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Time-Space Fractional Diffusion Problems:
Existence, Decay Estimates and Blow-Up
of Solutions

Ruixin Shen, Mingqi Xiang, and Vicenţiu D. Rădulescu

Abstract. The aim of this paper is to study the following time-space fractional
diffusion problem

⎧
⎪⎨

⎪⎩

∂β
t u + (−Δ)αu + (−Δ)α∂β

t u = λf(x, u) + g(x, t) in Ω × R
+,

u(x, t) = 0 in (RN\Ω) × R
+,

u(x, 0) = u0(x) in Ω,

where Ω ⊂ R
N is a bounded domain with Lipschitz boundary, (−Δ)α is the

fractional Laplace operator with 0 < α < 1, ∂β
t is the Riemann-Liouville time

fractional derivative with 0 < β < 1, λ is a positive parameter, f : Ω × R → R

is a continuous function, and g ∈ L2(0,∞;L2(Ω)). Under natural assumptions,
the global and local existence of solutions are obtained by applying the Galerkin
method. Then, by virtue of a differential inequality technique, we give a decay
estimate of solutions. Moreover, the blow-up property of solutions is also investi-
gated.
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1. Introduction and the Main Results

Let Ω be a bounded domain in R
N (N ≥ 1) with Lipschitz boundary. We consider

the following time-space fractional problem
⎧
⎪⎨

⎪⎩

∂β
t u + (−Δ)αu + (−Δ)α∂β

t u = λf(x, u) + g(x, t) in Ω × R
+,

u(x, t) = 0 in (RN\Ω) × R
+,

u(x, 0) = u0(x) in Ω,

(1.1)
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where 0 < β,α < 1, N > 2α, λ �= 0 is a given parameter and g ∈ L2(0,∞; L2(Ω))
is a given function. We assume that the reaction f is a continuous function on
Ω × [0,∞) and f(x, ξ) = 0 for all x ∈ Ω and ξ ≤ 0. Moreover, for all ξ > 0, f
satisfies
(f1) f(x, ξ) = |ξ|p−2ξ and 2 < p ≤ 2∗

α := 2N
N−2α ,

or the following Lipschitz condition:
(f2) there exists L > 0 such that

|f(x, ξ1) − f(x, ξ2)| ≤ L|ξ1 − ξ2| for all ξ1, ξ2 ∈ R and x ∈ Ω.

Here, the order β of Riemann-Liouville fractional operator ∂β
t is defined by

∂β
t u = ∂t(J1−β(u − u(0))),

where J1−β denotes the 1 − β order Riemann-Liouville fractional integral operator
and it is given by

J1−β(u − u(0)) =
1

Γ(β)

∫ t

0

(t − τ)β−1(u(τ) − u(0))dτ.

Here Γ is the usual Gamma function. The fractional Laplace operator (−Δ)α, up
to a normalization constant, is defined by

(−Δ)αϕ(x) = 2 lim
ε→0+

∫

RN\Bε(x)

ϕ(x) − ϕ(y)
|x − y|N+2α

dy, x ∈ R
N

for all ϕ ∈ C∞
0 (RN ). Here, Bε(x) = {y ∈ R

N : |y − x| < ε}. For more properties
related to the fractional Laplacian and fractional Sobolev spaces as well as for
applications of variational methods to fractional problems, we refer to [3].

The fractional operators and related differential equations have important ap-
plications in many areas such as physics [15], mechanics chemistry, population dy-
namic [4,5], anomalous diffusion [29] and so on. Time fractional differential equations
can be used to describe some problems with memory effects. Moreover, both time
and space fractional differential equations have been exploited for anomalous diffu-
sion or dispersion where particles spread at a rate inconsistent with Brown motion,
see [9]. In the case of time fractional derivatives, particles with “memory effect”
propagates slowly, which we call anomalous subdiffusion. Different from the former,
spatial fractional diffusion equations are used to describe macroscopic transport and
usually result in superdiffusion phenomenon. So far, the works on problems involv-
ing the fractional Laplacian and its variants are quite large, here we just list a few,
see [8,10,20,21,31–34] and the references cited there.

To the best of our knowledge, until recently there has been still very little works
on deal with the existence, decay estimates and blow-up of solutions for time-space
fractional problems like (1.1). In [30], Vergara and Zacher considered the following
time fractional diffusion problem

{
∂t(k ∗ (u − u0)) − div(A(x, t)Du) = 0, t > 0, x ∈ Ω,

u = 0 t > 0.x ∈ ∂Ω,

where k ∗ (u − u0) =
∫ t

0
k(t − τ)(u(τ) − u0)dτ and k ∈ L1,loc(R+). Some useful

fundamental identities were obtained. Based on these identities, the existence and
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decay estimates of weak solutions were obtained. In particular, the decay estimates
of weak solutions were given by using the sub-supersolution method. In [17], Li et
al. studied the following time-space fractional Keller-Segel equation

C
0 Dβ

t ρ + (−Δ)
α
2 ρ + ∇ · (ρB(ρ)) = 0,

where C
0 Dβ

t denotes the Caputo derivative, B(ρ) = −sn,γ

∫

Rn
x−y

|x−y|n−γ+2 ρ(y)dy is
the Riesz potential with a singular kernel. The authors obtained the existence and
uniqueness of mild solutions. Moreover, the authors discussed the properties of the
mild solutions, such as mass conservation and blow-up behaviors. In [1], Bekkai et
al. studied the following Cauchy problem involving the Caputo derivative and the
fractional Laplacian

{
C
0 Dα

t u + (−Δ)
β
2 u = 1

Γ(1−α)

∫ t

0
(t − s)−αeu(s)ds, x ∈ R

N , t > 0,

u(x, 0) = u0(x), x ∈ R
N ,

(1.2)

N ≥ 1, 0 < α < 1, 0 < β ≤ 2. First the existence of mild solutions of (1.2) was
obatined by the Banach contraction mapping principle. Then the authors proved
that the mild solution is also the weak solution. Furthermore, the authors showed
the local weak solutions blow up in finite time by choosing suitable test function. See
also [6,23,36,39] for similar discussions of the blow-up properties of solutions. Very
recently, Fu and Zhang [11] considered the following time-space fractional Kirchhoff
problem

⎧
⎪⎨

⎪⎩

∂β
t u + M(‖u‖2

Hα
0 (Ω))(−Δ)αu = γ|u|ρu + g(x, t) in Ω × R

+,

u(x, t) = 0 in (RN\Ω) × R
+,

u(x, 0) = u0(x) in Ω,

where M : [0,∞) → [0,∞) is a continuous function. Under suitable assumptions,
the authors obtained the global existence of solutions by using the Galerkin method.
Furthermore, a decay estimate of solutions was established.

On the other hand, when α, β and s limit to 1, the Eq. (1.1) reduces to the
following equation

∂tu − Δu − Δ∂tu = λ|u|p−2u + g(x, t), ∂tu =
∂u

∂t
, (1.3)

which is called pseudo-parabolic equation. Equations like (1.3) can be used to de-
scribe many important physical processes, such as unidirectional propagation of
nonlinear, long waves [2,27], the aggregation of population [25] and semiconductors
[14]. The study of Eq. (1.3) received much more attention in the past years, see
[12,18,35].

Recently, Tuan et al. [28] studied the initial boundary value problem and
Cauchy problem of Caputo time-fractional pseudo-parabolic equations

D
α
t (u − mΔu) + (−Δ)σu = N (u), (1.4)

where D
α
t denotes the Caputo time fractional derivative. The local well-posedness

of Eq. (1.4) was established. Further, the finite time blow-up of solutions was also
obtained. In [24], Nguyen et al. considered a class of pseudoparabolic equations
with the nonlocal condition and the Caputo derivative and obtained the existence
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and uniqueness of the mild solution. In [7], Chaoui and Rezgui dealt with a time
fractional pseudoparabolic equation with fractional integral condition. By the Rothe
time discretization scheme, the existence of weak solution was obtained. Moreover,
the uniqueness of weak solution as well as some regularity results were obtained.

Inspired by the above papers, we discuss in this work the existence, unique-
ness, decay estimates of weak solutions and solutions that blow up in finite time for
problem (1.1) involving the time-space fractional operators. Since our problem is
nonlocal, our discussion is more elaborate than the papers in the literature. Com-
paring with the papers in the literature, the main feature of this paper is that the
problem (1.1) contains the Riemann-Liouville time fractional derivative and the
fractional Laplacian. Definitely, this paper is the first time to deal with the local
existence and global nonexistence of solutions for problems involving the fractional
Laplacian and the Riemann-Liouville time fractional derivative.

Definition 1.1. We say that u ∈ L∞(0, T ; Hα
0 (Ω)) with ∂β

t u ∈ L2(0, T ; L2(Ω)) is a
weak subsolution (supsolution) of problem (1.1) if u(x, 0) ≤ (≥)u0(x) and

∫

Ω

ϕ∂β
t udx +

∫

R2N

(u(x, t) − u(y, t))(ϕ(x) − ϕ(y))
|x − y|N+2α

dxdy

+
∫

R2N

(∂β
t u(x, t) − ∂β

t u(y, t))(ϕ(x) − ϕ(y))
|x − y|N+2α

dxdy

≤ (≥)λ
∫

Ω

f(x, u)ϕdx +
∫

Ω

gϕdx

for any 0 ≤ ϕ ∈ Hα
0 (Ω) and a.e. t ∈ (0, T ). u is a weak solution if and only u is both

a subsolution and a supsolution. Here, we call u is a global weak solution of problem
(1.1), if the equality in above holds for any 0 < T < ∞; u is a local weak solution,
if there exists T0 > 0 such that the equality in Definition 1.1 holds for 0 < T ≤ T0.

The proof of the following existence results relies on the contract mapping
theorem and the Galerkin method.

Theorem 1.2. Assume that 0 ≤ u0 ∈ Hα
0 (Ω), g ∈ L2(0,∞; L2(Ω)) and f(x, ξ) = 0

for all x ∈ Ω and ξ ≤ 0. If f satisfies (f1), then problem (1.1) admits a local
nonnegative weak solution. If f satisfies (f2), then problem (1.1) has a unique global
weak solution.

The following theorem shows the asymptotic behavior of global solutions to
problem (1.1).

Theorem 1.3. Assume that g ≡ 0 and f(x, ξ) = 0 for all x ∈ Ω and ξ ≤ 0. If
0 ≤ u0 ∈ Hα

0 (Ω) and u0(x) ≤ η0ϕ1(x) with η0 > 0 for all x ∈ Ω, and f satisfies
(f2), then the unique solution of problem (1.1) satisfies the following decay estimates

0 ≤ u(x, t) ≤ c2ϕ1(x)
1 + tβ

for all t ≥ 0 and x ∈ Ω,

where c2 > 0 and ϕ1 > 0 is the eigenfunction corresponding to the first eigenvalue
of the fractional Laplacian.

We also discuss the global nonexistence of local solutions for problem (1.1).
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Theorem 1.4. Assume that 0 ≤ u0 ∈ Hα
0 (Ω), g = 0 and f(x, ξ) = 0 for all x ∈ Ω

and ξ ≤ 0. Suppose that f satisfies (f1), and
∫

Ω
u0(x)ϕ1(x)dx >

(
λ1
λ

)1/(p−2)
, where

c2 > 0 and ϕ1 > 0 is the eigenfunction corresponding to the first eigenvalue λ1.
Then the nonnegative weak solutions of problem (1.1) blow up in finite time.

In what follows, the letters c, ci, C, Ci, i = 1, 2, . . . , denote positive constants
which vary from line to line, but are independent of terms that take part in any
limit process. Furthermore, for any p ≥ 1 we denote ‖u‖p = ‖u‖Lp(Ω).

2. Preliminaries

In this section, we provide some basic results which will be used in the next sections.
The fractional Sobolev space Hα(RN ) is defined as

Hα(RN ) =
{

u ∈ L2(RN ) :
∫∫

R2N

(u(x) − u(y))2

|x − y|N+2α
dxdy < ∞

}

.

endowed with the norm

‖u‖2
Hα(RN ) =

∫∫

R2N

(u(x) − u(y))2

|x − y|N+2α
dxdy + ‖u‖2

L2(RN ).

Hα
0 (Ω) is defined as

Hα
0 (Ω) = {u ∈ Hα(RN ) : u = 0 a.e. in R

N\Ω}.

in the sequel, we take

‖u‖2
Hα

0 (Ω) =
∫∫

R2N

(u(x) − u(y))2

|x − y|N+2α
dxdy.

Hα
0 (Ω) is a Hilbert space in which a scalar product is given by

〈u, v〉α =
∫∫

R2N

(u(x) − u(y))(v(x)) − v(y))
|x − y|N+2α

dxdy

for any u, v ∈ Hα
0 (Ω).

Denote by

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ λk+1 ≤ · · · < +∞
the distinct eigenvalues of the fractional Laplace operator and let ωk be the eigen-
function corresponding to λk of the following eigenvalue problem

{
(−Δ)αu = λu, x ∈ Ω,

u = 0, x ∈ R
N\Ω.

We obtain for k ∈ N,

λk = min
u∈Pk\{0}

∫

R2N

(u(x)−u(y))2

|x−y|N+2α dxdy
∫

Ω
|u(x)|2dx

,

where P1 = Hα
0 (Ω) and

Pk =
{
u ∈ Hα

0 (Ω) : (u,wk)Hα
0 (Ω) = 0,∀j = 1, 2, ..., k − 1

}
, k ≥ 2.



108 R. Shen et al. Vol. 90 (2022)

Lemma 2.1 ([3]). Let 2∗
α = 2N

N−2α . For any q ∈ [1, 2∗
α], the embedding Hα

0 (Ω) ↪→
Lq(Ω) is continuous. Furthermore, the embedding is compact if q ∈ [1, 2∗

α).

The Yosida approximation of the time-fractional derivative operator is an useful
tool to deal with problems with Caputo fractional derivative operators. For more
details, we refer to [30,37,38]. Let 1 ≤ p < ∞, 0 < β < 1 and X be a real Banach
space. Define fractional derivative operator

Bu =
d

dt
(g1−β ∗ u), D(B) = {u ∈ Lp([0, T ];X) : g1−β ∗ u ∈ W 1,p

0 ([0, T ];X)},

where g1−β is given by

g1−β(t) =

{
1

Γ(β) t
β−1 if t > 0,

0 if t ≤ 0.

Its Yosida approximation Bn defined by Bn = nB(n + B)−1 (n ∈ N) possesses the
property that for any u ∈ D(B), Bnu → Bu strongly in Lp([0, T ];X) as n → ∞.
Here, we collect some important properties of g1−β and Bn which are listed in the
following:

• The kernel g1−β,n is nonnegative and nonincreasing for all n ∈ N , and g1−β,n ∈
W 1,1([0, T ]).

• g1−β,n → g1−β in L1([0, T ]) and Bnu → Bu in Lp([0, T ];X) as n → ∞.

Lemma 2.2 ([30]). Assume that H is a real Hilbert space and T > 0 is a real number.
Then for any k ∈ W 1,1([0, T ]) and u ∈ L2(0, T ; H), the following identity holds

(
d

dt
(k ∗ u)(t), u(t)

)

H

=
1
2

d

dt
(k ∗ |u(·)|2H)(t) +

1
2
k(t)|u(t)|2H

+
1
2

∫ t

0

[−k̇(s)]|u(t) − u(t − s)|2Hds, a.e. t ∈ (0, T ).

Remark 1. Obviously, if k is a nonincreasing and nonnegative function in
W 1,1([0, T ]), then we obtain for any u ∈ L2(0, T ; H) that

(
d

dt
(k ∗ u)(t), u(t)

)

H

≥ 1
2

d

dt
(k ∗ |u(·)|2H)(t), a.e. t ∈ (0, T ).

Lemma 2.3 ([30]). Let H ∈ C1(R) and k ∈ W 1,1([0, T ]), for a sufficiently smooth
function u, then there holds for a.e. t ∈ (0, T )

Ḣ(u(t))
d

dt
(k ∗ u)(t) =

d

dt
(k ∗ H(u))(t) + [−H(u(t)) + Ḣ(u(t))u(t)]k(t)

+
∫ t

0

[H(u(t − s)) − H(u(t))

− Ḣ(u(t))(u(t) − u(t − s))][−k̇(s)]ds

Definition 2.4 (see [19]). Let q > 0 be a real number and 0 < T ≤ ∞. We say that
a function ω : R+ → R (R+ = [0,∞)) satisfies a condition (q), if

e−qt[ω(u)]q ≤ R(t)ω(e−qtuq) for all u ∈ R
+, t ∈ [0, T ),

where R(t) is a continuous and nonnegative function.
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Clearly, if ω(u) = ur, r > 0, then ω satisfies the condition (q) with any q > 1,
and R(t) = e(r−1)qt.

Lemma 2.5 (see [19, Theorem 1]). Let a be a nondecreasing, nonnegative C1-function
on [0, T ), F be a continuous, nonnegative function on [0, T ), ω : R+ → R be a contin-
uous, nondecreasing function, ω(0) = 0, ω(u) > 0 on [0, T ), and u be a continuous,
nonnegative function on [0, T ) with

u(t) ≤ a(t) +
∫ t

0

(t − τ)β−1F (τ)ω(u(τ))dτ, t ∈ [0, T ),

where β > 0. Then the following assertions hold:
(i) Suppose that β > 1/2 and ω satisfies the condition (q) with q = 2. Then

u(t) ≤ et{Ω−1[Ω(2a(t)2) + g1(t)]}1/2, t ∈ [0, T1],

where

g1(t) =
Γ(2β − 1)

4β−1

∫ t

0

R(τ)F 2(τ)dτ,

Γ is the gamma function, Ω(v) =
∫ v

v0

dy
ω(y) , v0 > 0, Ω−1 is the inverse of Ω, and

T1 ∈ R
+ is such that Ω(2a(t)2) + g1(t) ∈ Dom(Ω−1) for all t ∈ [0, T1].

(ii) Let β ∈ (0, 1/2] and ω satisfies the condition (q) with q = z +2, where z = 1−β
β .

Then

u(t) ≤ et{Ω−1
[
Ω(2q−1a(t)q) + g2(t)

]}1/q, t ∈ [0, T1],

where

g2(t) = 2q−1Kq
z

∫ t

0

F (τ)qR(τ)dτ, Kz =
[
Γ(1 − γp)

p1−γp

]1/p

,

γ =
z

z + 1
, p =

z + 2
z + 1

,

T1 ∈ R
+ is such that Ω(2q−1a(t)q) + g2(t) ∈ Dom(Ω−1) for all t ∈ [0, T1].

In particular, if w(u) = u, then there holds

Lemma 2.6 (see [19, Theorem 2]). Let 0 < T ≤ ∞, a(t), F (t) be as in Lemma 2.5,
and let u(t) be a continuous, nonnegative function on [0, T ) with

u(t) ≤ a(t) +
∫ t

0

(t − τ)β−1F (τ)u(τ)dτ,

where β > 0. Then the following assertions hold
(i) If β > 1/2, then

u(t) ≤
√

2a(t) exp
(

2Γ(2β − 1)
4β

∫ t

0

F (τ)2dτ + t

)

, t ∈ [0, T ).

(ii) If β = 1
z+1 for some z ≥ 1, then

u(t) ≤ (2q−1)1/qa(t) exp
(

2q−1

q
Kz

∫ t

0

F (τ)qdτ + t

)

, t ∈ [0, T ),

where Kz is defined by Kz = [Γ(1−γp)
p1−γp ]1/p, p = z+2

z+1 , q = z + 2.
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Lemma 2.7. Define an operator

I1−β(u) =
1

Γ(β)

∫ t

0

(t − τ)β−1u(τ)dτ

for any u ∈ L2(0, T ; L2(Ω)). If β ≥ 1/2, then I1−β : L2(0, T ; L2(Ω)) → L2(0, T ;
L2(Ω)) is a bounded linear operator; If 0 < β < 1/2, then I1−β : Lr(0, T ; Lr(Ω)) →
Lr(0, T ; Lr(Ω)) is a bounded linear operator, where r > 1

β .

Proof. If β ≥ 1
2 , then the Hölder inequality implies that

(∫ t

0

(t − τ)β−1u(τ)dτ

)2

≤
∫ t

0

(t − τ)2(β−1)dτ

∫ t

0

u2(τ)dτ

=
1

2β − 1
t2β−1

∫ t

0

u2(τ)dτ.

Thus,
∫ T

0

∫

Ω

(I1−β(u))2dxdt ≤ C

∫ T

0

∫

Ω

u2dxdt,

which yields the desired result.
Now we consider the case 0 < β < 1/2. By the Hölder inequality, we have

∫ t

0

(t − τ)β−1u(τ)dτ

=
∫ t

0

(t − τ)β−1eτe−τu(τ)dτ

≤
(∫ t

0

(t − τ)q(β−1)eqτdτ

) 1
q

(∫ t

0

uq′
(τ)e−q′τdτ

) 1
q′

=
(

eqt

q1−(1−β)q

∫ t

0

τ−(1−β)qe−τdτ

)1/q (∫ t

0

uq′
(τ)e−q′τdτ

) 1
q′

≤
(

eqt

q1−(1−β)q
Γ(1 − (1 − β)q)

)1/q (∫ t

0

uq′
(τ)dτ

) 1
q′

,

where q > 1 satisfying 1−(1−β)q > 0, and 1
q + 1

q′ = 1. Observe that 1−(1−β)q > 0.
Thus, we get

∫ T

0

∫

Ω

(I1−β(u))q′
dxdt ≤ C

∫ T

0

∫

Ω

|u|q′
dxdt,

which ends the proof. �

Lemma 2.8 (see [26] Fractional integration by parts). Let α > 0, p ≥ 1, q ≥ 1 and
1
p + 1

q ≤ 1 + α (p �= 1, q �= 1 in the case when 1
p + 1

q = 1 + α). If ϕ ∈ Lp(a, b) and
ψ ∈ Lq(a, b), then

∫ b

a

ϕ(x)(Iα
a+ψ)(x)dx =

∫ b

a

ψ(x)(Iα
b−ϕ)(x)dx,
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where

(Iα
a+φ)(x) =

1
Γ(α)

∫ x

a

ψ(t)
(x − t)1−α

dt

and

(Iα
b−ϕ)(x) =

1
Γ(α)

∫ b

x

ϕ(t)
(t − x)1−α

dt.

Using Lemma 2.8, we can obtain the following result.

Lemma 2.9. Let α > 0 and 1 ≤ p. Assume that ϕ ∈ C1
0 (0, T ) and ψ ∈ Lp(0, T ).

Then
∫ T

0

ϕ(x)∂α
x ψ(x)dx = − 1

Γ(α)

∫ T

0

∫ T

x

ϕ′(t)
(t − x)1−α

dt(ψ(x) − ψ(0))dx.

In order to show the existence of solutions to problem (1.1), we give some
properties of the operator L : Hα

0 (Ω) → (Hα
0 (Ω))′ defined by

〈L(u), v〉 = 〈u, v〉α =
∫∫

R2N

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2α

dxdy,

for all u, v ∈ Hα
0 (Ω).

Lemma 2.10. The operator L : Hα
0 (Ω) → (Hα

0 (Ω))′ is a monotone and linear
bounded functional. Moreover, ‖L(u)‖(Hα

0 (Ω))′ ≤ [u]α for all u ∈ Hα
0 (Ω).

Proof. Let u, v ∈ Hα
0 (Ω), we have

〈L(u) − L(v), u − v〉 = [u − v]2α ≥ 0.

Thus, L is monotone. Clearly, L is a linear functional. It remains to show that
‖Lu‖(Hα

0 (Ω))′ ≤ [u]α. It follows from the Hölder inequality, we have

〈L(u), v〉 ≤ [u]α[v]α,

which means that ‖L(u)‖(Hα
0 (Ω))′ ≤ [u]α. The proof is now complete. �

Lemma 2.11. The operator L : Hα
0 (Ω) → (Hα

0 (Ω))′ is hemicontinuous.

Proof. We are going to prove that the map t �→ 〈L(u+ tv), w〉 is continuous on [0, 1]
for all u, v, w ∈ Hα

0 (Ω), i.e,

lim
t→0

〈L(u + tv), w〉 = 〈L(u), w〉
for all w ∈ Hα

0 (Ω). We have,

〈L(u + tv), w〉 = 〈u + tv, w〉α.

We define Gt : [0, 1] → R by

Gt(x, y) =
((u + tv)(x) − (u + tv)(y))

|x − y|N+2α
(w(x) − w(y))

and set

G(x, y) =
(u(x) − u(y))
|x − y|N+2α

(w(x) − w(y)).
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Obviously, limt→0 Gt(x, y) = G(x, y) and there exists h ∈ L1(R2N ) such that
|Gt(x, y)| ≤ h(x, y). Thus, by the Lebesgue dominated convergence theorem, we
obtain the desired result. �

To discuss the compactness of approximate solutions, we need the following
Lions-Aubin lemma.

Proposition 2.12 ([16, Theorem 4.1]). Let T > 0, β ∈ (0, 1) and p ∈ [1,∞). Let
B0, B,B1 be Banach spaces. Assume that B0 ↪→ B is compact and B ↪→ B1 is
continuous. Suppose that W ⊂ L1

loc(0, T ; B0) satisfies;
(i) There exists C1 > 0 such that ∀u ∈ W ,

sup
t∈(0,T )

1
Γ(β)

∫ t

0

(t − s)β−1‖u‖p
B0

(s)ds ≤ C1.

(ii) There exist r ∈ ( p
1+pγ ,∞)

⋂
[1,∞) and C3 > 0 such that ∀u ∈ W , there is

an assignment of initial value u0 for u such that the weak Caputo derivative
satisfies

‖Dβ
c u‖Lr(0,T ;B1) ≤ C3.

Then W is relatively compact in Lp(0, T,B).

Remark 2. The Caputo derivative of an absolutely continuous function u is defined
as follows

Dβ
c u =

1
Γ(β)

∫ t

0

u′(τ)
(t − τ)1−β

dτ.

In view of the definition of the Riemann-Liouville derivative, we know that the
Riemann-Liouville derivative and the Caputo derivative have the relationship

Dβ
c u = ∂β

t u.

3. Existence and Uniqueness of Weak Solutions

In this section by means of the Galerkin method, we establish the existence of local
solutions to the problem (1.1). Assume that {ωk} is an orthonormal basis in L2(Ω)
and

u0m =
m∑

j=1

bmjwj → u0 in Hα
0 (Ω),

then we shall find Galerkin approximation solutions um = um(t) of the following
form

um(t) =
m∑

j=1

amj(t)wj , m = 1, 2, . . . ,

where amj satisfies that
{

(∂β
t um, wj) + 〈um, wj〉α + 〈∂β

t um, wj〉α = (λf(x, um), wj) + (g, wj)
amj(0) = bmj ,

(3.1)
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for j = 1, 2, . . . , m. Here, (·, ·) denotes the inner product of L2(Ω). Problem (3.1)
is a nonlinear fractional ordinary differential system. Next, we show that problem
(3.1) has a unique local solution for every m ∈ N .

First, by Lemmas 2.2 and 2.3, we give a prior estimate for problem (3.1).

Lemma 3.1. Suppose that um =
∑m

j=1 amjwj solves problem (3.1). If f(x, ξ) =
|ξ|p−2ξ and 2 < p ≤ 2∗

α, then there exist T ∗ > 0 and C1 > 0 such that

‖um‖Hα
0 (Ω) ≤ C1 for all t ∈ [0, T ∗) and m ≥ 1. (3.2)

Proof. Multiplying (3.1) by ∂β
t amj and summing j from 1 to m, we have

(∂β
t um, ∂β

t um) + ((−Δ)αum, ∂β
t um) + ((−Δ)α∂β

t um, ∂β
t um)

= λ(|um|p−2um, ∂β
t um) + (g, ∂β

t um). (3.3)

By the Yosida approximation of time Riemamm-Liouville fractional derivative,
Lemma 2.2 and Hölder’s inequality, one can deduce that

((−Δ)αum, ∂β
t um) = (um, ∂β

t um)Hα
0 (Ω)

= (
d

dt
(g1−β,n ∗ um), um)Hα

0 (Ω)−g1−β,n(u0 m, um)Hα
0 (Ω)−Rmn(1)

≥ 1
2

d

dt
(g1−β,n ∗ ‖um‖2

Hα
0 (Ω)) − 1

2
g1−β,n‖u0 m‖2

Hα
0 (Ω) − Rmn(1)

where

Rmn(1) =
(

d

dt
(g1−β,n ∗ (um − u0m)) − d

dt
(g1−β ∗ (um − u0m)), um

)

Hα
0 (Ω)

.

By using the Hölder inequality and Young inequality, we deduce

(|um|p−2um, ∂β
t um) ≤ ‖|um|p−2um‖Lq′(Ω)‖∂β

t um‖Lq(Ω)

≤ S∗‖um‖p−1

L(p−1)q′(Ω)
‖∂β

t um‖Hα
0 (Ω)

≤ S∗(Cε‖um‖2(p−1)

L(p−1)q′(Ω)
+ ε‖∂β

t um‖2
Hα

0 (Ω))

≤ S∗(Cε‖um‖2(p−1)
Hα

0 (Ω) + ε‖∂β
t um‖2

Hα
0 (Ω))

where q = 2∗
α, q′ = q

q−1 = 2N
N+2α and S∗ is the embedding constant from Hα

0 (Ω)
to L2∗

α(Ω). Here, we have used the fact that (p − 1)q′ ≤ 2∗
α, thanks to p ≤ 2∗

α. We
also get

(g, ∂β
t um) ≤ ‖g‖L2(Ω)‖∂β

t um‖L2(Ω)

≤ 1
2
‖g‖2

L2(Ω) +
1
2
‖∂β

t um‖2
L2(Ω).

Therefore, we obtain
1
2
‖∂β

t um‖2
L2(Ω) + ‖∂β

t um‖2
Hs

0 (Ω) +
1
2

d

dt
(g1−β,n ∗ ‖um‖2

Hα
0 (Ω))

≤ S∗λ(Cε‖um‖2(p−1)
Hα

0 (Ω) + ε‖∂β
t um‖2

Hα
0 (Ω))

+
1
2
g1−β,n‖u0 m‖2

Hα
0 (Ω) + Rmn(1) +

1
2
‖g‖2

L2(Ω) (3.4)
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Choose ε small enough such that S∗λε < 1. Then it follows from (3.4) that

1
2

d

dt
(g1−β,n ∗ ‖um‖2

Hα
0 (Ω))

≤ S∗λCε‖um‖2(p−1)
Hα

0 (Ω) +
1
2
g1−β,n‖u0 m‖2

Hα
0 (Ω) + Rmn(1) +

1
2
‖g‖2

L2(Ω). (3.5)

Convolving (3.5) with gβ and letting n go to ∞ and selecting an appropriate sub-
sequence(if necessary), it leads to

‖um‖2
Hα

0 (Ω) ≤C1gβ ∗ ‖um‖2(p−1)
Hα

0 (Ω) + ‖u0 m‖2
Hα

0 (Ω)+
t1−β

(1 − β)Γ(1 − β)
‖g‖2

L∞(0,∞;L2(Ω)),

(3.6)

where C1 = 2λS∗Cε,
In Lemma 2.5, let u(t) = ‖um‖2

Hα
0 (Ω), w(u) = up−1, F (s) = C1

Γ(β) , a(t) =

supm≥1 ‖u0 m‖2
Hα

0 (Ω) + t1−β

(1−β)Γ(1−β)‖g‖2
L∞(0,∞;L2(Ω)). When β > 1

2 , R(t) = e2(p−2)t,

g1(t) =
Γ(2β − 1)

4β−1

∫ t

0

R(τ)F 2(τ)dτ = C2(e2(p−2)t − 1),

Ω(2a2) =
∫ 2a(t)2

v0

1
yp−1

dy = − 1
(p − 2)(2a(t)2)p−2

+ C3,

Ω−1(v) =
(

v
− 1

p−2
0 − (p − 2)v

)− 1
p−2

,

where C2 = 4β−1C2
1

2(p−2)Γ(2β−1)Γ2(β) > 0, C3 = 1

(p−2)vp−2
0

> 0. Then we deduce from (3.6)
that

u(t) ≤ et

(
1

1
(2a(t)2)p−2 + C2(p − 2) − C2(p − 2)e2(p−2)t

) 1
2(p−2)

.

Considering the definition of Ω−1 and using Ω(2a2(t)) + g1(t) ∈ DomΩ−1, we
get

− 1
(p − 2)(2a(t)2)p−2

+ C3 + C2(e2(p−2)t − 1) < C3,

which implies that

e2(p−2)t ≤ 1
C2(p − 2)(2a(t)2)p−2

+ 1

≤ 1
C2(p − 2)(2C2

0)p−2
+ 1,

where C0 = supm≥1 ‖u0m‖2
Hα

0 (Ω). Then we have t < ln C4
2(p−2) := T1, where

C4 =
1

C2(p − 2)(2C2
0)p−2

+ 1 > 1.

Therefore, for the case β > 1
2 , there exists T1 > 0 such that

‖um‖2
Hα

0 (Ω) ≤ C5,
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for all 0 < t < T1.
When β ∈ (0, 1

2), R(t) = e(p−2)(z+2)t,

Ω(2q−1aq) =
∫ 2q−1aq

v0

1
yp−1

dy = − 1
(p − 2)(2q−1aq)p−2

+ C3,

g2(t) = 2q−1Kzq

∫ t

0

F q(τ)R(τ)dτ = C6(e(p−2)(z+2)t − 1),

Ω−1(Ω(2q−1aq) + g2(t)) = (
1

(2q−1aq)−p+2 + C6(p − 2) − C6(p − 2)e(p−2)(z+2)t
)

1
p−2 ,

then we have

u(t) ≤ et

(
1

1
(2q−1aq)p−2 + C6(p − 2) − C6(p − 2)e(p−2)(z+2)t

) 1
q(p−2)

,

where z = 1−β
β , q = z +2, Kz = (Γ(1−γr)

r1−γr )
1
r , γ = z

z+1 , r = z+2
z+1 , C6 = Cq

1Kq
z2q−1

Γq(β)(p−2)(z+2)

> 0.
Consider the definition of Ω−1, we obtain

C6(e(p−2)(z+2)t − 1) − 1
(p − 2)(2q−1aq)p−2

+ C3 < C3,

which implies that t < ln C7
(p−2)(z+2) := T2. Here, C7 = 1

C6(p−2)(2q−1Cq
0 )p−2 + 1 > 0.

Therefore, for β ∈ (0, 1
2), there exists T2 > 0 such that ‖um‖2

Hα
0 (Ω) ≤ C8 for all

0 < t < T2.
In conclusion, there exist T ∗ = min{T1, T2} and C > 0 such that ‖um‖Hα

0 (Ω) ≤ C
for all 0 < t < T ∗. �

Lemma 3.2. Suppose that um =
∑m

j=1 amjwj solves problem (3.1). If f satisfies
Lipschitz condition (f1), then for any T > 0 there exists C2 > 0 such that

‖um‖Hα
0 (Ω) ≤ C2 for all t ∈ [0, T ] and m ≥ 1.

Proof. Since f satisfies the Lipschitz condition, there exists a positive constant C
such that

|f(x, ξ)| ≤ C(1 + |ξ|) for all ξ ∈ R.

Then a similar discussion as in Lemma 3.1 gives that

‖um‖2
Hα

0 (Ω) ≤ Cgβ ∗ ‖um‖2
Hα

0 (Ω) + ‖u0 m‖2
Hα

0 (Ω)

+
Ct1−β

Γ(1 − β)
+

t1−β

(1 − β)Γ(1 − β)
‖g‖2

L∞(0,∞;L2(Ω)).

By Lemma 2.6, we get (i) If β > 1/2, then

‖um‖2
Hα

0 (Ω) ≤
√

2a(t) exp
((

2C2
1Γ(2β − 1)
4βΓ(β)2

+ 1
)

t

)

, t ∈ [0, T ),

where a(t) = supm≥1 ‖u0 m‖2
Hα

0 (Ω) + C1t1−β

Γ(1−β) + t1−β

(1−β)Γ(1−β)‖g‖2
L∞(0,∞;L2(Ω)).
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(ii) If β = 1
z+1 for some z ≥ 1, then

‖um‖2
Hα

0 (Ω) ≤ (2q−1)1/qa(t) exp
((

2q−1KzC
q
1

Γ(β)q
+ 1

)

t

)

, t ∈ [0, T ),

where Kz = [Γ(1−γp)
p1−γp ]1/p, γ = z

z+1 , p = z+2
z+1 and q = z + 2.

In conclusion, for any T > 0 there exists C2 > 0 such that ‖um‖Hα
0 (Ω) ≤ C2 for

all t ∈ [0, T ] and m ≥ 1. �

Based on Lemmas 3.1 and 3.2, we obtain the following estimate.

Lemma 3.3. Suppose that um =
∑m

j=1 amjwj solves (3.1), then there exists C3 such
that

‖∂β
t um‖L2(0,T ;L2(Ω)) + ‖∂β

t um‖L2(0,T :Hα
0 (Ω)) ≤ C3.

Proof. Choosing ε = 1
2S∗λ in (3.4), we get

1
2
‖∂β

t um‖2
L2(Ω) +

1
2
‖∂β

t um‖2
Hs

0(Ω) +
1
2

d

dt
(g1−β,n ∗ ‖um‖2

Hα
0 (Ω))

≤ S∗λCε‖um‖2(p−1)
Hα

0 (Ω)

+
1
2
g1−β,n‖u0 m‖2

Hα
0 (Ω) + Rmn(1) +

1
2
‖g‖2

L2(Ω).

Integrating above inequality from 0 to T and letting n → ∞, we obtain

‖∂β
t um‖2

L2(0,T ;(L2(Ω))) + ‖∂β
t um‖2

L2(0,T :Hα
0 (Ω))

≤ 2S∗λCε

∫ T

0

‖um‖2p−2
Hα

0 (Ω)dt +
∫ T

0

g1−β,n‖u0 m‖2
Hα

0 (Ω)dt

+ ‖g‖2
L2(0,T ;L2(Ω)) + g1−β ∗ ‖u0,m‖2

Hα
0 (Ω).

By Lemma 3.1, it yields

‖∂β
t um‖2

L2(0,T ;L2(Ω)) + ‖∂β
t um‖2

L2(0,T :Hα
0 (Ω)) ≤ C.

For the case f satisfies the Lipschitz condition, by Lemma 3.2 and a similar
discussion as above, one can obtain the desired result. �

Now, we prove the local existence of solutions for system (3.1).

Theorem 3.4. Under the assumptions of Theorem 1.2, system (3.1) has a unique
solution for all t ∈ [0, T ], where 0 < T < T ∗ if f = |u|p−2u and 0 < T < ∞ if f
satisfies (f1).

Proof. First, problem (3.1) is equivalent to the problem
{

∂β
t ψ(t) + Aψ(t) = BR(ψ(t)) + BG(t)

ψ(0) = ξ
(3.7)

where ψ(t) = (amj(t)) ∈ R
m,A = diag( λj

1+λj
)m×m, B = diag( 1

1+λj
)m×m, ξ =

(bmj) ∈ R
m, μ = (λj) ∈ R

m, R(ψ(t))j = λ(|um|p−2um, wj), Gj = (g, wj). By
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Laplace transform or convoluting with gβ, we transform (3.7) into the following
Volterra type system

ψ(t) = ξ + gβ ∗ B(R(ψ(t) + G(t))) − gβ ∗ Aψ(t). (3.8)

Therefore, we only need to prove that system (3.8) admits a unique continuous
solution.
Notice

‖um(t)‖2
L2(Ω) =

m∑

j=1

a2
mj(t), ‖ψ(t)‖2

Rm =
m∑

j=1

a2
mj(t).

Then, ‖um(t)‖L2(Ω) = ‖ψ(t)‖Rm , ‖um(t)‖L2(Ω) ≤ S‖um(t)‖Hα
0 (Ω). Let

R0 = SC1.

Then we obtain a prior estimate ‖ψ(t)‖Rm ≤ R0.
Define the operator as

Φψ(t) = ξ + gβ ∗ B(R(ψ(t) + G(t))) − gβ ∗ Aψ(t)

for all ψ ∈ ET , where

ET = {ψ ∈ C(0, T ;Rm) : ‖ψ‖C(0,T ;Rm) ≤ 2R0}.

Set d(ψ1, ψ2) = maxt∈[0,T ] ‖ψ1(t) − ψ2(t)‖Rm . Since C(0, T ;Rm) is a Banach space,
it follows that (ET , d) is a complete metric space. Then

‖Φψ‖Rm ≤ ‖ξ‖Rm + ‖Bgβ ∗ (R(ψ(t) + G(t)))‖Rm + ‖Agβ ∗ ψ(t)‖Rm .

Observe that

‖gβ ∗ B(R(ψ(t) + G(t)))‖2
Rm

≤
m∑

j=1

(
λ

1 + λj
gβ ∗

∫

Ω

|um|p−2umwjdx +
1

1 + λj
gβ ∗

∫

Ω

gωjdx

)2

≤
m∑

j=1

(
λ‖wj‖p

1 + λj
gβ ∗ ‖um‖p−1

p +
‖wj‖2

1 + λj
gβ ∗ ‖g‖2

)2

≤ C2

(1 − β)2Γ2(1 − β)
(R(p−1)

0 + R0)2t2(1−β)

and

‖Agβ ∗ ψ(t)‖2
Rm ≤ (gβ ∗ ‖Aψ(t)‖Rm)2 ≤ λ2

mt2(1−β)

(1 + λ1)2(1 − β)2Γ2(1 − β)

m∑

j=1

a2
mj(t)

≤ λ2
mt2(1−β)

(1 + λ1)2(1 − β)2Γ2(1 − β)
‖ψ(t)‖2

Rm .

Thus, we have

‖Φψ‖Rm ≤ ‖ξ‖Rm +
C

(1 − β)Γ(1 − β)
(R(p−1)

0 + R0)T 1−β

+
λmT 1−β

(1 + λ1)(1 − β)Γ(1 − β)
2R0.
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Now we assume that T is small enough such that

C

(1 − β)Γ(1 − β)
(R(p−1)

0 + R0)T 1−β +
λmT 1−β

(1 + λ1)(1 − β)Γ(1 − β)
2R0 < R0.

Then ‖Ψψ‖Rm ≤ 2R0, which means that Φ maps from ET to ET .
Next we show that Φ is contractive in ET .
If 2 < p ≤ 2∗

α := 2N
N−2α , then by the Hölder inequality we have

‖BR(ψ(1)) − BR(ψ(2))‖2
Rm

≤ λ2
m∑

j=1

(
1

1 + λj

)2 (∫

Ω

||u(1)
m |p−2u(1)

m − |u(2)
m |p−2u(2)

m ||ωj |dx

)2

≤ λ2C

m∑

j=1

(
1

1 + λj

)2 (∫

Ω

(|u(1)
m |p−2 + |u(2)

m |p−2)|u(1)
m − u(2)

m ||ωj |dx

)2

≤ λ2C
m∑

j=1

(
1

1 + λj

)2

‖|u(1)
m |p−2 + |u(2)

m |p−2‖2

L
N
2α (Ω)

‖u(1)
m − u(2)

m ‖2

L
2N

N−2α (Ω)
‖ωj‖2

2

≤ λ2C

(1 + λ1)2
(‖u(1)

m ‖p−2
Hα

0 (Ω) + ‖u(2)
m ‖p−2

Hα
0 (Ω))

2‖u(1)
m − u(2)

m ‖2
Hα

0 (Ω)

≤ λ2Cλp−1
m

(1 + λ1)2
(‖u(1)

m ‖p−2
L2(Ω) + ‖u(2)

m ‖p−1
L2(Ω))

2‖u(1)
m − u(2)

m ‖2
L2(Ω)

≤ λ2Cλp−1
m

(1 + λ1)2
(‖ψ(1)‖p−2

Rm + ‖ψ(2)‖p−2
Rm )2‖ψ(1) − ψ(2)‖2

Rm

≤ λ2Cλp−1
m

(1 + λ1)2
R

2(p−2)
0 ‖ψ(1) − ψ(2)‖2

Rm , (3.9)

thanks to the following basic inequality:

||u(1)
m |p−2u(1)

m − |u(2)
m |p−2u(2)

m | ≤ C(|u(1)
m |p−2 + |u(2)

m |p−2)|u(1)
m − u(2)

m |.
Then

‖gβ ∗ BR(ψ(1)) − gβ ∗ BR(ψ(2))‖Rm

≤ gβ ∗ ‖BR(ψ(1)) − BR(ψ(2))‖Rm

≤ λCλ
p−1
2

m

1 + λ1

R
(p−2)
0 T 1−β

Γ(1 − β)
d(ψ(1), ψ(2)).

Observe that

‖Aψ(1) − Aψ(2)‖2
Rm =

m∑

j=1

((ψ(1) − ψ(2))
λj

1 + λj
)2

≤
(

λm

1 + λm

)2 m∑

j=1

(ψ(1) − ψ(2))2

=
(

λm

1 + λm

)2

‖ψ(1) − ψ(2)‖2
Rm .
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Thus,

‖gβ ∗ Aψ(1) − gβ ∗ Aψ(2)‖Rm

≤ λm

1 + λm

T 1−β

Γ(1 − β)
d(ψ(1), ψ(2)). (3.10)

Gathering (3.9) and (3.10), we arrive at

d(Φ(ψ(1)), Φ(ψ(1))) ≤ DT 1−βd(ψ(1), ψ(2)), ∀ ψ(1), ψ(2) ∈ ET ,

where

D :=
λCλ

p−1
2

m

1 + λ1

R
(p−2)
0

Γ(1 − β)
+

λm

1 + λm

1
Γ(1 − β)

.

Consequently, we prove that Φ is contractive on ET provided T is small enough
such that DT 1−β < 1. Thus, by the Banach contraction mapping theorem, we know
that the map Φ has a unique fixed point on some small interval [0, T0]. Therefore,
we prove that system (3.7) has a unique solution on [0, T0].

On the other hand, if f satisfies the Lipschitz condition, the existence of unique
solution of system (3.7) on some small interval [0, T0] can be proved similarly as
above.

Finally, we show that the local solution can be extended to (0, T ]. Let T0 and
um(T0) be the initial data. Then repeating the same process as above, we can get
a unique continuous solution on [T0, 2T0]. Divide [0, T ] into [(k − 1)T0.kT0] with
k = 1, 2, . . . K and T/K ≤ T0. Then we can obtain a unique continuous solution in
[0, T ]. In conclusion, we show that system (3.1) has a unique solution in C(0, T ;Rm).

�

Proof of Theorem 1.2. Gathering Lemma 3.1 and Lemma 3.2, we get

{um} is bounded in L∞(0, T ; Hα
0 (Ω) ∩ Lp(Ω))

and

{∂β
t um} is bounded in L2(0, T ; Hα

0 (Ω)).

By Proposition 2.12, we deduce that there exist a subsequence (still denoted by
{um}) and u ∈ L∞(0, T ; Hα

0 (Ω) ∩ Lp(Ω)) such that

um ⇀ u weakly star in L∞(0, T ; Hα
0 (Ω) ∩ Lp(Ω)),

um → u strongly in L2(0, T ; L2(Ω)),

um → u a.e. in (0, T ) × Ω. (3.11)

By the Vitali convergence theorem, one can show that

lim
m→∞

∫ T

0

∫

Ω

f(x, um)vdx =
∫ T

0

∫

Ω

f(x, u)vdx

for all v ∈ C1(0, T ; Hα
0 (Ω)).

Since {∂β
t um} is bounded in L2(0, T ; L2(Ω)), up to a subsequence we may

assume that

∂β
t um ⇀ χ in L2(0, T ; L2(Ω)).
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Next we show that χ = ∂β
t u. By Lemma 2.8, we obtain

∫ T

0

∫

Ω

∂β
t umϕdxdt = −

∫ T

0

∫

Ω

∫ T

t

ϕ′(s)
(s − τ)1−β

ds(um − um(0))dtdx.

It follows from (3.11) that
∫ T

0

∫

Ω

χϕdxt = −
∫ T

0

∫

Ω

∫ T

t

ϕ′(s)
(s − τ)1−β

ds(u − u0)dtdx

=
∫ T

0

∫

Ω

∂β
t uϕdx,

which means that χ = ∂β
t u. Further, by (3.1) we conclude that

∫ T

0

∫

Ω

∂β
t uvdxdt +

∫ T

0

〈u, v〉αdt +
∫ T

0

〈∂β
t u, v〉αdt

= λ

∫ T

0

∫

Ω

f(x, u)vdxdt +
∫ T

0

∫

Ω

gvdxdt (3.12)

for any v ∈ L2(0, T ; Hα
0 (Ω)).

Next we show that
∫

Ω

∂β
t uϕdx + 〈u, ϕ〉α + 〈∂β

t u, ϕ〉α

= λ

∫

Ω

f(x, u)ϕdx +
∫

Ω

gϕdx (3.13)

for any ϕ ∈ Hα
0 (Ω).

For any t ∈ (0, T ), let χ(0,t) denote the characteristic function in (0, t). Let
ϕ ∈ Hα

0 (Ω). Taking v = ϕχ(0,t) in (3.12), we get
∫ t

0

∫

Ω

∂β
t uϕdxdt +

∫ t

0

〈u, ϕ〉αdt +
∫ t

0

〈∂β
t u, ϕ〉αdt

= λ

∫ t

0

∫

Ω

f(x, u)ϕdxdt +
∫ t

0

∫

Ω

gϕdxdt. (3.14)

Since
∫

Ω

∂β
t uϕdx + 〈u, ϕ〉α + 〈∂β

t u, ϕ〉α − λ

∫

Ω

f(x, u)ϕdx −
∫

Ω

gϕdx ∈ L1(0, T ),

we differentiate (3.14) with respect to t and get that
∫

Ω

∂β
t uϕdx + 〈u, ϕ〉α + 〈∂β

t u, ϕ〉α

= λ

∫

Ω

f(x, u)ϕdx +
∫

Ω

gϕdx

for any ϕ ∈ Hα
0 (Ω) and a.e. t ∈ [0, T ]. Thus, (3.13) holds.

It follows that u is a weak solution of problem (1.1). �

In the next lemma we shall show that under some assumptions the solution of
problem (1.1) is nonnegative.
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Lemma 3.5. If f(x, ξ) ≤ 0 for any ξ ≤ 0, g ≥ 0 and u0 ≥ 0 a.e. in Ω. Then the
solutions of problem (1.1) are nonnegative.

Proof. Let u be a weak solution to problem (1.1). Clearly,

u− = max{−u, 0} ∈ L∞(0, T ; Hα
0 (Ω)).

Taking v = −u− in Definition 1.1, we obtain
∫

Ω

∂β
t u(t)u−(t) dx + 〈u(t),−u−(t)〉α + 〈∂β

t u(t),−u−(t)〉α

= −
∫

Ω

f(x, u(t))u−(t) dxdt −
∫

Ω

gu−(t)dx. (3.15)

Observe that for a.e. x, y ∈ Ω,

(u(x) − u(y))(−u−(x) + u−(y))

= (u−(x) − u−(y))2 + u−(x)u+(y) + u+(x)u−(y)

≥ |u−(x) − u−(y)|2, .

Then

〈u(t),−u−(t)〉α ≥ ‖u−‖2
Hα

0
.

Moreover, g(−u−) ≤ 0 and f(x, u)u− = 0 a.e. x ∈ Ω.
To apply Lemma 2.2, we can use the same regularization discussion as above.

For convenience, we omit this process. In view of Lemma 2.2, we have

−
(

d

dt
(g1−β ∗ u(t)), u−(t)

)

≥ 1
2

d

dt
(g1−β ∗ ‖u−(t)‖2

2)

and

−
〈

d

dt
(g1−β ∗ u(t)), u−(t)

〉

α

≥ 1
2

d

dt
(g1−β ∗ ‖u−(t)‖2

Hα
0
).

Combining these facts with (3.15), it yields

1
2

d

dt
(g1−β ∗ ‖u−(t)‖2

2) +
1
2

d

dt
(g1−β ∗ ‖u−(t)‖2

Hα
0
) + ‖u−(t)‖2

α ≤ 0.

This implies that

1
2
(g1−β ∗ ‖u−(t)‖2

2) +
1
2
(g1−β ∗ ‖u−(t)‖2

Hα
0
) +

∫ t

0

‖u−(t)‖2
αdt

≤ 1
2
(g1−β ∗ ‖u−

0 ‖2
2) +

1
2
(g1−β ∗ ‖u−

0 ‖2
Hα

0
).

Since u0 ≥ 0 a.e. in Ω, it leads to

g1−β ∗ (‖u−(t)‖2
2 + ‖u−(t)‖2

Hα
0
) ≤ 0.

Then convoluting above inequality with gβ, it leads to

‖u−(t)‖2
2 ≤ 0.

Thus, we get u−(t) = 0 a.e. in Ω and for any t > 0. Hence, u(x, t) ≥ 0 a.e. in Ω and
for any t > 0. �
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At the end of this section, we study the uniqueness of solutions of problem
(1.1).

Theorem 3.6 (Comparison theorem). Assume that f satisfies (f2). Let u be a sub-
solution of problem (1.1) and let u be a supsolution of problem (1.1). Then u ≤ u.

Proof. We deduce from Definition 1.1 that
∫

Ω

∂β
t (u(t) − u(t))v dx + 〈u(t) − u(t), v〉α + 〈∂β

t (u(t) − u(t)), v〉α

≤ λ

∫

Ω

(f(x, u(t)) − f(x, u(t)))v dx,

for any 0 ≤ v ∈ Hα
0 (Ω). Taking v = (u − u)+ = max{u − u, 0} and applying

Lemma 2.2 and (f2), it leads to

1
2

d

dt
(g1−β ∗ ‖(u(t) − u(t))+‖2

2) + [(u(t) − u(t))+]2α

+
1
2

d

dt
(g1−β ∗ (‖(u(t) − u(t))+‖2

α))

≤ λL
∫

Ω

|(u(t) − u(t))+|2 dx.

Set Y (t) = ‖(u(t) − u(t))+‖2
2 + [(u(t) − u(t))+]2α. Then

d

dt
(g1−β ∗ Y (t)) ≤ 2λLY (t).

Convoluting above inequality with gβ, it follows that

Y (t) ≤ 2λLgβ ∗ Y (t).

By Lemma 2.6 and Y (0) = 0, one can get that Y (t) = 0. Thus, we get u ≤ u a.e. in
Ω × (0, T ), which ends the proof. �

Lemma 3.7. Assume that f satisfies (f2). Then the solution of problem (1.1) is
unique.

Proof. Assume that u1 and u2 are two solutions of problem (1.1). Then we deduce
from 1.1 that

∫

Ω

∂β
t (u1(t) − u2(t))v dx + 〈u1(t) − u2(t), v〉α + 〈∂β

t (u1(t) − u2(t)), v〉α

= λ

∫

Ω

(f(x, u1(t)) − f(x, u2(t)))v dx,

for any v ∈ Hα
0 (Ω). Taking v = u1 − u2, we get
∫

Ω

(u1(t) − u2(t))∂
β
t (u1(t) − u2(t)) dx + [u1(t) − u2(t)]2α

+ 〈∂β
t (u1(t) − u2(t)), u1(t) − u2(t)〉s

= λ

∫

Ω

(f(x, u1(t)) − f(x, u2(t)))u1(t) − u2(t)) dx.
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Using a similar discussion as above and applying Lemma 2.2 and (f2), it leads to
1
2

d

dt
(g1−β ∗ ‖(u1(t) − u2(t)‖2

2) + [u1(t) − u2(t)]2α +
1
2

d

dt
(g1−β ∗ ([u1(t) − u2(t)]2α))

≤ λL
∫

Ω

|u1(t) − u2(t)|2 dx.

Set Z(t) = ‖(u1(t) − u2(t)‖2
2 + [u1(t) − u2(t)]2α. Then
d

dt
(g1−β ∗ Z(t)) ≤ 2λLZ(t).

Convoluting above inequality with gβ, it follows that

Z(t) ≤ λLgβ ∗ Z(t),

which together with Lemma 2.2 and Z(0) = 0 yields that Z(t) = 0. Thus, we get
u1 = u2 a.e. in Ω × (0, T ), which ends the proof. �

4. Decay Estimates of Solutions

In this section, we give a decay estimate for problem (1.1) in which f satisfies (f2).
Let ϕ1 be the corresponding eigenfunction to the first eigenvalue λ1 of the

fractional Laplacian. Clearly, ϕ1 > 0 and ϕ1 ∈ L∞(Ω). Let 0 ≤ u0(x) ≤ η0ϕ1(x),
where η0 > 0. Assume that there exists h0 > 0 such that f(x, ξ) ≤ h0ξ for all x ∈ Ω
and ξ ≥ 0.

Set v(x, t) = ϕ1(x)η(t), where η satisfies
{

∂β
t η(t) + λ1−h0λ

1+λ1
η(t) = 0 for all t ≥ 0,

η(0) = η0 > 0,

where 0 < λ < λ1
h0

.
By [30, Theorem 7.1], there exist c1, c2 > 0 such that

c1

1 + tβ
≤ η(t) ≤ c2

1 + tβ
for all t ≥ 0. (4.1)

A simple calculation gives that

∂β
t v(x, t) + (−Δ)αv(x, t) + (−Δ)α∂β

t v(x, t)

= ϕ1(x)∂β
t η(t) + λ1ϕ1(x)η(t) + λ1ϕ1(x)∂β

t η(t)

= ϕ1(x)(∂β
t η(t) + λ1η(t) + λ1∂

β
t η(t))

= ϕ1(x)λh0η(t) = λh0v(x, t) ≥ λf(x, v).

Since v(x, 0) = ϕ1(x)η0 and ϕ1(x)η0 ≥ u0(x), we know that v(x, t) is a supersolution
of problem (1.1). Then by Theorem 3.6, we obtain that the unique solution u of
problem (1.1) satisfies

u(x, t) ≤ v(x, t) for a.e. (x, t) ∈ Ω × (0,∞).

Further, (4.1) implies that

0 ≤ u(x, t) ≤ c2ϕ1(x)
1 + tβ

for all t ≥ 0 and x ∈ Ω.
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5. Blow-Up of Solutions

In this section, we consider the blow-up property of solutions of problem (1.1). Some
techniques are inspired from [23] and [39]. Let u0 ∈ Hα

0 (Ω) satisfy u0 ≥ 0. If 2 < p
and

∫

Ω
u0ϕ1dx > (λ1

λ )1/(p−2), then the solution of problem (1.1) blows up in finite
time.

Proof of Theorem 1.4. Taking ϕ = ϕ1(x)ϕ2(t) with ϕ2 ∈ C1(0, T ) in Definition 1.1
and integrating over (0, T ), we get

∫ T

0

∫

Ω

∂β
t u(t)ϕ1ϕ2 dxdt +

∫ T

0

〈u(t), ϕ1ϕ2〉αdt +
∫ T

0

〈∂β
t u(t), ϕ1ϕ2〉αdt

=
∫ T

0

λ

∫

Ω

|u(t)|p−1ϕ1ϕ2 dxdt,

which gives that
∫ T

0

∫

Ω

∂β
t u(t)ϕ1ϕ2 dxdt + λ1

∫ T

0

∫

Ω

u(t)ϕ1ϕ2dxdt + λ1

∫ T

0

∫

Ω

∂β
t u(t)ϕ1ϕ2dxdt

=
∫ T

0

λ

∫

Ω

|u(t)|p−1ϕ1ϕ2 dxdt.

Set H(t) =
∫

Ω
u(x, t)ϕ1(x)dx. Then

(1 + λ1)
∫ T

0

∂β
t H(t)ϕ2(t)dt + λ1

∫ T

0

H(t)ϕ2(t)dt

= λ

∫ T

0

∫

Ω

|u(t)|p−1ϕ1ϕ2 dxdt.

It follows from Jensen’s inequality that

(1 + λ1)
∫ T

0

∂β
t H(t)ϕ2(t)dt + λ1

∫ T

0

H(t)ϕ2(t)dt

≥
∫ T

0

λ(
∫

Ω

u(t)ϕ1dx)p−1ϕ2(t)dt

= λ

∫ T

0

H(t)p−1ϕ2(t)dt,

thanks to p > 2. By Lemma 2.9, we have

− (1 + λ1)
∫ T

0

(H(t) − H(0))Iβ
T−ϕ′

2(t)dt + λ1

∫ T

0

H(t)ϕ2(t)dt

≥
∫ T

0

λ(
∫

Ω

u(t)ϕ1dx)p−1ϕ2(t)dt

= λ

∫ T

0

H(t)p−1ϕ2(t)dt, (5.1)
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where

Iβ
T−ϕ′

2(t) =
1

Γ(β)

∫ T

t

(τ − t)1−βϕ′
2(τ)dτ.

On one hand, choose ϕ2 = Iβ
T−ϕ̄(t) with ϕ̄ ∈ C1

0 (0, T ) and ϕ̄ ≥ 0. Then we deduce
from [13, Lemma 2.21 ] that

∫ T

0

(λHp−1 − λ1H)Iβ
T−ϕ̄(t)dt ≤ (1 + λ1)

∫ T

0

(H − H(0))ϕ̄dt. (5.2)

Applying Lemma 2.8 to the left of (5.2), it leads to
∫ T

0

Iβ
0+(λHp−1 − λ1H)ϕ̄(t)dt ≤ (1 + λ1)

∫ T

0

(H − H(0))ϕ̄dt.

The arbitrary of ϕ̄ gives that

Iβ
0+(λHp−1 − λ1H) + (1 + λ1)H(0) ≤ (1 + λ1)H(t).

Since H(0) > (λ1
λ )1/(p−2), we have H(t) > (λ1

λ )1/(p−2) as t small enough. Then we
have

H(t) ≥ H(0) > (
λ1

λ
)1/(p−2) for all t ∈ [0, T ].

On the other hand, choose ϕ2 = (1 − t
T )k

+, t ∈ [0, T ], k > max{1, (p − 1)β/(p −
2)}, in (5.1). By a direct calculation (see [13]), one can show that

−Iβ
T−ϕ2(t) =

Γ(k + 1)
Γ(k + 1 − β)

T−β(1 − t

T
)k−β.

Then

−
∫ T

0

(H(t) − H(0))Iβ
T−ϕ2(t)dt =

Γ(k + 1)
Γ(k + 1 − β)

T−β

∫ T

0

H(t)(1 − t

T
)k−βdt

− Γ(k + 1)
Γ(k + 1 − β)

H(0)T 1−β

(k + 1 − β)
.

By the Hölder inequality, one has
∫ T

0

H(t)(1 − t

T
)k−βdt

≤
(∫ T

0

Hp−1(t)(1 − t

T
)kdt

)1/(p−1) (∫ T

0

(1 − t

T
)(k−β− k

p−1 ) p−1
p−2 dt

)(p−2)/(p−1)

.

Further, using the Young inequality, for any ε > 0 we get

(1 + λ1)
Γ(k + 1)

Γ(k + 1 − β)
T−β

∫ T

0

H(t)(1 − t

T
)k−βdt

≤ ε

∫ T

0

Hp−1(t)(1 − t

T
)kdt + C(ε)T 1−(p−1)β/(p−2).
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We know that there exists a constant C > 0 such that
∫ T

0

(λHp−1 − λ1H)ϕ2dt + (1 + λ1)
Γ(k + 1)

Γ(k + 1 − β)
H(0)T 1−β

k + 1 − β

≤ ε

∫ T

0

Hp−1ϕ2dt + C(ε)T 1−(p−1)β/(p−2).

Choosing ε small enough such that H(0) > ( λ1
λ−ε)−1/(p−2), we get H(0) ≤

CT β−(p−1)β/(p−2) for some C > 0. If problem (1.1) has a global weak solution,
we obtain H(0) = 0 by letting T → ∞, which contradicts H(0) > (λ1

λ )−1/(p−2).
Therefore we show that the global nonexistence of problem (1.1). �
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