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Time-series quantum reservoir computing with weak and
projective measurements
Pere Mujal 1✉, Rodrigo Martínez-Peña1✉, Gian Luca Giorgi 1✉, Miguel C. Soriano 1✉ and Roberta Zambrini 1✉

Time-series processing is a major challenge in machine learning with enormous progress in the last years in tasks such as speech
recognition and chaotic series prediction. A promising avenue for sequential data analysis is quantum machine learning, with
computational models like quantum neural networks and reservoir computing. An open question is how to efficiently include
quantum measurement in realistic protocols while retaining the needed processing memory and preserving the quantum
advantage offered by large Hilbert spaces. In this work, we propose different measurement protocols and assess their efficiency in
terms of resources, through theoretical predictions and numerical analysis. We show that it is possible to exploit the quantumness
of the reservoir and to obtain ideal performance both for memory and forecasting tasks with two successful measurement
protocols. One repeats part of the experiment after each projective measurement while the other employs weak measurements
operating online at the trade-off where information can be extracted accurately and without hindering the needed memory, in
spite of back-action effects. Our work establishes the conditions for efficient time-series processing paving the way to its
implementation in different quantum technologies.
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INTRODUCTION
The availability of big data analyzed and exploited with machine
learning methods is one of the main traits of the present
information era and the search for enhanced data processing
capabilities is spurring research also in quantum approaches1–3.
Recent quantum machine learning implementations have been
reported ranging from NMR platforms4 to noisy quantum
computers5,6, and many proposals7–11 promise an advantage in
the performance with respect to classical approaches. Still, dealing
with quantum systems for machine learning poses new challenges
not only to preserve fragile quantum coherence from the action of
the environment12 but also to efficiently access the processed
information through measurement13, being these related issues.
In particular, a first distinctive aspect of quantum measurements is
that expectation values require an ensemble of copies of the
system. Indeed, in most quantum technologies including compu-
tation14, sensing15,16, or communications17–19, different
approaches to optimize and reduce the number of measurements
have been recently reported20,21 also including classical machine
learning tools22–25. A second distinctive aspect to deal with is that
a measurement performed on a quantum system generally alters
its state26–29. This measurement back-action has deep conse-
quences when monitoring a system, beyond a single input-output
setup and has been addressed for instance in feedback control13

or in quantum error correction30,31. Our goal here is to introduce a
quantum measurement framework for temporal series processing
considering both accuracy and back-action.
Many prominent tasks in the context of (classical) machine

learning deal with time-series processing, like speech recognition,
stock market forecasting or climate prediction. In contrast to
classification tasks32, temporal ones require continuous data
monitoring and the temporal order within the data sequence to
be processed plays a key role33. Among classical approaches to
time-series processing34–37, reservoir computing38 has been

successful in recognizing spoken words39,40 and human activity41

or in forecasting chaotic dynamical systems42,43, with appealing
features such as easy training and energy efficiency. In this
scheme, data are continuously injected into a reservoir system,
processed, and extracted, without requiring an external memory
avoiding the von Neumann bottleneck44. The reservoir itself can
be either an artificial recurrent neural network45 or even a physical
substrate46, providing a high dimensional phase space, a non-
linear input-output transformation and a fading memory47.
Recently, reservoir computing has been extended to the

quantum regime considering several ideal models ranging from
qubits to fermions and bosons, in photonic, atomic and solid-state
platforms48,49. Theoretical proposals display successful perfor-
mances of quantum reservoir computing (QRC) in genuine
temporal tasks50–55 and in generalization and classification
ones49,56–61, an approach known as extreme learning machine.
QRC is indeed a burgeoning alternative approach in quantum
machine learning, but continuous monitoring for sequential time
series processing poses a major challenge. A first experimental
implementation of a static classification task has been realized
with NMR of a nuclear spin ensemble in a solid62, while the first
exploration of temporal series processing with QRC was recently
reported on a quantum digital computer52. The potential of
exploiting present NISQ devices3,63 is indeed one of the
motivations for QRC50. Still, the monitoring issue is unsolved. In
order to establish the most promising avenues towards quantum
approaches a daunting question is how to efficiently monitor and
extract meaningful information in such experimental platforms,
when including the effect of quantum measurement. The scope of
this work is to address this point by proposing different
measurement protocols and to identify the most promising ones
for implementation, also addressing the crucial issue of the
required resources.
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Continuous time-series processing needs to be not only
efficient in terms of time and energy resources (repetitions,
ensemble size) but also reliable in spite of measurement back-
action, being these often competing requirements. The presence
of noise due to finite ensembles is common to most quantum
technologies and has also been considered in proposals of
QRC56,57,64,65. In time-series processing, the back-action of
measurement for continuous monitoring (i.e. introducing the
measurement map for each processing time step) becomes a
further crucial factor for realistic implementations, still to be
addressed. Here, we will explore protocols based either on
repeating (part of) the reservoir dynamics or on weak measure-
ments66,67, known to be noisier and less informative than
projective ones, but with the advantage to perturb less the state,
therefore preserving time information in the system. In this work,
we analyze the effect of quantum measurement for realistic QRC,
assessing the required resources for temporal series processing
(considering both finite ensemble and back-actions issues) with
analytical and numerical methods. Considering different protocols
based on both projective and weak measurements and taking into
account their accuracy, we will identify successful strategies
leveraging performance and resource efficiency. We illustrate
these aspects for time series processing in tasks requiring
respectively memory or forecasting capabilities.

RESULTS
Restarting, rewinding and online protocols
All QRC architectures48 for time series processing proposed so far
share the common feature of information extraction based on
quantum measurement at the output layer, Fig. 1a. In this section,
we present three different measurement protocols of a quantum
system driven by a sequence of (classical or quantum) inputs, as
illustrated in Fig. 1b–d, being most considerations generally valid
for any monitored quantum system, also beyond QRC. We
formally describe the evolution of a quantum system state in
discrete time steps, with k= t/Δt labeling the input injection
sequence, by means of the recurrence relation

ρuk ¼ Lk ρuk�1

� �
(1)

for the unperturbed (u) state dynamics, i.e., in the absence of any
measurement process. The superoperator Lk can account both for
a unitary evolution as well as for the interaction with an additional
external environment. The input, sk in Fig. 1, can be introduced
either through the sequential update of part of the system state50

or by means of a control Hamiltonian or dynamical parameter52,68.
In an ideal case, at each time step, information is extracted

through the expectation value of any observable operator Ô over
an infinite ensemble

hÔi1ρuk � TrðÔρuk Þ: (2)

In any implementation, however, the expectation value can be
inferred only from a finite number, Nmeas, of identical copies of the
quantum system and the estimated value suffers from a statistical
error that represents a first major experimental limitation. The
second issue of paramount relevance is represented by the
disturbance introduced by a quantum measurement, which
modifies the “unperturbed” dynamics of Eq. (1) at each time step
k. A common way to circumvent this back-action issue, –where the
effect of quantum measurement is not accounted for– is through
the reinitialization of the dynamics after each measurement, as
usually implicit in QRC proposals so far48. As a drawback, one
would need to repeat the experiment Nmeas times for each of the
time steps tk of the input time series to be processed. This scheme,
which we will refer to as the restarting protocol (RSP), is sketched
in Fig. 1b. It was used in the quantum digital computer
implementation in ref. 52.
A significant improvement with respect to the RSP can be

attained in reservoir computing considering its dynamical
features, and in particular the echo state property, that is its
ability to process time series independently on the initial state ρ0
of the reservoir69. We introduce the washout time τwo, as the time
necessary for the dynamical system to lose any information from
initial conditions, so that the reservoir computer depends
effectively on the input recent history, a property also known as
fading memory (Fig. 1b). This suggests that a more efficient
strategy than the RSP is to limit the repetition time to the shorter
washout time, restarting the dynamics from tk− τwo instead of
t052. This rewinding protocol (RWP) is devised to optimize the

Fig. 1 Quantum reservoir computing and measurement protocols. a Schematic representation of QRC, in input, reservoir and output layers.
b–d Measurement restarting, rewinding and online protocols (RSP, RWP and OLP) for consecutive measurements at time steps k+ 1 and k+ 2
in one ensemble realization. For the RSP (b), at each output time step, all the sequence processing is repeated (Nt time steps to gather the
output k+ 1, Nt+ 1 time steps to gather k+ 2, etc.). For the RWP (c), Nwo steps of the sequence are repeated for each output time step. For the
RWP the choice of the reset state at tk− τwo has no effect on the output (here we set it to ρ0). For the OLP with weak measurement (d), the
evolution is continuously monitored without repeating any part of the reservoir evolution.
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resources needed to overcome the measurement feedback by re-
initialization and is characterized by a sliding repetition time
interval τwo with an associated number of input injections
Nwo ≡ τwo/Δt (Fig. 1c).
In both RSP and RWP, the measurement outcomes, Vk l, at each

time step k and for several realizations l= 1,…, Nmeas, allow one to
approximate the expectation value of the observables as an

average over a large number of measured values hÔiNmeas

ρuk
with a

precision proportional to 1=
ffiffiffiffiffiffiffiffiffiffiffi
Nmeas

p
. In other words, the statistical

uncertainty limits the approximation to the ideal expectation

values as hÔiNmeas

ρuk
¼ hÔi1ρuk þ O N

�1
2

meas

� �
. These protocols are

designed so that the measurement back-action does not need
to be taken into account, but require to repeat, for each input
injection, part or all of the processing sequence, thus requiring the
storage of these inputs in an external memory. An important
question arises in this context: is there a way to avoid restarting
(or rewinding) the process after each output extraction? For this
purpose, we consider the possibility of continuously monitoring
the quantum trajectories of the evolving QRC by introducing weak
quantum measurements.
If information is extracted at the output layer through projective

measurements of all the reservoir physical units, then most
coherence is lost also erasing information of previous inputs. As a
strategy to overcome this extreme back-action effect, the QRC can
be monitored by preserving part of its fading memory either
considering weak measurements or projectively measuring only
part of the reservoir nodes (indirectly measuring the rest of the
reservoir)66,70, being both approaches actually related13. Weak
measurements have been considered for instance in the context
of quantum metrology and quantum physics foundations (see
Supplementary Methods II B), and experimentally implemented in
diverse settings, including optical71, superconducting qubits70,72,
and traped ions73 platforms. Then, alternating input injection and
output extraction –as in classical RC– we propose an online time
series processing protocol based on weak measurement, as
represented in panel (d) of Fig. 1.
For a single realization of the online protocol (OLP), the

monitored state ρVk
(for which we drop the apex ‘u’) evolves

following a quantum trajectory characterized by the (stochastic)
measurement outcomes Vk:

ρVk
¼ MVk � Lkð Þ½ρVk�1

�
Tr MVk � Lkð Þ½ρVk�1

�� � ; (3)

where the effect of the measurements on the system is
determined by the form of the superoperator MVk (see Methods).
The mixed state that accounts for all possible measurement
outcomes at time step k, assuming an infinite ensemble of
realizations, is given by (see Supplementary Methods II A):

ρk ¼
Z 1

�1
dVkρVk

PðVkÞ ¼
Z 1

�1
dVk MVk � Lkð Þ½ρk�1�; (4)

The expectation values of operators in the OLP can be
immediately generalized by replacing the unperturbed state ρuk
of the RSP and RWP with the monitored state ρk, accounting for
the measurement back-action.
We employ indirect measurements already implemented

experimentally in diverse platforms49,70,72–77 (see Methods). For
instance, the state of a superconducting qubit coupled to a cavity
is indirectly measured by probing the cavity typically with a
microwave signal70,72,74–76, or in the trapped ion experiment in73,
the information about the electronic states is extracted from their
interaction with the vibrational motion.
Within our measurement framework for a system of N qubits,

we find that Eq. (4) is simplified to (see Supplementary Methods II

A):

ρk ¼ M� Lk ½ρk�1�; (5)

where⊙ represents the element-wise product and M is defined as

M � ~M
�N

; ~M ¼ 1 e�
g2

2

e�
g2

2 1

 !
: (6)

The measurement strength, g, allows us to quantify the
increasing decoherence introduced by sharp measurements
(g≫ 1), while for g≪ 1 the state is weakly perturbed. The
parameter g depends on the coupling between the probe and the
indirectly measured system and the properties of their mutual
interaction (see Methods and Supplementary Methods II B).
An interesting question is about the possible effect of

measurement as a further nonlinearity source for QRC. In order
to address this point more clearly, let us specialize on the
framework of QRC introduced in ref. 50, which will be also used in
the following sections. The reservoir consists of a qubit network
unitarily evolving under the disordered transverse-field Ising
Hamiltonian50,53, while the input is injected into the system by
rewriting a node state ρink . The system parameters are chosen in
such a way that the reservoir is found in the ergodic dynamical
phase, which has been shown to guarantee optimal QRC
performances53. Different realizations of the reservoir produce
similar results. Full details are given in Methods and Supplemen-
tary Results I A. By using Eqs. (5) and (6), we find that the explicit
dependence on the input and on g of the components of ρk is
translated to the observables as (see Supplementary Methods II A):

hÔi1ρk ¼
XN
n¼1

e�
N�n
2 g2 An þ Bnsk þ Cnrkð Þ; (7)

where sk is the kth input injected, rk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
skð1� skÞ

p
, and the

matrices An, Bn, and Cn depend on the state ρk−1, as it was found in
the absence of measurement in Ref. 78. Iterating these relations, it
is then found that no further nonlinearities beyond the
polynomials of rk and sk with different k are introduced in the
measurement process. The exponential factors of Eq. (7)
effectively determine the amount of measurement-induced
back-action introduced in the system, being all equal to 1 in the
unperturbed case.

Measurement accuracy
In the previous discussion, we have anticipated two main
experimental limiting factors to the detection of the expected
values of the system observables: (i) the finite number of
stochastic measurements in the ensemble, affecting all the
protocols of Fig. 1, and (ii) the measurement weakness, which
preserves better the state but limits the amount of information
that can be extracted and is particularly relevant for the OLP.
Within our measurement framework, for single-qubit observa-

bles, these two sources of statistical uncertainty combine together
to give an error up to (see Supplementary Methods II B):

shσ̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 1
g2Nmeas

s
; (8)

while for two-qubit observables the statistical uncertainty reads:

shσ̂�σ̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g4 þ 2g2 þ 1

g4Nmeas

s
: (9)

The fact that more information is extracted with sharper
measurements (g≫ 1) is reflected in a reduction in the statistical
uncertainty in the observables when increasing g, for a fixed
number of measurements. For the RSP and the RWP, this justifies
the use of strong measurements, approximately projective (e.g.
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g= 10). However, for the OLP a careful assessment is needed,
taking into account that measurement back-action in general
leads to deviations from the unperturbed dynamics, erasing
information. Equations (8)-(9) also tell us that the degree of
precision depends on the kind of observable chosen. Indeed,
taking a weak value g≪ 1, the same uncertainty obtained with
Nmeas ~ g−2 for single-qubit observables would require Nmeas ~ g−4

in the case of two-qubit observables. In the following, we consider
weak measurements with g= 0.3 and strong measurements with
g= 10, which are well within experimentally accessible values (see
Supplementary Methods II B).
In order to appreciate the way back-action and the two sources

of statistical uncertainty (i) and (ii) affect the OLP, we plot in Fig. 2
the dynamics of some observables and compare them with the
ideal quantities. The finite number of measurements is responsible
for small deviations (not visible in the plot), namely, shσ̂i � 2 	 10�3

in panels (a) and (c), and shσ̂i � 8 	 10�4 in (b) and (d). Actually, as
we will show below, these seemingly small fluctuations have an
important impact for machine learning purposes. The most
apparent discrepancies are due to measurement back-action
and are shown in Fig. 2d, between the (OLP) measured and the
(RSP and RWP) unperturbed values. Back-action impact is rooted
in the reservoir state features and finally in its operation regime: In
the z-direction, in panels (a) and (b), this effect is less important
because the qubits are mostly aligned along z due to the reservoir
parameter choice53. If the measurements are done in a different
direction, i.e. to gather hσ̂x

i i and are sharp (Fig. 2d), they introduce
strong decoherence leading to the strong deviation with respect
to the unperturbed state. Only with sufficiently weak measure-
ments, as in Fig. 2c, the (unperturbed) dynamics is qualitatively
and approximately preserved with the OLP. A similar discussion
also applies to more general observables, like two-qubit
observables (see Supplementary Results I B). These analytical
and numerical findings hint at the fact that a weak measurement
is the only viable option for the OLP.
An important consequence of Eq. (6) is that, for g≪ 1, the ideal

state (monitoring an infinite ensemble) is weakly perturbed, as M

approaches the unity matrix with all components 1. Intuitively, the
disturbance introduced by such measurement is so weak that
almost no information is lost during online processing. With finite
measurement ensembles Nmeas, the error associated with this
unsharp measurement is larger than in the unperturbed state (e.g.
shσ̂i in Eq. (8) is larger than 1=

ffiffiffiffiffiffiffiffiffiffiffi
Nmeas

p
). Interestingly, in the ideal

case (infinite resources) information would still be extracted with a
limit vanishing error shσ̂i. Building on this analysis, the estimation
of observables experimentally accessible with finite measure-
ments can be numerically emulated by adding the proper
Gaussian noise to the ideal ones, hÔi1ρk . The comparison between
either performing numerically an ensemble over Nmeas indepen-
dent trajectories or adding Gaussian noise to an ideal infinite
ensemble (with standard deviation given by either Eq. (8) or (9))
will also be verified below.

Short-term memory capacity
In the previous sections, we have analytically assessed measure-
ment effects and we are now applying this framework to QRC
assessing its memory (this section) and forecasting (next section)
capabilities. In order to identify the accuracy limitations and back-
action effects of measurements, we consider the short-term
memory (STM) task. This allows us to establish the reservoir
efficiency in storing past information, that is, the fading memory
crucial for effective reservoir computing. Given the input sequence
{sk} of random numbers generated from a uniform distribution, the
task is to reproduce the target values

yk ¼ sk�τ ; (10)

where τ is the delay. The predictions are obtained with different
measured observables (for instance hσ̂xi i, or hσ̂z

i σ̂
z
j i) for all qubits

i, j= 1, N and comparing RSP, RWP and OLP. As usual, the
performance is quantified comparing predictions, ~y ¼ f~ykg, and
target values, y= {yk}, through the normalized correlation, namely
the capacity C(τ)∈ [0, 1]. Perfect STM at delay τ corresponds to
C(τ)= 1. More details in Methods.
The STM capacity for increasing delays is shown in Fig. 3a, for

single-qubit observables in the output layer. The performance when
neglecting any perturbation introduced by measurement (black
line) progressively decays, showing the ability of the reservoir to
store past information up to about six previous steps (consistently
with the network size N= 679). This STM capacity can be achieved
with the RWP and the RSP with high accuracy for Nmeas= 1.5 ⋅ 106.
We remark that values of Nmeas ranging from 104 to 106 are in
accordance with experiments of quantum computation14 and
quantum machine learning5. When continuously monitoring the
system in the OLP, the effect of measurement back-action becomes
critical and for sharp measurement (g= 10) the performance is
significantly hindered. Remarkably, this limitation is overcome with
weak measurements and the STM capacity achieved for g= 0.3 is
approaching the unperturbed case. Therefore, weak measurements
preserve short memory performing this online temporal task,
sequentially injecting new inputs and continuously extracting
information. The explanation of the hindered performance for
strong measurement (g= 10) is shown to be due to both back-
action and statistical noise, with C decaying strongly for τ= 2.
Assuming infinite accuracy (ideal case of infinite Nmeas, green
continuous line in Fig. 3a), the capacity instead reaches larger delays
(τ= 4). Therefore, the ideal OLP with g= 10 does not achieve the
memory obtained with the other protocols due to back-action:
continuous sharp measurements erase reservoir information
encoded in quantum coherences and correlations (Fig. 2d).
The input sequence to the QRC and the ability to reproduce

past inputs in the OLP are shown in more detail in Fig. 3b and c,
for the STM capacity at delay τ= 2. For weak measurement (b), all
qubits observables (σ̂x; σ̂y; and specially σ̂z) contribute to the
capacity C(τ= 2), while sharp measurements (large g) hinder the

Fig. 2 Qubits dynamics. Single-qubit observables of the first three
qubits of the system with N= 6 in the (a, b) z and (c, d) x directions.
Solid lines correspond to the ideal values (Nmeas→∞) with (black)
the effect of measurements on the system (OLP) and (grey) the
unperturbed case (RSP and RWP), respectively. In symbols, the
values obtained by numerically simulating the measurement
process with Nmeas= 1.5 ⋅ 106 in the OLP. Panels (a), (c) correspond
to a weak measurement strength, g= 0.3; whereas in panels (b), (d)
strong measurements, g= 10, are performed. The input is encoded
into the state of qubit 0 (see Methods).
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ability of the output to reproduce the target. On the one hand, Fig.
3b also tells us that, despite the state being mostly aligned in the z
direction53, the reservoir is far from approaching the classical
regime, where quantum coherences would be negligible. Indeed,
significant contributions to the capacity come from all the qubit
directions (more details are given in Supplementary Results I C).
Intuitively, even though such coherences are small with respect to
the populations (see also Fig. 2), they still provide significant
richness to the reservoir output (being larger than the statistical
uncertainty of the measurement process). On the other hand, we
see in Fig. 3c that if such coherences are further hindered by
stronger back-action (falling below the statistical noise, then the
capacity reached with σ̂z (C= 0.21) does not improve when also
considering σ̂x and σ̂y.
The overall performance of the STM task is quantified in Fig. 4

by the sum capacity accounting for the total memory at all delays
(equivalent to truncating at 10 as C(τ > 10) ~ 0)

CΣ �
X
τ

CðτÞ; (11)

as a function of g, considering both single-qubit and two-qubit
observables. In the infinite-measurements limit, the OLP (solid
lines) in Fig. 4a displays maximum memory CΣ for g→ 0+, when
the system becomes effectively unperturbed (no back-action
effect, see Eq. (15)). However, in realistic implementations with a
finite number of measurements, the statistical uncertainty
diverges in this extremely weak (non-informative) measurement
limit as shown in Eq. (8). Then, the optimum sum capacity is
achieved at a larger g value, depending on Nmeas, where the
output expectation values are more accurate but at the same time
the back-action is not too strong. Indeed the larger Nmeas, the
weaker the measurement that maximizes the capacity. With
Nmeas= 1.5 ⋅ 106, the optimal measurement strength is found
around g= 0.3 for one-qubit observables (black diamonds).

Two-qubit correlations can also be exploited for QRC, and, in
the ideal limit (solid purple line in Fig. 4a) they reach a larger
memory capacity than single-qubit ones, as expected for a larger
number of observables. However, these correlations are smaller
and subject to a more significant statistical uncertainty. Therefore,
with a finite number of measurements, the performance is actually
worse than for single qubit observables (symbol lines). Of course,
we also see that in this case there is further room for improvement
by increasing Nmeas. This is a key point in view of experimental
implementations as, beyond the performance achievable in QRC
when considering quantum measurements, it is critical to quantify
the amount of needed resources. In Fig. 4b, we represent the sum
capacity as a function of the number of measurements, showing
that with the OLP limited to weak measurements (red line), as well
as with the RSP and the RWP, the sum capacity increases as soon
as the statistical uncertainties become negligible and until the
corresponding upper bound is approached. Indeed, while for
ensemble sizes Nmeas ~ 104, reset protocols perform better, all the
RSP, the RWP and the OLP with g= 0.3 reach ideal capacities for
Nmeas ~ 106. In contrast, the use of strong measurements with the
OLP leads to a slow convergence of the capacity (green line in Fig.
4b), which seems to saturate to a lower value than the one
corresponding to the Nmeas→∞ limit.
In order to analyze the real amount of resources demanded by

each protocol, it is meaningful to quantify the time needed for
each experimental realization (see Supplementary Results I D,

Fig. 4 Total memory capacity and experimental resources. a STM
sum capacity depending on g for different kinds of observables. For
the OLP, solid lines represent the values when Nmeas→∞ associated
to the unfilled symbols in the same color for the Nmeas= 1.5 ⋅ 106
case. Vertical dashed lines represent the values of g= 0.3 (red),
g= 0.5 (orange), and g= 10 (green). The capacities of the RWP and
the RSP are nearly identical. This figure has also been reproduced for
100 realizations of the random couplings of the Hamiltonian (see
Supplementary Fig. 1). In (b), CΣ is plotted as a function of the
number of measurements; in (c), depending on the experimental
time required. Single-qubit observables, hσ̂αi i, are used in (b) and (c),
with α= x, y, z and i= 1,…, N= 6. All data shown correspond to the
test set.

Fig. 3 Short-term memory capacity. a STM capacity from single-
qubit observables depending on the delay τ obtained with the
different protocols and Nmeas= 1.5 ⋅ 106 measurements (symbols).
The ideal capacities (Nmeas→∞), are represented with a solid line in
the corresponding color; the unperturbed situation is in black. The
dashed green line corresponds to estimated values obtained from
the observables in the limit Nmeas→∞ but adding Gaussian noise.
Indices of label hσ̂αi i refer to i= 0,…, N= 6 and α= x, y, z. In (b) and
(c), target values (grey filled circles) are shown with predictions
(colored unfilled symbols) for the STM task at τ= 2 obtained with
the OLP and weak measurements (b), and strong measurements (c),
both with single-qubit observables. All data shown correspond to
the test data set.
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Supplementary Eqs. (1)–(3)) and not only the ensemble size Nmeas.
The required experimental time for each measurement protocol is
shown in Fig. 4c for the case of a single-observable output layer.
As expected, the RSP is not efficient, while both the OLP and the
RWP achieve a good performance with the same resources, if the
measurement is weak in the online approach (OLP with g= 0.3).
Indeed it is interesting to compare the OLP and the RWP by
finding the value of g such that tOLPexp 
 tRWP

exp while also imposing
the same statistical uncertainty in both cases. This leads to finding
a criterion to determine the minimum measurement strength for
online processing to be advantageous with respect to rewinding.
The relevant quantity to this aim is the number of washout steps
Nwo, (see Supplementary Results I D) that, as shown before,
defines the finite memory of the reservoir. For single-qubit
observables we find

g �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nwo � 1

r
: (12)

This is a necessary condition to be successful in online
processing (with less resources than the RWP), while it will be
sufficient if the corresponding measurement is weak enough to
have negligible back-action effects in the OLP. For instance, if the
washout steps amount to Nwo= 20, the measurement strength in
Eq. (12) is g≳ 0.23 producing negligible back-action. Indeed the
red line of Fig. 4c of best capacity corresponds to g= 0.3. The
bound in g for efficient OLP also depends on the kind of
observables considered. The analogous condition for two-qubit
observables is more restrictive, i.e. a stronger measure is needed,
as described in Supplementary Results I D and further discussed in
Supplementary Results I B.

Chaotic time series forecasting
After the analysis of the STM task, we quantify the capacity of the
QRC system to make forward predictions on the Santa Fe laser
time series, corresponding to a NH3 laser in a chaotic dynamical
state80. This benchmark dataset originates from a time-series
forecasting competition held at the Santa Fe Institute in the
1990s81 and it has been used extensively ever since. Formally, our
target is written as

yk ¼ skþη; (13)

where η labels the number of steps forward to make the
predictions. The original values of the Santa Fe series were shifted
and normalized such that {sk}∈ [0, 1] (see Methods).
In Fig. 5a and b, we illustrate the performance of the QRC for

one-step forward predictions with the unperturbed system. By
considering together both single-qubit and two-qubit observa-
bles, a remarkable capacity of C= 0.98 is reached. A similar
accuracy can be obtained with the RSP or the RWP. The prediction
of the Santa Fe time series is particularly challenging when there is
a jump from large to low amplitude oscillations, see t/Δt ~ 1500 in
Fig. 5a. Accordingly, the most appreciable differences in Fig. 5b
between the target and the predicted values are found when
there are sudden changes in the amplitude of the signal, which
are nevertheless mostly captured by the predicted values.
The quality of further future predictions (η ≥ 1) is shown in Fig.

5c, where we have concentrated on the study of the results
obtained with the OLP in comparison to the unperturbed situation
(ideally retrieved by the RSP and the RWP). The prediction task
becomes more complicated as the prediction distance η increases.
Accordingly, the goodness of the predictions decreases with
increasing η. As an exception, there are local maxima in the
capacity due to the quasi-periodicity in the Santa Fe laser time
series, i.e. at η ≈ 7 and η ≈ 14. As shown in the previous section for
the STM task, the perturbative nature of a sharp quantum
measurement (e.g. g= 10) erases part of the QRC memory on the
input history. The results presented in Fig. 5c illustrate that such a

memory loss also impacts the forecasting capabilities of the QRC,
with the prediction capacity for g= 10 falling below the one for
g= 0.3. Interestingly, in the limit of infinite measurements, the
capacity for the weak measurement matches the one of the
unperturbed system and there is no significant back-action effect
on future predictions. The considerably good capacity obtained
with the simulated experimental data with weak measurements in
Fig. 5c (red symbols) could be improved with more measurements
to eventually approach the upper bound (solid red line).

DISCUSSION
The potential advantage in processing temporal data sequences
with quantum systems in reservoir computing is rooted in the
large processing capability opened by their Hilbert space48,50.
Here, we provide the first evidence that this advantage can still be
achieved beyond ideal situations, when including the effect of
quantum measurement, paving the way to experimental demon-
strations of sequential data processing both in memory and
forecasting tasks. We have analyzed protocols where after each
detection the reservoir dynamics is repeated for the whole past
input sequence52,55 (named restarting protocol, RSP) or for the last
part of it, exploiting the fading memory of the reservoir (rewinding
protocol, RWP). The latter achieves a linear instead of a quadratic
scaling with the injection steps. An alternative proposal is based
on weak measurements, allowing for online data processing (OLP)
without storing any inputs externally.
For time series processing, the impact on the task accuracy (i) of

statistical noise (ensemble size), (ii) of measurement weakness,
and (iii) of the back-action for continuous monitoring, need to be
taken into account to design a quantum reservoir computer with a
good compromise between performance and resource cost.

Fig. 5 Forecasting capacity. a One-step forward predictions and (b)
prediction errors on the Santa Fe time series for a part of the test
data when the observables of the unperturbed quantum reservoir
are employed. In panel (a), target values correspond to grey-filled
circles and predictions to black unfilled circles. c Capacity of
predictions, C, depending on the number of time steps forward η. In
panel (c), the OLP with g= 0.3 and g= 10 is used, respectively, to
estimate the observables with Nmeas= 1.5 ⋅ 106 measurements at
each time step. The limit case for g= 0.3 with Nmeas→∞ is
represented with a solid red line; the unperturbed situation is in
black. The dashed red and green lines correspond to estimated
values obtained in the limit Nmeas→∞ but adding Gaussian noise to
the observables. The values of the capacities correspond to the
test data.
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Optimum performance has been shown to be reachable beyond
ideal assumptions both in the RSP and RWP, with projective
measurements and buffering input data, as well as in the OLP with
(weak) monitoring. The distinctive feature of the OLP is the online
operation, without storing any input, either classical or quantum.
This is particularly advantageous in platforms where system
ensembles can be measured at the output layer, at each input
injection, as for atomic/molecular ensembles82 or in multimode
(pulsed) photonics83, where fully online time series processing
with weak measurements could be realized.
Online weak measurements enable us to partially preserve

quantum coherences in the OLP. They can be implemented for
different reservoirs, with a prominent example of superconducting
qubits and trapped ions, where the strength of the measurement
can be tuned through the interaction time between the system
and measurement apparatus73,75, or through the reflectivity in the
photonic memristor set-up in ref. 49. Alternative strategies for
continuous monitoring time series could be considered depend-
ing on the choice of the physical reservoir, as for instance
detection based on quantum jumps, while quantum non-
demolition measurements could be used but are typically limited
in the number of accessed observables. In general quantum
trajectories have been successfully implemented in a variety of
contexts72,84–87 laying the grounds for monitored QRC experi-
ments, as recently proposed for non-temporal tasks56.
A further crucial aspect in view of experimental implementa-

tions of high-performance QRC is the efficiency in terms of
experimental resources. Energy efficiency is actually a major
feature of reservoir computing88. Here, we have estimated time
(and therefore energy) resources relative to these different
measurement protocols. We stress that the potential advantage
of QRC, given by the exponential size of the Hilbert state, requires
the use of higher-order terms hσ̂αii � 	 	 	 � σ̂

αj
j � σ̂αl

l i that are
typically of small magnitude and actually necessitate more
resources to be accurately determined. Depending on the
reservoir fading memory and the performing task, we find that
the OLP with measurements of the proper strength could exceed
the performance of the RWP being efficient even for higher-order
moments (ultimately exploiting the full size of the Hilbert space).
Quantum models suited for QRC as the one studied here are

realized in state-of-the-art experiments, such as in superconduct-
ing qubits89 and trapped ions90,91. Besides our particular scheme,
this realistic measurement framework establishes the advantage
of quantum reservoirs beyond ideal scenarios. Furthermore, it is
expected to pave the way to efficient experimental implementa-
tions involving continuous monitoring as time-series processing
with quantum systems52–55 –also with time multiplexing50–,
temporal quantum tomography51, quantum recurrent neural
networks and quantum neuromorphic computing92, among
others.

METHODS
Monitored qubit system
In order to account for the measurements during the dynamics of
the system with the OLP, we introduce in Eq. (3) the following
measurement superoperator:

MVk ½ρ� ¼ Ω̂VkρΩ̂
y
Vk
: (14)

Given a system of N qubits, single-qubit measurements in a
single realization are described by the Kraus operators Ω̂Vk ¼
Ω̂
V ð0Þ
k
� 	 	 	 � Ω̂

V ðN�1Þ
k

; which give a set of measurement results
Vkl ¼ fV ðiÞ

k l g, with i= 0,…, N− 1, where the indices k and l label
the time step and the experimental realization, respectively.
Indirect measurements in the z direction can be modeled by

means of the following operator (see Supplementary Methods II

B):

Ω̂
z
V ¼ 1ffiffiffiffiffiffi

2π4
p e�

V�gð Þ2
4 0j i 0h j þ e�

Vþgð Þ2
4 1j i 1h j

	 

; (15)

where g is the tunable strength of the measurement and V is the
measurement outcome, both normalized with the width of the
two Gaussians. Particularly, this operator is implemented in
superconducting qubit experiments, where the value of g
depends on the coupling between the cavity probe and the
qubit and is tuned by varying the measurement duration70,72,74,75.
Measurements in the x and y directions can be obtained by means
of rotations (see Supplementary Methods II B). From Eq. (15), the
probability distribution for an outcome V, when we measure a
qubit in the reduced state ω, PzðVÞ ¼ TrðΩ̂zy

V Ω̂
z
VωÞ, is:

PzðVÞ ¼ ω00
1ffiffiffiffiffiffi
2π

p e�
V�gð Þ2
2 þ ð1� ω00Þ 1ffiffiffiffiffiffi

2π
p e�

Vþgð Þ2
2 ; (16)

where ω00= 〈0∣ω∣0〉, and whose outcomes are sampled from a
weighted sum of two Gaussian distributions (at distance 2g)
depending on the state before the measurement. Therefore, in the
limit of large g, the projective case is approached and most
outcomes V can be unambiguously assigned to one of the two
distributions. However, if g is small, the measurement is weak and
the two distributions largely overlap making the measurement
less informative (see Supplementary Methods II B, Supplementary
Fig. 6). With the outcomes obtained from indirect measurements,
we can compute the expectation values of the observables. For
instance, when we measure a single qubit with state ω in the z
direction, we have hVizω ¼ R1�1 V PzðVÞ dV ¼ ghσ̂ziω. The expecta-
tion values of two-qubit observables are computed in a similar
way, as shown in Supplementary Methods II B 2.

Quantum reservoir based on a disordered transverse Ising
model
Reservoir computing38,46,47 is a supervised machine learning
method based on the three-layer scheme: (i) input, (ii) reservoir,
and (iii) output, depicted in Fig. 1a. The main enabling features of
reservoir computing are the ability to differentiate any pair of
inputs, known as separability93, the fading memory in the past and
the independence of the reservoir initialization (echo state or
convergence property)69. This guarantees that after a transient
time the reservoir output depends only on the recent input
sequence. Recent proposals for quantum reservoir computing
have been reviewed in48.
The quantum reservoir computer considered in this work

consists of a qubit network evolving in time under the action of
the disordered transverse-field Ising Hamiltonian50,53:

Ĥ ¼ 1
2

XN�1

i¼0

hσ̂z
i þ

XN�1

i<j

Jij σ̂
x
i σ̂

x
j : (17)

In all the numerical simulations, we used N= 6 qubits and
randomly generated a single set of qubit-qubit couplings Jij from a
uniform distribution in the interval [− Js/2, Js/2], where Js is set as a
reference unit. Actually, the scope of our analysis is valid beyond
the specific choice of the reservoir. We have checked that the
deviations introduced by different coupling realizations90 are not
relevant, as can be seen in the example of Supplementary Results I
A. The external magnetic field and the time interval, respectively,
are fixed at h= 10Js and Δt= 10/Js so that the reservoir is in an
appropriate dynamical regime where the system tends to
thermalize53. The input is represented by a sequence {s0,
s1,…, sk,… } and is injected into the system by rewriting a node
state ρink every time step k. In particular, we consider encoding a
real input sk ∈ [0, 1] in one qubit (labeled by 0) by setting it at each
time into a pure state ψkj i ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1� sk
p

0j i þ ffiffiffiffi
sk

p
1j i78. The resulting

evolution after input injection is given by the completely positive
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trace-preserving map Lk ½ρ� ¼ Û ρink � Trin ρ½ �� �
Û
y50,53. This fully

defines the unperturbed state dynamics in the case of the RSP
and the RWP, as given by Eqs. (1) and (3).

QRC training and test
For task resolution, the QRC systems are trained in a supervised
manner. Given the target output yk for the input sk in the training
examples, a linear weighted combination of the reservoir
observables that constitute the output feature space is con-
structed to minimize the prediction error with a least-squares
method34. More precisely, the form of the predictions is

~yk ¼
XL
m¼1

wmhÔik;ðmÞ þ wLþ1; (18)

where wm are the free parameters (weights) to be optimized,
including the bias term wL+1. The total number of weights
employed, L, depends on our particular choice for the observable
set. For instance, when we consider the expectation values of σ̂xi ,
σ̂yi , and σ̂z

i for all qubits, then the dimension of the feature space is
L= 3N.
For the STM task, we consider a total dataset of Nt= 1000 time

steps. The initial Nwo= 20 instants within the washout time are
discarded. This value, in agreement with previous results79, is long
enough to guarantee a nearly identical performance between the
RSP and the RWP. It is also valid for the OLP even if a shorter time
could be enough, as the memory of the system is reduced for
increasing values of g due to back-action. The weights in Eq. (18)
are optimized using the following 735 time instants and the last
245 time steps constitute the test set, where the learned weights
are used to evaluate the accuracy of the QRC system.
For the Santa Fe task, the data set is comprised of Nt= 2000

time steps. The first Nwo= 20 time steps are again discarded. The
following 70% instants are used to train the weights, while the test
prediction error is evaluated for the last 30% steps.
The QRC performance is quantitatively evaluated through the

capacity

C � cov2 y; ~yð Þ
varðyÞvarð~yÞ ; (19)

where cov y; ~yð Þ indicates the covariance between the two series
and var(y) is the variance. C ∈ [0, 1] and perfect predictions are
obtained with C= 1.
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