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ABSTRACT OF THE DISSERTATION

Time Series Retrieval: Indexing and Mining Large Datasets

by

Jin-Wien Shieh

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, June 2010

Dr. Eamonn Keogh, Chairperson

As advances in science and technology have continually increased the existence of, and

capability for users to monitor, record, and examine data, data mining has become a com-

mon and necessary toolset in order to gain additional insight on this influx of data. In this

dissertation, we study methods which are used for overcoming the characteristic challenges

of scale in order to perform similarity search on large time series datasets.

We introduce a novel multi-resolution symbolic representation for time series called in-

dexable Symbolic Aggregate approXimation (iSAX). The iSAX representation allows for

the indexing of time series in order to facilitate similarity search. We further demonstrate its

utility by performing experimental evaluation on a wide range of diverse datasets and show

how exact and approximate search can be used in conjunction to expedite higher level data

mining operators to solve real world problems. The size of the datasets we consider are larger

v



than any other in the current literature and notably, our results confirm the notion that even

simple measures perform exceedingly well when the training set becomes very large.

Another aspect of our research considers using similarity search to perform classification

under limited computation time and variable response rates. In such contexts, anytime algo-

rithms, amenable to variable response times by exchanging quality of response as a function

of time, have been found to be especially useful. We present a generalized framework which

utilizes a scoring function that estimates the intermediate result quality of an object being

classified. Our contribution extends existing anytime algorithms to concurrent queries by dy-

namically scheduling computational resources for each object. We show that the lack of such

inter-object consideration would otherwise result in poor allocation of computation time and

lead to reduced performance.
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Chapter 1

Introduction

Applications of data mining have changed our understanding of, and interaction with the

world. For example, data mining has allowed retail businesses such as Wal-Mart to key in

on customer behavior with market basket analysis and forecasting to improve sales [38]. In

biological sciences, mining from gene expression data has been used to enhance understand-

ing of cellular function [87]. Even in an everyday sense, we expand our productivity and

knowledge with the utility of search engines providing information at our fingertips. These

and other examples are a testament to the breath and wide-spread applicability and utility

which is attributed to data mining.

While an exact definition of knowledge discovery and data mining (KDD) can be broad

and nebulous, Frawley et al. provides a close standard: KDD is “the nontrivial extraction of

implicit, previously unknown, and potentially useful information from data”[30]. Regardless

of whether users are interested in classification [36], regression [22], clustering [14], motif
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discovery [65], etc., all data mining tasks are characterized by large volumes of data, and

a subsequent need to process that data efficiently and accurately [29]. Efficiency provides

the means for making the processing of large data sizes tractable, by minimizing overall

running time or algorithmic complexity (time and I/O); and accuracy measures algorithmic

performance in adherence to an objective or model.

As advances in science and technology have continually increased the existence of and

capability for users to monitor, record, and examine data, data mining has become a com-

mon and necessary toolset in order to gain additional insight on this influx of data [67]. In

this dissertation, we study the methods which are used for overcoming the aforementioned

characteristic challenges of scale and also demonstrate the utility of data mining to solve real

world problems. For example, entomologists have acquired large collections of behavioral

data from pest insects which threaten to cause millions of dollars in crop damage per year

[4]. They require a tool which is capable of searching these massive datasets for characteris-

tic patterns of feeding. In Chapter 2 and Chapter 3 we examine these problems in the context

of large and mostly static data, typical of data warehouse collections of historical data. So-

lutions for environments with limited computation time and flexibility for variable response

rates, such as those exhibited in data streams, are presented and studied in Chapter 4.
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1.1 Data Mining Time Series

We preface discussion regarding the technical specifics of our contributions by first elucidat-

ing key assumptions and providing some background. To begin, we describe the type of data

which is of interest to us.

Across different problems and their respective domains there exist many different rep-

resentations of data. The selection and understanding of the characteristics pertaining to a

chosen or encountered representation is a necessary condition towards achieving a data min-

ing solution. Notably, a practitioner must ask: Is the representation expressive enough? Is it

easy to visualize and intuitive enough for users to interpret? Does it lend itself to computa-

tionally efficient methodology? These are key questions which affect all aspects of the data

mining process, from problem description to interpretation of results.

Our work in this dissertation primarily utilizes data represented in the form of time series.

Time series are descriptive, easy to visually interpret, and are ubiquitous. Any context with

values which are measured over time constitutes a time series, and as such, it is the native

representation for stocks, medicine, and monitoring data. Even for data types as diverse as

images, shapes [90], XML, and DNA [77] there are functions which provide a mapping to

a descriptive pseudo time series representation. Figure 1.1 provides some examples of time

series across a range of contexts.

Let us first begin by formalizing the definition of time series adopted in the remainder of

this work:

3



0 200 400 600 800 1000 1200 1400

Figure 1.1: Data represented by time series across various domains. top) Comparison of

financial stock prices for two automotive companies (as shown by Yahoo! Finance). bottom

left) Google Trends depicting search popularity over time for a specified query. bottom right)

An image of a horned lizard skull mapped to time series by measuring the distance from the

image outline to the center of the shape
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Definition 1.1. A time series T = t1, t2, · · · , tn is an ordered set of n real-valued observa-

tions. Each observation is measured at equal intervals in time.

It is important to note that it is often the case that real world observations are not mea-

sured at equal time intervals and can often exhibit noisy, dropped, or empty values. Such

characteristics are often undesired as most algorithms have implicit assumptions regarding

standardized inputs and will perform poorly on such data, if at all. To mitigate such effects, a

data cleaning step is typically performed prior to data analysis (c.f. [29] for a more in-depth

outline of the general knowledge discovery process). Data cleaning is an important pre-

processing step to standardize data by removing duplicates, interpolating missing values, etc.

The assumptions taken at this step can impact algorithm output as well as the interpretability

and usability of results.

For time series, a common task is to perform statistical analysis or construct models (e.g.

autoregressive, integrated, moving average, etc.) which characterize the series of interest

[22]. Once constructed, models allow a user to identify trends, forecast future points, and

perform applications such as burst or anomaly detection [21].

Another salient utility for time series is that of similarity search. For example, given a

time series of interest, if a user can identify similar patterns in a dataset, this can allow them

to glean important historical insight, perform query by content, or use similarity search as

a subroutine in other KDD applications [89] [25]. Given this wide range of usage, signifi-

cant research has been spent on expediting similarity search over large time series datasets

[2][3][20][63][58][91][28].
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To perform similarity search, we must first define distance measures to quantify the simi-

larity between two time series. A discriminative distance measure should provide low values

for similar time series and large values conversely. A widely used set of distance measures

are the family of Lp-norms. Given time series T and S of length n, the Lp-norm is defined

as:

Lp(T, S) =

(

n
∑

i=1

|ti − si|p
)1/p

Of these, p = {1, 2,∞} are commonly used. In our work, we focus on p = 2 (also known

as Euclidean distance) which has been shown to be a simple, yet competitive and efficient

distance measure for time series [48][26]. Euclidean distance naturally lends itself to opti-

mizations such as early abandoning [48] and its metric properties can be exploited by higher

level algorithms to prune search space (i.e. via triangle inequality) [66][65][75].

Due to the real world nature of data, time series often contain natural perturbations in the

form of shifts in time, scale, or noise. For example, consider time series derived from tracking

an individual’s hand motion. Even if the same person is repeatedly performing exactly the

same motion, comparison of time series between two repetitions is guaranteed to exhibit

some slight shifts and changes. While each repetition is semantically identical, Euclidean

distance may compute a overall value which is quite large. This is because Euclidean distance

6



Alignment by

Dynamic Time Warping

Figure 1.2: Example of DTW allowing elastic alignment to match morphological similarities

between two horned lizard species, top) the flat-tailed horned lizard (Phrynosoma mcallii)

and bottom) the texas horned lizard (Phrynosoma cornutum)

matches point to point with fixed alignment between two time series, making it brittle to

perturbations and incapable of matching shifted points.

Normalizing a time series can mitigate this effect, particularly shifts in value and scale,

and is sometimes a necessary condition for time series similarity search (especially when

users are primarily interested in the “shape” of a pattern [48]). A common technique is to

Z-normalize a time series to zero mean and standard deviation of one:

Let µT be the mean and σT the standard deviation of the original series, T . The Z-normalization

of T is T̂ = t̂1, t̂2, · · · , t̂n where t̂i = (ti − µT )/σT .
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Another means for computing similarity in the presence of such perturbation is to utilize

the class of distance measures which are elastic and allows for warping between the align-

ments of two time series. Recall that Euclidean distance has a fixed point to point alignment

which can be the cause of poor performance. One elastic measure which has found success

in the time series domain is dynamic time warping (DTW) [12][91][44][69]. DTW preserves

temporal ordering within each time series but outputs a flexible alignment which minimizes

the distance (see Figure 1.2 for an example of a warped alignment). The primary disadvan-

tages of DTW is that metric properties do not hold and that computing DTW via a dynamic

programming approach results in quadratic time and space complexity. The latter point may

be reduced with minimal loss in quality through various techniques which limit the allowed

warping window [72][44]. The recurrence relation for computing DTW is shown below:

DTW (Tn, Sm) = (|tn − sm|2)1/2 + min































DTW (Tn−1, Sm)

DTW (Tn, Sm−1)

DTW (Tn−1, Sm−1)

Now that we have presented our time series definition, its utility, and the basics behind

similarity search, we are ready to examine techniques which allow retrieval from large time

series datasets as well as general data mining applications.
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1.2 Indexing and Mining Large Datasets

Given that time series are ubiquitous, a natural consequence is an abundance of large datasets.

For example, astronomical datasets frequently contain millions of star light curves [60]. The

difficulty in performing similarity search in such contexts is that the size of data consid-

ered drastically hinders the performance of many algorithms. For example, a methodology

which assumes data can be memory resident may freely utilize random access, consequently

resulting in unacceptable I/O costs. Another cause for diminished performance is the high

dimensionality which typically characterizes time series (e.g. sequences with hundreds to

thousands of points). It is widely understood that most data structures such as R-trees [34]

do not scale well past a few dimensions due to the “curse of dimensionality”[2]. The solution

is to utilize the framework presented in [2] by mapping the time series to a reduced space

using a time series representation, computing candidates more easily in this reduced space,

and then verifying the result in the original space. An overview of some representations for

time series is presented in Chapter 2.

In Chapter 2 and Chapter 3 we present a novel multi-resolution symbolic representation

called indexable Symbolic Aggregate approXimation (iSAX). The iSAX representation, be-

ing symbolic has the advantage over other real valued representations by being able to utilize

data structures and algorithms which are defined for discrete data types, such as suffix trees,

Markov models, etc. Our approach is based upon an extension of the well known SAX repre-

sentation [54][55] to allow indexing of time series without leaf level overlaps unlike R-trees
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and other spatial access methods. We demonstrate the ease and simplicity of our approach

by creating an index which achieves fast and scalable results even when simply using the

standard Windows file system to manage disk access.

We show the scalability and efficacy of our representation by conducting experiments on

datasets which are orders of magnitude larger than anything considered in previous literature.

Our approach allows for exact nearest neighbor search of large time series datasets as well as

fast approximate nearest neighbor results. We further demonstrate how both types of searches

can be exploited in conjunction to facilitate data mining algorithms which can easily and

exactly mine datasets with of millions of time series.

Chapter 2 also introduces a new data mining operator, Time Series Set Difference, which

is shown to be an useful tool for contrasting two sets of time series. We demonstrate its utility

by identifying suspected sleep disorder across sets of ECG subsequences.

1.3 Similarity Search in Time Constrained Environments

The techniques presented in Chapter 2 and Chapter 3 provide solutions for expediting simi-

larity search in large, mostly static datasets. The results of similarity search can then be used

in data mining applications such as nearest neighbor classification. In Chapter 4 we con-

tinue to explore data mining techniques for classification, though not in the context of static

datasets. Instead, we consider the scenarios where available computation time may be highly

variable, such as in data streams. Whereas algorithms in Chapter 2 and Chapter 3 can assume
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sufficient computation time to complete execution and work towards reducing that end to end

time, performing similar tasks in a data stream is often more difficult than the batch situa-

tion because an algorithm must operate in a time sensitive and computationally constrained

environment. That is, a data stream may require objects to be classified at a rate that can

range from milliseconds to minutes [83].Classic algorithms typically lack the mechanism for

providing an intermediate result prior to completion, and contract-based algorithms require

the available time duration prior to execution [92]. In these contexts, the anytime algorithms

discussed in Chapter 4 have been found to be exceptionally useful, and have recently been

the subject of extensive research efforts [27][40][50][56][52][83][88].

Anytime algorithms are a class of algorithms which are amenable to variable response

times, by exchanging the quality of response as a function of time [32][92]. In the context of

classification, quality is measured by the probability of correct classification and an anytime

algorithm, after a short period of initialization, can always be interrupted to return some

intermediate result. This flexibility in response time allows anytime algorithms to be used

with great success in real world environments with variable constraints [27][41][74]

For anytime classification, one well established technique is the anytime nearest neighbor

classification algorithm [83]. This algorithm retains the strong points of the nearest neigh-

bor algorithm, its simplicity and generality , while greatly mitigating the problem associated

with the linear time complexity at classification time, a function of its lazy behavior. Pre-

vious techniques for improving anytime classification have generally been concerned with

optimizing the probability of correctly classifying individual objects. In Chapter 4, we show
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that substantial improvement in overall classification accuracy performance can be achieved

if the optimization is performed relative not to each individual object, but rather to a (possibly

quite small) set of objects.

Our technique presented is a generalized framework which utilizes a scoring function that

estimates the intermediate result quality of an object being processed. Here, the quality is

an estimate that we have the correct class label for the object. Objects with a high initial

quality are unlikely to significantly improve their quality, even with additional computation

time. In contrast, objects with poor initial quality have much greater room for improvement,

and are deserving of more resources. Using this intuition, our framework intelligently and

dynamically schedules computational resources for each object. We demonstrate that the lack

of such inter-object consideration would otherwise result in poor allocation of computation

time and lead to reduced performance.

1.4 Contributions

The contributions of this dissertation are presented in Chapter 2, Chapter 3, and Chapter 4.

More specifically, they are as follows:

• We present iSAX, a new reduced representation for time series. iSAX has the key prop-

erties of being multi-resolution, bit aware, quantized, and supporting variable granu-

larity. We show that an index with iSAX is easily implemented and similarity search
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can be conducted with exceptional performance even when simply using the native

operating system file system to manage storage.

• We demonstrate the capability to index and perform time series experiments on datasets

which are orders of magnitude larger than previously encountered in the time series

literature.

• We introduce the Time Series Set Difference data mining operator and show that it

returns useful results on datasets.

• We introduce an anytime framework for improving the overall accuracy of Anytime

Nearest Neighbor Classification in data streams which exhibit queries with concurrent

lifetimes. Our approach considers the set of concurrent queries and utilizes a scoring

function to schedule resources and manage evictions according to an estimate on result

quality. We show an improvement in overall classification accuracy by allocating com-

putational resources to queries most likely to improve in classification accuracy with

additional computation time.
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Chapter 2

iSAX: Indexing and Mining Terabyte

Sized Time Series

2.1 Introduction

The increasing level of interest in indexing and mining time series data has produced many al-

gorithms and representations. However, with few exceptions, the size of datasets considered,

indexed, and mined seems to have stalled at the megabyte level. At the same time, improve-

ments in our ability to capture and store data have lead to the proliferation of terabyte-plus

time series datasets. In this work, we show how a novel multi-resolution symbolic repre-

sentation called indexable Symbolic Aggregate approXimation (iSAX) can be used to index

datasets which are several orders of magnitude larger than anything else considered in current

literature [77][78].
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The iSAX approach allows for both fast exact search and ultra fast approximate search.

Beyond mere similarity search, we show how to exploit the combination of both types of

search as sub-routines in data mining algorithms, permitting the exact mining of truly massive

datasets, with tens of millions of time series, occupying up to a terabyte of disk space.

Our approach is based on a modification of the SAX representation to allow extensible

hashing [54][55]. That is, the number of bits used for evaluation of our representation can

be dynamically changed, corresponding to a desired resolution. An increased number of bits

can then be used to differentiate between non-identical entries. In essence, we show how we

can modify SAX to be a multi-resolution representation, similar in spirit to wavelets [20]. It

is this multi-resolution property that allows us to index time series with zero overlap at leaf

nodes as in TS-tree [7], unlike R-trees [34], and other spatial access methods.

As we shall show, our indexing technique is fast and scalable due to intrinsic properties of

the iSAX representation. Because of this, we do not require the use of specialized databases

or file managers. Our results, conducted on massive datasets, are all achieved using a simple

tree structure which uses the standard Windows XP NTFS file system for disk access. While

it might have been possible to achieve faster times with a sophisticated DBMS, we feel that

the simplicity of this approach is a great strength, and will allow easy adoption, replication,

and extension of our work.

A further advantage of our representation is that, being symbolic, it allows the use of

data structures and algorithms that are not well defined for real-valued data; including suffix

trees, hashing, Markov models, etc [55]. Furthermore, given that iSAX is a superset of classic
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SAX, the several dozen research groups that use SAX will be able to adopt iSAX to improve

scalability [45]. The rest of this chapter is organized as follows. In Section 2.2 we review

related work and background material. Section 2.3 introduces the iSAX representation, and

Section 2.4 shows how it can be used for approximate and exact indexing. In Section 2.5

we perform a comprehensive set of experiments on both indexing and data mining problems.

Finally, in Section 2.6 we offer conclusions and suggest directions for future work.

2.2 Background and Related Work

2.2.1 Time Series Distance Measures

It is increasingly understood that Dynamic Time Warping (DTW) is better than Euclidean

Distance (ED) for most data mining tasks in most domains. It is therefore natural to ask

why we are planning to consider Euclidean distance in this work. The well documented

superiority of DTW over ED is due to the fact that in small datasets it might be necessary

to warp a little to match the nearest neighbor. However, in larger datasets one is more likely

to find a close match without the need to warp. As DTW warps less and less, it degenerates

to simple ED. This was first noted in [69] and later confirmed in [86] and elsewhere. For

completeness, we will show a demonstration of this effect. We measured the leave-one-out

nearest neighbor classification accuracy of both DTW and ED on increasingly large datasets

containing the CBF and Two-Pat problems, two classic time series benchmarks. Both datasets
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Figure 2.1: The error rate of DTW and ED on increasingly large instantiations of the CBF

and Two-Pat problems. For even moderately large datasets, there is no difference in accuracy

allow features to warp up to 1/8 the length of the sequence, so they may be regarded as highly

warped datasets. Figure 2.1 shows the result.

As we can see, for small datasets, DTW is significantly more accurate than ED. However,

as the datasets get larger, the difference diminishes, and by the time there are mere thousands

of objects, there is no measurable difference. In spite of this, and for completeness, we

explain in an online Appendix [49] that we can index under DTW with iSAX with only

trivial modifications.

2.2.2 Time Series Representations

There is a plethora of time series representations proposed to support similarity search and

data mining. Table 2.1 shows the major techniques arranged in a hierarchy.

Those representations annotated with an asterisk have the very desirable property of al-

lowing lower bounding. That is to say, we can define a distance measurement on the reduced
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Table 2.1: A Hierarchy of Time Series Representations

• Model Based

– Markov Models

– Statistical Models

– Time Series Bitmaps [53]

• Data Adaptive

– Piecewise Polynomials

∗ Interpolation*[64]

∗ Regression[76]

– Adaptive Piecewise Constant Approximation* [47]

– Singular Value Decomposition*

– Symbolic

∗ Natural Language [68]

∗ Strings [39]

· Non-Lower Bounding [39][6][62]

· SAX* [55], iSAX* [77] [78]

– Trees

• Non-Data Adaptive

– Wavelets* [20]

– Random Mappings [13]

– Spectral

∗ DFT* [28]

∗ DCT*

∗ Chebyshev Polynomials* [17]

– Piecewise Aggregate Approximation* [46]

– IPLA* [24]

• Data Dictated

– Clipped Data* [10]

18



abstraction that is guaranteed to be less than or equal to the true distance measured on the

raw data. It is this lower bounding property that allows us to use a representation to index the

data with a guarantee of no false dismissals [28]. The list of such representations includes

(in approximate order of introduction) the discrete Fourier transform (DFT) [28], the discrete

Cosine transform (DCT), the discrete Wavelet transform (DWT), Piecewise Aggregate Ap-

proximation (PAA) [46], Adaptive Piecewise Constant Approximation (APCA), Chebyshev

Polynomials (CHEB) [17] and Indexable Piecewise Linear Approximation (IPLA) [24]. We

will provide the first empirical comparison of all these techniques in Section 2.5.

The only lower bounding omissions from our experiments are the eigenvalue analysis

techniques such as SVD and PCA. While such techniques give optimal linear dimensionality

reduction, we believe they are untenable for massive datasets. For example, while [80] notes

that they can transform 70,000 time series in under 10 minutes, this assumes the data can

fit in main memory. However, to transform all the out-of-core (disk resident) datasets we

consider in this work, SVD would require several months.

There have been several dozen research efforts that propose to facilitate time series search

by first symbolizing the raw data [6][39][62]. However, in every case, the authors introduced

a distance measure defined on the newly derived symbols. This allows false dismissals with

respect to the original data. In contrast, the proposed work uses the symbolic words to inter-

nally organize and index the data, but retrieves objects with respect to the Euclidean distance

on the original raw data. This point is important enough to restate. Although our proposed

representation is an approximation to the original data, and whose creation requires us to
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Figure 2.2: left) A time series T , of length 16. right) A PAA approximation of T , with 4

segments

make a handful of parameters choices, under any parameter set the exact search algorithm

introduced in Algorithm 2 is guaranteed to find the true exact nearest neighbor.

2.2.3 Review of Classic SAX

The SAX representation was introduced in 2003, since then it has been used by more than 50

groups worldwide to solve a large variety of time series data mining problems [55][45]. For

concreteness, we begin with a review of it [55]. In Figure 2.2.left we illustrate a short time

series T , which we will use as a running example throughout this chapter.

Figure 2.2.right shows our sample time series converted into a representation called PAA

[46]. PAA represents a time series T of length n in a w-dimensional space by a vector of real

numbers, T = t1, · · · , tw. The ith element of T is calculated by the equation:

ti =
w

n

n

w
i

∑

j= n

w
(i−1)+1

Tj
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Figure 2.3: A time series T converted into SAX words of cardinality 4 {11,11,01,00} (left),

and cardinality 2 {1,1,0,0} (right)

In the case that n is not divisible by w; the summation can be modified to adopt fractional

values. This is illustrated in [55].

PAA is a desirable intermediate representation as it allows for computationally fast dimen-

sionality reduction, provides a distance measure which is lower bounding, and has been

shown to be competitive with other dimensionality reduction techniques. In this case, the

PAA representation reduces the dimensionality of the time series, from 16 to 4. The SAX

representation takes the PAA representation as an input and discretizes it into a small al-

phabet of symbols with a cardinality of size α. The discretization is achieved by imagining

a series of breakpoints running parallel to the x-axis and labeling each region between the

breakpoints with a discrete label. Any PAA value that falls within that region can then be

mapped to the appropriate discrete value.

While the SAX representation supports arbitrary breakpoints, we can ensure almost equiprob-

able symbols within a SAX word if we use a sorted list of numbers, Breakpoints = B1, · · · , Bα−1

such that the area under a N(0,1) Gaussian curve from Bi to Bi+1 = 1/α (B0 and Bα are
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Table 2.2: SAX Breakpoints
❍

❍
❍

❍
❍

❍
β

α
2 3 4 5 6 7 8

β1 0.00 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15

β2 0.43 0.00 -0.25 -0.43 -0.57 -0.67

β3 0.67 0.25 0.00 -0.18 -0.32

β4 0.84 0.43 0.18 0.00

β5 0.97 0.57 0.32

β6 1.07 0.67

β7 1.15

defined as −∞ and +∞, respectively). Table 2.2 shows a table for such breakpoints for

cardinalities from 2 to 8.

A SAX word is simply a vector of discrete symbols. We use a boldface letter to differ-

entiate between a raw time series and its SAX version, and we denote the cardinality of the

SAX word with a superscript:

SAX(T, w, α) = T
α = {t1, t2, · · · , tw−1, tw}

In previous work, we represented each SAX symbol as a letter or integer. Here however,

we will use binary numbers for reasons that will become apparent later. For example, in

Figure 2.3 we have converted a time series T of length 16 to SAX words. Both examples

have a word length of 4, but one has a cardinality of 4 and the other has a cardinality of 2.

We therefore have SAX(T, 4, 4) = T
4 = {11,11,01,00} and SAX(T, 4, 2) = T

2 = {1,1,0,0}.

The astute reader will have noted that once we have T
4 we can derive T

2 simply by

ignoring the trailing bits in each of the four symbols in the SAX word. As one can readily
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Table 2.3: It is possible to obtain a reduced (by half) cardinality SAX word simply by ignor-

ing trailing bits

SAX(T ,4,16) = T
16 = { 1100 ,1101 ,0110 ,0001 }

SAX(T ,4,8) = T
8 = { 110 ,110 ,011 ,000 }

SAX(T ,4,4) = T
4 = { 11 ,11 ,01 ,00 }

SAX(T ,4,2) = T
2 = { 1 ,1 ,0 ,0 }

imagine, this is a recursive property. For example, if we convert T to SAX with a cardinality

of 8, we have SAX(T, 4, 8) = T
8 = {110,110,011,000}. From this, we can convert to any

lower resolution that differs by a power of two, simply by ignoring the correct number of

bits. Table 2.3 makes this clearer.

As we shall see later, this ability to change cardinalities on the fly is a useful and ex-

ploitable property. Given two time series T and S, recall that their Euclidean distance is:

D(T, S) ≡

√

√

√

√

n
∑

i=1

(Ti − Si)
2

If we have a SAX representation of these two time series, we can define a lower bounding

approximation to the Euclidean distance as:

MINDIST (T2,S2) =

√

n

w

√

√

√

√

w
∑

i=1

(dist(ti, si))
2

This function requires calculating the distance between two SAX symbols and can be

achieved with a lookup table, as in Table 2.4.
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Table 2.4: A SAX dist lookup table for α = 4
00 01 10 11

00 0 0 0.67 1.34

01 0 0 0 0.67

10 0.67 0 0 0

11 1.34 0.67 0 0

The distance between two symbols can be read off by examining the corresponding row

and column. For example, dist(00,01) = 0 and dist(00,10) = 0.67.

For clarity, we will give a concrete example of how to compute this lower bound. Recall

our running example time series T which appears in Figure 2.2. If we create a time series

S that is simply T ’s mirror image, then the Euclidean distance between them is D(T, S) =

46.06.

As we have already seen, SAX(T, 4, 4) = T
4 = {11,11,01,00}, and therefore SAX(S, 4, 4)

= S
4 = {00,01,11,11}. The invocation of the MINDIST function will make calls to the

lookup table shown in Table 2.4 to find:

dist(t1, s1) = dist(11,00) = 1.34

dist(t2, s2) = dist(11,01) = 0.67

dist(t3, s3) = dist(01,11) = 0.67

dist(t4, s4) = dist(00,11) = 1.34

Which, when plugged into the MINDIST function, gives:

MINDIST (T2,S2) =

√

16

4

√
1.342 + 0.672 + 0.672 + 1.342
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Figure 2.4: The tightness of lower bounds for increasing SAX cardinalities, compared to a

PAA/DWT benchmark

· · · to produce a lower bound value of 4.237. In this case, the lower bound is quite loose;

however, having either more SAX symbols or a higher cardinality will produce a tighter

lower bound. It is instinctive to ask how tight this lower bounding function can be, relative

to natural competitors like PAA or DWT. This depends on the data itself and the cardinality

of the SAX words, but coefficient for coefficient, it is surprisingly competitive with the other

approaches. To see this, we can measure the tightness of the lower bounds, which is defined

as the lower bounding distance over the true distance [46]. Figure 2.4 shows this for random

walk time series of length 256, with eight PAA or DWT coefficients and SAX words also of

length eight. We varied the cardinality of SAX from 2 to 256, whereas PAA/DWT used a

constant 4 bytes per coefficient. The results have been averaged over 10,000 random walk

time series comparisons.

The results show that for small cardinalities the SAX lower bound is quite weak, but for

larger cardinalities it rapidly approaches that of PAA/DWT. At the cardinality of 256, which

take 8 bits, the lower bound of SAX is 98.5% that of PAA/DWT, but the latter requires 32
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bits. This tells us that if we compare representations, coefficient for coefficient, there is little

to choose between them; but if we do bit-for-bit comparisons (cf. Section 2.5.1), SAX allows

for much tighter lower bounds. This is one of the properties of SAX that can be exploited to

allow ultra scalable indexing.

2.3 The iSAX Representation

Because it is tedious to write out binary strings, previous uses of SAX had integers or al-

phanumeric characters representing SAX symbols [55]. For example:

SAX(T, 4, 8) = T
8 = {110, 110, 011, 000} = {6, 6, 3, 0}

However, this can make the SAX word ambiguous. If we see just the SAX word {6,6,3,0}

we cannot be sure what the cardinality is (although we know it is at least 7). Since all

previous uses of SAX always used a single “hard-coded” cardinality, this has not been an

issue. However, the fundamental contribution of this work is to show that SAX allows the

comparison of words with different cardinalities, and even different cardinalities within a

single word. We therefore must resolve this ambiguity. We do this by writing the cardinality

as a superscript. For example, in the example above:

iSAX(T, 4, 8) = T
8 = {68, 68, 38, 08}
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Because the individual symbols are ordinal, exponentiation is not defined for them, so there is

no confusion in using superscripts in this context. Note that we are now using iSAX instead

of SAX for reasons that will become apparent in a moment. We are now ready to introduce a

novel idea that will allow us to greatly expand the utility of iSAX.

2.3.1 Comparing Different Cardinality iSAX Words

It is possible to compare two iSAX words of different cardinalities. Suppose we have two

time series, T and S, which have been converted into iSAX words:

iSAX(T, 4, 8) = T
8 = {110, 110, 011, 000} = {68, 68, 38, 08}

iSAX(S, 4, 2) = S
2 = {0 , 0 , 1 , 1 } = {02, 02, 12, 12}

We can find the lower bound between T and S, even though the iSAX words that represent

them are of different cardinalities. The trick is to promote the lower cardinality representation

into the cardinality of the larger before giving it to the MINDIST function.

We can think of the tentatively promoted S
2 word as S

8 = {0**1,0**2,1**3,1**4}, then

the question is simply what are correct values of the missing **i bits? Note that both car-

dinalities can be expressed as the power of some integer. This guarantees an overlap in the

breakpoints used during SAX computation. More concretely, if we have an iSAX cardinality

of X , and an iSAX cardinality of 2X , then the breakpoints of the former are a proper subset

of the latter. This is shown in Figure 2.3.
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Using this insight, we can obtain the missing bit values in S
8 by examining each position

and computing the bit values at the higher cardinality which are enclosed by the known bits

at the current (lower) cardinality and returning the one which is closest in SAX space to the

corresponding value in T
8.

This method obtains the S
8 representation usable for MINDIST calculations:

S
8 = {011, 011, 100, 100}

It is important to note that this is not necessarily the same iSAX word we would have gotten if

we had converted the original time series S. We cannot undo a lossy compression. However,

using this iSAX word does give us an admissible lower bound.

Finally, note that in addition to comparing iSAX words of different cardinalities, the

promotion trick described above can be used to compare iSAX words where each word has

mixed cardinalities. For example, we can allow iSAX words such as {111, 11, 101, 0} =

{78, 34, 58, 02}. If such words exist, we can simply align the two words in question, scan

across each pair of corresponding symbols, and promote the symbol with lower cardinality

to the same cardinality as the larger cardinality symbol. In the next section, we explain why

it is useful to allow iSAX words with different cardinalities.
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2.4 iSAX Indexing

2.4.1 The Intuition Behind iSAX Indexing

As it stands, it may appear that the classic SAX representation offers the potential to be in-

dexed. We could choose a fixed cardinality of, say, 8 and a word length of 4, and thus have 84

separate labels for files on disk. For instance, our running example T maps to {68, 68, 38, 08}

under this scheme, and would be inserted into a file that has this information encoded in its

name, such as 6.8 6.8 3.8 0.8.txt. The query answering strategy would be very simple. We

could convert the query into a SAX word with the same parameters, and then retrieve the file

with that label from disk. The time series in that file are likely to be very good approximate

matches to the query. In order to find the exact match, we could measure the distance to the

best approximate match, then retrieve all files from disk whose label has a MINDIST value

less than the value of the best-so-far match. Such a methodology clearly guarantees no false

dismissals.

This scheme has a fatal flaw, however. Suppose we have a million time series to index.

With 4,096 possible labels, the average file would have 244 time series in it, a reasonable

number. However, this is the average. For all but the most contrived datasets we find a

huge skew in the distribution, with more than half the files being empty, and the largest file

containing perhaps 20% of the entire dataset. Either situation is undesirable for indexing,

in the former case, if our query maps to an empty file, we would have to do some ad-hoc

trick (perhaps trying “misspellings” of the query label) in order to get the first approximate
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answer back. In the latter case, if 20% of the data must be retrieved from disk, then we can

be at most five times faster than sequential scan. Ideally, we would like to have a user defined

threshold th, which is the maximum number of time series in a file, and a mapping technique

that ensures each file has at least one and at most th time series in it. As we shall now see,

iSAX allows us to guarantee exactly this.

iSAX offers a multi-resolution, bit aware, quantized, reduced representation with variable

granularity. It is this variable granularity that allows us to solve the problem above. Imagine

that we are in the process of building the index and have chosen th = 100. At some point

there may be exactly 100 time series mapped to the iSAX word {24, 34, 34, 24}. If, as we

continue to build the index, we find another time series maps here, we have an overflow, so

we split the file. The idea is to choose one iSAX symbol, examine an additional bit, and use

its value to create two new files. In this case:

Original File: {24, 34, 34, 24} splits into · · ·

Child file 1: {48, 34, 34, 24}

Child file 2: {58, 34, 34, 24}

Note that in this example we split on the first symbol, promoting the cardinality from 4 to

8. For some time series in the file, the extra bit in their first iSAX symbol was a 0, and

for others it was a 1. In the former case, they are remapped to Child 1, and in the latter,

remapped to Child 2. The child files can be named with some protocol that indicates their

variable cardinality, for example 5.8 3.4 3.4 2.4.txt and 4.8 3.4 3.4 2.4.txt.
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The astute reader will have noticed that the intuition here is very similar to the classic

idea of extensible hashing. This in essence is the intuition behind building an iSAX index,

although we have not explained how we decide which symbol is chosen for promotion and

some additional details. In the next sections, we formalize this intuition and provide details

on algorithms for approximately and exactly searching an iSAX index.

2.4.2 iSAX Index Construction

As noted above, a set of time series represented by an iSAX word can be split into two

mutually exclusive subsets by increasing the cardinality along one or more dimensions. The

number of dimensions d and word length, w, 1 ≤ d ≤ w, provide an upper bound on the

fan-out rate. If each increase in cardinality per dimension follows the assumption of iterative

doubling, then the alignment of breakpoints contains overlaps in such a way that hierarchical

containment is preserved between the common iSAX word and the set of iSAX words at the

finer granularity. Specifically, in iterative doubling, the cardinality to be used after the ith

increase in granularity is in accordance with the following sequence, given base cardinality

b: b ∗ 2i. The maximum fan-out rate under such an assumption is 2d.

The use of iSAX allows for the creation of index structures that are hierarchical, contain-

ing non-overlapping regions [7] (unlike R-trees, etc.[34]), and a controlled fan-out rate. For

concreteness, we depict in Figure 2.5 a simple tree-based index structure which illustrates

the efficacy and scalability of indexing using iSAX.
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Figure 2.5: An illustration of an iSAX index

The index is constructed given base cardinality b, word length w, and threshold th (b is

optional; it can be defaulted to 2 or be set for evaluation to begin at higher cardinality). The

index structure hierarchically subdivides the SAX space, resulting in differentiation between

time series entries until the number of entries in each subspace falls below th. Such a con-

struct is implemented using a tree, where each node represents a subset of the SAX space

such that this space is a superset of the SAX space formed by the union of its descendents.

A node’s representative SAX space is congruent with an iSAX word and evaluation between

nodes or time series is done through comparison of iSAX words. The three classes of nodes

found in a tree and their respective functionality are described below:

Terminal Node: A terminal node is a leaf node which contains a pointer to an index file

on disk with raw time series entries. All time series in the corresponding index file are char-

acterized by the terminal node’s representative iSAX word. A terminal node represents the
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coarsest granularity necessary in SAX space to enclose the set of contained time series en-

tries. In the event that an insertion causes the number of time series to exceed th, the SAX

space (and node) is split to provide additional differentiation.

Internal Node: An internal node designates a split in SAX space and is created when the

number of time series contained by a terminal node exceeds th. The internal node splits the

SAX space by promotion of cardinal values along one or more dimensions as per the itera-

tive doubling policy. A hash from iSAX words (representing subdivisions of the SAX space)

to nodes is maintained to distinguish differentiation between entries. Time series from the

terminal node which triggered the split are inserted into the newly created internal node and

hashed to their respective locations. If the hash does not contain a matching iSAX entry,

a new terminal node is created prior to insertion, and the hash is updated accordingly. For

simplicity, we employ binary splits along a single dimension, using round robin to determine

the split dimension.

Root Node: The root node is representative of the complete SAX space and is similar in

functionality to an internal node. The root node evaluates time series at base cardinality, that

is, the granularity of each dimension in the reduced representation is b. Encountered iSAX

words correspond to some terminal or internal node and are used to direct index functions

accordingly. Un-encountered iSAX words during inserts result in the creation of a terminal
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node and a corresponding update to the hash table.

Pseudo-code of the insert function used for index construction is shown in Algorithm

1. Given a time series to insert, we first obtain the iSAX word representation using the

respective iSAX parameters at the current node (line 1). If the hash table does not yet contain

an entry for the iSAX word, a terminal node is created to represent the relevant SAX space,

and the time series is inserted accordingly (lines 21-23). Otherwise, there is an entry in the

hash table, and the corresponding node is fetched. If this node is an internal node, we call its

insert function recursively (line 18). If the node is a terminal node, occupancy is evaluated to

determine if an additional insert warrants a split (line 6). If so, a new internal node is created,

and all entries enclosed by the overfilled terminal node are inserted (lines 9-15). Otherwise,

there is sufficient space and the entry is simply added to the terminal node (line 7).

The deletion function is obvious and omitted for brevity.

2.4.3 Approximate Search

For many data mining applications, an approximate search may be all that is required. An

iSAX index is able to support very fast approximate searches; in particular, they only require

a single disk access. The method of approximation is derived from the intuition that two

similar time series are often represented by the same iSAX word. Given this assumption, the

approximate result is obtained by attempting to find a terminal node in the index with the

same iSAX representation as the query. This is done by traversing the index in accordance
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Algorithm 1 iSAX Index Insertion (ts)

1: iSAX word← iSAX(ts, this.parameters)

2:

3: if Hash.ContainsKey(iSAX word) then

4: node← Hash.ReturnNode(iSAX word)

5: if node is terminal then

6: if SplitNode( ) == false then

7: node.Insert(ts)

8: else

9: newnode← new internal

10: newnode.Insert(ts)

11: for each ts ∈ node do

12: newnode.Insert(ts)

13: end for

14: Hash.Remove(iSAX word, node)

15: Hash.Add(iSAX word, newnode)

16: end if

17: else if node is internal then

18: node.Insert(ts)

19: end if

20: else

21: newnode← new terminal

22: newnode.Insert(ts)

23: Hash.Add(iSAX word, newnode)

24: end if
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with split policies and matching iSAX representations at each internal node. Because the

index is hierarchical and without overlap, if such a terminal node exists, it is promptly iden-

tified. Upon reaching this terminal node, the index file pointed to by the node is fetched and

returned. This file will contain at least 1 and at most th time series in it. A main memory

sequential scan over these time series gives the approximate search result.

In the (very) rare case that a matching terminal node does not exist, such a traversal will

fail at an internal node. We mitigate the effects of non-matches by proceeding down the tree,

selecting nodes whose last split dimension has a matching iSAX value with the query time

series. If no such node exists at a given junction, we simply select the first, and continue the

descent.

2.4.4 Exact Search

Obtaining the exact nearest neighbor to a query is both computationally and I/O intensive. To

improve search speed, we use a combination of approximate search and lower bounding dis-

tance functions to reduce the search space. The algorithm for obtaining the nearest neighbor

is presented as pseudo-code in Algorithm 2.

The algorithm begins by obtaining an approximate best-so-far (BSF) answer, using ap-

proximate search as described in Section 2.4.3 (lines 1-2). The intuition is that by quickly

obtaining an entry which is a close approximation and with small distance to the nearest

neighbor, large sections of the search space can be pruned. Once a baseline BSF is obtained,
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a priority queue is created to examine nodes whose distance is potentially less than the BSF.

This priority queue is first initialized with the root node (line 5).

Because the query time series is available to us, we are free to use its PAA representation

to obtain a tighter bound than the MINDIST between two iSAX words. More concretely,

the distance used for priority queue ordering of nodes is computed using

MINDIST PAA iSAX , between the PAA representation of the query time series and the

iSAX representation of the SAX space occupied by a node.

Given the PAA representation, TPAA of a time series T and the iSAX representation,

SiSAX of a time series S, such that |TPAA| = |SiSAX | = w, |T | = |S| = n, and recalling that

the j th cardinal value of SiSAX derives from a PAA value, v between two breakpoints βL, βU ,

βL < v ≤ βU , 1 ≤ j ≤ w we define the lower bounding distance as:

MINDIST PAA iSAX(TPAA, SiSAX) =

√

n

w

√

√

√

√

√

√

√

√

√

√

√

√

w
∑

i=1































(βLi − TPAAi)
2 if βLi > TPAAi

(βUi − TPAAi)
2 if βUi < TPAAi

0 otherwise

Recall that we use distance functions that lower bound the true Euclidean distance. That

is, if the BSF distance is less than or equal to the minimum distance from the query to a node,

we can discard the node and all descendants from the search space without examining their

contents or introducing any false dismissals.
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Figure 2.6: MINDIST between PAA and iSAX representations. The lower bounding distance

is computed from the hatched lines

The algorithm then repeatedly extracts the node with the smallest distance value from

the priority queue, terminating when either the priority queue becomes empty or an early

termination condition is met. Early termination occurs when the lower bound distance we

compute equals or exceeds the distance of the BSF. This implies that the remaining entries in

the queue cannot qualify as the nearest neighbor and can be discarded.

If the early termination condition is not met (line 9), the node is further evaluated. In

the case that the node is a terminal node, we fetch the index file from disk and compute the

distance from the query to each entry in the index file, recording the minimum distance (line

13). If this distance is less than our BSF, we update the BSF (lines 15-16). In the case that

the node is an internal node or the root node, its immediate descendents are inserted into

the priority queue (lines 19-22). The algorithm then repeats by extracting the next minimum

node from the priority queue.

Before leaving this section, we note that we have only discussed 1-NN queries. Exten-

sions to k-NN and range queries are trivial and obvious, and are omitted for brevity.
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Algorithm 2 Exact Search (ts)

1: BSF.IndexFile← ApproximateSearch(ts)

2: BSF.dist← IndexFileDist(ts, BSF.IndexFile)

3:

4: PriorityQueue pq

5: pq.Add(root)

6:

7: while !pq.IsEmpty do

8: min← pq.ExtractMin()

9: if min.dist ≥ BSF.dist then

10: break

11: end if

12: if min is terminal then

13: tmp← IndexFileDist(ts, min.IndexFile)

14: if BSF.dist > tmp then

15: BSF.dist← tmp

16: BSF.IndexFile← min.IndexFile

17: end if

18: else if min is internal or root then

19: for each node ∈ min.children do

20: node.dist←MINDIST PAA iSAX(ts,node.iSAX)

21: pq.Add(node)

22: end for

23: end if

24: end while

25:

26: return BSF.IndexFile
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Extension with Time Series Wedges

Extensions to the index are readily facilitated as meta-information can be held in nodes.

This allows the index to supplant or be used in concert with external techniques. For ex-

perimental purposes, and to expedite exact search, we modified index terminal nodes by

storing meta-data which are used to obtain a lower bounding distance to the set of contained

time series at each terminal node. This distance is a potentially tighter bound than that of

MINDIST PAA iSAX .

Specifically, terminal nodes in the index now maintain a record of the minimum and

maximum value per dimension from the set of contained time series as an upper and lower

wedge, a technique described in [84] and illustrated in Figure 2.7. Given that a terminal node

in a non-trivial tree is essentially a grouping of similar time series, we expect the wedges

to be tight; making them an advantageous addition for search space pruning. When exact

search encounters a terminal node and early termination conditions are not met, we compute
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a second lower bounding distance using LB Keogh [84] from the recorded wedges. As

the upper and lower wedge is saved as meta-data in each terminal node, the LB Keogh

computation does not require additional disk accesses. If this distance is greater or equal

to the BSF, we can safely discard the terminal node from consideration without fetching its

index file from disk. Given that repeated disk accesses can become prohibitively expensive;

the addition of wedges has significant utility.

2.5 Experimental Evaluation

We begin by discussing our experimental philosophy. We have designed all experiments such

that they are not only reproducible, but easily reproducible. To this end, we have built a web-

page which contains all datasets used in this work, together with spreadsheets which contain

the raw numbers displayed in all the figures [49]. In addition, the webpage contains many

additional experiments; however, we note that this dissertation is completely self-contained.

We have used random walk datasets for much of our experimental work because it is

known to model stock market data very well, and for the simple pragmatic reason that it is

easy to create arbitrarily large datasets, which can be exactly recreated by others who only

need to know the seed value. We note, however, that in this work we also test on heartbeat and

insect data, which are very different from random walks, and in the website built to support

this work we show results on 30 diverse datasets.
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Experiments are conducted on an AMD Athlon 64 X2 5600+ with 3GB of memory,

Windows XP SP2 with /3GB switch enabled, and using version 2.0 of the .NET Framework.

All experiments used a 400GB Seagate Barracuda 7200.10 hard disk drive with the exception

of the 100M random walk experiment, which required additional space, there we used a

750GB Hitachi Deskstar 7K10000.

2.5.1 Tightness of Lower Bounds

It is important to note that the rivals to iSAX are other time series representations, not in-

dexing structures such as R-Trees, VP-Trees, etc [26]. We therefore begin with a simple

experiment to compare the tightness of lower bounds of iSAX with the other lower bounding

time series representations, including DFT, DWT, DCT, PAA, CHEB, APCA and IPLA. We

measure TLB, the tightness of lower bounds [46]. This is calculated as:

TLB =
LowerBoundDist(T, S)

TrueEuclideanDist(T, S)

Because DWT and PAA have exactly the same TLB [46] we show one graphic for both. We

randomly sample T and S (with replacement) 1,000 times for each combination of param-

eters. We vary the time series length [480, 960, 1440, 1920] and the number of bytes per

time series available to the dimensionality reduction approach [16, 24, 32, 40]. We assume

that each real valued representation requires 4 bytes per coefficient, thus they use [4, 6, 8,
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Figure 2.8: The tightness of lower bounds for various time series representations on the Koski

ECG dataset. Similar graphs for thirty additional datasets can be found at [49]

10] coefficients. For iSAX, we hard code the cardinality to 256, resulting in [16, 24, 32, 40]

symbols per word.

Recall that, for TLB, larger values are better. If the value of TLB is zero, then any

indexing technique is condemned to retrieving every object from the disk. If the value of

TLB is one, then there is no search, we could simply retrieve one object from disk and

guarantee that we had the true nearest neighbor. Figure 2.8 shows the result of one such

experiment with an ECG dataset.

Note that the speedup obtained is generally non-linear in TLB, that is to say if one repre-

sentation has a lower bound that is twice as large as another, we can usually expect a much

greater than two-fold decrease in disk accesses. In a sense, it may be obvious before do-

ing this experiment that iSAX will have a smaller reconstruction error, thus a tighter lower

bound, and greater indexing efficiency than the real valued competitors. This is because

iSAX is taking advantage of every bit given to it. In contrast, for the real valued approaches

it is clear that the less significant bits contribute much less information than the significant

bits. If the raw time series is represented with 4 bytes per data point, then each real valued
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coefficient must also have 4 bytes (recall that orthonormal transforms are merely rotations in

space). This begs the question, why not quantize or truncate the real valued coefficients to

save space? In fact, this is a very common idea in compression of time series data. For ex-

ample, in the medical domain it is frequently done for both the wavelet [23] and cosine [11]

representations. However, recall that we are not interested in compression per se. Our inter-

est is in dimensionality reduction that allows indexing with no false dismissals. If, for the

other approaches, we save space by truncating the less significant bits, then at least under the

IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) default policy for rounding

(RoundtoNearest) it is possible the distance between two objects can increase, thus violating

the no false dismissals guarantee. We have no doubt that an indexable bit-adjustable version

of the real valued representations could be made to work, however, none exists to date.

Even if we naı̈vely coded each iSAX word with the same precision as the real valued

approaches (thus wasting 75% of the main memory space), iSAX is still competitive with the

other approaches; this is shown in Figure 2.9. Before leaving this section, we note that we

have repeated these experiments with thirty additional datasets from very diverse domains

with essentially the same results [49].

2.5.2 Sensitivity to Parameters

For completeness, we conduct experiments which evaluate the sensitivity of iSAX indexing

to parameter values. Recall that an iSAX index is constructed given the following: base

cardinality b, word length w, and a threshold th (the maximum number of entries in a leaf
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Figure 2.10: Approximate search rankings for increasing threshold values

node). Our analysis focuses on the parameters w and th. We exclude the evaluation of

b, which is used during computation of new cardinal values, as this is a procedure which

inherently conforms to the size and skew of the indexed data. For b, any low value will

suffice. The following analysis identifies the characteristics of an iSAX index containing 1

million random walk time series of length 256 from the averaged results of 1000 approximate

queries, with respect to a range of th and w values. The quality of index performance can

be gauged by consideration of both the number of index files created as well as the rank of

approximate search results. For approximate search rankings, we measure the percentage of

queries which returns an entry which is the true nearest neighbor, an entry which ranks within

the top 10 nearest neighbors, an entry which ranks within the top 100 nearest neighbors, and

an entry which ranks outside the top 1000 nearest neighbors. Increases in the first three

measures or a decrease in the final, indicate a favorable trend with respect to the quality of

index results. The experimental analysis below validates our choice of parameter values used

in later sections.

46



25 50 100 200 400 800
20000

30000

40000

50000

60000

70000

80000

In
d
e
x
 F

ile
s

90000

1600

Threshold

Figure 2.11: Index files created across varying threshold values

4 5 6 7 8 9 10 11 12

Word Length
3

0

20

40

60

80
Outside top 1000

True nearest neighbor

1 from top 10

1 from top 100

100

P
e

rc
e

n
ta

g
e

 o
f 

Q
u

e
ri
e
s

Figure 2.12: Approximate search rankings for increasing word lengths

In Figure 2.10 and Figure 2.11 we vary the th value between [25, 50, 100, 200, 400,

800, 1600] while keeping w and b stationary at 8 and 4, respectively. As illustrated by

the gradually sloped curves in Figure 2.10, index performance is not sharply affected by th

values. Therefore, the determination of an adequate th value rests on the tradeoff between

possible entries retrieved (th), and the number of index files created. Our choice of th = 100

in Section 2.5.3 is affirmed as a suitable choice as this is characterized by both a low number

of entries examined and by having the number of index files created approach the bottom of

the curve in Figure 2.11.
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Figure 2.13: Index files created across varying word lengths

In Figure 2.12 and Figure 2.13, we vary the value of w between [3-12] while keeping

th and b stationary at 100 and 4, respectively. The results indicate that index performance

is not highly dependent on the selection of very precise w values. In Figure 2.12, there

exists a range of values, [6-9], where approximate search rankings maintain a high level of

performance. We observe some degradation in performance with increasingly longer word

lengths, though this is expected as smaller segments result in increased sensitivity to noise.

We also examined the number of index files created and showed that this number increases

with w (though for low values of w, there may be a minimum number of index files necessary

to support the dataset, given th). This increase in index files is an expected trend, as an

increase in w corresponds to an increase in the set of possible iSAX words (which are used

for index filenames). Our analysis affirms our choice of w = 8 in Section 2.5.3 as a suitable

value, falling in the range of w which returns quality results while also at the lower end of

the spectrum with regards to index files created.
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with approximate search

Our analysis of index characteristics across a range of parameter values have shown that

parameters should be selected in consideration of both search performance as well as the

number of index files constructed. The selections of these key parameters, while critical, have

been shown to be generally flexible and competitive across a range of values and without the

need for exact tuning.

2.5.3 Indexing Massive Time Series Datasets

We tested the accuracy of approximate search for increasingly large random walk databases

of sequence length 256, containing [one, two, four, eight] million time series. We used

b = 4, w = 8, and th = 100. This created [39,255; 57,365; 92,209; 162,340] files on

disk. We generated 1,000 queries, did an approximate search, and then compared the results

with the true ranking which we later obtained with a sequential scan. Figure 2.14 shows the

results.
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Figure 2.15: Estimated wall clock time for exact search averaged over 100 queries

The figure tells us that when searching one million time series, 91.5% of the time approx-

imate search returns an answer that would rank in the top 100 of the true nearest neighbor

list. Furthermore, that percentage only slightly decreases as we scale to eight million time

series. Likewise, again, for one million objects, more than half the time the approximate

searches return an object that would rank in the top 10, and 14% of the time it returns the

true nearest neighbor. Recall that these searches require exactly one disk access and at most

100 Euclidean distance calculations, so the average time for a query was less than a second.

We also conducted exact search experiments on 10% of the queries. Figure 2.15 shows the

estimated wall clock time and Figure 2.16 shows the average disk I/O for exactly finding the

nearest neighbor using the iSAX index. Sequential scan is used as a baseline for comparison.

To push the limits of indexing, we considered indexing 100,000,000 random walk time

series of length 256. To the best of our knowledge, this is as least two orders of magnitude
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Figure 2.16: Average disk I/O for exact search averaged over 100 queries

larger that any other dataset considered in the literature [7][17][28][62]. Since the publication

of Don Quixote de la Mancha in the 17th century, the idiom, “a needle in a haystack” has

been used to signify a near impossible search. If each time series in this experiment was

represented by a piece of hay the size of a drinking straw, they would form a cube shaped

haystack with 262 meter sides.

Because of the larger size of data, we increased th to 2,000, and used w of 16. This

created 151,902 files occupying a half terabyte of disk space. The average occupancy of

index files is approximately 658.

We issued ten new random walk approximate search queries. Each query was answered

in an average of 1.15 seconds. To find out how good each answer was, we did a linear scan

of the data to find the true rankings of the answers. Three of the queries did actually discover

their true nearest neighbor, the average rank was 8, and the worst query “only” managed to
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retrieve its 25th nearest neighbor. In retrospect, these results are extraordinarily impressive.

Faced with one hundred million objects on disk, we can retrieve only 0.0013895% of the data

and find an object that is ranked the top 0.0001%. As we shall see in Sections 2.5.5/2.5.6,

the extraordinary precision and speed of approximate search combined with fast exact search

allows us to consider mining datasets with millions of objects.

We also conducted exact searches on this dataset; each search took an average of 90

minutes to complete, in contrast to a linear scan taking 1,800 minutes.

2.5.4 Approximate Search Evaluation

Approximate search, being orders of magnitude faster than exact search, is inherently at-

tractive for many problems. Because the returned results are approximate in nature, it is

necessary for us to ascertain the general quality and effectiveness of said results. We have

seen in Section 2.5.3 some measure of this and we reaffirm its utility here with additional

visual and quantitative evaluations.

In the arid to semi-arid regions of North America, the Beet leafhopper (Circulifer tenel-

lus) is the only known vector (carrier) of curly top virus, which causes major economic losses

in a number of crops including sugarbeet, tomato, and beans [43]. In order to mitigate these

financial losses, entomologists at the University of California, Riverside are attempting to

model and understand the behavior of this insect. It is known that the insects feed by suck-

ing sap from living plants; much like how mosquitoes suck blood from mammals and birds.

In order to understand the insect’s behaviors, entomologists’ glue a thin wire to the insect’s
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back, complete the circuit through a host plant, and then measure fluctuations in voltage level

to create an Electrical Penetration Graph (EPG), a time series, which can then be mined for

clues to insect behavior. The problem facing the entomologists is that these experiments have

left them with massive data collections which are difficult to search.

We indexed the entire insect data archive of 4,232,591 subsequences of length 150 using

b = 4, w = 8, th = 100. We asked the entomologist Dr. Greg Walker to draw a query time

series. He was interested in knowing if the database contained any examples of a pattern

called “Waveform A”, which he noted is characterized by “an almost vertical increase in the

voltage level from baseline. Immediately after this spike, there is a gradual decline in voltage

level which occurs as a smooth downward curve”. This pattern is produced during the initial

penetration of the plant tissue through the epidermis.

The idealized query time series and corresponding approximate search result is shown in

Figure 2.17. As shown by the figure, a simple approximate search is capable of retrieving a

matching shape and corresponding location to researchers for further analysis. Although this

experiment searched a database of over four million time series, the result was returned in

less than a second, allow rapid interaction and hypothesis testing for the scientist.

Section 2.5.3 identified characteristics of approximate search in the form of nearest neigh-

bor rankings. In this section, we quantify the effectiveness of approximate search results via

comparison with actual nearest neighbors. We indexed 9,999,745 random walk time series

subsequences of length 256 with parameters b = 4, w = 8, th = 150. 100 random walk

queries were generated and the approximate search result of each was obtained. To quantify
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Figure 2.17: Approximate search result on insect dataset

the quality of approximate search results we formulate a distance ratio which compares the

true nearest neighbor distance and the approximate search distance. Let time series Q, A, T

be the query, the approximate result, and the true nearest neighbor, respectively. Calculate:

DistanceRatio =
EuclideanDist(Q, T )

EuclideanDist(Q, A)

This distance ratio is an indicator of how similar the approximate result is, relative to that of

the true nearest neighbor. Figure 2.18 shows the distance ratio for each of the 100 queries,

sorted in ascending order. All ratios are above 0.69, which indicates no approximate result

deviates significantly from the actual nearest neighbor. For additional illustration on the

quality of approximate results, the Q, A, T set of time series corresponding to the lower

median of distance ratios (0.907) is shown in Figure 2.19. In fact, it is extremely hard to make
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Figure 2.18: Sorted distance ratios of 100 random walk queries

any visual determination as to which plot is the approximate result and which corresponds to

the actual nearest neighbor (without the aid of a legend).

2.5.5 Time Series Set Difference

In this section, we give an example of a data mining algorithm that can be built on top of our

existing indexing algorithms. The algorithm is interesting in that it uses both approximate

search and exact search to compute the ultimate (exact) answer to a problem.

Suppose we are interested in contrasting two collections of time series data. For example,

we may be interested in contrasting telemetry from the last Shuttle launch with telemetry

from all previous launches, or we may wish to contrast the ten minutes of electrocardiograms
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Figure 2.20: The Time Series Set Difference discovered between ECGs recorded during a

waking cycle and the previous 7.2 hours

just before a patient wakes up with the preceding seven hours of sleep. To do this, we define

the Time Series Set Difference (TSSD) operator:

Definition 2.1. Time Series Set Difference(A, B). Given two collections of time series A

and B, the time series set difference is the time series in A whose distance from its nearest

neighbor in B is maximal.

Note that we are not claiming that this is the best way to contrast two sets of time series;

it is merely a sensible definition we can use as a starting point.

We tested this definition on an electrocardiogram dataset. The data is an overnight

polysomnogram with simultaneous three-channel Holter ECG from a 45 year old male sub-

ject with suspected sleep-disordered breathing. We used the first 7.2 hours of the data as the

reference set B, and the next 8 minutes 39 seconds as the “novel” set A. The set A corre-

sponds to the period in which the subject woke up. After indexing the data with an iSAX

word length of 9 and a maximum threshold value of 100, we had 1,000,000 time series sub-

sequences in 31,196 files on disk, occupying approximately 4.91GB of secondary storage.

Figure 2.20 show the TSSD discovered.
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We showed the result to UCLA cardiologist Helga Van Herle. She noted that the p-waves

in each of the full heartbeats look the same, but there is a 21.1% increase in the length of the

second one. This indicated to her that this is almost certainly an example of sinus arrhythmia,

where the R-R intervals are changing with the patients breathing pattern. This is likely due to

slowing of the heart rate with expiration and increase of the heart rate with inspiration, given

that it is well known that respiration patterns change in conjunction with changes in sleep

stages [73].

An obvious naı̈ve algorithm to find the TSSD is to do 20,000 exact searches, one for

each object in A. This requires (“only”) 325,604,200 Euclidean distance calculations, but

it requires approximately 5,676,400 disk accesses, for 1.04 days of wall clock time. This is

clearly untenable.

We propose a simple algorithm to find the TSSD that exploits the fact that we can do both

ultra fast approximate search and fast exact search. We assume that set B is indexed and that

set A is in main memory. The algorithm is sketched out in Algorithm 3.

The algorithm begins by obtaining the approximate nearest neighbor in B for each time

series in A (lines 4-9). A priority queue is created to order each time series in A according to

the distance to its approximate nearest neighbor. Given that approximate search results are

generally close to the exact answer, examining priority queue entries in order of descending

distance is likely to be an effective heuristic in finding the entry which has the maximum

nearest neighbor distance. The algorithm makes a minor addition to the exact search algo-

rithm described previously. An additional parameter, nextDist, is required and denotes the
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distance value of the next entry at the top of the priority queue. If at any point during the

exact search, the best-so-far falls below nextDist we suspend the search and return null. We

can determine the state of exact search by checking the IndexFile for value (line 20). If the

search was suspended, we reinsert the entry with its partially suspended state and updated

distance back into the priority queue (line 21). Otherwise, if the IndexFile contains a search

result, then we have obtained an exact answer whose nearest neighbor is larger than any other

entry remaining in the priority queue, the TSSD (line 23).

Algorithm 3 An outline to find the TSSD (A, B)

1: // sort priority queue by entry dist

2: PriorityQueue pq

3:

4: for each ts ∈ A do

5: IndexFile← B.ApproximateSearch(ts)

6: entry.dist← IndexFileDist(ts,IndexFile)

7: entry.ts← ts;

8: pq.Add(entry)

9: end for

10:

11: while !pq.IsEmpty do

12: entry← pq.ExtractMax( )

13: nextDist← pq.FindMax( ).dist

14:

15: // exact search is suspended if the best-so-far

16: // becomes greater than nextDist

17: IndexFile← B.ExactSearch(entry,nextDist)

18:

19: // IndexFile returns null when search is suspended

20: if IndexFile == null then

21: pq.Add(entry)

22: else

23: return Indexfile

24: end if

25: end while
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To find the discordant heartbeats shown in Figure 2.20, our algorithm did 43,779 disk

accesses (20,000 in the first approximate stage, and the remainder during the refinement

search phase), and performed 2,365,553 Euclidean distance calculations. The number of

disk accesses for a sequential scan algorithm is somewhat better; it requires only 31,196

disk reads, about 71% of what our algorithm required. However, sequential scan requires

20,000,000,000 Euclidean distance calculations, which is 8,454 times greater than our ap-

proach and would require an estimated 6.25 days to complete. In contrast, our algorithm

takes only 34 minutes.

Our algorithm is much faster because it exploits the fact that that most candidates in set

A can be quickly eliminated by very fast approximate searches. In fact, of the 20,000 objects

in set A for this experiment, only two of them (obviously including the eventual answer) had

their true nearest neighbor calculated. Of the remainder, 17,772 were eliminated based only

on the single disk access made in phase one of the algorithm, and 2,226 required more than

one disk access, but less than a compete nearest neighbor search.

2.5.6 Batch Nearest Neighbor Search

We consider another problem which can be exactly solved with a combination of approximate

and exact search. The problem is that of batch nearest neighbor search. We begin with a

concrete example of the problem before showing our iSAX-based solution. Here the context

of DNA is used to provide a real world dataset with results which can be easily verified.
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It has long been known that all the great apes except humans have 24 chromosomes.

Humans, having 23, are quite literally the odd man out. This is widely accepted to be a result

of an end-to-end fusion of two ancestral chromosomes. Suppose we do not know which

of the ancestral chromosomes were involved in the fusion, we could attempt to efficiently

discover this with iSAX.

We begin by converting DNA into time series. There are several ways to do this; here we

use the simple approach shown in Algorithm 4.

Algorithm 4 An algorithm for converting DNA to time series

1: T1← 0

2:

3: for i← 1 to length(DNAstring) do

4: if DNAstringi == A then

5: Ti+1 ← Ti + 2
6: end if

7: if DNAstringi == G then

8: Ti+1 ← Ti + 1
9: end if

10: if DNAstringi == C then

11: Ti+1 ← Ti − 1
12: end if

13: if DNAstringi == T then

14: Ti+1 ← Ti − 2
15: end if

16: end for

We converted Contig NT 005334.15 of the human chromosome 2 to time series in this

manner, and then indexed all subsequences of length 1024 using a sliding window. There

are a total of 11,246,491 base pairs (approximately 2,100 pages of DNA text written in this

paper’s format) and a total of 5,622,734 time series subsequences written to disk.
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Figure 2.21: Corresponding sections of human and chimpanzee DNA

We converted 43 randomly chosen subsequences of length 1024 of chimpanzee’s (Pan

troglodytes) DNA in the same manner. We made sure that the 43 samples included at least

one sample from each of the chimps 24 chromosomes.

We performed a search to find the chimp subsequence that had the nearest nearest-

neighbor in the human reference set. Figure 2.21 shows the two subsequences plotted to-

gether. Note that while the original DNA strings are very similar, they are not identical.

Once again, this is a problem where a combination of exact and approximate search can

be useful. To speed up the search we use batch nearest neighbor search. We define this as the

search for the object O in a (relatively small) set A, which has the smallest nearest neighbor

distance to an object in a larger set B. Note that to solve this problem, we really only need

one exact distance, for object O, to be known. For the remaining objects in A, it suffices to

know that a lower bound on their nearest neighbors is greater than the distance from O to

its nearest neighbor. With this in mind, we can define an algorithm which is generally much
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faster than performing exact search for each of the objects in A. Algorithm 5 outlines the

methodology.

The algorithm begins by obtaining the approximate search result for each time series in

A (lines 4-14). Exact search is then performed on the query time series with the minimum

approximate distance as an initial batch nearest neighbor candidate (line 17). We then per-

form exact search on the remaining time series in A using the current candidate as the initial

distance to use during exact search (this requires a simple modification of lines 1-2 in the

exact search algorithm detailed previously). By using the current batch nearest neighbor

candidate as the initial distance value, we begin exact search immediately with a reduced dis-

tance value, increasing the likelihood of search space pruning from the very onset. If exact

search returns a value, then a nearest neighbor less than the current best-so-far was found,

and we update the best-so-far accordingly (lines 24-25). Once all time series are examined,

the current best-so-far is returned as the batch nearest neighbor.

We can see this algorithm as an anytime algorithm [86][92]. Recall that an anytime

algorithm has the advantage that the quality of results increases monotonically with time and

that execution is interruptible (after initial setup). Now considering the effect of diminishing

returns and possible temporal constraints, it may be desirable to return an answer prior to the

complete execution of the algorithm. An algorithm under the anytime framework facilitates

this. For example, after the first phase, our algorithm has an approximate answer that we

can examine. As the algorithm continues working in the background to confirm or adjust that
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Algorithm 5 Batch Nearest Neighbor(A, B)

1: PriorityQueue pq

2:

3: min.dist← +∞
4: for each ts ∈ A do

5: IndexFile← B.ApproximateSearch(ts)

6: dist← IndexFileDist(ts,IndexFile)

7: if min.dist > dist then

8: min.dist← dist

9: min.ts← ts
10: end if

11: entry.dist← dist

12: entry.ts← ts
13: pq.Add(entry)

14: end for

15:

16: pq.Remove(min.ts)

17: IndexFile← B.ExactSearch(min.ts)

18: min.dist← IndexFileDist(IndexFile)

19: min.IndexFile← IndexFile

20:

21: while !pq.IsEmpty do

22: IndexFile← B.ExactSearch(pq.ExtractMin( ), min.dist)

23: if IndexFile != null then

24: min.dist← IndexFileDist(IndexFile)

25: min.IndexFile← IndexFile

26: end if

27: end while

28:

29: return min.IndexFile
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answer, we can evaluate the current answer and make a determination of whether to terminate

or allow the algorithm to persist.

In this particular experiment, the first phase of the algorithm returns an answer (which

we later confirm to be the exact solution) in just 12.8 seconds, finding that the randomly

chosen substring of chimp chromosome 2A, beginning at 7,582 of Contig NW 001231255 is

a stunningly close match to the substring beginning at 999,645 of the Contig NT 005334.15

of human chromosome 2. The full algorithm terminates in 21.8 minutes. In contrast, a naı̈ve

sequential scan takes 13.54 hours.

2.5.7 Mapping the Rhesus Monkey Chromosomes

In our final experiment we demonstrate the utility of ultra-fast approximate search by con-

ducting a large scale indexing experiment on a real world dataset. In particular we will

attempt to discover, and then align the rhesus macaque (Macaca mulatta) chromosomes that

are homologous to the human chromosome 2 we encountered in the last section. Note that

while the chimpanzee and human diverged only 6 million years ago, the human and macaque

diverged 25 million years ago. We should therefore not expect that the matches will be as

strikingly similar as the matches shown in Figure 2.21. Instead, our approach will be to aban-

don any notion of exact searches, and conduct many approximate searches. We will then use

the distributions of distances discovered for our approximate solutions to guide our hunt for

homology, and to produce the alignment. As we noted before, we are not claiming iSAX has
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a particular utility for such biological problems. It is merely a very large dataset for which

we can obtain ground truth by other methods [42][70].

To begin, we would like to determine some baseline which identifies the level of similarity

we should expect between two chromosomes which are not related. This could be done

analytically, or with experiments on synthetic DNA. As we happen to known from external

sources that the macaque chromosome 19 is unrelated to our target human chromosome 2,

we will use that.

We converted human chromosome 2 to time series in the manner described in Section

5.6 and down sampled the time series by 4. Non-zero subsequences of length 1024 were

extracted using a sliding window and indexed. From a total of 242,951,149 base pairs,

59,444,792 time series subsequences were indexed.

We then converted the macaque chromosome 19 to DNA time series using the same

process and used each subsequence of 1024 as a query. Because DNA subsequences may

have become been inverted some time in the last 25 million years (ie ..TTGCAT.. becomes

..TCAGTT..) we search for each time series, and its mirror image. In Figure 2.22 we show

the distribution of the Euclidean distance values from subsequences in macaque chromosome

19 and their approximate nearest neighbor in Human chromosome 2.

This distribution tells us that the average distance between nearest neighbors is approxi-

mately 1,774 with a standard deviation of 301. There are very few distances less than 1,000

or greater than 4,000. If we repeat the experiment with randomly generated data or other non

related DNA sequences we find nearly identical distributions is every case. We therefore can
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Figure 2.22: The distribution of the Euclidean distances from subsequences in Rhesus Mon-

key chromosome 19 to their approximate nearest neighbor in Human chromosome 2. The

distribution is normalized such that the area under the curve is one
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Figure 2.23: The distribution of the Euclidean distances from subsequences in Rhesus Mon-

key chromosomes 19 and 12, to their approximate nearest neighbor in Human chromosome

2

use this distribution as a baseline for a systematic search through the remaining 19 macaque

chromosomes. While we could use a statistical test such as the Kullback-Leibler divergence

[31], we simply visually inspected the distributions. Two of the monkey chromosomes, 12

and 13, produce significantly different distributions. In Figure 2.23 we show a comparison

of the distributions for macaque chromosome 19 and 12.

Because both chromosome 12 and 13 from the macaque have a suspicious divergence

from the expected distribution, we can create a dot plot to see which sequences in the monkey,

map closely to which sequences in the human. We need to set some threshold, because

we are not interested in knowing where the nearest neighbor to a subsequence is, if that

nearest neighbor happens to be relatively far away. We observe from Figure 2.23 that the two
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Figure 2.24: A dot plot showing the alignment of Human chromosome 2 with both chromo-

some 12 and 13 of the Rhesus Monkey. Each dot represents a location where a subsequence

in the monkey (row) is less than 1,250 from a subsequence in a human (column)

distributions start to diverge (reading right to left) at about 1,250, so we use that value as the

cutoff distance for dot plot construction.

This figure suggests that essentially all of human chromosome 2 can be explained by a

fusion of Rhesus Monkey chromosome 12 and 13 (or vice versa). Of course, it has been
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suspected that that human chromosome 2 is a recent species-specific fusion of two ancestral

primate chromosomes for several decades [42]. More recent studies [70] have confirmed that

the mapping above is correct, and the section that the rhesus macaque 12 and 13 maps to are

called 2q and 2p, respectively.

In total, we performed 119,400 approximate queries taking slightly little over 4 hours,

whereas a naive method of scanning subsequences of one chromosome across the other would

result in nearly 119,400 * 59,444,792 distance computations, requiring well over a year, a

duration which is clearly unacceptable for such applications.

2.6 Concluding Remarks

In this chapter, we have introduced iSAX, a representation that supports indexing of massive

datasets, and have shown it can index up to one hundred million time series. We have also

provided examples of algorithms that use a combination of approximate and exact search to

ultimately produce exact results on massive datasets. Other time series data mining algo-

rithms such as motif discovery, density estimation, anomaly discovery, joins, and clustering

can similarly take advantage of combining both types of search, especially when the data is

disk resident.
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Chapter 3

Towards Indexing and Mining One

Billion Time Series

3.1 Introduction

In this chapter, we investigate extensions to the techniques presented in Chapter 2 [77][78] in

order to improve index construction time, a property identified as a bottleneck which limits

the size of datasets that can be indexed. Note that the material presented here is joint work

with the authors in [18]. We outline the theoretical contributions of [18] in Section 3.2

and Section 3.3, detail the improvements in scalability with experimental evaluation, and

demonstrate the diverse applicability of our approach by conducting data mining exercises

on entomology, DNA, and web-scale image collections.
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3.2 Bulk Loading Massive Time Series Datasets

We recognized early on that the lack of a provision for facilitating the fast indexing of large

existing datasets may be a limitation. This concern was later confirmed through our dis-

cussions with those in industry interested in utilizing iSAX. In this section, we address this

limitation by outlining a new methodology for bulk loading time series. Notably, this al-

gorithm improves the scalability of index construction by reducing the total number of disk

page accesses as well as the number of random disk page accesses.

Prior implementations [77] of time series indexing (utilizing the iSAX representation),

had constructed indexes via iterative insertion. While this is a useful mechanism to peri-

odically update an index, it is inefficient for initial construction over a large dataset. The

bottleneck mentioned previously, results from the observation that in iterative insertion, each

time series is inserted in sequence and is potentially flushed to disk prior to the insertion of

the next series. Given that no assumption is made regarding a spatial similarity ordering of

time series (which may guarantee a clustering of entries and favorable disk locality), one can

see that repeated iterative insertion will likely result in high random I/O access.

The approach introduced in [18] is to reduce the number of disk I/O operations during

index construction by materializing distinct sub-trees of the index, one at a time, instead of

building the index entirely at once. This change in construction methodology minimizes the

number of split operations and can achieve streamlining of disk accesses so that the fraction

of disk accesses which are sequential is significantly increased.
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The algorithm used in [18] is a bulk loading technique which utilizes two buffers which

reside in main memory: First Buffer Layer (FBL) and Leaf Buffer Layer (LBL). The FBL

clusters time series which will end up at the same sub-tree and the LBL buffers time series

which correspond to the same terminal node and flushes them. Essentially, the algorithm is

a repetition of two phases of execution. During the initial phase, time series are read and

inserted into the FBL. At the next phase, the time series are pushed down to the LBL (each

sub-tree sequentially) and the internal structure of the index materialized. When a sub-tree in

FBL has been pushed down to LBL, those corresponding LBL entries can be flushed to disk.

This algorithm then repeats until completion of index construction. The authors refer to an

index constructed in this manner as an i2SAX index. Readers can refer to [18] for a more

in-depth technical description.

3.3 Updating Index Node Splitting Policy

Another improvement implemented in [18] is an update to the round robin splitting policy

originally employed in [77]. Recall that the splitting policy is used when a terminal node

exceeds the user specified threshold and defines the dimension for which the cardinality

for evaluation will increase. Though round robin is a simple yet effective policy for many

datasets, occasionally we will find splits where round robin results in a poor skew of time

series. This causes poor node occupancy and will increase the overall structure and size of
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the index. To mitigate this, we formulated a new node splitting policy where a more balanced

distribution of time series is obtained.

In order to obtain the optimal split for a given node, we must examine each dimension and

all possible cardinalities for each time series in the node. This is a cost which is prohibitively

expensive. A low cost heuristic is to examine for each dimension, the distribution of symbols

at the highest cardinality. Then, select the dimension which will result in a more probable

even distribution as the dimension to split. The cost for this new split policy is marginal as

all necessary statistics can be kept at insertion. See Algorithm 6 for the new node splitting

policy from [18].

Algorithm 6 New Node Splitting Policy( )

1: mean[ ]← this.GetDimensionMeans( )

2: std [ ]← this.GetDimensionStds( )

3: dimToSplit← Initalize( )

4:

5: for each d in dimensions do

6: b← GetIncreasedCardinalityBreakPoint(d)

7: if b within mean[d]±3 std[d] then

8: if mean[d] closer to b than dimToSplit then

9: dimToSplit← d
10: end if

11: end if

12: end for

13: IncreaseCardinality(dimToSplit)

The idea behind this algorithm is to use a combination of the mean and standard deviation

to estimate the distribution of breakpoints (at the highest cardinality for each dimension).

Then identify dimensions with entries most likely to be split at the next increase in cardinality,

favoring dimensions with means closer to the breakpoint (for a more even spread).
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3.4 Experimental Evaluation

Experimental evaluation was conducted on an Intel Xeon E5504 with 24GB of main memory,

2TB Seagate Barracuda LP (5900 RPM) hard disks, and running Windows Vista Business

SP2. For an experimental case study, we also used an AMD Athlon 64 X2 5600+ with 3GB

of memory, 400 GB Seagate Barracuda 7200.10 hard disk, and running Windows XP SP2

(with /3GB switch). Experiments with the latter setup are explicitly noted. All code is in C#

and targets the .NET 3.5 Framework.

Our experiments are divided into the following sections: First we examine index con-

struction properties such as disk accesses, wall time, and index size. Next, we consider three

data mining problems from a diverse set of domains.

3.4.1 Index Scalability

To ascertain the scalability of the i2SAX index, we evaluate the effect of the node splitting

and bulk loading algorithms on index construction. Evaluation was conducted on random

walk datasets from 1 to 100 million time series of length 256. Results were reported over

an average of 10 runs and results were consistent across varying th levels. We compare the

construction of the i2SAX index with the original iSAX index and note the following [18]:

• Index size (in terms of number of nodes) on average was reduced by 34%.

• Index construction time (wall clock) on average was reduced by 30%.

• Terminal node occupancy on average was increased by 54%.
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• Minimized the number of random I/O accesses: 99.5% of disk accesses were sequen-

tial.

• As an exercise in scalability, we were able to index one billion time series in just

slightly over two weeks.

3.4.2 A Case Study in Entomology

As bulk loading allows us to easily scale to datasets much larger than those considered in

Chapter 2, we will revisit our previously discussed case study regarding pest insects.

Many insects such as aphids, thrips and leafhoppers feed on plants by puncturing their

membranes and sucking up the contents. This behavior can spread disease from plant to

plant causing discoloration, deformities, and reduced marketability of the crop. It is difficult

to overstate the damage these insects can do. For example, just one of the many hundreds of

species of Cicadellidae (Commonly known as Sharpshooters or Leafhoppers), Homalodisca

coagulate first appeared in California around 1993, and has since done several billions of

dollars of damage and now threatens California’s $34 billion dollar grape industry [4]. In

order to understand and ultimately control these harmful behaviors, entomologists glue a

thin wire to the insect’s back, and then measure fluctuations in voltage level to create an

Electrical Penetration Graph (EPG). Figure 3.1 shows the basic setup.

This simple apparatus has allowed entomologists to make significant progress on the

problem. As USDA scientist Dr. Elaine Backus recently noted, “Much of what is known

today about hemipteran feeding biology .. has been learned via use of EPG technology” [9].
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However, in spite of the current successes, there is a bottleneck in progress due to the huge

volumes of data produced. For example, a single experiment can last up to 24 hours. At

100 Hz that will produce a time series with approximately eight-million data points. Ento-

mologists frequently need to search massive archives for known patterns to confirm/refute

hypotheses. For example, a recent paper asks if the chemical thiamethoxam causes a re-

duction in xylem feeding behavior by a Bird Cherry-Oat Aphid (Rhopalosiphum padi). The

obvious way to test such a hypothesis is to collect EPG data of both a treatment group and a

control group and search for occurrences of the (well known) xylem feeding pattern.

Recently, the Entomology Department at the University of California, Riverside asked us

to create an efficient tool for mining massive EPG collections. We have used the techniques

introduced in this work as a beta version of such a tool, which will eventually be made freely

available to the entomological community. Let us consider a typical scenario in which the

tool may be used. In Figure 3.2 we see a copy of Fig. 2 from [51]. This time series shows

a behavior observed in a Western Flower Thrip (Frankliniella occidentalis), an insect which

is a vector for more than 20 plant diseases. The Beet Leafhopper (Circulifer tenellus) is not

particularly closely related to thrips, but it also feeds on plants by puncturing their membranes

and sucking sap. Does the Beet Leafhopper exhibit similar behavior?

To answer this question we indexed 20,005,622 subsequences of length 176 from the Beet

Leafhopper EPG data, which had been collected in 60 individual experiments conducted from

2007 to 2009. We used a th size of 2000 and w of 8 to construct an index on our AMD ma-

chine. Even with fewer resources, it took only 6.25 hours to build the index, which occupied
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Figure 3.1: A schematic diagram showing an EPG apparatus used to record insect behavior
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Figure 3.2: An EPG insect behavior derived from a subset of Fig. 2 from [51]. An idealized

version of the observed behavior created by us is shown with a bold blue line
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Figure 3.3: Query time series and its approximate nearest neighbor

a total of 26.6 gigabyte on disk space. As shown in Figure 3.2, we used the simple idealized

version as a query to our database. Figure 3.3(left) shows the result of an approximate search,

which takes less than 0.5 seconds to answer.

This result suggests that although the insect species is different (recall we queried a Thrip

behavior on Beet Leafhopper database) the behaviors are similar, differing only in the in-

sertion of stylet behavior. As a sanity check we also queried the database with an idealized

version of a Beet Leafhopper behavior, the so-called “Waveform A”, in this case, Figure

3.3(right) shows that the match is much closer.

3.4.3 Mining Massive DNA Sequences

The DNA of the Rhesus Macaque (Macaca mulatta) genome consists of nearly 3 billion

base pairs (approximately 550,000 pages of text if written out in the format of this paper),

beginning with TAACCCTAACCCTAA... We converted this sequence into a time series

using the simple algorithm shown in Algorithm 4.
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Figure 3.4: An example of DNA converted into time series

Figure 3.4 shows an example of the time series created from the DNA of monkey chro-

mosome 3, together with the human chromosome 21. Note that they are not globally similar,

but a subsection of each is locally similar if we flip the direction of one sequence. This figure

suggests what is already known. Since the most recent common ancestor of the macaque

and humans lived only about 25 million years ago, we can expect their DNA to be relatively

similar. However, since humans have twenty-three chromosomes and the monkey has only

twenty-one, the mapping of chromosomes cannot be one-to-one; some chromosomes must

be mapped in a jigsaw fashion. But what is the mapping?

To answer this question, we indexed the entire time series corresponding to the macaque

DNA (non-sex related). We used a subsequence length of 16,000, down-sampled by a factor

of 25 to mitigate “noise”. We then used a sliding window with a step size of 5 to extract a

total of 21,612,319 subsequences. To index, we used a th size of 1000 and w of 10. In total,

it took 9 hours to build the index.

We obtained queries from the human genome in the same manner and queried with both

the original and transposed versions. For each human chromosome, we issued an average of

674 approximate searches (recall that chromosomes have differing lengths) and recorded the
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Figure 3.5: The cells represent potential mappings between the Macaque and Human

Genomes. The darker the cell, the more often the nearest neighbor of a time series taken

from a particular human chromosome had a nearest neighbor from a particular Macaque

chromosome (the smallest chromosomes including the sex chromosomes are omitted)

ten nearest neighbors. In Figure 3.5 we summarize where the top ten neighbors are found,

by creating a grid and coloring the cell with an appropriate shade of gray. For example, a

pure white cell at location {i, j} means that no query from human chromosomei mapped to

monkey chromosomej and a pure black cell at location {i, j} means that all ten queries from

human chromosomei mapped to monkey chromosomej. This figure has some unambiguously

dark cells, telling us for example that Human 2 is homologous (“equivalent”) to Macaque

3. In addition, in some cases the cells in the figure suggest that two human chromosomes

may match to a single Macaque chromosome. For example, in the column corresponding

to Macaque 7, the two darkest cells are rows 14 and 15. The first paper to publish a ge-

netic linkage map of the two primates tells us “macaque7 is homologous to human14 and
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human15” [70]. More generally, this correspondence matrix is at least 95% in agreement

with the current agreement on homology between these two primates [70]. This experiment

demonstrates that we can easily index tens of millions of subsequences in less than a day,

answer 13,480 queries in 2.5 hours, and produce objectively correct results.

3.4.4 Mining Massive Image Collections

While there are hundreds of possible distance measures proposed for images, a recent paper

has shown that simple Euclidean distance between color histograms is very effective if the

training dataset is very large [81]. More generally, there is an increasing understanding that

having lots of data without a model can often beat smaller datasets, even if they are accom-

panied by a sophisticated model [35][5]. Indeed, Peter Norvig, Google’s research director,

recently noted that “All models are wrong, and increasingly you can succeed without them”.

The ideas introduced in this work offer us a chance to test this theory.

We indexed the color histograms of the famous MIT collection of 80 million low-resolution

images [81]. As shown in Figure 3.6, these color histograms can be considered pseudo “time

series”. At indexing time we omitted very simple images (e.g. those that are comprised of

only one or two colors, etc.). In total, our index contains the color histograms of 69,161,598

images.

We made color histograms of length 256, and used a th size of 2000 and w of 8. It

took 12.3 hours to build the index, which is inconsequential compared to the nine months

of twenty-four hours a day crawling it took to collect it [81]. The data occupies a total of
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Figure 3.6: top left) A detail of The Son of Man by René Magritte, which we used as a query

to our index. top center) The best match returned. top right) The similarity of the two images

in RGB histogram space. bottom left) A detail of The Scream by Edvard Munch, which we

used as a query. bottom center) The best match returned. bottom right) The similarity seen

in RGB space

133 gigabytes of disk space. The latter figure only includes the space for the time series, the

images themselves required an extra of 227 gigabytes.

Does this random sampling of the webs images contain examples of iconic art images? To

test this, we found examples of two famous images using Google image search and converted

the image to color histograms of length 256. We then used these to search our collection with

an approximate search. Each search took less than a second, and the results can be seen in

Figure 3.6. Note that we are not claiming that Euclidean distance between color histograms

is the best measure for image similarity. This experiment simply demonstrates the scalability

and generality of our ideas, as a side effect of demonstrating the unreasonable effectiveness

of (massive amounts of) data [35].
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3.5 Concluding Remarks

In this chapter we have introduced joint work with the authors in [18]. We describe i2SAX,

an index structure specifically designed for ultra-large collections of time series, and propose

new mechanisms and algorithms for efficient bulk loading and node splitting. We exper-

imentally validate the proposed algorithms, expanding upon the scale of experiments first

conducted in Chapter 2; including the first published experiments to consider datasets of

sizes up to one billion objects. We have also demonstrated data mining applications on a

wide range of diverse datasets, from web-scale images to insect data, further showing the

general applicability of our work.
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Chapter 4

Anytime Nearest Neighbor Classification

4.1 Introduction

The techniques presented in Chapter 2 and Chapter 3 can be used to expedite similarity

search in large static datasets. The results of similarity search can then be used in data

mining applications such as nearest neighbor classification. In this chapter, we continue to

examine data mining techniques for classification, though not in the context of large static

datasets. We now consider the scenario where available computation time may be highly

variable, such as exhibited in data streams.

Classification of data arriving from a data stream is often more difficult than the batch

situation because the algorithm must operate in a time sensitive and computationally con-

strained environment. Traditional algorithms are often unable to provide satisfactory perfor-

mance while supporting the highly variable arrival rates that typify such applications. For
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example, a single data stream may produce items to be classified at a rate that can range from

milliseconds to minutes [83]. Traditional classification algorithms typically lack the mecha-

nism for providing an intermediate result prior to completion, and contract-based algorithms

require the time duration prior to execution [92]. In such contexts, anytime algorithms have

been found to be exceptionally useful, and have recently been the subject of extensive re-

search efforts [27][40][50][56][52][83][88].

Anytime algorithms are algorithms which are amenable to variable response times, by

exchanging the quality of response as a function of time [32][92]. In the case of classification,

quality is measured by the probability of correct classification. More concretely, an anytime

algorithm, after a short period of initialization, can always be interrupted to return some

intermediate result. This flexibility in response time allows anytime algorithms to be used

with great success in real-world environments with variable constraints [27][41][74].

For anytime classification, one well established technique is the anytime nearest neighbor

classification algorithm [83]. This algorithm retains the strong points of the nearest neighbor

algorithm, its simplicity and generality 1, while greatly mitigating the problem associated

with the linear time complexity at classification time, a function of its “lazy” behavior.

Previous techniques for improving anytime classification have generally been concerned

with optimizing the probability of correctly classifying individual objects. In this chapter,

we show that substantial improvement in overall classification accuracy performance can be

1i.e. the ability to use any distance measure, the ability weight features, etc.
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achieved if the optimization is performed relative not to each individual object, but rather to

a (possibly quite small) set of objects [79].

Our technique is a generalized framework which utilizes a scoring function that estimates

the intermediate result quality of an object being processed. Here, the quality is an estimate

that we have the correct class label for the object. Objects with a high initial quality are

unlikely to significantly improve their quality, even with additional computation time. In

contrast, objects with poor initial quality have much greater room for improvement, and are

deserving of more resources. Using this intuition, our framework intelligently and dynam-

ically schedules computational resources for each object. We show that the lack of such

inter-object consideration would otherwise result in poor allocation of computation time and

lead to reduced performance. As expressed by the well-known idiom, we would be polish-

ing the wrong apple if we allocated resources to an instance whose class label is unlikely to

change, even with more resources.

Our methodology is invariant to object arrival behavior, and perhaps unintuitively, it is

notable in that even with a uniform object arrival rate we are capable of attaining a marked

improvement in classification performance. This is in contrast to the usual motivation for

anytime algorithms, which are typically presented to mitigate the effects of variable object

arrival behavior [40][50][83][88].

The remaining sections of this chapter are organized as follows: In Section 4.2, we pro-

vide background on anytime algorithms and review related work on classification techniques.

We then present an overview of the anytime nearest neighbor classifier in Section 4.3. Sec-
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tion 4.4 motivates and introduces techniques for improving classification accuracy by using

a scoring function to measure intermediate result quality and performing computational re-

source allocation. Section 4.5 provides additional details regarding the selection and for-

mulation of a scoring function. In Section 4.6 we verify the utility of our framework with

experimental evaluation conducted on a wide range of diverse datasets. Lastly, Section 4.7

offers some discussion and provides a conclusion to our work.

4.2 Background and Related Work

Algorithms are considered anytime if they exhibit specific characteristics [32][92], notably:

• After a short period of initialization, the algorithm becomes interruptible. That is, an

intermediate result can be returned at any time up to completion.

• The quality of this result is measurable and improves with additional computation time.

• The change in quality is typically characterized by diminishing returns, with the largest

gains found in the initial stages of computation.

• An interrupted execution of the algorithm can also be resumed for additional refine-

ment without significant overhead.

Figure 4.1 illustrates the prototypical tradeoff between result quality and computation

time in an anytime algorithm. Such flexibility is advantageous when available computation

time is not known a priori (e.g. in data streams).
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Figure 4.1: Anytime algorithms are interruptible after initialization. This plot shows the

increase in result quality with additional computation time

Due to their utility in real-world settings, anytime algorithms have been extensively stud-

ied [37] and have found application in a number of diverse domains. Applications range from

path planning in real time strategy games [15] to the clustering of time series [56]. Significant

work has also been done to adapt or view [71] well established machine learning algorithms

under the anytime framework. Examples include Bayesian networks [41], decision trees [33],

nearest neighbors [83], and inductive logic programming [57].

For anytime nearest neighbor classification of objects, performance has been shown to be

improved by reordering the training set. One technique for generating such an ordering is

by repeatedly moving the worst exemplar to the end of the list so that the most characteristic

exemplars are examined first [83] [85].

When classifying objects from a data stream it may not be necessary or advantageous to

compute classifications serially, where the available computation time for each object is the

interarrival time between itself and the next successive object. A more general methodology

is to separate the direct relationship between arrival rate and object computation time. In-

88



stead, the available computation time is dictated by some external variable. This approach is

less constrained and allows for the concurrent processing of more than one object. For exam-

ple, in real-world monitoring scenarios, a typical query may be: “Monitor object-stream

X and event-stream Y (let λX , λY be the arrival rates for X and Y , respectively, where

λX >> λY ), classify objects arriving in X, and return their classification upon the next

event in Y.”

Note that if the object processing strategy is serial, then simply optimizing the classi-

fication of each object individually is clearly the optimal policy. However, if objects are

processed concurrently, then it is possible that we can do much better than simply optimiz-

ing each object classification in isolation [40][52]. This follows from the observation that

in virtually any set of objects, the change in result quality with additional computation time

will likely vary greatly between each object. To obtain the greatest increase in performance,

we simply need a way to estimate and then process the object(s) that can benefit the most

from additional computation. While this appears to be a “chicken-and-egg” paradox (since

during classification, we obviously don’t know if we have the true class label), as we shall

see, at least in the case of the nearest neighbor algorithm, that we can cheaply obtain an

approximation of how likely we have the correct label, a confidence measure.

In this work, we apply this intuition to present a general framework which can be used

to increase the overall performance in data stream classification. Our method uses a “con-

fidence” scoring function to estimate the quality of intermediate results and assigns com-

putation time to objects with the lowest classification confidence. We demonstrate in our
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experimental evaluation that once we have a reasonably accurate scoring function, we can

improve overall classification performance. Note that classification remains under anytime

conditions and that the end times for objects are never known a priori.

We have chosen to explore our observations with the nearest neighbor algorithm. The

nearest neighbor algorithm has proven to be one of the most frequently deployed classifiers,

with accuracy which is competitive with other techniques [83]. The nearest neighbor al-

gorithm has the advantage of being non-parametric, capable of handling a large number of

classes, and easily adaptable to datasets which are dynamically changed or updated without

retraining or overfitting. Its primary disadvantage is the linear time evaluation of training

exemplars, a property which can be mitigated by indexing the data (when applicable), or

anytime algorithms such as the one presented in [83]. While the work in [83] allows the

algorithm to be used in streams where one object may arrive before the current object has

completed processing, it does not leverage the idea of varying computational resources ac-

cording to result quality when classifying a set of concurrent objects.

4.3 Anytime Nearest Neighbor Classification

The nearest neighbor algorithm, well known for its utility and range of applicability, is easily

extended to fit under the anytime framework. This section presents a review of the anytime

nearest neighbor classification (ANNC) algorithm [83]. In Section 4.4, we will discuss how

to generalize ANNC for concurrent classification.
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Table 4.1: List of Notation
Name Description

q An object to classify. Contains the following fields:

q.pos Current training set position

q.class Current classification label

q.dist Current nearest neighbor distance

q.stopped Flag denoting user stoppage

Q A set of objects to classify

Qi Qi ∈ Q. Equivalent to q above

Q′ A set of objects to classify, which are concurrent and in

memory

D The set of training objects

Di Di ∈ D
Di.class The class label of this object

M Number of objects which can be buffered in memory

NumClasses(D) Returns the number of unique class labels represented

within training set D
ScoreFcn(q) A function that returns a score which estimates the interme-

diate result quality of object q
Distance( , ) A context appropriate distance measure

For clarity, the notation used in the following sections is first presented in Table 4.1.

Given an object to classify, q, and a set of training instances, D, the ANNC algorithm

finds the entry Di in D which minimizes Distance(q, Dj). That is:

∀Dj ∈ D, Distance(q, Di) ≤ Distance(q, Dj)

The returned classification is the corresponding class label for Di, Di.class.

Note that we have not explicitly defined the Distance measure used in ANNC. The ANNC

can use any distance measure (Lp-Norm, Hamming distance, graph edit distance, Dynamic

Time Warping, etc.) that is appropriate to a specific context (time series, strings, graphs,

91



categorical data, etc.). If only a similarity measure is available, i.e. the cosine similarity

measure, we can simply define the distance as the reciprocal of the similarity measure.

A sketch of the ANNC algorithm is shown in Algorithm 7 .

Lines 1-10 initialize q to an initial result. First, let NumClasses(D) be the number of

unique class labels in D, where the first NumClasses(D) instances of D contain exactly

one exemplar from each class label. Then, the initialization period does the following: q is

iterated over the first exemplar from each class and an initial classification is obtained and

saved as the intermediate result. While the algorithm cannot be interrupted during this period,

it must only iterate NumClasses(D) times, where NumClasses(D) ≪ |D| and thus the

time duration spent in initialization is marginal.

Following initialization, the object being classified can be stopped, then resumed at any

time leading up to the completion of training set evaluation. Lines 11-18 iterate through

the remaining training instances in D or until stopped and update the nearest neighbor for q

accordingly. q.class is then returned as the classification result for q.

The generic algorithm just presented falls under the anytime framework and achieves

increased quality of results (classification confidence) as a function of additional time.

This, in essence, is the current methodology for ANNC, introduced in [83], except that

work also suggests optimizing individual object classification by identifying heuristics for

ordering the training set entries so that the most characteristic exemplars are examined early

on. This simple idea is useful enough to have found real-world applications; for example, it

is used in a surveillance system created by Toshiba [82].
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Algorithm 7 Anytime Nearest Neighbor Classifier(q, D)

1: q.dist← +∞
2: q.class← null

3: for i← 1 to NumClasses(D) do

4: Dist← Distance(q, Di)
5: if Dist < q.dist then

6: q.dist← Dist

7: q.class← Di.class
8: end if

9: end for

10: q.pos← NumClasses(D)
11: while !q.stopped and q.pos < |D| do

12: q.pos← q.pos + 1
13: Dist← Distance(q, Dq.pos)
14: if Dist < q.dist then

15: q.dist← Dist

16: q.class← Dq.pos.class
17: end if

18: end while

19: return q.class

In this work, we adopt the complementary methodology of optimizing performance across

a set of objects. In the following sections, the motivation and advantages behind such a

method are presented and techniques for improving overall classification performance are

introduced.

4.4 Concurrent Object Evaluation

For the purpose of explanation, it was convenient to illustrate anytime classification with

regards to a single object. However, streaming data classification is more accurately exem-

plified by a sequence of objects. Given this consideration, our work examines the set of

concurrently processing objects and optimizes the scheduling of computational resources to-
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wards maximizing overall classification performance. Such evaluation is significant in that

simply optimizing individual object classification can result in poor overall computational

resource allocation and performance. For expository purposes, consider a simple example:

Suppose we have a set of objects to concurrently classify. After some period of initial

processing, in all but the most pathological cases, we would expect that this set of objects

will contain intermediate results which span some range in quality. As a simple example,

suppose we have a database of ten million objects, consisting of two classes of automobiles,

Japanese and American, and we have a pool of instances to classify: 1995 Toyota Corolla,

2000 Ford Escort, 1998 Honda Civic,..., 1957 Hudson Hornet 2 . Because the Toyota Corolla

is the bestselling car in the world, once we have examined even the first 100 objects in the

training database we are practically guaranteed to have seen several examples of Corollas.

There is, therefore, little utility in comparing it to the rest of the database. In contrast, the

Hornet is so rare, and so unlike other American cars, that it is very unlikely to have been

encountered in the first 100 items visited. Its current nearest neighbor is as likely to be

Japanese as American.

Scheduling policies which do not take into account the diversity in the set of currently

processing objects will almost certainly result in suboptimal resource allocation by schedul-

ing computation time to objects which already have excellent intermediate results (i.e. Toyota

Corollas). This is time that can be better spent on objects which may benefit most from ad-

ditional computation. However, we do not know the true class labels of the objects, and

2A rare American-made automobile.
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therefore how can we know the likelihood that the tentative label is correct? Our task re-

sembles a well observed problem found in nature, and our solution is also very similar to the

solution that has evolved in nature.

Many birds and small mammals have large broods, and the parents must allocate food

resources among them [59]. From the point of view of the parent who is trying to maximize

her (less often, “his”) reproductive success, the optimal thing to do is to feed each offspring

equally. However, birds cannot differentiate between their offspring, so they cannot use any

algorithm that requires labeling their young. If their algorithm is to feed the most aggressive

young (a literally greedy algorithm), then the next time they return with food, that aggressive

offspring, fortified by recent feeding, will be able to force itself to the front again and beg for

more food [61]. This will continue indefinitely until the weaker siblings starve 3.

The solution to this problem is that the young signal their hunger level to the parent by

the frequency of chirping. The parent’s optimal algorithm is reduced to feeding the young

that signals the greatest need. This solution is nearly universal among birds, and may have

evolved independently in different species [61].

We can see that our problem is nearly identical. We have resources (CPU time) that we

must distribute among objects that have possibly varying levels of need (i.e. varying levels of

confidence in their classification). As we shall show in the following section, our solution is

nearly identical; we simply need to have each object “signal” its need, based on an estimate

of how confident it feels about its current label. Of course, we can never know exactly the

3We know that this would happen, because it does happen in cases of brood-parasites such as the cuckoos.
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Figure 4.2: Net result quality across concurrent queries for various scheduling policies.

left) Result quality over time for two queries Q1 and Q2 (note that Q2 arrives shortly af-

ter Q1). right) Net result quality (Q1 and Q2) for various scheduling policies at evaluation

time (hatched line)

probability of an object having the correct classification; however, as we shall see in Section

4.6, a simple heuristic is sufficient to produce improvements in overall accuracy.

4.4.1 Scheduling Policies

If a data stream is sparse, then objects are processed in isolation and without interference from

other objects (in effect, complete serial processing). In such scenarios, the best performance

can be achieved by utilizing any of the previous approaches which optimize for singular

objects. However, in most data streams we can expect to encounter at some point a set of

objects which have overlapping lifetimes. Thus, given a data stream which contains a set of

Q objects distributed over the duration of the stream, at any given time within the lifetime of

the data stream, there exists some subset, Q′ of Q, consisting of |Q′| number of objects being

classified, |Q| ≥ |Q′| ≥ 0. If the number of objects is neither zero nor singular (|Q′| > 1),

and because only one object may be processed at a time, what is the scheduling approach

that attains the best overall performance over Q′?
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Recall that the end time of each object is never known a priori. Consequently, it is not pos-

sible to identify a global optimum, over Q, beforehand. However, we can optimize locally,

over Q′, to improve performance. Let us first introduce an illustrative example, consisting

of two objects Q1 and Q2, Q′ = {Q1, Q2}. Assume Q2 arrives shortly after Q1 and that the

quality of result as a function of computation time for each of the objects is known (as shown

in Figure 4.2 left).

One scheduling technique is the sequential or serial scheduling of objects. That is, we

classify each object, Qi, using the ANNC algorithm described in Section 4.3 and return

a response when complete or upon the next arriving object. Under serial scheduling, Q1

is stopped prematurely as a result of Q2’s arrival. From the result quality over time plot

in Figure 4.2 left we can see that Q2 obtains a high quality result immediately following

initialization, whereas Q1 requires additional computation time to reach a higher level in

quality. Due to the sequential nature of this scheduling algorithm, a clear suboptimal result is

obtained (see Serial Scheduling Policy in Figure 4.2 right. The bulk of computation time is

devoted to Q2, resulting in a marginal improvement in net quality. Notice that a much larger

increase in overall quality could have been achieved by continuing to schedule Q1 even after

the arrival of Q2.

Another scheduling policy is to divide computation time equally among concurrently

processing objects in a round robin fashion. The result shown in Figure 4.2 right is an im-

provement over serial scheduling; however, the intuition established in the previous solution
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is as follows: since Q2 is able to obtain a high quality result quickly and Q1’s quality remains

poor, computation time is still best spent on classifying Q1.

Let us now see how we can achieve even better results than round robin scheduling.

Our intuition dictates that we should refrain from wasting computational resources on an

object when there is the existence of another object whose quality is lower. Observe that

such a scheme can be achieved if we have a scoring function which returns an indicator

of intermediate result quality per object. Then the scheduling policy is simply to schedule

the object with the lowest score. For example, if we use the plots in Figure 4.2 left as our

scoring mechanism and schedule the computation accordingly, the net result quality is shown

in Figure 4.2 right and is clearly the best of the three presented techniques.

While it is impossible to have prior knowledge which gives the exact change in quality

over time, the score scheduled technique remains highly effective if scoring functions which

are a close estimator of result quality exists. We leave the discussion of scoring functions to

a later section; first, the score scheduled algorithm is presented.

4.4.2 Batch Evaluation

To introduce the use of a scoring function, we first consider the slightly simplified task of

classifying a set of objects in batch fashion. In the next section, extensions necessary for

a streaming environment will be presented. The batch score scheduled algorithm is shown

in Algorithm 10. Note that the segments of code devoted to the initialization and updating
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of objects have been summarized in Algorithm 8 (Initalize) and Algorithm 9 (Update)

respectively.

The batch algorithm begins by initializing each object in the input set (Lines 1-3). A

priority queue containing the entire set of objects is then created (Line 4). The priority queue

ordering is dictated by the scoring function, ScoreFcn which provides an estimate of the

quality of an object’s intermediate result. At each iteration, the object with the lowest score

(lowest classification confidence) is scheduled for computation and updated (Lines 5-11).

Computational time for initialization is O(CNumclasses(D)) per query, with C as the

cost per Distance( , ) invocation. The priority queue is initialized in O(S|Q|) time and

the cost for each iteration of the score scheduled computation is at most O(log|Q′|) to

RemoveMin( ) and O(C + S + log|Q′|) for the re-insertion/update, given that Q′ is the

number of currently processing queries, S is the cost per ScoreFcn( ) invocation, when uti-

lizing a standard heap-based priority queue. We assume that objects can be asynchronously

stopped and can be lazily removed from the priority queue or in the case with limited mem-

ory, purged at a cost of O(log|Q′|).

Note that the number of scheduling iterations can be significantly reduced by simply

tracking the confidence score of the next minimum item in the queue, T , and performing

computations on the current object until stopped or its confidence score exceeds T . Another

technique is to increase the resources allocated per iteration.
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Algorithm 8 Initializing Object Classification (q, D)

1: q.dist← +∞
2: q.class← null
3: for i← 1 to NumClasses(D) do

4: Dist← Distance(q, Di)
5: if Dist < q.dist then

6: q.dist← Dist

7: q.class← Di.class
8: end if

9: end for

10: q.pos← NumClasses(D)

Algorithm 9 Updating Object Classification (q, D)

1: if !q.stopped then

2: q.pos← q.pos + 1
3: Dist← Distance(q, Dq.pos)
4: if Dist < q.dist then

5: q.dist← Dist

6: q.class← Dq.pos.class
7: end if

8: end if

Algorithm 10 Batch Score Scheduled Classifier (Q, D, ScoreFcn)

1: for i← 1 to |Q| do

2: Initalize(Qi, D)

3: end for

4: PriorityQueueQueue(Q, ScoreFcn)
5: while Queue.Size > 0 do

6: q ← Queue.RemoveMin( )
7: Update(q, D)
8: if !q.stopped and q.pos < |D| then

9: Queue.Add(q)
10: end if

11: end while
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4.4.3 Streaming Evaluation

Extensions to the batch algorithm are necessary to make the score scheduled algorithm suit-

able for a streaming context. More concretely, we must incorporate the consideration of

the online arrival of objects and a finite memory for buffering of concurrent objects. Our

complete framework is presented in Algorithm 11.

In Line 1, we initialize an empty priority queue and set the ordering of objects to be

dictated by the scoring function, ScoreFcn. Line 2 examines a user updateable flag to de-

termine if this online algorithm should continue. The previous batch algorithm was able to

simply check queue size for termination; however, an empty queue is not similarly indicative

in an online, streaming environment (consider the case where bursts of queries are separated

by long interarrival times, resulting in empty queues). The algorithm then checks to see if a

new object has arrived and fetches it accordingly (Lines 3-4). Incoming objects are initialized

immediately (Line 5) and inserted into the queue (Line 9). In the case that the current queue

size plus the new object will exceed the maximum buffer size, M , the object with the largest

score, is stopped and evicted (Lines 6-8). This is the in- memory object with the highest

classification confidence. Lines 11-15 schedule the minimum scored object for processing

and are identical to the batch algorithm. The computational time is the same as the batch

algorithm, with the addition that the priority queue is empty at initialization and must also

support the RemoveMax( ) operation, which has O(log|Q′|) time complexity.
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Algorithm 11 Streaming Score Scheduled Classifier (D, ScoreFcn, M)

1: PriorityQueueQueue(ScoreFcn)
2: while ContinueClassification do

3: if NewObject then

4: q ← GetNewObject( )
5: Initalize(q)
6: if Queue.Size > M − 1 then

7: Queue.RemoveMax( )
8: end if

9: Queue.Add(q)
10: else

11: q ← Queue.RemoveMin( )
12: Update(q, D)
13: if !q.stopped and q.pos < |D| then

14: Queue.Add(q)
15: end if

16: end if

17: end while

4.5 Scoring Function

Recall that the scoring function estimates intermediate result quality. In classification, a

high score implies that the current classification label is unlikely to change, even if given

sufficient time to run until completion. Conversely, a low score is characteristic of an object

whose classification is likely to change.

Given that the nearest neighbor classifier seeks to find the entry in the training set with

the minimum distance, one simple scoring method is to use the current best-so-far nearest

neighbor distance as the estimate for classification confidence. The distance value is inverted
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so that higher distances correspond to lower scores:

ScoreBsfDistance(q) = −min(Distance(q, Di))1 ≤ i ≤ q.pos

= −q.dist

Note that we are not claiming that this scoring method is the optimal one; our claim is

merely that it is empirically successful for many datasets. The framework is agnostic to the

scoring method, and a user with context specific knowledge can formulate and tune a custom

scoring function accordingly.

For comparative purposes, we will use the round robin scheduling policy as a com-

petitive baseline. As shown by the example illustrated in Figure 4.2, round robin can of-

fer a significant improvement over serial scheduling. Furthermore, and in contrast to the

ScoreBsfDistance method, round robin has the advantage of being starvation free. This prop-

erty can mitigate the adverse effects of outliers and prevent otherwise a potential monopo-

lization of computational resources.

4.6 Experimental Results

In this section, we examine the utility of our score scheduled anytime nearest neighbor clas-

sifier by conducting experimental evaluation of a wide range of diverse classification datasets

[8]. A list of the datasets used in our experiments and their attributes are shown in Table 7.
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Table 4.2: Datasets used for experimental evaluation

Name Classes Attributes Instances

Two Pattern 4 128 5,000

AIBO Robot 2 100 12,100

Gun 2 150 200

Face 16 131 2,231

Leaf 6 150 442

CBF 3 128 1,000

Moth 35 Image (∼500x800) 772

JF 2 2 20,000

Letter 26 16 20,000

Pen Digits 10 16 10,992

Ionosphere 2 32 351

For all datasets, we obtained testing and training splits using 10-fold cross validation.

The training exemplar order for each fold is randomly permuted and all features are used.

Note that the training set invariant, where one exemplar from each class is encountered first,

is preserved.

For the distance function we use the Euclidean distance.

While Euclidean distance may not be the optimal distance measure for every dataset, it

has been shown to be competitive across many domains [26]. As our primary objective is

simply to show the improvement as a result of using score scheduling to allocate computa-

tional resources, the selection of Euclidean distance as the distance measure is appropriate.

4.6.1 Classification of Streaming Data

To evaluate the utility of score scheduled classification, we simulate the classification of data

streams with varying rates of arrival. Our experimental data stream exhibits the characteristic

of constant or uniform arrival between successive objects, and the exact interarrival time

104



between each object is modeled as the number of training set exemplars (|D|) which can be

evaluated:

InterArrivalT ime(r) = ⌊|D|r⌋ 0.1 ≤ r ≤ 1

The arrival rate is modeled as a function of |D| on an account of its generality across all

datasets. This is in contrast to concrete numerical values (e.g. the data stream operates at

100Hz) which may not always be applicable or meaningful (due to the wide variability in

dataset characteristics: number of classes, feature space, exemplars available).

Objects from the testing set, Q, enter the data stream in accordance with the interarrival

time until exhausted. For r = 1, the interarrival time between successive objects is exactly

the time needed to evaluate the entire training set and thus is equivalent to complete serial

classification. Our experiment concludes when mean interarrival time has elapsed following

the arrival of the last object from the test set.

Classification accuracy is computed from the predicted test labels and the true test labels.

Note that this experimental setup obtains classification accuracies which are dependent on

the order of arrival from the testing set. To remove such bias, we average the classification

accuracy for each testing/training split over 10 random permutations of the testing set. For

this experiment, we assume that the cardinality of objects being concurrently classified, |Q′|,

can be accommodated by the memory buffer (M > |Q′|).

As a general rule, we expect accuracy to decrease as the arrival rate increases. This be-

havior can be attributed to the reduced available computation time on average per object for
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faster streams. However, we have occasionally observed higher accuracy with increased ar-

rival rate, beyond an expected variability. This phenomenon is often caused by non-separable

classes or the presence outliers/noisy data and resulting in a scenario where intermediate re-

sults have the correct classification but the final nearest neighbor is of a different class.

The classification accuracies from our score scheduled approach on a variety of datasets

are shown in Figure 4.3. From the results, we see that we are typically able to obtain

an increase in accuracy over the round robin baseline. This confirms our intuition that

ScoreBsfDistance is a good indicator of result quality by allocating additional computational

resources to objects which need it more.

Overall, round robin is a fairly competitive baseline. This can be expected, as prior

work [83] has shown that many datasets have query objects which follow the prototypical

result quality over time behavior depicted in Figure 4.1. That is, even evaluating just a small

portion of the training set can obtain a high quality result quickly, with additional evaluation

characterized by diminishing returns.

4.6.2 Effects of Constrained Memory on Classification Accuracy

Performance degradation can occur when objects are stopped prematurely and evicted from

the buffer as a result of memory constraints. As the score for each object is an estimate of

how confident we are about its class label, it is a principled way of determining the eviction

policy when encountering memory constraints. That is, we simply evict the object with the

highest confidence score. For the round robin baseline, a randomly chosen object is evicted.
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Figure 4.3: Classification accuracy of score scheduled anytime classifier on constant data

streams with varying rates of arrival
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We conducted experiments which varied the available memory buffer size, M , from |Q| to

0.05 ∗ |Q|. From the four datasets we evaluated for constant streams, the change in accuracy

was negligible. For each dataset the net change in accuracy per arrival rate was 1 percent or

less. This indicates that our methodology succeeds in evicting objects which are most likely

to have their true class label.

4.6.3 Streams with Non-Uniform Arrival

Data streams are often modeled with non-uniform interarrival times. In this experiment,

we show the accuracy of score scheduled classification on such streams. We simulate a

data stream with an arrival process which is modeled to be Poisson distributed with mean

interarrival times matching the constant streams presented in Section 4.6.1. The arrival rates

are:

λ =

{

1

⌊|D|r⌋ , 0.1 ≤ r ≤ 1

}

Figure 4.4 and Figure 4.5 shows the classification accuracy for exponentially distributed

interarrival times, computed as a function of r. As shown on the Two Pattern dataset, we

are able to obtain a definite increase in accuracy over the round robin baseline. For the Face

dataset, we see that our scheduling technique is able to improve performance until r < 0.3,

upon which there is insufficient computation time to accurately discern a meaningful and
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Figure 4.4: Classification accuracy on data streams with exponentially distributed interarrival

times
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Figure 4.5: Classification accuracy on additional datasets with with exponentially distributed

interarrival times
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Figure 4.6: left) The adult Light Brown Apple Moth is harmless to agriculture, however it’s

larval form right) causes extensive damage to several commercially important crops

differentiating confidence value. Round robin outperforms in this scenario because it is fair

for all entries in memory. Similar results can be seen across the remaining datasets.

4.6.4 A Case Study in Commercial Entomology

Several species of moths are harmful to agriculture. For example, Epiphyas postvittana,

the Light Brown Apple Moth (LBAM) have larvae that feed on leaves and buds of plants,

reducing photosynthetic rate, which in turn leads to general weakness and disfigurement.

In grapes and citrus, LBAM larvae can feed directly on the fruit, and the resulting damage

renders fruit unmarketable. The LBAM is native to Australia, but appeared in California in

2007. Since that time, the California Department of Food and Agriculture has spent $70

million on attempts to eradicate it from California. If not eradicated, it is estimated it could

cause $140 million in damage each year [1].

Of course, attempts at eradication must be very careful; many moths are important polli-

nators of plants. For example, the Yucca moth (Tegeticula maculata) is the only animal that is
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Figure 4.7: Insect classification with memory buffer constrained to four objects

the right size and shape to pollinate yucca flowers. If it is accidentally eradicated along with

the LBAM, yucca flowers would be threatened, which could further affect additional fauna.

Note that the LBAM is just one of the hundreds of insects which are known to be harmful to

agriculture, livestock, or humans.

With this in mind, several companies, including ISCA Technologies of Riverside CA, are

developing AVIDs, Automated Visual Identification Devices, which can recognize individ-

ual species or genera. Most of these systems currently just count the target insect, however

systems are being developed that selectively trap only the target insect, and release all others.

In order to be effective AVIDs must be mass produced, and therefore have limited computa-

tional resources.

Recent work has shown that it is possible to accurately classify moths using a compression-

based distance measure [19]. The distance measure is effective, but not being a metric it does

not allow an efficient indexing mechanism to make classification more tractable. Below we
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describe our initial experiments to port the compression-based distance measure to resource

limited hardware using our anytime framework.

As a preprocessing step, we first cluster the original moth data into three dominant clus-

ters to obtain more exemplars per grouping. We then simulate non-uniform insect arrival

[16] using the methodology described in Section 4.6.3. Due to resource constraints inherent

in our target environment, we set the available memory size to 5 percent of the testing set,

resulting in a memory buffer of only four objects. Our classification accuracy compared to

round robin for different arrival rates is shown in Figure 4.7. We see that the score scheduled

approach consistently outperforms round robin.

4.7 Concluding Remarks

In this chapter we introduced a framework for improving the overall accuracy of anytime

nearest neighbor classification for a set of concurrently processing objects. We have shown,

over a wide range of diverse datasets and problems that our method can achieve performance

increases by scheduling computation time to objects which need it most. For future work, we

look forward to examining more in-depth, the utility of this framework and considering the

interplay between variability in object duration, amount of concurrency, and different scoring

methods.
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Chapter 5

Conclusion

As advances in science and technology have continually increased the existence of, and capa-

bility for users to monitor, record, and examine data, data mining has become a common and

necessary toolset in order to gain additional insight on this influx of data. In this dissertation,

we studied methods which are used for overcoming the characteristic challenges of scale in

order to perform similarity search on large time series datasets.

In Chapter 2, we introduced a novel multi-resolution symbolic representation for time

series called indexable Symbolic Aggregate approXimation (iSAX). The iSAX representa-

tion allows for the indexing of time series in order to facilitate similarity search. We further

demonstrated its utility by performing experimental evaluation on a wide range of diverse

datasets and showed how exact and approximate search can be used in conjunction to expe-

dite higher level data mining operators to solve real world problems. The size of the datasets

we considered are larger than any other in the current literature and notably, our results
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confirmed the notion that even simple measures (such as the Euclidean distance) perform

exceedingly well when the training set becomes very large.

In Chapter 3, we improved indexing performance by providing a new bulk loading algo-

rithm. The index splitting policy was also modified to obtain higher node occupancy. These

improvements expedite index construction time and resulted in a more compact index struc-

ture, allowing us to demonstrate the capability to index up to one billion time series.

Another aspect of our research considered using similarity search to perform classifi-

cation under limited computation time and variable response rates. In such contexts, any-

time algorithms, amenable to variable response times by exchanging quality of response as a

function of time, have been found to be especially useful. In Chapter 4, we presented a gen-

eralized framework which utilizes a scoring function that estimates the intermediate result

quality of an object being classified. Our contribution extends existing anytime algorithms

to concurrent queries by dynamically scheduling computational resources for each object (in

accordance with its score). We showed that the lack of such inter-object consideration would

otherwise result in poor allocation of computation time and lead to reduced performance.

We believe that as the size of datasets continue to increase, the challenges and solutions

we discussed in this dissertation will remain relevant for the future. From here, there are a

number of research directions which is of interest:

• Utilizing index based similarity search as a subroutine will allow us to develop higher

level data mining algorithms such as motif discovery, discord discovery, etc. These
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applications are extremely interesting in that they build upon basic similarity search to

provide solutions for much more complicated problems.

• Most approaches for time series similarity search require the specification of an “win-

dow of interest” upon which to build upon or evaluate. However, it is not uncommon

to have patterns of interest be of widely varying lengths. In such situations, a common

approach is to perform indexing at the smallest length of interest and evaluate a candi-

date set at the longer lengths, a potentially expensive post-processing step. Mitigating

the performance drawbacks regarding this hard dependency on window length would

be invaluable.

• It is not uncommon to see a disconnect between real world data and that which is

commonly used in academia. The presence of noise and lack of standardization in real

world datasets often make it difficult to apply existing approaches meaningfully. While

it is common to brush off such consideration as a data cleaning step, we feel that data

mining approaches would have much higher adoption and utility if our techniques are

more robust to such data characteristics.
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