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0. HEADNOTE

This paper studies the random walk in a general time series setting
that allows for weakly dependent and heterogeneously distributed innova-
tions. It is shown that simple least squares regression consistently
estimates a unit root under very general conditions in spite of the
'presence of autocorrelated errofs. The limiting distribution of the
standardized estimator and the associated regression t-statistic are found
using functional central limit theory. New tests of the random walk hy-
pothesis are developed which permit a wide class of dependent and heter-
ogeneous innovation sequences. A new limiting distribution theory is
constructed based on the concept of continuous data recording. This theory,
togéther with an asymptotié expansion that is developed in the paper for
the unit root case, explain many of the interesting experimental results

recently reported in Evans and Savin (1981, 1984) .,

Keywords: Unit root; time series; functional limit theory; Wiener process;

weak dependence; continuous record; asymptotic expansion.
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1, INTRODUCTION

Autoregressive time series with a unit root have been the subject
of much recent attention in the econometrics literature. In part, this
is because the unit root hypothesis is of considerable interest in appli-
cations, not only with data from financial and commodity markets where
it has a long history but also with aggregate time series. The study by
Hall (1978) has been particularly influential with regard to the latter,
advancing theoretical support for the random walk hypothesis for consump-
tion expenditure and providing further empirical evidence. !oreover, the
research program on vector autoregressive (VAR) modeling of aggrepate time
series (see Doan et al. (1984) and the references therein) has actually
responded to this work by incorporating the random walk hypothesis as a
Bayesian prior in the VAR specification. This approach has helped to
attenuate the dimensionality problem of VAR modeling and seems to lead to
decidgd improvements in forecasting performance (Litterman (1984)).

At the theoretical level there has also been much recent research.
This has concentrated on the distribution theory that is necessary to
develop tests of the random walk hypothesis under the null and the analysis
of the power of various tests under interesting alternatives. Investiga-
tions by Dickey {1976}, Dickey and Fuller (1979, 1981}, Fuller {1976) and
Evans and Savin (1981, 1984) have been at the forefront of this research,
Related work on regression residuals has been done by Sargan and Bhargava
(1983) and by Bhargava (1986). Rpcenfly, attention has also been given
to more general ARIMA models by Solo (1984) and by Said and Dickey (1985).

-All of the research cited in the previous paragraph has been confined

to the case where the sequence of innovations driving the model are
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independent with common variance. Frequently, it is assumed that the in-
novations are iid (0, 02) or, further, that they are iid N(O, 02) .
Independence and homoskedasticity are rather strong assumptions to make
‘about the errors in most empirical econometric work; and there are good
reasons from economic theory (as shown in Hall (1978)) for believing them
to be false in the context of aggregate time series that may be character-
jzed as a random walk. For both empirical and theoretical considerationms,
therefore, it is important to develop tests for unit roots that do not
depend on these conditions.

One aim of the present paper is to develop such tests. In doing so,
we provide an asymptotic theory for the least squares regression estimator
and the associated regression t-statistic which allows for quite general
weakly dependent and heterogeneously distributed innovations. The condi-
tions we impose are very weak and are similar to those used recently by
White and Domowitz (1984) in the general nonlinear regression context.
However, the limiting distribution theory that we employ here is quite
different from that of White and Domowitz {1984). It belongs to a general
class of functional limit theory on metric spaces, rather than the central
limit theory on Euclidean spaces that is more conventionally used in econo-
metrics (as in the excellent recent treatment by White (1984)., Our approach
unifies and extends the ﬁresently known limiting distribution theory for
the random walk and more general ARIMA models with a single unit root.

It would seem to allow for most of the data we can expect to encounter
in time series regression with aggregate economic series, A particularly
interesting feature of the new test statistics that we propose in this
paper is that their limiting distributions are identical to those found

in earlier work under the assumption of iid errors. Thus, we discover
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that much of the work done by the authors cited in the earlier paragraph
(particularly Fuller (1976), Dickey and Fuller {1979} and Evans and Savin
(1981)) under the assumption of iid errors remains relevant for a very
much larger class of models.

Aﬂother aim of the paper is to present a new limiting distribuiton
theory that is based on the concept of continuous data recording. This
theory, together with the asymptotic expansion that is developed in Sec-
tion 7 of the paper for the unit root case, help to explain many of the
interesting experimental results reported in the recent papers by Evans

and Savin (1981, 1984) in this journal.

2. FUNCTIONAL LIMIT THEORY FOR DEPENDENT

HETEROGENEQUSLY DISTRIBUTED PATA

=] 8
Let {}'t}t_1 be a stochastic process generated in discrete time accord-

ing to:

(D Yo = OVe 1 * U s t=1, 2, ...

(2) a =1

Under (2) we have the representation Yy = St * Yy in terms of the partial

sum St = Eiuj of the innovation segquence {uj} in (1) and the initial

condition Yo - We may define S0 = 0 . The three alternatives commonly

proposed for ¥y are {c.f. White (1958)):
(3a) Yg= ¢, @ constant, with probability one;
(3b) Yo has a certain specified distribution;

(3¢c) Yo = Y1 » where T = the sample si:e.



(3¢) is a circularity condition, due to Hotelling, that is used mainly
as a mathematical device to simplify distribution theory {c.f. Anderson
(1942)). (3b) is a random initial condition that is frequently used to
achieve stationarity in stable models (la| < 1) . In this paper, we shall
employ (3b). This permits the greatest flexibility in the specification
of (1). It allows for non stationary series (with |a| > 1) and it in-
cludes (3a) as a special case (and, in particular, the commonly used con-
dition Yo = 0.

Qur concern in this section will be with the limiting distribution of

standardized sums such as:

. - d . il < . -
(4a) Xp(r) = ——S,-TU [Tr] = ——Sf—.l.c j-1 7 (3=-13/T<r<3i/T (3 =1,...,T)
_ 1 S

where [ ] denotes the integer part of its argument and ¢ is a certain
constant defined later (see Assumption 2.1 below). O{bserve that the sample
paths XT(r) € D =0D[0,1], the space of all real valued functions on
{0,1] that are right continuous at each point of {0,1] and have finite left
limits. That is, jump discontinuities (or discontinuities of the first
kind) are allowable in D ., It will be sufficient for our purpose if we
endow D with the uniform metric defined by |If-gll = suprlf(r) -g{r)l

for any f, g€ D .

XT(r) is a random element in the function space D. Under certain con-
ditions, XT(r) can be shown to converge weakly to a limit process which
is popularly known either as standard Brownian motion or the Wiener nro-
cess. This result is often referred to as a functional central limi:

theorem {CLT) (i.e. a CLT on a function space) or as an invariance principié



following the early work of Donsker (1951) and Erdos and Kac (1946). The
limit process which we denote by W(r) , has sample paths which lie in

= C[0,1] , the space of all real valued continuous functions on [0,1].
Moreover, W(r) is a Gaussian process (for fixed r W(r) is N(O0,r} )
and has independent increments ( W(s) is independent of W(r) - W(s} for
all 0 <s <r<1). We shall denote the weak convergence of the process
xT(r) to W({(r) by the notation XT(r) = W({1) ; and, when the meaning
is clear from the context, we shall sometimes suppress the argument T
and simply write XT = ., Here and elsewhere in the paper the symbol " ="
is used to signify the weak convergence of the associated probability
measures as T + =« , Note that many finite dimensional CLT's follow directly
from this result (e.g. the case in which r = 1 yields the Lindeberg-L&vy
theorem when the uj are iid (0, 02) ). The reader is referred to
Billingsley {1963) for a detailed introduction to the subject and to Pollard
(1984) for an excellent recent treatment.

The conditions under which XT = W are very general indeed and extend
to a wide class of nonstationary, weakly dependent and heterogeneocusly dis-
tributed innovation sequences {ut}? . Billingsley (1968, Ch. 4) proves a
nutber of such results for strictly stationary series satisfying weak depen-
dence conditions. His results have recently been extended by many authors
in the probability literature {see Hall and Heyde (1980, Ch. 5} for a good
discussion of this literature and some related resuits for martingales and
near martingales). Amongst the most general results that have been established
.are those of Mcleish (1575a, 1977) and Herrndorf (1983, 1984a, 1984b).

We shall employ a result of Herrndorf (1984b) in our own development because
it applies most easily to the weakly dependent and heterogeneously distributed

innovations that we wish to allow for in the context of time series such



as (1).

To begin we must be precise about the Sequence {ut}? of allowable
innovatiens in (1). In what follows we shall assume that {ut}: is a se-
quence of ran&om variables that satisfy:

ASSUMPTION 2,1
(a) E(ut) =0 all t ;
(b) sup, ElutlS <w forsome B > 2 ;
(c) 02 = 1i E(T'lsz) exists and 02 >0 ;
Mo T - ;

(d) {u }: is strong mixing with mixing coeffictents an that satisfy:

(5) ol a;"-’/s <

These conditions allow for both temporal dependence and heteroskedas-
ficity in the process. {ut}? . For the definition of strong mixing and the
mixing coefficients o = that appear in (d) the reader is referred, for
example, to White (1984). Condition (d) controls the extent of the temporal
dependence in the process {ut}: , so that, although there may be substantial
dependence amongst recent events, events which are separated by long intervals
of time are almost independent. 1In particular, the summability requirement
{5) on the mixing coefficients is satisfied when the mixing decay rate is
a = O(m-x) for some A > 8/(B-2) . The summability condition (5) also
controls the mixing decay rate in relation to the probability of outliers
as determined by the moment existence condition (b). Thus, as 8 approaches
2 and the probability of outliers rises (under the weakening moment condition
(b)) the mixing decay rate increases and the effect of outliers is required
under (5) to wear off more quickly. This tradeoff between moment and mixing

conditions was first developed by McLeish (1975b) in the context of strong



laws for dependent sequences, Condition (b) also controls the allowable
heterogeneity in the process by ruling out unlimited growth in the 5'th
absolute moments of u, .

Condition {¢) is a convergence condition on the average variance of
the partial sum ST . It is a common requirement in much central limit

theory although it is not strictly a necessary condition (see, for example,

Herrndorf (1983)). However, if {ut} is weakly stationary then
(6) o = E(u) + 253 E(u;u)
1V T k=15

and the convergence of the series is implied by the mixing condition (5)
(see Ibragimov and Linnik (1971), Theorem 18.5.3). Even in this case, how-
ever, we still require 02 > 0 to exclude degenerate results. Once again,
this is a conventional requirement,

Assumption 2,1 allows for a wide variety of possible generating mechanisms
for the sequence of innovations {ut}? . These include all Gaussian and
many other stationary finite order ARMA models under very general conditions
on the underlying errors (see Withers (1981));

We shall make extensive use of the following two results in our theo-
retical development. The first is a functional central limit theorem that

is due to Herrndorf; and the second is the continuous mapping theorem, which

is given a very thorough treatment in Billingsley (1968, Section 5).

LEMMA 2.2, IF {ut}: satisfies Assurption 2.1 then as T 4 = KT =W ,

a standard Wiener process on C .



LEMMA 2.3. If X.=W as T+« and h <is amy continuwous functional
on D (continuous, that is, except for at most a set of points DD

for which P(W € Dh) =0 ) then h(xT) = h(W) ag T+ »

3. LARGE SAMPLE (T 4 =) ASYMPTOTICS

We denote the ordinary least squares (OLS) estimator of o in (1)

by a = zgytyt~1/21y§-l . Appropriately centered and standardized we have

e -1.T -2.T 2
(7N T(a-1) = {T Iy, (v, v, PWIT "Ive 4}

and we shall consider the limiting behavior of this statisticas T + =

*

We shall also consider the conventional regression t-statistic:

T2 }2.
(8) t, = (zlyt_l) (a-1)/s
where
2 _ +~1,T - 2
(9) sT =T Ly - oy, -

Both (7) and (8) have been suggested as test statistics for detecting
the presence of a unit root in (1). The distributions of these statistics
under both the null hypothesis a = 1 and certain alternatives o # 1
have been studied recently by Dickey and Fuller (1979, 1981), Evans and
Savin (1981, 1984) and Nankervis and Savin (1985). The work of these authors
concentrates altogether on the special caselin which the Ennovation sequence
{ut}z is iid (0, cz) . In related work, Solo (1984} has studied the
asymptotic distribution of the Lagrange multiple (LIf) statistic in a general

ARIMA setting. His results are also established under the assumption that

iid innovations drive the model.



Qur approach relies on the theory of weak convergence on D . It leads
to rather simple characterizations of the limiting distributions of {7) and
(8) in terms of functionals of a Wiener prbcess. The main advantage of
the approach is that the results hold for a very wide class of error pro-

cesses in the model (1).

THEOREM 3.1. If {ut}: satisfies Asswmption 2.1 and 1fF sup, E|ut|8+n < »
for some n > 0 (where B > 2 is the same as that in Asswmption 2,1), then

ag T 4+ = :

pi

(a) T Z:{yi_l = czféw(r) Z4r ;

® Ty, -y P = DM -0%/eY
() T@E-1) = (/2w -ol/0h /[ 2ar ;

(d) a=>1;

p
, 1
() t = (s/20)((1)* -02/0%) /1 [gu () “dr} 2

where

2. -1.T., 2
Cu = llf!'l--l-_;‘°° T E].E(ut) »

2 . -1.2
g” = llm.[._)_m E(T ST)

and W(r) <8 a standard Hiener process on C .

- .

When the innovation sequence {ut}? is iid(o, 02) we have al'“l = g

3

leading to the following simplification of part (%] of Theorem 3.1:
- 2 1 2
(10) T(a-1) = (1/2(W(1)° - 1)/ [0 () “dr .

Result (10) was first given by White (1958, p. 1196), although his expres-
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sion is incorrect as stated since his standardization of a is g(m (a-1)
with g(T) = T/V2 . Unfortuna'tely, this rather minor error recurs at
several points in the paper by.Rao (1978, pp. 187-188)., Lai and Wei (1982)
and Lai and Seigmund (1984) also give (10) as stated above.

Theorem 3.1 extends (10) to the very general case of weakly dependent
and heterogeneously distributed data. Interestingly, our result shows
that the limiting dis‘tribution of T(a-1) has the same general form for
a very wide class of innovation processes {ut}T .

The differences between (c¢) of Theorem 3.1 and (10) may be illustrated

with a simple example. Suppose that the generating process for {ut} is

the moving average

with e, 1id(0, og) . Then

2 . -1.T 2 _ 2,2
o, = plim T "Ljuf = (1+8 Ja_
2 _ -1 .02, _ 22

c” = 11m,r_m° T E(ST) = (1+9) 9.

and we have

2
a
-1.T 2
T LYY -—2‘:{(1+e) Wn? - a +92)] ,
which can also be verified.by direct caleuylation. ., In this case
-~ ol 2 e
T(3-1) = (1/2) [W(1) % - (1 +62)/[1+8)"]/[él'1(r) “dr

generalizing (10) and, of course, reducing to it when 6 = 0 .,
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Part {d) of Theorem 3.2 shows that, unlike the stable AR(1) with
la{ < 1.3 OLS retains the property of consistency when there is a unit
root even in the présence of substantial serial correlation. This extremely
simple result seems not to have been derived at this level of generality
before, although closelﬁ related results for ARIMA models have been ob-
tained recently by Tiao and Tsay (1983} and by Said and Dickey {1984).
The robustness of the consistency of & in this case is rather extra-
ordinary, allowing for a wide vafiety of error processes that permit serious
misspecifications in the usual random walk formulation of (1) with white
noise errors. Intuitively, when the model (1) has a unit root the strength
of the signal (as measured by the sample variation of the regressor Yeol )
dominates the noise by a factor of O(T) , so that the effects of any
regressor-error correlation are annihilated in the regression as T + = .
Part (e) of Theorem 3.1 gives the limiting distribution of t, . This
distribution, like that of the coefficient éstimator, depends on the variance
2

-
ratio c;/c . We note that in the Lagrange multiplier approach (c.f., Evans

and Savin (1981) and Solo (1984)) we would employ the variance estimator
2

-1.T )
s'" =T lzi(yt —yt_l)“ in the test statistic, using the null hypothesis

2

(2). Writing the Lagrange multiplier statistic as LM = t'" where

9 g
tt = (Ziy;_l) &(a-l)/s' we deduce from part (e) of Theorem 3.1 that

2 2 2, 27t 2
{11) LM = (¢/20 ) MW" -~ ¢ /o"] /J W(r) “dr .
u u 0
Solo {1984) derived the special case of (11) in which < = oi .

Theorem 3.1 provides an interesting example of a functional of a partial
sum that does not necessarily converge weakly to the same functional of

Brownian motion. To show this, it is most convenient to replace XT(r)



as defined by (4) by its close relative, the random element

1 Tr - |IT . : : . .
A re] * T g b GI/T ST <TG,y

Yo(r)

u e AT

1
Yp(1) = =5y

which lies in C[0,1] . In fact, YT(r) =» W(r) under the same conditions
as those prescribed earlier for X (r) in Lemma 2.2. However, the
sample path of YT(r) is continuous and of bounded variation on [0,1] so

that we may define and evaluate by partial integration the following Riemann

Stieltjes integral:

1 1,2, 1 .1y 82
(12) ] Y (dY(r) = 'E[Y'r(r)] = S (17 .

0 0
The corresponding integral for the limit process W(r) must be defined as
a stochastic integral, for which the rule of partial integration used in

(12) does not anply. Instead, we have the well known result (see, for

example, Hida (1980), p. 158):

' 2
(13) jOde - /2mm? -

which may be obtained directly from the Ito formula. On the other hand, we

deduce from (12) and Lemma 2.3 that
! 2

{14} I YTdYT = (1/2)W{1)}" .
0

The problem arises because all elements of C[0,1] except for a set of

Wiener measure zero are of unbounded variation (Billingsley (1968), n. 63).



In particular, the sample paths of W(t) are almost surely of unbounded
variation and thus the integral féWdW does not exist in the same sense
as the integral féYTdYT . It follows that the latter integral does not
define a continuous mapping on C[0,1] and we cannot appeal to the continuous
mapping theorem to deduce that fYTdYT.= Jwdi  when Yr = W(t) . In fact,
as (13) and (14) demonstrate the result is not correct.

We may, however, proceed as in the proof of Theorem 3.1 in the Appendix.

Alternatively, since dYT(t) = ffujdt/c we find by direct integration

that:
. 2
i/T u’;
Y dY. = I S S
. 797 7 25-1Y% 7
(G3-1)/T To 2To

and summing over j =1, ..., T we deduce that:

1

. 1T 2 . T2, 2 2 2,
(15) T lej-luj = g L]YTd\T - Eluj/..T = (a“/2)W(1) O'u/._

as given by part (b) of Theorem 3.1. Note also, in view of (13), that the

2¢l. 0 . 2 2
sum (15) converges to ¢ fohdh if and only if o =o" .

.
4. ESTIMATION OF (o, )

The limiting distributions given in Theorem 3.1 depend on unknown param-
eters ci and 02 . These distributions are therefpre not‘directly useable
for statistical testing. However, both these parametefs mav be consistently
estimated and the estimates may be used to construct modified statistics

-
whose limiting distributions are independent of (ci, g“) . As we shall

see, these new statistics (given below by (21) and (22)) provide very general
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tests for the presence of a unit root in (1).

1 g ci a.s, 4as T + @

2

As shown in the proof of Theorem 3.1 T EIu

This provides us with the simple estimator
2 _ -1.T 2 _ ~-1.T
(16) s, =T Ly ) =T

which is consistent for ci under the null hypothesis (2). Since a ; 1

by Theorem 3.1 we may also use T-lzi(yt‘-ﬁyt_l)z as a consistent estimator
2
of Gy

Consistent estimation of 02 = limThmE(T-IS%) is more difficult. The
problem‘is essentially equivalent to the consistent estimation of aﬁ asymp-
totic covariance matrix in the presence of weakly dependent and heterogen-
eously distributed observations.1 The latter problem has recently been
examined by White and Domowitz (1984). A detailed treatment is also avail-
able in Chapter VI of White (1984)..

We start by defining

-1/2
1/._S

-
or = var({T T)
T-1 T
- 2 -
= ThEGd) s 217V ] T E(uu, )
=1 t=1+] T
and by introducing the approximant
2 T
2 -1.T.. 2 -1
opg = T LE(u) + 2T ] [ E(wu ) .
=1 t=t+l -

.. . . . 2
This is most easily scen by noting that ST/VT'ﬂ'N(O, g%) , according
to the invariance nrinciple Lemma 2.2
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we shall call £ the lag truncation number. For large T and large 2 < T

>

2
G%E may be expected to be verv close to 0% if the total contribution in

c% of covariances such as E(u ) with long lags T > & is small,

tYt-1

This will be true if {utf; satisfies Assumption 2.1, Formally, we have:

LEMMA 4.1, If the sequence {ut}? satiefies Asswption 2.1 and 1f 1 t =
2 2
as T 4 then GT - Orp 0 as T+ =,

This Lemma suggests that under suitable conditions on the rate at
. 2 -
which & 4+« 23s T 4 « we may proceed to estimate o from finite samples

of data by sequentially estimating 02

Te The problem is explored by White

{1984, Ch. 6). We define
1.7
1

(17) s.%l s

1.2 (T

2 -
U * T E‘r=l"t=‘r+1utut-t ’

-
Tne following result establishes that S%E is a consistent estimator of 02

THEOREN 4.2, IF
(a) {ut}? satisPes Assumption 2.1(a), (c) and (d) and part (b) oF

Agswmption 2.1 t8 replaced by the stronger moment condition:

ol
sup, Elu,| ®ca, for some 38 > 2 ;

1 ) )
(b) 24+« as T+ = such that ¢ = o(T A) s then 5%2 ; - as

According to this result, if we allow the number of estinated autoco-

variances to increase as T 4+ @ but control the rate of increase so that

1 2
£ = o(T L) then s-

"
-, vields a consistent estimator of o¢° . White and

Domowitz (1984) provide some guidelines for the selection of & , Inevit-
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ably the choice of £ will be an empirical matter. In our own case, a
preliminary investigation of the sample autocorrelations of U = Y, - Yee1
will help in selecting an appropriate choice of & . Since the sample autg.
correlations of first differenced economic time series usually decay quickly
it is likely that in moderate sample sizes quite a small value of 2 will
be chosen.

Rather than using the first differences U, =¥, - Y., in the con-
struction of 5%1 » Wwe could have used the residuals ﬁt =V, - &yt_l
from the least squares regression., Since &-5 1 as T ¢+ = this estimator
is also consistent for 02 under the null hypothesis (2). Moreover, this
estimator is consistent for 02 under éxplosive alternatives to (2) (i.e.
when a > 1) and may, therefore, be preferred to S%l when such cases
seem likely.

We remark that 5%2 is not constrained to be non negative as it is
presently defined in (17). When there are large negative samnle serial co-

-
Stg can take on negative values. In a related context, MNewey

variances,

and West (1935) have recently suggested a modification to variance estimators
2 . L .

such as STq which ensures that they are non negative. In the present

case, the modification vields:

~2 _ .-1T2 -1.4% T
(18) STE =T Zlut v o “r:lwt£Et=1+lutut-r
where
(19) W =1 - ¢/(2+1) .

TL

- I3 - - - 3 ‘w
It is simple to motivate the weighted variance estimator {18). When {“f}1

is weakly stationarv, 02 = 2ﬁfu(0) where fu(l) is the snectral density
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of u, - In this case, (1/27:)3’%2 is the value at the origin X = 0 of

the Bartlett estimate

200 B = /202t - zeen e e ™, o - T'lzLMdutut_M

of f£,()) (see, for example, Priestley (1981), pp. 439-440). Since the
-~
Bartlett estimate (20} is non negative everyvwhere, we deduce that s%z >0

also. Of course, weights other than (19) are possible and may be inspired

by other choices of lag window in the density estimate (20).

5, NEW TESTS FOR A UNIT ROOT

4

5
The consistent estimates s, and ST, may be used to develop new

tests for unit roots that apply under very general conditions. We define

the statistics:

(21) 2= T@-1) - (1/2)(ss, -sD/(T 2 )
“a AT Cu 1" t-1
and
T2 (Y% 2 2 212 Bt
(22) Z, = (e ) BG-1 /sy, - DL -su)[s_“('r I ) ]

ZOL is a transformation of the standardized estimator T(a-1) and Zt is
a transformation of the regression t-statistic (8}.

The limiting distributions of Za and Z_ are given by:

t
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THEOREM 5.1. If the conditions of Theorem 4.2 are satisfied thenas T + = .

2
Wiy -1)/2
(a) Z_ =
@ féW(t)zdt
and

w(? -1)/3
1/2
{féﬁ(t)zdt}

under the null hypothesis that a =1 1in (1}.

{b) Zt =

Theorem 5.1 demonstrates that the limiting distributions of the two
statistics Za and Zt are invariant within a very wide class of weakly
dependent and possibly heterogeneously distributed innovations {utf? .
Moreover, the limiting distribution of Za is identical to that of
T(a-1) when ci = 02 (see (10) above). The latter distribution has recently
been computed by Evans and Savin (1981) using numerical methods. These authors
present tabulations and graphical plots of the limiting pdf and their |
article also contains a detailed tabulation of the limiting cdf, which

is suitable for testing purposes. Since Evans and Savin work with the

normalization g(T)(a-1) , in which g(T) = T/v2, the modified statistic

(23) AN (1/¢§jza

may be used to ensure compatibility with their published tables. Fuller
(1976, p. 371) provides a tabulation of the limiting distribution (10) for
the standardization T(&-1) , so that his table may be used directly iﬁ
significance testing with our statigtic ;a .

The limiting distribution of Zt given in Theorem ».1 1s 1identical
to that of the regression t-statistic when 02 = ci (see Theorem 3.1).

This is, in fact, the limiting distribution of the t-statistic when the

w 2 . . .
innovation sequence {ut}1 is iid (0, o) . The latter distributiocn
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has been calculated using Monte Carlo methods by Dickey (1976) and tabula-
tions of percentage points of the distribution are reported in Fuller {1976,
table 8.5.2, p. 373).

Theorem 5.1 shows that much of the work of these authors on the dis-
tribution of the OLS estimator a and the regression t-statistic under
iid innovations remains relevant for a very much larger class of models.
In fact, our results show that their tabulations appear to be relevant in
almost any time series with a unit root. To test the unit root hynothesis
{2) one simply computes (21), (23) or (22) and compares these to the rele-

vant critical values given by Evans and Savin (1981) and Fuller (1976).

6. CONTINUOUS RECORD ASYMPTOTICS

In certain econometric applications a near-continuous record of data
ié available for empirical work. Prominent examples occur in various fi-
nancial, commodity and stock markets as well as in certain recent energy
usage experiments., Undoubtedly, trends in this direction will accelerate
in the next decade with ongoing computerizations of banking énd credit
facilities and electronic monitoring of sales activity, loreover, financial
and foreign exchange markets, in particular, now offer empirical researchers
the opportunity of working with data recorded at many different frequencies
(weekly, daily, hourly or even minute by minute in some cases). For these
reasons, it is of intrinsic interest to study the behavior of econometric
estimators and test statistics as the time interval . (h} . between sanpled
observations is allowed to vary and, possibly, to tend to zero. When h + 0,

we obtain in the limit a continuous record of observations over a finite

time span, comparable to a seismographic recording. We shall call



asymptotics of this type continuous record asymptotics.l

As we shall show below, there is a verv interesting relationship, at
least in certain cases, between the behavior of the statistics we have been
considering when the sample size T 4+ = and when the sampling interval
h + 0 . This relationship, together with the results of Section 7, help
to explain many of the recent lonte Carlo results reported by Evans and
Savin (1981, 1984), Moreover, continuous record (h ¥+ 0) asymptotics have
an additional advantage in that they bring into prominence the role of
initial observation conditions. Such conditions can be of considerable
importance in the statistical behavior of certain-econometric estimators
and tests in finite samples of data, Yet their effects normally disappear
entirely in conventional large sample ( T ¢+« , h fixed) asvmptotic theory,
We shall illustrate the effects of such initial conditions in the context
of autoregressions such as (1) in the presence of a unit root,

We start by considering a triangular array of random variables

n=1 defined as follows. Given n , the sequence ({y

generated by the random walk

(24) + U ;o t=1, ..., T ; Vv = v(0)

v =y
“nt “nt-1 nt no

T
where the innovations {unt}tzl are iid (0, czhn) are independent of

y(0) and Tnhn = N is a fixed positive constant for all =n . lloreover,

as n t+ @ we shall require Tn + e and hn + 0 so that Tnhn = N remalns

1 . . . . .
Note that earlier work on continuous time econometric modeling (see, for

instance, Bergstrom (1984) and the articles published in Bergstrom (1976))
used small sampling interval <(h + 0) methods in a different context:
viz,, to compare various estimation procedures by considering how their
conventional (T *+ =) asymptotic properties differed as h + 0



T =
constant and T, € z" . The sequence {{unt}ln}l will be called a trian-
Zh . T =
.. . n :
gular array of 1id(0, ¢ n) variates and {{}nt}1 }1 will be called a
triangular array of random walks,
T «
Each row of the triangular array {{ynt}ln}1 may be interpreted as

a sequence of random variables generated by a random walk in discrete time
with a sampling interval = hn . The array itself renresents a sequence

of random walks with sarpling intervals that decrease (hn+) as we get
deeper (n+) into the array. Thé convergence of the sampling interval

hn + 0 as n t = and the requirement that hnTn = N be fixed are the

only connections that link the random variables in different rows of the
array. The interval [0,4] may be regarded as a fixed time span over which
we observe the random walk at discrete points in time determined by the

T

sampling interval h_ . The triangular array {{ynt}ln}1 then provides

a formal framework within which hn may vary and by means of which we may
investigate limiting behavior as hn + 0.

_ i . . _ c
Let Sni = zj=1unj (1L <1 i.Tn) with Sno = 0 as usual, W¥We form

the random function

-1

Y (1) s

I
q

)

ni-1’ (-1)/T, 2 v < /T (i=1,...,T

n

-1
g SnT
n

Yn(;)

and observe that Yn €D, As n+e= Yn(r) converges weakly to a constant

. . - .
multiple of a standard Wiener process. Specifically, we have:



LEMMA 6.1, IFf

-]

1
(®) T, ez', T, t= and h o+ 0 a8 n + o in such a way that the

T -
(a) {{unt}ln} i8 a triangular arrey of 1id(0, o‘hn) vartates;

1
product Tnhn = N > 0 remains constant; then Yn(r) = N éW(r)

as n + » uwhere W(r) is a standard liener process.

T: T
-~ _.'n n 2 .-
Let a, = Zl yntynt-lle Yot-1 be the coefficient and
Tn 2 L . .
t, = (El Ynt-l) (an -1)/5n be the associated t-ratio in a least squares
n 1
-1 Tn ~ 2 2 X
regression on (24). Here, s, = {Tn Zl (ynt 'anyntvl) } is the standard

error of the regression. The limiting behavior of these statistics as

hn + 0 1is given in our next result.

T, o

THEOREM 6.2. If {{Ynt}ln}l 18 a triangular array of rander walks for
. Tncn

which the inncvation sequence {{unt}1 }1 satisfies the conditions of

Lemma 6.1 thenas n + = ¢

T 1
(a) hn'zl“y2 - ¥ooP{ [ W (r) 24r +» 2(v(0) /oN é)fél‘l(r) dr +v(0) 2/ N} ;

nt-1

T s 1
® By O v @ Gt/ DT -1 e 20r(0) /oM 23w ;

1 -1
() WM& -1 = (1) [[(x) Pdr + 20y (0) /oN By [lniryar +y(0)%/0%N]

1
S/ D 2 - 1) + (v(0)/oN 231 ] ;
i

. 1 ) -2
(&) t, = [[gN(r)dr +2(y(0) /oN %) [SW(r)dr +¥(0)*/o°N]
n .

- =1 .
<[(1/2) (W(1)“ - 1) +(¥(0)/oN é)w(l)] H

where W(r) i3 a staudard Wiener process.

Theoren 6.2 shows that for small hn the distribution of &n and

that of t, may be approximated by suitable functionals of Brownian motion.
n



These functionals involve the initial condition y(0) , which may be either
constant or random. 1f ¥(0) is random then it is independent of the Wiener

process W(r) that appears in the functionals given in parts (¢) and (d)

T o
(recall that y(0) is independent of innovation sequence {{unt}ln}1 ) .

For large N the distributions may be well approximated by:

-1,- Sty 22447t 2
(25) h '(a -1 ~ N [[gR(n) “dr] [(/D MW -DT 3

1 2 - 2
(26) t,o~ [J’Owcr) dr] {[(I/2)(w(1)*-1] .

n
(25) and (26) correspond, as we would expect, to the conventional large
sample (T + =) asymptotics and are special cases of our earlier results
in Theorem 3.1 with o2 ='oi .

When the time span N is not large, (25) and (26) may not be good
approximations. Theorem 6.2 suggests that the inipial value y(0) or,
more specifically, the ratic ¢ = y(0)/c plays an important role in the
determining of the adequacy of these approximations. Thus, when ¢ is
large the effect on the limiting distributions given in parts {c} and (d)

of Theorem 6.2 is substantial. In fact as ¢ 4+ @ it is easy to deduce

from these expressions that:
-1~ ) 2
{27) hn (an‘-l) ~ (1/cN 2)W(1) = N(O, 1/c"N) ;

(28) t ~W(L =N, .

n

Theorem 6,2 helps to explain several of the phenomena discovered in

the experimental investigation of Evans and Savin {1981). These authors



found: (i) that the finite sample distribution of & was verv well aporox-

imated by its asymptotic distribution (using conventional large sample

(T + ») asymptotics with h fixed) even for quite small samples when the

initial value y(0) = 0 ; and (ii) that changes in ¢ = y(0)/o precipi-

tate substantial changes in the distribution of & ; specifically, the

distribution of T(a-1) noticeably concentrates as ¢ increases.
Observation (ii) is well explained by Theorem 6.2, which shows that

¢ is an important parameter in the limiting distribution of h;l(£n -1)

as hn + 0 over finite data spans [0,N] . This is to be contrasted with

the usual (T + =) asymptotic theory, which obscures the dependence of

the distribution of & on v{0)/c . The second phenomenon noted by Evans-

Savin, that the distribution of T(&-l) concentrates as ¢ increases, is

directly corroborated by (27). Thus, using N

T h_, we deduce from
nn

(27) that:

1
T (& -1) ~ (N 27IW(L) = N(O, N/cD)

el 4

The fact that the asvmptotic (T + =) distribution of a is a very
good approximation in finite samples when v(0) = 0 and the innovations
are iid {Evans-Savin observation (i) above) is also well explained by our
analytical results. In particular, Theorem 6.2 shows that the asymptotic
distribution applies not only as T ¢+ =« in the conventional sense with
h fixed (our Theorem 3.1(c) with 02 = ci ) but also as hn + 0 with a
fixed data span N {(our Theorem 6.2(c) with y(0) = 0 ). Thus, the
limiting distribution theory operates in two different directions with
identical results when ¥(0) = 0 and the innovations are iid., Moreover,
this limiting distribution is actually the finite sample distribution of

the least squares continuous record estimator when the (continuous) stochastic
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process is Gaussian.
To show this we observe that the natural limit of (24) as n t = may

be regarded as the stochastic differential equation

(29) dy(t) = 8y(t)dt + 5(dt) , (0 <t <N

with 8 =0 . In (29) y(t) is now a random function of continuous time
over [0,N] and g(dt) is a o-additive random measure which is defined

on all subsets of the real line with finite Lebesgue measure such that:

(30) E(Z(dr)) = 0 , E(z(dn)?) = odr

(see, for example, Rozanov (1967), p. 8). The stochastic integral fgc(dr)
has zero mean,variance = czt and uncorrelated increments. We note that
(24) may be regarded as a random walk in discrete time- that is satisfied

by equispaced observations over intervals of length hn generated by (29)

thn
with 8 = 0 ., Then we may write, for example, u__ = f ¢{dr) and
- nt
thn-hn
Tn R .
{unt}l is an orthogonal sequence with common variance o“hn . If we go

further in the specification pf (29) and require that the increments of
fg:(dr) are independent then the continuous stochastic process y(t) de-
fined by (29) is Gaussian and c"l Bc(dr} (0 <t< N) is a Wiener process
on C[O,N] . This is proved by Billingsley (1968, Theorem 19.1, pn. 154)
and is also a consequence of our Lemma 6.1. In particular, from Lemma 6.1
we havg Yn(r) a'N%5W(r) (0 :ﬂr <1) as mn+te«, Now set t =Nr

L

;o
(0<t <M, y(t) =or (t/¥) and define V(1) = NRw(t/N) . Clearly,

V(t) is a Wiener process on C[O,N] . Moreover, as n *+ = yn(t) = gV(t) = v(t)
(O_i t < N) , where " =" signifies equality in distribution. Thus, the
T =
. . n
{ = = .
triangular array ‘tynt}l }1 (Tnhn N, ¥no 0) converges weakly as



n 4+ = to the continucus Gaussian process y(t) (0 <t :_N) generated
by the stochastic differential equation (29) with & =0 , y(0) =0,

If we now consider the problem of estimating the parameter 9 in (29)
from the continuous record {y(t); 0 < t < N} least squares suggests the
criterion

N
(31) ming [ (¥ - 8y) 24t .
0

Here we write § = dy(t)/dt 1in a purely formal way since this is all that

is needed for our present purpose. (31) leads to the estimator:

N N N N
(32) § = [ yyar/[ yiar = [ yay/[ ylar .

0 0 0 0
Provided the integral fgydy in the numerator of (32) is interpreted as
a stochastic integral it is not necessary to be more specific about the
interpretation of § as a geﬁerali:ed stochastic process,

The estimator 8 was originally suggested by Bartlett (1946). Its

properties were subsequently studied by Grenander (1950} and more recently
by Brown and Hewitt (1975) and by Feigin (1979). As our next result shows

the distribution of & can be simply expressed in terms of the initial

value y{0) and a standard Wiener process.

THEOREM 6.3. If wv(t) (0 <t <N) ig generated by (29) where t(dr)
is Gaussian and indépendent of y(0) , thdn & has the same distribution

in finite samples (i.e. finite N ) as the ‘functional

1 - =1
(53) (1/N) [f () Par + 205 (0) /oN 2) [ () dr +y(0) Z/c7N]

'[(1/2)(W(1)2 -1) +(¥(0)/GNEQ)W(I)]

of the standard Wiener process W(r) .
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This verifies the result we stated earlier: viz., the limiting distribu-
tion of WM& -1) as n+ e (Theorem 6.2(c)) is the same as the finite

sample (fixed M ) ‘distribution of the continuous record estimator g8 .

o0

Since the triangular array {{y }ln}l converges weakly to the Gaussian

nt

process y(t) as nt e and since both estimators &n and 6 are obtained
by least squares, this is a result that may well have been anticipated.
Interestingly, while the limiting distribution of h;l(ﬁn -1) and the dis-
tribution of & are equivalent, the distribution of &n is degenerate in

~

the limit as n t+ = , 1In fact, +1 as nt= and h + 0. §

o on
nop ?

the other hand, is a consistent estimator of 6 = 0 only as N+ = . The
consistency of &n is explained by the fact that, although there is not an
infinite span of data { N 1is fixed), there is, in the limit as n + = ,

an infinite amount of independent incremental data on the random walk (24)

(and, hence, on the coefficient « = 1) because the triangular arrav

T o
n PR . : . s . s
{{unt}l }1 has iid innovations in every row, This is sufficient to ensure

that a_ =+ 1 as n+ = ,
np

7. AN ASY!NPTOTIC EXPANSION OF THE DISTRIBUTION OF T(a-1)

A general refinement (to higher order) of the functional central limit
theorem discussed in Section 2 does not yet appear to be available in the
probability literature, However, it is relatively easy to develop asymptotic
expansions in special cases such as the limit Theorem 3.1. In order to
proceed one needs to endow the random sequence {ué%? with som;what stronger
properties than those of Assumption 2.1. To facilitate our analysis here,
we shall consider the special case in which the u, are iid H(O, cz) .

t

In this case it is easy to see that, for fixed r € [0,1] , X;(r) 1is



N(0, {Tr]/T) . 1In fact, when T =0 we have Xy (0} = W(®) = 0 and when

0 <r <1l we have:

i

Xp(r) = W(r) ([Tr]/Tr)!/?

W(r)}{1 - (Tr - [Tr])/ﬁ-}l/2

(34) 5 W(r){l - E.II_:_iIEl} + 0_(T°9
2 Tr P
where, as before, " =" signifies equality in distribution. (34) provides

a simple asymptotic expansion for the finite dimensional (in fact, one
dimensional) distribution of XT(r) with v fixed, Note that, since
W(r)/r s 0 as T+ 0 (see, for example, Hida (1980}, p. 57), the ex-
pansion (34) remains well defined in the neighborhood of t = 0 . Higher
order finite dimensional distributions of XT(r) .may be treated in a similar
way, The error on the approximation XT(r) ~ W(r) 1is seen to be of OP(T'H
in (34). This suggests that certain functionals of XT(r) may be expected
to differ from the same functionals of W(r) by quantities of the same

order, In particular

12 1 2 -1

(33) J Xp(r)dr = J W(r) dr + OP(T }
] 0

and this expansion may be verified directly by developing an expansion for

the characteristic function of féXT(r)zdr . Since the algebra is lengthy

we shall not report it here.

Qur main concern is to develop an expansion for the distribution of

T(&-1) . We therefore consider next the numerator of this statistic, viz.

- -1.T 2 -
(36) Ty, 0 mve) = @/xm? - @D v



using formula {A3) from the Appendix. We shall confine our attention to
the case where the initial value Yo = 0 . Since X (1 2 :-:-W(l)2 + OP(T'I)

(36) becomes (in distribution):

@2/ M2 -1) - (1/2T)EI(u§ -09 . op(T'l)

= 0%/ W2 -1) - (%/VTDE + op(T'1)

where & = N{0,1) and is independent of the Wiener process W(r) . The
distribution of £ follows directly from the Lindeberg-Levy theorem., Note
that £ 1is dependent on a quadratic function of the u; , whereas W(1)
depends on partial sums which are linear in the u; . Hence, £ and W(r)

are uncorrelated and, being normal, are therefore independent. We deduce

the following result.

THEOREM 7,1. If y_ <8 generated from the random walk (1) with o = 1

and initial value y, = 0 and if the u, are iid N(9, 5%)  then

t

2
(37) T@E-1) = 242 (W)~ -1) - (1//ZT)E
fow(r) dr

-1
+ Op(T )

where W(r) <8 a standard Wiener process and & <8 N(0,1) and indepen-

dent of W(r) .

(37) provides the first term in the asymptotic expansion of the dis-
‘tribution of T(a-1) about its limiting distribution. We observe thap

the term of 1/¥T 4in this expansion contributes no adjustment to the mean
of the limiting distribution. This is to be contrasted with the expansion
of the distribution of ¥T(a-a) when |a} < 1 that was obtained in earlier

work by the author (1977). In the latter case the mean adjustment of the



0(1/¥T) term in the expansion was substantial for o 1less than but close
to unity.

The expansion (37) suggests that the location of the limiting distri-
bution should be an accurate approiimation in moderate samples. This is
confirmed in the results of the sampling experiment in Evans and Savin (1981),
It will be of interest to discover the extent to which {37) improves upon
the asymptotic distribution of ¢ at various finite sample sizes, The

numerical computations that are necessary to explore this question will

be performed at a later date.

8. CONCLUSION

The model (1) and (2) that we have considered above is much more gen-
eral than it may appear. It applies, for example, to virtually any ARMA
model with a unit root and even ARMAX systems with a unit root and with

stable exogenous processes that admit a Wold decomposition, In the former

case, we may write

(38) a(L) (1-L)y, = b{l)e,

for given finite order lag polynomials a(l) and b(L) in the lag oper-
ator L . Then, upon inversion, (38} becomes

- . - -1
(39) Yo = Yeop YU Y T a(L) b(L)et

and u, will satisfy the weak dependence and heteroskedasticity conditions
of Assumption 2.1 under very general conditions on the innovations and lag

polynomials of (38). In the latter case, we may write
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(40) a(L) (1-L}y, = b(L)x,  + c(Ll)e,
with

d(L)xt = f(L)vt
and then upen inversion we have

+ 1 >

Yo = Yep * U = a(L) " le(iye, +a(L}'1b(L)d(L)'1f(L]vt

Yt
which is once again of the form (1) with u, satisfying the required as-

sumptions under general conditions on e v, and the lag polynomials.

t !’ t
Qur results show that in quite complicated time series models such

as (38) and (40) it is not necessarv to estimate the model or even to iden-
tify the model in order to consistently estimate or test for a unit root
in the time series, One needs only to construct the first order serial
correlation coefficient and associated test statistics (21) or (22) and use
the appropriate limiting distributions given in Theorems 3.1 and 5.1 for
statistical testing. This approach applies under conditions that are of
even wider applicability than the models (38) and (40). In a certain sense,
this general idea is already implicit in the Box-Jenkins modeling approach.
However, none of the traditional theory in this research (given, for example,
by Box and Jenkins (1976) or Granger and Newbold (1977)) allows for esti-
mation or testing procedures that have anything approaching the range of
applicability of the approach developed here,

 The research reported in this paper is currently being extended in
various ways. First, the methods that we have developed make it very easv
to perfornm similar analyses on models like (1) with a drift and a time

trend. The new tests for the presence of a unit root given here may also
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be extended to such models, Second, multivariate generalizations of time
series models such as (1) may also be studied by our methods. This gen-
eralization opens the way to a detailed asvmptotic analysis of nonstation-
ary vector autoTegressions, spurious regressions of the tvpe considered
by Granger and Newbold (1974, 1977} and cointegrating regressions of the
type advanced recently by Granger and Engle (1985). Third, the asvmptotic
local power properties of the tests developed herein and those of other
authors such as Dickey and Fuller (1979, 1981) may be studied by procedures
which are entirely analogous to those devised here but which allow for
local departures from unit root formulations, Finally, the methods out-
lined in Section 7 for the refinement of the first order asvmptotic theorv
may be extended to apply in quite general time series models with a unit
root. All of these extensions are currently under investigation by the

author,
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MATHEMATICAL APPENDIX

Proof of Lemma 2.2. See Herrndorf (1984b), Corollarv 1, p. 142,

Proof of Lemma 2.3, See Billingsley (1968), Corollary 1, n, 31,

Proof of Theorem 3.1

To prove (a) and (b) we write each statistic as a functional of XT(r)

on D[0,1] . Thus, in the case of (a), we have

X 2
=2.T 2 _ =27 i-1
T L¥¢o1 = T Ei=1(2. 195 * yo)

i=17;
=2 T2 2
= T LS5 * 7S5 * ¥g)
i/T o e fi/T
- %] (116750 + 27pe1 1] (/TS (1 dr ¥/ T
(i-1)/T - (i-1)/T
1, 1
- GZI XZ(r)dr + ZYOUT'l/ZJ Xp(r)dr + yo/T
0 0
2ft .2
(Al) = g J W{r})"dr , as T 4+ « ;
0

by Lemmas 2.2-2.3. Note that (Al) holds whether Yo is a constant (see
(3a)) or is random (see (3b)).

In the above derivation

2 2 o lim. E(TS3)
(A2) ¢” = lim. E( T

as in part (a) of Assumption Z.1.

To prove (b) we have:



-1 T —_
TrESia% * Yot

= (207 'e] (s “55—1 '“i) * You
2, T 2 /T S1LT 2 -
= (67/2)L (X ()] - (2T) "z uf  + y.u
Gy ti 0

(A3)

1

WX m? - @n el -y

Under the conditions of the theorem (in particular, the requirement that

-Supt ElutlB+n <o for some £ > 2 and n > 0 ) we deduce that:
-1.T 2 2 .. T.-1T.,2

{Ad) T Elui T35 % = 11mT+¢T EIE(ui)

and

(A5) u_——0

by the strong law of McLeish (1975b, Theorem 2,10 with condition (2.12)).
Now XT(I) = W(1) by Lemma 2.2, It follows from (A3)-(A5) and the con-

tinuous mapping theorem (Lemma 2,3) that as T + = :

(A6) il

Ty o = @/2WD7 - 42 = Hrmw?-ol/e®y

proving (b) of the theorem.
In view of (Al) and (A6), result (¢} of the theorem is also a direct
consequence of the continuous mapping theorem. Part (d) of the theorem

follows immediately from result (c¢).



To prove part (e) we first write

Z

-1 - 2 - ""1
sT=T Iy, ~ay, 43 =T

-1.T

T 2 ~ 2
zlut - 2(a-1)T Elytvlut

-1.T
T 21

-~ 7
+ (e-1) Yi-1 -
Then, in view of (A4) and parts (a), (b) and (d) of the theorem we deduce

that s2 E ci as T + = ., Thus, it is of nc consequence in the limiting

2

distribution whether we use 52 or s'2 = T'lz(yt - (as in the

yt-l)
LM approach) in the construction of the t, statistic (8). Part (e) of
the theorem now follows directly from the continuous mapping theorem using

parts (a) and (c).

Proof of Lemma 4,1, The proof follows the same line as the proof of Lemma

6.17, pp. 149-152 of White (1984). We need only note that, since {ut}?

is strong mixing and sup, E[ut|s <= _  the following inequality:

1-2/8

]E(utu ) o< ca

t-T

holds for some constant ¢ (see, for example, Ibragimov and Linnik (1971},

Theorem 17.2.2, p. 307)., Thus

-1.T-1 1-2/8

-1,T-1 T
fc2er77r 0, (T-Da]

2T I:1---!I.+1 t=t+lE(utut-r)

and the right side of this inequality tends to zero as T 4 = since 2 + =

= 1-2/8

2 2
and Zlam < . We deduce that Op = Ipp 0 as T+ = ,

Proof of Theorem 4,2

The proof follows the same lines as the proof of Theorem 6,20, pp. 155-
159 of White (1984}, although we have no need to treat estimated residuals

-here. We first note that the assumptions of the theorem ensure that the



Ad

s
conditions of Lemma 4.1 hold. Thus, c% - G%z -0 as T+ = ., Next we

have:

2 2 . -1.T. 2 2 -1.2 T
ST 01g = T Zl{ut'-E(ut)} + 2T zs=1zt=s+1{utut-s -E(utut_s)}

and

"sz 2'\ o
T zl{ut -E(ut); FIH 0, T+

as in the proof of Theorem 3.1, Writing 2 s u.u - E(utu ) , it

ts t t-s
-1 T

remains to show that T Es=lzt=s+1zts —5» 0 as T 4+ = |,

of the proof follows as in the proof given by White (1984, pp. 155-157},

t-5
But this part

It is necessary, however, to correct the error that occurs on page 156 of
AWhite (1984) in the use of his Lemma 6.19. WVhen one allows for the fact

that s may increase with T the conclusion of Lemma 6.19 should be

amended to:

2
T
E(zt=s+12ts) < s(T~s)B < sTB

for a suitable constant B , It follows that (see p. 156 of White (1984)

for details):.

P[]'I"1 § ‘ % z,! z_e]

szl t=s5+1

[ 2, 2.2
< Zs=lsTB£ [e”T

= Beo(a+1)/2e%T

which tends to zero if £ = o(T1/4) . We deduce that S%R —5» o as Tre-

quired.



Proof of Theorem 5.1

By Theorems 3.1 and 4.2 we have as T ¢+ « :

(1/2) (D)% - o/ 0™

T(a-1) = ,
[an(z)dr
-2.T 2 2¢1,.. 12
T Lye, =0 fgW(x) “ar ,
52 —_ 02 and s2 — 02
T p u p u

Part (a) now follows directly by the continuous mapping theorem. In the

same way we deduce that:

O Ve B CL e V2

/2 - 172

AR
T
{fon () 2ary o*{[iw(w) ar}

t

and part (b) follows as required.

Then

. . o~
Proof of Lemma 6.1, Define Ent =g hn Uiy

1 i _
n2gi-lg

Yn(r) n-1 nt ;

(1-DT_ <7< #/T , U

1t
—
-
.
-3
L

1]

Yoo lh i-1
N Tn' z1 gnt

T =
But {{Ent}ln}l is a triangular array of 1id(0,1) variates so that

_ omthei-l . :
Wn(r) = Tn Zl Ent R (1-1)/Tn <rc«< 1/Tn

= W(r)

as n t+ = (see, for example, McLeish (1977), Corollary 2.11). It follows



1
that as n + = Yn(r) = N’éW(r) as required,.

Proof of Theorem 6.2

Using (24), Lemma 6.1 and the continuous mapping theorem we obtain:

T T 2
n? i nf t-1
bl Yneer © (L/Tn)zl 121 “ni +Y(0)}
Tn 2 2
= (NTDE S +2v(0)S . (} + Ny(0)

NozféYn(r)zdr + ZNoy(O)jéYn(r)dr N NY(O}Z
3
/2

- N% fow(r)dr + 2N ov(O)[ W(r)dr + Vv(O)

as n + = ., This proves part (a).

To prove part (b) we write:

Tn Tn t-1
L ynt-l(ynt 'ynt-l) =4 (Zl Yni +Y(O)}um:

T T

2 n,.t- 1 n
(E ni)gnt * Uv(o)hn 1 °nt

1]

h o
n
T T
- ot -1 -l
= (T N c’, )(T &n ) +av(®N “T1 Iy Ene

/T

T t H
(Ne’/2)z, MW _()7] -Tolen ) voy (o B )

(t-1)/T
T

2 . 2 2 -1.'n_2
No™/2%_(1)° - e®/T 'z el

) 1
- (NoZ/2)W(1) 2 - (No%/2) + oy (0)}N 2w(1)

by the strong law of large numbers, Lemma 6,2 and the continuous mapping
theoren.

Part (c) follows directly from the expression
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Tn . Tn 2

e = 1= e 1 Wne ~ Ynee1? /51 Yheoq

n

and parts (a) and (b) above.

To prove part (d) we note first, after a simple calculation, that

T T T
2 2-=1_"n_2 ~ n ~ 2. n 2
(l/hn)sn =0 Tn z1 Ent * Z(hn/N)(l 'an)zl ynt-lunt * (hn/N)(an - Z1 ynt-l

2
o

—
P
as n+ = ., Then

Tn 2 H§ - A
tun = (hnzl ynt-l} (l/hn)(qn '1)/(hn Lsn)

1
- [(1/2) (W (D)2 -1) + (y(0)/oN 2IH(D)]

1
1 /3
* [féW(r)zdr-+2(y(0)/gN é)féw(r)dr-+y(0)2/czN]

as required.

Proof of Theorem 6.3

From the solution of (29) we have (under the null hypothesis 8 = 0 )

y(t) = [ie(dr) + y(0) . Thus,

y(t)/oc = V(t) + y(0)/o

Since f;;(dr) is Gaussian by assumption V(t) 1is here a Wiener process
. . . .

on C[0O,N] . Transform t > Nu=1t with ug [0,1] . Note that

1/2

V(t) = V(Nu) = N(O, Nu) so that we may write V(Nu} = N "W(u) where

W(u) is a Wiener process on C[0,1] . Now



N 5 2N 2 N 2
ydt = g7 V(t)“dt + 2oy(0}| V(t)dt + y(0O)°N
0 0

1 1
GZNZJ W(u)du + Zay(O)NS/ZI W(u)du + y(0)2N
0 0

and

N 2 N N
J ydy = ¢ [ vdv + ay(O)I dv
0 0

1
UZN{ WaW + oy (03N ZH(1)
0

(62N/2) (W(1)2 - 1} + oy (0N 2w (1)

and the required result follows,

A8
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