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Time Series Prediction with Recurrent Neural 
Networks Using a Hybrid PSO-EA Algorithm 

Xindi Cai, Nian Zhang, Ganesh K.Venayagamoorthy and Donald C. Wunsch I1 

Applied Computational Intelligence Laboratory 
Dept. of Electrical and Computer Engineering 

University of Missouri - Rolla 
Rolla, MO 65409, USA 

E-mail: cai@umr.edu, nzhane@umr.edu, nkumar@ieee.orn, dwunsch(ir)ece.umr.edu 

Abstract - To predict the 100 missing values from the time 
series consisting of 5000 data given for the IJCNN 2004 time 
series prediction competition, we applied an architecture which 
automates the design of recurrent neural networks using a new 
evolutionary learning algorithm. This new evolutionary 
learning algorithm is based on a hybrid of particle swarm 
optimization (PSO) and evolutionary algorithm (EA). By 
combining the searching abilities of these two global 
optimization methods, the evolution of individuals is no longer 
restricted to be in the same generation, and better performed 
individuals may produce offspring to replace those with poor 
performance. The novel algorithm is then applied to the 
recurrent neural network for the time series prediction. The 
experimental results show that our approach gives good 
performance in predicting the missing values from the time 
series. 

I. INTRODUCTION 

For the IJCNN 2004 time series prediction problem, an 
artificial time series with 5000 data is given, where 100 
values are missing, as shown in Fig. 1. These missing values 
are divided in 5 blocks: 

~ elements 981 to 1,000; 
~ elements 1,981 to 2,000; 
- elements 2,981 to 3,000; 
-elements 3,981 to 4,000; 
- elements 4,981 to 5,000. 

This problem can be viewed as a prediction of the 
behavior of a system given previous observations of its input 
and output signals. Recurrent neural networks (RNN) have 
the capability to dynamically incorporate past experience 
due to internal recurrence. The feedback connections in 
their topologies, used to memorize past information, make 
them favorable in dealing with such temporal information 
processing problems 111. 

The traditional gradient-based training algorithms, such as 
BPTT [2] and EKF [ 3 ] ,  have been known to suffer from 
local minima and have heavy computation load for obtaining 
the derivative information. As the network architecture 

Fig. I .  Plot of the CATS time series consisting of4900 given data pains 

grows, the dimension of derivative matrices and 
approximate error covariance matrices in those algorithms 
increases exponentially, which makes them unfeasible for 
large scale recurrent network. 

Our approach employs a novel learning algorithm, which 
combines the particle swarm optimization (PSO) and 
evolutionary algorithm (EA). Evolutionary operators like 
selection and mutation have been integrated into the 
conventional PSO algorithm. By applying the selection 
operation in PSO, the particles with best performance are 
copied to next generation. Therefore, PSO can always keep 
the best performing particles [4]. The prupose of applying 
mutation operation to PSO is to increase the diversity of the 
population and thus overcome the local minima problem [ 5 ]  
in the PSO algorithm. The novel algorithm is then applied 
to train the recurrent neural network on the IJCNN 2004 
time series. 

The rest of the paper is organized as follows. Section 11 
presents the architecture of the recurrent neural networks 
used. Section 111 describes the PSO, EA and hybrid PSO- 
EA learning algorithm. In Section IV, parameter selection is 
presented first, and then experimental results are provided. 
Finally, the conclusions are given in Section V. 
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11. RECURRENT NEUML  NETWORK^ 

Elman's architecture was adopted in this paper which 
consists of a context layer, an input layer, two hidden layers, 
and an output layer, as shown in Fig. 2. 

I I Output 

+l Hidden Laycr 2 

I 1 HiddenLayer I I 
1 I 

I I 

Fig. 2. Stmcturc of thc recurrent neural network 

The context layer inputs in this system are obtained from 
the outputs of.the first hidden layer units. The hidden unit 
activation pattern is copied verbatim through weight 
connections set equal to 1 and stored in the context units. 
The context layer has 40 neurons, the input layer has 100 
neurons, the first hidden layer has 40 neurons, the second 
hidden layer has 20 neurons, and the output layer has 5 
neurons. Neurons between adjacent layers are fully 
connected, as indicated by bold arrows in Fig. 2. The 
transfer functions of the two hidden layers and the output 
layer are tonsig. 

111. HYBRID PSO-EA LEARNWG ALGORTTHM 

A .  Particle Swarm Optimization 

Particle swarm optimization (PSO) is a form of 
evolutionary computation technique developed by Kennedy 
and Eberhart [ 6 ] ,  [7]. Similar to Evolutionary Algorithms 
(EA), particle swarm optimization algorithm is a population 
based optimization tool, where the system is initialized with 
a population of random solutions and the algorithm searches 
for optima satisfying some performance index over 
generations. It is unlike an EA, however, in that each 
potential solution is also assigned a randomized velocity, 
and the potential solutions, calledparticles, are then "flown" 
through the problem space. 

Each particle has a position represented by a position 
vectorii.  A swarm of particles moves through the problem 
space, with the velocity of each particle represented by a 
vector Gi .  At each time step, a function f. representing a 

quality measure is calculated by using xi as input. Each 
particle keeps track of its own best position, which is 
associated with the hest fitness it has achieved so far in a 
vector pi  . Furthermore, the best position among all the 
particles obtained so far in the population is kept track of 
as pg. 

At each time step 1, by using the individual best 
position, p, ( t )  , and global best position, p,(t) , a new 

velocity for particle i is updated by 

" ( t  + 1) = wx " ( I )  + c,h ( @ ( ( I )  - ? , ( I ) )  
(1) 

+c241(Fz ( t ) - f ( t ) )  

where e, and c1 are positive constants, 4, and are 
uniformly distributed random numbers in [0, 11 and w is the 
inertia weight. The term vi is limited to the range k v,, . If 
the velocity violates this limit, it is set at its proper limit. 
Changing velocity this way enables the particle i to search 
around its individual best position, pi , and global best 

position, p8. Based on the updated velocities, each particle 

changes its position according to the following: 

ii(f + 1) = Z>( t )  + C;( t  + 1) (2) 

Based on (1) and (2), the population of particles tends to 
cluster together with each particle moving in a random 
direction. The computation of PSO is easy and adds only a 
slight computation load when it is incorporated into EA. 
Furthermore, the flexibility of PSO to control the balance 
between local and global exploration of the problem space 
helps to overcome premature convergence of elite strategy in 
EA, and also enhances searching ability. 

The pseudo code for PSO is summarized as follows [8]: 

Initialize a population of particles with random 
positions and velocities of d dimensions in the 
problem space. 
For each particle, evaluate the fitness according to 
the given fitness function in dvariables. 
Compare current particle's fitness with its previous 
fitness. If current value is better than the previous, 
then set pi  value equal to the current value, and the 

pi location equal to the current location in d- 
dimensional space. 
Compare fitness evaluation with the population's 
overall previous best position. If the current value is 
better than pg , then reset p ,  to the current 

particle's array index and value. 
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( 5 )  

(6) 

Change the velocity and position of the particle 
according to equation ( I )  and (Z), respectively. 
Repeat step (2) to (6) until a criterion is met, usually 
a sufficiently good fitness or a maximum number of 
iterations/epnchs. 

B. Evolutionary Algorifhm 

To begin the evolutionary algorithm, a population of n 
neural networks,e, i=l,.., n, defined with weights and bias 
for each network, was created at random. Weights and biases 
were generated by sampling from a uniform distribution 
over 1-1, I]. Each neural network had an associated self- 
adaptive parameter vector gi , i=l, ..., n, where each 

component corresponded to a weight or bias and served to 
control the step size of the search for new mutated 
parameters of the neural network. To be consistent with the 
range of initialization, the self-adaptive parameters for 
weights and biases were set initially to a uniform distribution 
over[-I, 11. 

Each parent generated an offsprings strategy by varying 
all of the associated weights and biases. Specifically, for 

each parent e ,  i=l, ..., n, an offspring e’, i=l, ..., n, was 
created by 

Wi“”CI3 Loscn 

Generation 
o ~ ( j ) = c i ( j ) e x p ( z f V j ( O , l ) ) ,  j = l ,  ..., N ,  (3) N+I Ncw Population 

PSO 

w;.( j )  = w,(j)+ oiNj(O,l), j = 1 ,___, N ,  (4) 

EA 
Mutation 

where N ,  is the number of weights and biases in the 

recurrent neural network, r = 1/m, and Nj(O,  I) is 

a standard Gaussian random variable resampled for every j 

For the IJCNN 2004 time series prediction problem, a 
population of 40 individuals is competing for the best 
prediction. Each individual represents a RNN described in 
Section U. The number of weights and biases, i.e., N ,  , in 

such a RNN (size - 1 0 0 ~ 4 0 ~ 2 0 x 5 )  is 6605, and hence z is 
0.0784. Half of population with best fitness is used as 
parents to create offspring for next generation. 

C. Hybrid ofPS0 and EA 

~91. 

PSO works based on social and cognitive adaptation of 
knowledge, and all individuals are considered to be of same 
generation. On the contrary, EA works based on evolution 
from generation to generation, so the changes of individuals 
in a single generation are not considered. EA discard 
valuable information at the end of generation and starts 
almost randomly at next generation, while PSO keeps such 
information with the memory of local and global best 

Fig. 3. Flow ofhybrid PSO-EA method. Winncrs arc cnhanccd by PSO 
and kept in the population for thc new population. Ofi~pring crcatcd by 
thc cnhanccd elites of PSO as EA parcnts rcplaced the discarded losen 

in the old population gcneratio~ to gcncration. 

IV. RESULTS 

A. PSO Paramefers 

The velocity change of a PSO, i.e. equation (I) ,  consists of 
three parts. The first part is the momentum part, which 
prevents velocity to be changed abruptly. The second part is 
the “cognitive” part which represents private thinking of 
itself - learning from its own flying experience. The third 
part is the “social” part which represents the collaboration 
among particles - learning from group best’s flying 
experience. The balance among these three parts determines 
the balance of the global and local search ability, therefore 
the performance of a PSO. 

The inertia weight w controls the balance of global and 
local search ability. A large w facilitates the global search 
while a small one enhances local search. The introduction of 
an inertial weight also frees the selection of maximum 

velocity v,, . The Cmax can he reduced to xmax , the 
dynamic range of each variable which is easier to learn; and 
the PSO performance is as good or better [IO], [ I  11. 

- - 
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Fig. 4. The flow of RNN training. testing and predicting. (a) Thc RNN training procedure on one data set. (b) The RNN testing procedure an thc samc 
data set. (c) n e  real prediction for the 20 missing samples. y(n) denotes the original sample. j ( n )  denotes the RNN prediction. 
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Since the search process of a PSO is nonlinear and 
complicated, static parameters set, if well selected, can do a 
good job, but much better performance can be achieved if a 
dynamically changing scheme for the parameters is well 
designed, either a linearly decreasing inertia weight [IO], a 
nonlinearly fuzzy changing [12], or involving a random 
component rather than time-decreasing [13]. All intuitively 
assume that the PSO should favor global search ability at the 
beginning and local search at the end. 

Based on previous work [8], the authors have chosen the 
following parameters are chosen for the time series 
prediction: 

Maximum velociy, V,, 2 
Inertia weight, W 0.8 
Acceleration constants, C I ,  cz 2, 2 
Size of swarm 40 

E. Training 

We employ 5 identical RNNs (size: 100x40~20~5) for 
prediction on 5 data sets each containing 980 samples. The 
input vector is composed of both original samples and the 
network's previous predictions. At the first round, 100 
consecutive original training samples are fed to the network 
to predict the next 5 points. When the prediction is 
available, the first 5 data points in the input vector are 
discarded, and network outputs, i.e. the predictions, are 
concatenated to the end of the input vector. This queue-like 
operation is continued until we have 20 predictions. The 
next round of training starts with another 100 consecutive 
original samples, whose starting point is 20 samples away 
from that of the previous 100, supplied to the network. The 
last 120 samples, 100 as inputs and 20 as targets, are 
allocated for testing purpose. When the network is well 
trained and tested, the last 100 samples are presented to 
predict the missing samples (see Fig. 4). 

We use batch training method, and the weights are 
updated based on a cumulative error function. The process 
can he repeated over a number of epochs. 

For the convenience, the original data are normalized on [- 
1, 11. 

C. Results 

Due to the assumption that missing data are only affected 
by recent samples, say nearest 200 ones, only a portion, 601'' 
- 940Ih, of 980 samples in each set is used for training. The 
corresponding predictions on the training set are 701" - 
9~50'~. The last 100 samples, i.e. 861'' - 960Ih. are set side for 
testing network prediction on 961" - 980th. The cumulative 
RMSE for the best individual drops to the range between 
magnitude order of 0.1 and 1 on original data aAer 2000 - 
3000 generations. Fig. 5 shows the training errors on one 
data set, i.e. 4601'' - 4860th, for both the standard PSO and 

the hybrid PSO+EA. Fig. 6 illustrates the predictions on the 
above training data set by the hybrid PSO+EA. The 
predictions can be further improved by optimizing the PSO 
parameters as explained in [14]. 

3: 

Fig. 5 .  Training emor for the hybrid PSO-EA and the standard PSO. The - 
ermm rrflcct the performance of thc best particle, i.e. the p p ,  at each 

generation for one data set. 

- 1 d l  475a l W  &a 4sbo Iwl A 
Index oftranlng &,lp 

Fig. 6. Hybrid PSOtEA predictions by the gbest particle after 2000 
generations. 

V. CONCLUSIONS 

We have presented and discussed a novel algorithm, 
hybrid PSO-EA. We explored how it combines the search 
capabilities of these two global optimization methods. The 
purpose of applying mutation in EA to PSO is to increase the 
diversity of the population and the ability to have the PSO to 
escape the local minima. 

The hybrid PSO-EA learning algorithm proved to he 
successful in training R" for the time series prediction. 
The hybrid procedure takes advantage of the complementary 
properties of PSO and EA, which makes it more powerful 
than each of the individual algorithms in enhancing the elites 
of a given population and generating offspring. 
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The results show that approach gives a good [6] James Kennedy and Russell Eberhart, “PartiClC Swarm Optimization,” 
IEEE Inrernorionol Conference on New01 Networks, Perth, Australia, 
vol. 4, pp. 1942 -1948. Nov. 27-Dec. I ,  1995. 

[7] Russell Ebcrhart and Yuhui Shi, “Particlc swarm optimization: 
developmcnts, applications and ~~SOUTCCS,’’  Proceedings o/ rhe 2001 
Congresr on Evolutionary Computotion, vol. 1. pp. 81 -86, May 27-30, 
2001. 

[S I  V. G. Gudisc, G. K. Vcnayagmoorthy. “Comp*son of particle 
swarm optimization and backpropagation as training algorithms for 
neural networks". Proceedings of the IEEE Swonn Intelligence 
Symposium. A p d  24- 26, 2003, Indianapolis, Indiana, USA. pp. I10 - 

prediction of the missing values from the given time series. 
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