to the exponential generalized autoregressive heteroscedastic-

ity (EGARCH) class and is complementary to the Student-t EGARCHmodel

discussed in Creal et al (2011) and Harvey (2013, Chapter 4). The case for

using the EGB2 distribution for modelling volatility was made by Wang et.

al. (2001) who �tted GARCH-EGB2 models to exchange rate data.

The article is organized as follows. In Section 2, the DCS location model

based on the general form of the EGB2 distribution, which allows for skew-

ness, is introduced and analysed. The properties of the EGB2-EGARCH

model are derived in Section 3, while Section 4 �ts EGB2 models with time-

varying location and scale to UK in�ation data. Section 5 concludes.

2 Dynamic location model

The stationary �rst-order DCS location model is

yt = �tjt�1 + exp(�)"t; t = 1; :::; T;

�t+1jt = (1� �)! + ��tjt�1 + �ut; j�j < 1; (1)

where ! is the unconditional mean of �tjt�1, exp(�) is scale, "t is a serially

independent, standardized variate and ut is proportional to the conditional
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score, that is @ ln ft=@�tjt�1; where ft = f(yt j yt�1; yt�2; :::) is the probability

density function of yt given past observations. More generally, an ARMA-

type model may be formulated by adding lags of �tjt�1 and ut: Nonstationary

ARIMA-type models can be constructed, as may time series models with

trend and seasonal components. Explanatory variables can be included, as

in Harvey and Luati (2014, Section 7).

When "t has a t�-distribution, the DCS location model can be set up with

�tjt�1 generated by a linear function of the (scaled) conditional score

ut =
�
1 + ��1'�2(yt � �tjt�1)

2
��1

vt; t = 1; :::; T; (2)

where vt = yt � �tjt�1 is the prediction error. For low degrees of freedom,

ut is such that observations that would be seen as outliers for a Gaussian

distribution are far less in�uential. As jyj ! 1; the response tends to zero.

Redescending M-estimators, which feature in the robustness literature, have

the same property. A redescending M-estimator like Tukey�s biweight func-

tion implements �soft trimming�, as opposed to metric trimming, in which the

response is equal to the standardized observation up to a certain point, but is

zero thereafter. In metric Winsorizing, the response after the critical point is
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equal to its maximum (or minimum for negative standardized observations).

The EGB2 distribution has exponential tails whereas the t-distribution

has fat tails; see Embrechts et al (1997) for a classi�cation of tail properties.

The connection between the score for a t-distribution and redescending M-

estimators in the robustness literature is well-known; see Maronna, Martin

and Yohai (2006, pp. 29). So far as we are aware, the fact that the EGB2

distribution gives a gentle form of Winsorizing has not been pointed out

before, although its robustness properties have been studied by McDonald

and White (1993).

2.1 The exponential generalized beta distribution of

the second kind

The PDF of the EGB2 variate y is

f(y;�; �; �; &) =
� expf�(y � �)�g

B(�; &)(1 + expf(y � �)�g)�+& ; (3)

where � is a scale parameter, whereas � and & are shape parameters which

determine skewness and kurtosis; B(�; &) denotes the beta function. All

moments exist, the mean and variance being E(y) = �+��1[ (�)� (&)] and
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�2 = ��2[ 0(�)+ 0(&)]; where  and  0 are digamma and trigamma functions

respectively. The EGB2 distribution is positively (negatively) skewed when

� > & (� < &) and its kurtosis decreases as � and & increase. Skewness ranges

between -2 and 2. There is excess kurtosis for �nite � and/or &; the maximum

is 9, but in the symmetric case it is six, obtained when � = & = 0:

Although � is a scale parameter, it is the inverse of what would be con-

sidered a more conventional measure of scale. Thus scale is better de�ned as

1=� or as the standard deviation

� = h=�; where h =
q
 0(�) +  0(&): (4)

The following formulae will be used in a number of places when the � para-

meterization is adopted.

Lemma 1 Let � = & so that h =
p
2 0(�): Then (i) �h2 = 2 as � ! 1;

and �h ! 1;(ii) �h =
p
2 for � = 0: Or equivalently, (i) � 0(�) = 1 and

�
p
 0(�)!1 as � !1; (ii) �

p
 0(�) = 1 for � = 0:

Proof. (i) �h2 = 2� 0(�). From formula (6.4.12) in Davis (1964), the
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trigamma function can be approximated as

 0(�) � 1

�
+

1

2�2
+

1

6�3
� 1

30�5
+

1

42�7
� 1

30�9
+ ::::

for large �. Therefore, � 0(�) ! 1 as � ! 1. Similarly �
p
 0(�) =

q
�2 0(�) ! 1: (ii) Using the recurrence formula (6.4.6) in Davis (1964)

we can write  0(�) =  0(� + 1) + 1=�2; so �h =
p
2
q
�2 0(� + 1) + 1: Hence,

for � = 0; �h =
p
2
p
0:(�2=6) + 1 =

p
2.

When � = &, the EGB2 distribution is symmetric; for � = & = 1 it is a

logistic distribution and when � = & !1 it tends to a normal distribution.

The case of � = & = 0 is important, but rarely mentioned in the literature.

Lemma 2 When � = & = 0 in the EGB2 of (4), the distribution is double

exponential or Laplace.

Proof. For simplicity of notation let � = 0: Suppose y � 0: Then, noting

that �(kz)=�(z) = 1=k and writing �(�) = ��1�(� + 1);

f(y; 0; h=�; �; �) =
h�(2�)� expf��h jy=�jg

��(�)�(�)(1 + expf��h jy=�jg)2�

=
�h�(2� + 1)� expf��h jy=�jg

��(� + 1)�(� + 1)2�(1 + expf��h jy=�jg)2� :
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Cancelling the �0s; setting � = 0 and noting that �h =
p
2 when � = 0 gives

the result because � = 2
p
2':When y > 0 we �rst need to multiply numera-

tor and denominator by expf�2�hy=�g before invoking the same argument.

The symmetric EGB2 distribution therefore provides a continuum be-

tween the normal and Laplace distributions. The same is true for the gen-

eral error distribution, denoted GED(�); where � is the shape parameter;

the normal distribution is obtained when � = 2; whereas setting � = 1 gives

the Laplace.

The main di¤erence between the (symmetric) EGB2, GED and Student�s

t distributions with the same excess kurtosis (and standard deviation) is in

the peak, which is higher and more pointed for the GED. The EGB2 in turn

is more peaked than the t. As the excess kurtosis increases, the peaks of the

EGB2 and GED distributions become closer together and much higher than

the peak in Student�s t. On the other hand, Student�s t acquires more mass

in the tails.
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2.2 Score function

When the observations in (1) are from the EGB2 distribution, (3), the score

function with respect to location is

@ ln ft
@�tpt�1

= �(� + &)bt(�; &)� ��; t = 1; :::; T;

where

bt(�; &) =
e(yt��tpt�1)�

e(yt��tpt�1)� + 1
:

Because 0 � bt(�; &) � 1; it follows that as y ! 1; the score approaches an

upper bound of �&, whereas y ! �1 gives a lower bound of ��:

It will prove more convenient1 to replace � by h=� and to de�ne ut as

ut = �2
@ ln ft
@�tpt�1

= �h[(� + &)bt(�; &)� �]: (5)

We note that the upper and lower bounds are �
p
2 and ��

p
2 respectively

when & = � = 0: On the other hand, there is no upper (lower) bound for &

(or �)!1 because h& !1 ( as does h�): As & = � !1; the distribution

becomes normal and so for large & and �; ut ' yt � �tpt�1:

1Much the same e¤ect is obtained by dividing by the information quantity for �; that
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Figure 1: Score functions for EGB2 (thick line), GED (medium line) and
t (thick dash), all with excess kurtosis of 2. Thin line shows normal score.
(Note that � = 1 and u(�y) = �u(y) for y > 0):
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Figure 1 shows the score functions for standardized (� = 1) EGB2, GED

and t distributions, all with excess kurtosis of two. The shape parameters for

the three distributions are � = 0:5; � = 1:148 and � = 7: The di¤erence in the

behaviour of the score functions is striking. The score for the t distribution

is redescending, re�ecting the fact that it has fat tails. There is no upper

bound with GED, except when it becomes a Laplace distribution and the

score is �
p
2 for y 6= 0. Neither the EGB2 nor the GED distribution has

heavy tails but the EGB2 distribution has exponential tails, whereas the

GED distribution is super-exponential for � > 1. Hence the EGB2 score is

bounded and what we get is a gentle form of Winsorizing.

2.3 Maximum likelihood estimation

The analysis of the properties of a dynamic location model with an EGB2

distribution is essentially the same as for a dynamic model for the logarithm

of scale with a GB2 distribution; see Harvey (2013, pp 164-5). Thus the

variable bt(�; &) in the score, (5), is independently and identically distributed

with a beta(�; &) distribution at the true parameter values. It is easy to

con�rm that E(ut) = 0 and to obtain the variance of ut as �
2
u = �2h2�&=(�+

is �2�&=(1 + � + &):

13



& + 1): Note that, as �; & !1; �2u ! �2:

The asymptotic distribution for the EGB2 dynamic location model is

most conveniently presented using an exponential link function for the scale,

as in (1); thus � is replaced by exp(��). Such a link function ensures that

estimates of scale remain positive. More importantly it is necessary when

the scale is allowed to be time-varying later in the paper2.

For a �rst-order DCS model, the asymptotic distribution of the ML es-

timator of the parameters,  = (�; �, !)0, upon which the time-varying pa-

rameter, �tpt�1; depends, is derived in Harvey (2013, Chapter2). The crucial

point is that the expectations of the derivative of the score, its square and

the product of the score and its derivative should be independent of the

time-varying parameter. We can then de�ne

a = �+ �E (@ut=@�) ; c = �E [ut (@ut=@�)] ; (6)

b = �2 + 2��E (@ut=@�) + �2E[(@ut=@�)
2] � 0;

2For many puposes, it is better to parameterize the scale in terms of the standard
deviation in (4) and so � is replaced by h exp(���). Unfortunately, the presence of h =
h(�; &) complicates the information matrix, as shown in Caivano and Harvey (2013). Thus
it is simpler to just replace � by exp(��); where � = ���lnh; if asymptotic standard errors
are to be computed. The likelihood function can still be maximized with respect to ��
and, in fact, this turns out to be much better for stability and convergence of the numerical
optimization. Standard errors are of little practical importance for scale parameters and
the standard errors of the other parameters do not depend on the parameterization of the
scale.
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because unconditional and conditional expectations are the same. If the vec-

tor � denotes unknown �xed parameters and the terms in the information

matrix of the static model that involve the time-varying parameter �, in-

cluding cross-products, do not depend on �; then, from expression (2.56) of

Harvey (2013),

I

0
BB@
 

�

1
CCA =

2
664
E
�
@ ln ft
@�

�2
D( ) dE

�
@ ln ft
@�

@ ln ft
@�0

�

E
�
@ ln ft
@�

@ ln ft
@�

�
d
0 E

�
@ ln ft
@�

@ ln ft
@�0

�

3
775 ; (7)

where d =(0; 0; (1� �)=(1� a))0 and

D( ) = D

0
BBBBBB@

�

�

!

1
CCCCCCA
=

1

1� b

2
6666664

A D E

D B F

E F C

3
7777775
;

with

A = �2u; B =
�2�2u(1 + a�)

(1� �2)(1� a�)
; C =

(1� �)2(1 + a)

1� a
;

D =
a��2u
1� a�

; E =
c(1� �)

1� a
and F =

ac�(1� �)

(1� a)(1� a�)
:

For an EGB2 DCS location model, the information matrix is as given
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in (7) with � = � and �0= (�;�; &): When ut is de�ned as in (5) with � =

h exp(�), using (6) to evaluate a; b and c gives

a = �� �
h2�&

� + & + 1
; c = �

e��h3&�(� � &)

(& + � + 2)(& + � + 1)
and

b = �2 � 2�� h2�&

� + & + 1
+ �2

h4(� + &)�& (& + 1) (� + 1)

(& + � + 3)(& + � + 2)(& + � + 1)
:

Provided b < 1 and � 6= 0; the limiting distribution of
p
T (e 

0� 0;e���; e���;

e& � &)0 is multivariate normal with covariance matrix given by the inverse of

(7) which is

I

0
BBBBBBBBBB@

 

�

�

&

1
CCCCCCCCCCA

=

2
66666666664

e�2��&

1+�+&
D( ) I12d

e��&
�+&
d

�e���
�+&

d

I21d
0 I22 I23 I24

e��&
�+&
d
0 I23  0(�)�  0(� + &) � 0(� + &)

�e���
�+&

d
0 I24 � 0(� + &)  0(&)�  0(� + &)

3
77777777775

;

where d =(0; 0; (1� �)=(1� a))0 and

I21 = I12 =
�e��(� � & � �& ( (�)�  (&)))

1 + � + &
; I23 = I32 =

& ( (�)�  (&))� 1
� + &

;

I24 = I42 =
� ( (&)�  (�))� 1

� + &
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and

I22 =
�&

1 + � + &

" 
 0(�) +  0(&) +

�
 (&)�  (�) +

� � &

�&

�2!
�
�
�2 + &2

�2&2

�#
+1:

Consistency and asymptotic normality follow by verifying the conditions in

Jensen and Rahbek (2004). The boundedness of the score, (5), and its deriva-

tives makes this task relatively straightforward; see Harvey (2013, pp. 40-4).

2.4 Estimation for a symmetric distribution

In the symmetric EGB2 distribution, denoted EGB2sym, � and & are con-

strained to be equal. The information matrix is then

I

0
BBBBBB@

 

�

�

1
CCCCCCA
=

2
6666664

e�2��2

1+2�
D( ) 0 0

0 2�+2�2 0(�)�1
1+2�

�1=�

0 �1=� 2 0(�)� 4 0(2�)

3
7777775
: (8)

The expression for b can be simpli�ed to

b = �2 � 2�� h2�2

2� + 1
+ �2

h4�3(� + 1)

4�2 + 8� + 3
;

whereas a = �� �h2�2=(2� + 1) and c = 0:
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For small �; b w �2 � 4�� + (4=3)�2=� so the condition b < 1 will be

violated if � is too close to zero when � is non-zero. (For � close to one, the

lower bound for � is approximately �=3:) On the other hand, letting � !1

yields b = �2 � 2�� + �2 = (� � �)2 = a2 and j�� �j < 1 is the standard

invertibility condition for the Gaussian ARMA(1,1) model.

The null hypothesis that � = & is easily tested with a likelihood ratio

(LR) statistic. A Wald or Lagrange multiplier (LM) test is also an option.

Remark 1 For the GED(�) distribution, the usual asymptotic properties of

the ML estimator of � can be shown to hold, though the proof is non-standard

for � < 2 because the score function is not continuous at y = �; see Zhu and

Zinde-Walsh (2009). However, for the DCS model, the asymptotic theory

runs into di¢culties when � � 1:5 because the higher order moments upon

which b depends do not exist. Speci�cally, E(@ut=@�)
2 only exists for � > 1:5:

The ability of the model to capture leptokurtic behaviour is therefore limited,

because the excess kurtosis for � = 1:5 is only 0:762.

2.5 Example: US investment

Dynamic location models were �tted to the growth rates of US gross �xed

private investment using EGB2, Student�s t and normal distributions. The
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observations on the level of investment were quarterly, ranging from 1947q1 to

2012q4. The data are seasonally adjusted and taken from the Federal Reserve

Economic Data (FRED) database of the Federal Reserve of St. Louis.

Table 1 shows the results; corresponding results for GDP and industrial

production can be found in our original discussion paper, Caivano and Harvey

(2013). The asymptotic and numerical standard errors, the latter computed

from the estimated Hessian, are reasonably close given that the sample size is

only T = 268: The Student-t and symmetric EGB2models easily outperform

the Gaussian model with the Gaussian model being convincingly rejected by

likelihood ratio tests. The EGB2sym model has a bigger likelihood than the

t model. Finally, a likelihood ratio test of � = & is unable to reject EGB2sym

against the more general EGB2.
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Table 1 US gross �xed private investment

� � ! � � (or �) � lnL

EGB2

NSE

ASE

0:17

(0:056)

(0:047)

0:41

(0:155)

(0:232)

0:019

(0:008)

(0:008)

�4:22

(0:453)

(0:483)

0:39

(0:201)

(0:223)

0:50

(0:299)

(0:301)

416:90

EGB2sym

NSE

ASE

0:14

(0:057)

(0:043)

0:41

(0:176)

(0:261)

0:011

(0:004)

(0:004)

�4:57

(0:826)

(0:614)

0:29

(0:269)

(0:200)

� 416:00

t

NSE

ASE

0:35

(0:114)

(0:104)

0:38

(0:171)

(0:257)

0:011

(0:004)

(0:004)

�3:24

(0:085)

(0:060)

4:20

(1:275)

(0:881)

� 411:91

Gaussian

NSE

ASE

0:21

(0:059)

(0:062)

0:36

(0:161)

(0:257)

0:009

(0:004)

(0:004)

�2:95

(0:044)

(0:044)

� � 401:95

3 EGB2-EGARCH

Dynamic scale models can be constructed for conditional t and GED distri-

butions; see Harvey (2013, Chapter4). In the former case the score has a
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beta distribution, whereas in the latter it has a gamma distribution. Just as

in the dynamic location case, the EGB2 distribution o¤ers an alternative to

the GED for capturing responses between the normal and Laplace.

The �rst-order dynamic scale model with EGB2 distributed errors is

yt = �+ exp(�tjt�1)"t; t = 1; :::; T; (9)

where "t is a standardized (� = 0; � = 1) EGB2, that is "t � EGB2(0; 1; �; &):

The dynamic equation is

�t+1jt = !(1� �) + ��tjt�1 + �ut; (10)

where ut is now the score with respect to �tjt�1: The conditional distribution

is

ft(�; ; �; &) =
expf�(yt � �)e��tjt�1g

e�tjt�1B(�; &)(1 + expf(y � �)e��tjt�1g)�+& ;

where  denotes the parameters in (10), and so

ut = @ ln ft=@�tjt�1 = (� + &)"tbt � �"t � 1; (11)
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with

bt =
expf(y � �)e��tjt�1g

1 + expf(y � �)e��tjt�1g =
exp "t

1 + exp "t
:

At the true parameters values, bt � beta(�; &) as in the score for the dynamic

location model.

The model may be parameterized in terms of the standard deviation,

�tjt�1; by de�ning �t = "t=h; where h was de�ned in (4). Then

yt = �+ exp(��;tjt�1)�t; t = 1; :::; T;

with the only di¤erence between ��;tjt�1 and �tjt�1 being in the constant term

which in ��;tjt�1 is !� = !+ lnh; see the discussion in footnote 2. Note that

the variance of �t is unity.

Writing the score, (11), as

ut = h(� + &)�tbt � h��t � 1; (12)

it can be seen3 that when � = & = 0; ut =
p
2 j�tj � 1 and, when � = & !1;

3When � = 0, �h =
p
2 and bt degenerates to a Bernoulli variable such that bt = 0

when �t < 0 and bt = 1 when �t > 0. Then 2bt � 1 = 1 (�1) for �t > 0 (�t < 0) and the
score can be written as: ut =

p
2 j�tj � 1.

As regards � ! 1; note that because @bt=@�t = hbt (1� bt), a �rst order Taylor ex-
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ut = �2t � 1:

Figure 2 compares the way observations are weighted by the score of

a EGB2 distribution with � = & = 0:5; a Student�s t7 distribution and a

GED(1:148). These are the same distributions as were used in Figure 1; all

have excess kurtosis of two. Consistent with the Winsorizing of the location

score, dividing (12) by �t gives a bounded function as j�tj ! 1: Note that the

score function is often called the news-impact curve in the GARCH literature

and that it becomes asymmetic when a leverage term is introduced into the

dynamics; see Harvey (2013, pp 105-7).

The unconditional mean is given by E (yt) = �+E ("t)E(e
�tjt�1); whereas

the m� th unconditional moment about the mean is E ("mt )E(em�tjt�1); m >

1: In the Beta-t-EGARCHmodel, the expression E(exp(m�tjt�1)) depends on

the moment generating function (MGF) of a beta variate which has a known

form; see Harvey (2013, Chapter 4). For EGB2-EGARCH, the unconditional

moments depend on the MGF of ut; ie EEGB2(�;&)[mut]; where ut is de�ned

in (11). The limiting normal and Laplace cases of the EGB2 have score

functions, and hence unconditional moments, which are the same as for � = 2

pansion of bt around "t = 0 yields bt ' 0:5 + (h=4)�t:Therefore 2bt � 1 ' (h=2)�t and
ut ' (�h2=2)�2t � 1. As � !1, �h2 ! 2.
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Figure 2: Score functions for EGB2 (thick line), GED (medium line) and t
(thick dash), all with excess kurtosis of two. Thin line shows normal score.
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and � = 1 in Gamma-GED-EGARCH; see Harvey (2013, sub-section 4.2.2).

When � = 1 it is necessary to have m� < 1 in the �rst-order model for the

m � th moment to exist, whereas for � = 2 the condition is m� < 1=2: For

0 < �; & < 1 having the last condition hold is therefore su¢cient for the

existence of the unconditional moments. This being the case, we can at least

assert, using Jensen�s inequality, that the unconditional moments exceed the

conditional moments and that the kurtosis increases; see Harvey (2013, p.

102).

The MGF of ut is also required to �nd the conditional expectations needed

to forecast volatility and volatility of volatility. However, it is the full `�step

ahead conditional distribution that is often needed in practice and this is

easily simulated from standardized beta variates. The quantiles, such as

those needed for value-at-risk, may be estimated at the same time.

Remark 2 There is a problem with modelling returns with a skewed dis-

tribution because the conditional expectation, Et�1yt = �" exp(�tpt�1); is not

constant. Therefore yt cannot be a martingale di¤erence. Following Harvey

and Sucarrat (2014), the model can reformulated as yt = ("t��") exp(�tpt�1);

t = 1; ::::; T; where �" =  (�)�  (&), and the score adapted accordingly.
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3.1 Maximum likelihood estimation

The information matrix of the parameters in a dynamic scale model with

an EGB2 distribution is given below; further details can be found in the

appendix. In the general asymmetric case, it is assumed that � is given,

because the cross-terms of the information matrix associated with it and the

other parameters depend on scale.

Proposition 1 Consider the model de�ned by (9) and (10) with j�j < 1 and

� assumed to be known. De�ne a; b and c as in (6) with

E(u0t) = �
 

1

� + & + 1

 
 0(�) +  0(&) +

�
 (�)�  (&)� � � &

�&

�2
� �2 + &2

�2&2

!
+ 1

!
= ��2u

E(u02t ) =
�& (� + 1) (& + 1) (� + &)

(� + & + 3) (� + & + 2) (� + & + 1)
1 (� + 2; & + 2)

+
2�& (� + 1) (� + &)

(� + & + 2) (� + & + 1)
2 (� + 2; & + 1)�

2�2&

� + & + 1
2 (� + 1; & + 1) + �2u + 1

E(utu
0
t) = � �& (� + 1) (� + &)

(� + & + 2) (� + & + 1)
2 (� + 2; & + 1) +

�2&

� + & + 1
2 (� + 1; & + 1)� 1;
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where

1 (p; q) =  000(p) +  000(q) + 3 ( 0(p) +  0(q))
2
+ 4 ( 00(p)�  00(q)) ( (p)�  (q))

+6 ( 0(p) +  0(q)) ( (p)�  (q))2 + ( (p)�  (q))4 ;

2 (p; q) =  00(p)�  00(q) + 3 ( (p)�  (q)) ( 0(p) +  0(q)) + ( (p)�  (q))3

Let  = (�; �, !)0; where ! = !� � lnh: Assuming that b < 1, the

information matrix is

I

0
BBBBBB@

 

�

&

1
CCCCCCA
=

2
6666664

I22D( ) I23d I24d

I23d
0  0(�)�  0(� + &) � 0(� + &)

I24d
0 � 0(� + &)  0(&)�  0(� + &)

3
7777775

with I22; I23 and I24; together with D( ) and d; de�ned as in (7).

The information matrix simpli�es considerably in the symmetric case.

Corollary 1 When it is known that � = &, the expressions needed to obtain

a; b and c are:

E(u0t) =
1� 2�2 0(�)� 2�

2� + 1
= ��2u; E(utu

0
t) = �1 (13)
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and

E(u02t ) =
�3 (� + 1)

(2� + 3) (2� + 1)
(2 000(� + 2) + 12 02(� + 2)) + �2u + 1: (14)

When � = 0, so that the distribution is Laplace, E(u0t) = �1: Similarly as

� !1; E(u0t) = �2; which is the correct result for a Gaussian distribution.

In addition, when � = 0 both  0(�+2) and  000(�+2) are �nite so E(u02t ) = 2.

Hence b = �2 � 2�� + 2�2; which is the same as given by the expression in

Harvey (2013, p 120) for b in Gamma-GED-EGARCH when � = 1. (Also

c = �1:) Similarly for � !1; b = �2 � 4��+ 12�2:

Remark 3 As can be seen from (8), the information matrix is block diagonal

in the symmetric model, so � can be included in the set of parameters to be

estimated by ML without a¤ecting the asymptotic distribution of (e 
0
;e�):

3.2 Example: exchange rates

Table 2 reports the full ML estimates of the (symmetric) EGB2-EGARCH

and Beta-t-EGARCH models for the returns of daily exchange rates against

the US dollar. The currencies are the Australian dollar (AUD), the Canadian

dollar (CAD), the Swiss franc (CHF), the Denmark krone (DKK), the Euro
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(EUR), the Pound sterling (GBP), the Japanese yen (JPY), the Norwegian

krone (NOK), the New Zealand dollar (NZD) and the Swedish krona (SEK)

and the observations run from 4th January 1999 to 15th March 2013.

The EGB2 gives a better �t for �ve countries, whereas the t is best for

four4. In the case of Switzerland, the exchange rate experienced a sudden

fall on 6th September 2011 when the Swiss National Bank announced its

intention to enforce a ceiling on the exchange rate of the euro against the

Swiss franc. If the resulting outlier is removed from the returns series, the

EGB2 performs better than the Student�s t.

4Although it is not the purpose of this exercise to compare DCS EGARCH models
with standard GARCH - there is already a good deal of evidence in Creal et al (2011),
Harvey and Sucarrat (2014) and elsewhere to suggest that DCS EGARCH tends to be
better- we did �t GARCH-t models and found that in only 7 out of 23 cases did they beat
Beta-t-EGARCH in terms of goodness of �t.
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Table 2 Exchange rates

EGB2 t

� � ! � ln L � � ! � ln L

AUD 0.030 0.991 -5.34 1.29 12523.7 0.030 0.992 -5.04 9.22 12526.2

CAD 0.023 0.996 -5.55 1.71 13823.2 0.024 0.996 -5.40 12.64 13822.4

CHF 0.018 0.993 -5.56 1.05 12848.2 0.017 0.994 -5.14 8.47 12849.9

CHF* 0.017 0.994 -5.47 1.22 12865.0 0.016 0.994 -5.13 9.69 12863.1

DKK 0.019 0.995 -5.61 1.12 13086.9 0.018 0.995 -5.22 8.87 13086.9

EUR 0.017 0.995 -5.43 1.46 13118.4 0.017 0.995 -5.20 11.13 13117.4

GBP 0.022 0.994 -5.30 2.30 13575.8 0.022 0.994 -5.33 16.01 13575.3

JPY 0.024 0.989 -5.87 0.73 13074.7 0.024 0.990 -5.21 6.14 13078.2

NOK 0.018 0.997 -5.38 1.54 12596.8 0.018 0.997 -5.19 11.03 12596.1

NZD 0.024 0.992 -5.41 1.03 12184.0 0.024 0.992 -4.98 7.77 12184.7

SEK 0.018 0.996 -5.15 1.91 12547.4 0.018 0.996 -5.07 13.18 12546.9

* CHF series without the outlier corresponding to the Swiss national bank

intervention on September 6, 2011
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4 Changing location and changing scale: an

example with UK in�ation

The DCS model for time-varying location may be combined with a DCS

EGARCH model to give

yt = �tjt�1 + exp(�tpt�1)"t; t = 1; :::; T:

For symmetric distributions, the structure of the information matrix in the

static model is such that the form of the dynamic equations for �tjt�1 and

�tjt�1 is essentially unchanged, except that both scores now contain �tjt�1

and �tjt�1. Estimation by ML is straightforward. However, the presence of

�tpt�1 in the part of the information matrix associated with �tjt�1 means that

it cannot be evaluated analytically.

A number of DCS models were �tted to the quarterly rate of CPI in�a-

tion in the UK (expressed in annualized percentage terms) from 1956q1 to

2013q1. The data were taken from the FRED database and were season-

ally adjusted using the STAMP package of Koopman, Harvey, Doornik and
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Shephard (2009). A local level location model,

�t+1jt = �tjt�1 + �yuyt ; t = 1; :::; T;

was �rst estimated. (The dagger is used to di¤erentiate the score and its

coe¢cient from the score of scale and its coe¢cient, �). Tests based on the

�rst-order autocorrelations of squared residuals show that the null hypothe-

sis of homoscedasticity is convincingly rejected. (The �21 statistics are 11.60,

11.78 and 12.12 for residuals from EGB2, t and Gaussian models respec-

tively).

Table 3 shows results for the local level model with time-varying scale.

Numerical standard errors are given in parenthesis. Likelihood ratio tests

easily reject the null hypothesis of Gaussianity against the Student t and

EGB2sym alternatives. When the unrestricted EGB2 is �tted, the null

hypothesis of symmetry is clearly rejected by a likelihood ratio test. The same

is true for the Beta-t-EGARCH model, where the t-distribution is skewed as

in Harvey and Sucarrat (2014). The maximized log-likelihood function for

EGB2 is larger than that for skew-t, but the di¤erence is very small.
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Table 3 UK quarterly CPI in�ation: 1956q1-2013q1

�y � � ! � (or �) &(or ) lnL

EGB2
0:244

(0:051)

0:091

(0:027)

0:996

(0:017)

0:583

(0:801)

1:528

(1:066)

0:718

(0:342)

�514:1

EGB2sym
0:276

(0:054)

0:105

(0:027)

0:991

(0:018)

0:205

(0:550)

0:715

(0:270)

� �518:8

Skew-t
0:501

(0:098)

0:100

(0:029)

0:991

(0:020)

0:784

(0:514)

5:538

(1:681)

1:231

(0:094)

�514:7

t
0:501

(0:100)

0:107

(0:030)

0:989

(0:020)

0:787

(0:489)

5:363

(1:542)

� �518:0

Gaussian
0:304

(0:058)

0:053

(0:011)

0:989

(0:012)

1:084

(0:341)

� � �536:8

5 Conclusions and extensions

This article has shown how DCS models with changing location can be ex-

tended to cover EGB2 conditional distributions. Most of the theoretical

results on the properties of DCS-t models, including the asymptotic distri-

bution of ML estimators, carry over to EGB2 models. However, whereas

the t-distribution has fat-tails, and hence subjects outliers to a form of trim-
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ming, the EGB2 distribution has exponential tails (but excess kurtosis) and

so gives a gentle form of Winsorizing. Like the EGB2, the GED distribution

also includes distributions between the normal and Laplace, but its score

function is unbounded for distributions with lighter tails than Laplace.

The statistical properties of the EGB2 distribution means that it nicely

complements the t-distribution and the examples show that it provides a

viable alternative for modelling changing scale as well as changing location.

Another attraction of the EGB2 is that its extra parameter allows for skew-

ness. Extensions to handle multivariate series may be possible by following

the approach in Yang et al (2011).

APPENDIX

The following result, which is related to Lemma 1 of Harvey (2013, p.

23), is useful for deriving the information matrix for the EGB2 dynamic

scale model. (It can also be used to con�rm that E(ut) = 0; note that

 (� + 1) =  (�) + 1=�):

Lemma 3 If �t � EGB2(0; 1; �; &), then for h and k � 0;

EEGB2(0;1;�;&)["
r
t b
h
t (1�bt)k] =

B(� + h; & + k)

B(�; &)
EEGB2(0;1;�+h;&+k)["

r
t ]; r = 1; 2; 3; ::::
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Proof. The result follows from writing

EEGB2(0;1;�;&)["
r
t b
h
t (1� bt)

k] =

Z
�"rt

B(�; &)

exph"t
(1 + exp "t)h+k

exp �"t
(1 + exp "t)�+&

d"t

=
B(� + h; & + k)

B(�; &)

Z
�"rt

B(� + h; & + k)

exp(� + h)"t
(1 + exp "t)�+&+h+k

d"t

The information matrix in Proposition 1 is derived as follows. The �rst

derivative with respect to �tjt�1 is:

u0t = �(� + &)["2t bt(1� bt) + "tbt] + �"t

Lemma 3 can be used to evaluate

E(u0t) = �(� + &)[E("2t bt(1� bt))� E("tbt) +
�

� + &
E("t)]

E(u02t ) = (� + &)2[E("2t b
2
t ) + E("4t b

2
t (1� bt)

2) + 2E("3t b
2
t (1� bt))]

+�2E("2t )� 2�(� + &)[E("3t bt(1� bt)) + E("
2
t bt)]

and E(u0tut):
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