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For the same functions considered by Ajtai, we prove a time-space trade-off (for randomized branching
programs with error) of the formT =Ä(n

√
log(n/S)/ log log(n/S)). In particular, for spaceO(n1−ε),

this improves the lower bound on time toÄ(n
√

logn/ log logn).
In the large domain case, we prove lower bounds of the formT =Ä(n

√
log(n/S)/ log log(n/S))

for randomized computation of the element distinctness function and lower bounds of the form
T =Ä(n log(n/S)) for randomized computation of Ajtai’s Hamming closeness problem and of certain
functions associated with quadratic forms over large fields.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of
Computation—probabilistic computation; F.1.3 [Computation by Abstract Devices]: Complexity
Measures and Classes—relations among complexity measures; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems—computations on discrete struc-
tures; F.2.3 [Analysis of Algorithms and Problem Complexity]: Tradeoffs between Complexity
Measures

General Terms: Theory

Additional Key Words and Phrases: Branching programs, random-access machines, quadratic forms,
element distinctness

1. Introduction

The efficiency of an algorithm is typically measured according to its use of some
relevant computational resource. The most widely studied resource in this context
is computation time, but another important resource is memory orcomputation
space. Typically, algorithmic design problems focus on the goal of minimizing
one of these resources. It is very natural to study the relationship between these
two goals.

It is well known that these goals are somewhat compatible; if we have an upper
bound of S on the amount of space used by a terminating algorithm, then that
algorithm has at most 2S distinct memory configurations and therefore runs in time
at most 2S. This observation shows that a very space-efficient algorithm is at least
somewhat time efficient.

Typically, this 2S upper bound on time is very weak, and there are algorithms
having much better time bounds. Indeed, for many fundamental computational
problems such as sorting, matrix multiplication, and directed graph connectivity,
the goals of minimizing time and space seem to be in conflict; the most time-
efficient algorithms known require heavy memory resources, and as one decreases
the amount of memory used, the amount of time needed to solve the problem ap-
parently increases significantly. This apparent trade-off between time and space has
motivated a large body of research within complexity theory [Borodin 1993]. Such
research has a dual motivation. First, we seek to provide a sound basis for the belief
that such trade-offs are inherent, and to understand the underlying characteristics
of problems that exhibit such trade-offs. Second, such research fits into the broader
goal of proving computational lower bounds. Since we have had only very limited
success in proving lower bounds on the time needed to solve a particular computa-
tional problem, or on the space needed to solve a particular computational problem,
one might hope to make progress by considering the simultaneous restriction of
time and space.

As with most lower-bound problems in complexity theory, research divides into
uniformandnonuniformmodels. In the uniform computational setting, an algorithm
is modeled by a single program or, more formally, by a Turing machine, that operates
on inputs of all lengths. In the nonuniform setting, an algorithm is modeled by a
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sequence of simple combinatorial structures (typically, directed graphs), one for
each input size. A further dichotomy is drawn betweendecisionproblems (whose
output is a single bit, indicating “Yes” or “No”) andmulti-outputproblems.

In the uniform setting, a series of recent papers have established time-space
limitations on Turing machines that are able to solve the CNF-satisfiability (SAT)
decision problem. The first work along these lines was by Fortnow [1997], which
was followed by Lipton and Viglas [1999] and Fortnow and van Melkebeek [2000].
The latter gives the best current result: any algorithm for SAT that runs in space
no(1) requires time at leastÄ(nφ−ε) whereφ= (

√
5− 1)/2 andε is any positive

constant. Although some of these lower bounds apply even to co-nondeterministic
computation, none of them give any results for randomized algorithms.

In the nonuniform setting, the standard model is thebranching program. In this
model, a program for computing a functionf (x1, . . . , xn) (where the variables take
values in some finite domainD) is represented as a DAG with a unique start node.
Each nonsink node is labeled by a variable and the arcs out of a node correspond
to the possible values of the variable. Each sink node is labeled by an output
value. Executing the program on a given input corresponds to following a path
from the start node using the values of the input variables to determine the arcs to
follow. The output of the program is the value labelling the sink node reached. The
maximum length of a path corresponds to time and the logarithm of the number
of nodes corresponds to space. This model is often called theD-way branching
program model; in the case that the domainD is {0, 1} is referred to as theBoolean
branching programmodel.

In this model (or, more precisely, an extension that permits outputs along arcs
during the course of computation), there was considerable success in proving time-
space trade-off lower bounds formulti-output functionssuch as sorting, pattern
matching, matrix-vector product and hashing [Borodin and Cook 1982; Beame
1991; Abrahamson 1990, 1991; Mansour et al. 1993]. The basic technique is to
consider a space-limited computation, and show that in any short span of time, it
is impossible to accurately produce more than a very small amount of the output.
This technique is inherently incapable of providing results in the case of decision
problems, where the entire output is a single bit.

Until recently, the only time-space trade-off results for decision problems were
for models where the access to the input was limited in some significant way. In
thecomparison branching program model(where the inputs are numbers, and the
only access to the input allowed is pairwise comparison to determine order), strong
time-space trade-offs were obtained for the element distinctness decision problem
[Borodin et al. 1987; Yao 1988]. There is also an extensive literature on various
restrictedread-kmodels [Borodin et al. 1993; Okol’nishnikova 1993] which have
strict limitations on the number of times that any one variable may appear on any
path in the branching program.

Recently, the first results have been obtained for decision problems on unre-
stricted branching programs using time more thann. In theD-way model, Beame,
Jayram,1 and Saks [1998, 2001] exhibited a problem inP, where the domainD
grows with the number of variablesn, for which any subexponential size nonde-
terministic branching program has lengthÄ(n log logn). (As we discuss later, the

1 T.S Jayram, formerly Jayram S. Thathachar.
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technique is powerful enough to show length lower bounds ofÄ(n logn) for subex-
ponential size branching programs.) In the Boolean case, they obtained the first
(barely) nontrivial bound by exhibiting a problem inP and a constantε >0 for
which any subexponential size branching program requires length at least (1+ ε)n.
The lower bounds in Beame et al. [1998, 2001] were shown for functions based on
quadratic forms over finite fields extending techniques of Borodin et al. [1993]
that showed size lower bounds for read-k branching programs computing
bilinear forms.

In a remarkable breakthrough, Ajtai [1999b] exhibited aP-time computable
Boolean function (also based on quadratic forms) for which any subexponential size
deterministic branching program requires superlinear length. Much of the technical
argument for this result was contained in a previous paper of Ajtai [1999a, 2002]
which developed a key tool for analyzing the branching programs. The earlier
paper gave similar lower bounds for two non-Boolean problems whose input is a
list of n binary strings, each of lengthb=O(logn) bits: (1) Hamming closeness—
determine whether the list contains a pair of strings within Hamming distanceδb
for some fixedδ >0, and (2) Element distinctness—determine whether the strings
are all distinct. Ajtai’s proof of the lower bound for Hamming closeness used ideas
similar to those used by Okol’nishnikova [1993] to prove lower bounds in the read-k
case; however, his argument for element distinctness contains deeper ideas that are
the key to his lower bounds for Boolean branching programs.

The basic approach of all of these time-space trade-offs for decision problems
on branching programs was to show that any branching program of “small” length
and size must accept a subset of inputs that form a “large”embedded rectangle, and
then to exhibit concrete functions that accept no large embedded rectangles. (We
will define embedded rectangle in Section 2.1; for now it suffices for the reader
to know that it is a highly structured subset ofDn.) This was done for syntactic
read-k branching programs in Borodin et al. [1993] and Okol’nishnikova [1993].
The first lower bounds on embedded rectangle size for general branching programs
of small size and length were shown in Beame et al. [1998, 2001]. These bounds
gave the results from that paper mentioned above, and are also strong enough to
give the Hamming closeness result of Ajtai [1999a, 2002], but were not strong
enough to give the element distinctness and Boolean function lower bounds. Ajtai
obtained these bounds by proving a striking sequence of combinatorial lemmas that
gave a much stronger lower bound on embedded rectangle size. This directly gave
his tradeoff results for element distinctness and was the basis for the subsequent
Boolean branching program lower bound.

1.1. OUR RESULTS. In this article, we extend Ajtai’s approach for deterministic
branching programs in order to obtain the first time-space trade-off results for (two-
sided error) randomized branching programs, and also for deterministic branching
programs that are allowed to err on a small fraction of inputs. Previously, there
were no known time-space trade-offs even in the uniform setting for these modes
of computation. We also extend the lower bound technique of Beame, Jayram, and
Saks to randomized branching programs. Since the branching program model is
stronger than the RAM model our results apply to (two-sided error) randomized
RAM algorithms as well.

We obtain substantial quantitative improvement over the previous results. More
specifically, we show that, for element distinctness and the Boolean quadratic form
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considered by Ajtai, any two-sided error branching program of subexponential
size must have length at leastÄ(n

√
logn

log logn ). Ajtai does not explicitly give the
functional form of his length bounds, but analyzing his argument gives at most an
Ä(n log logn

log log logn ) bound.
For functions whose variables take on values from a large domain, stronger

lower bounds were already known, and we improve on these slightly. For certain
quadratic forms over larger fields, anÄ(n log logn) lower bound on length for de-
terministic branching programs of subexponential size was proved in Beame et al.
[1998, 2001]. The same techniques can be applied to the natural generalizations
of the quadratic forms considered by Ajtai to large domains, to immediately yield
Ä(n logn) length lower bounds for deterministic branching programs of subexpo-
nential size. We obtain the same bound for two-sided error randomized branching
programs. For the Hamming closeness problem, Pagter [2001] had obtained an
Ä(n logn

log logn ) lower bound for one-sided error randomized branching programs of
subexponential size by careful analysis of Ajtai’s argument in Ajtai [1999a]. We
improve this to anÄ(n logn) lower bound that again holds for two-sided error
branching programs.

Finally, while our argument relies heavily on Ajtai’s approach, our version is
considerably simpler.

One superficial difference in our presentation that makes some of the exposition
simpler is that we apply the basic approach developed in Beame et al. [1998, 2001] of
breaking up branching programs into collections of decision trees called decision
forests and then analyzing the resulting decision forests. This has the effect of
applying the space restriction only once, early in the argument, rather than carrying
the space restriction throughout the argument. Our approach simplifies the analysis
without fundamentally changing its ideas.

Our extension of Ajtai’s lemma shows that for a small deterministic branching
program not only is there a large embedded rectangle of accepted inputs, but there
is a set of large embedded rectangles of accepted inputs that cover almost all such
inputs without covering any one input too many times. From this we show that
if the given branching program agrees with a given target functionf on all but
a small fraction of inputs then there is a large embedded rectangle almost all of
whose inputs are ones off . We obtain our lower bounds for random algorithms by
strengthening Ajtai’s arguments about element distinctness, Hamming closeness,
and the quadratic forms to show that, not only do the functions not accept any
relatively large embedded rectangle, they reject a significant fraction of inputs in
any such rectangle.

2. Preliminaries

2.1. SETS AND FUNCTIONS. Throughout this article,D denotes a finite set and
n a positive integer. We write [n] for the set{1, . . . ,n}. For finite setN, DN is, as
usual, the set of maps fromN to D. An element ofN is called avariable indexor,
simply, anindex. We normally takeN to be [n] for some integern, and writeDn

for D[n] .
If A ⊆ N, a pointσ ∈ DA is apartial input on A. For a partial inputσ , fixed(σ )

denotes the index setA on which it is defined andunfixed(σ ) denotes the set
N − A. If σ andπ are partial inputs withfixed(σ ) ∩ fixed(π )=∅, thenσπ
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denotes the partial input onfixed(σ )∪ fixed(π ) that agrees withσ onfixed(σ )
and withπ onfixed(π ).

For x ∈ DN and A ⊆ N, theprojection xA of x onto Ais the partial input onA
that agrees withx. For S⊆ DN , SA={xA : x ∈ S}.

For a partial inputσ , DN(σ ), the set ofextensionsof σ in DN , is {x ∈ DN :
xfixed(σ )= σ }.

A function whose range is{0, 1} is adecision function. A decision function whose
domain is{0, 1}N for some index setN is aBoolean function.

2.2. EMBEDDED RECTANGLES. A productU × V of two finite sets is called
a (combinatorial) rectangle. If A ⊆ N is an index subset, andY ⊆ DA and
Z ⊆ DN−A, then the product setY × Z is naturally identified with the subset
R={σρ : σ ∈Y, ρ ∈ Z} of DN , and a set of this form is called arectangle in DN .
This notion of rectangle has been used, for example, in the study of communication
complexity in the “best-partition” model and in the study of read-once branch-
ing programs.

We need a more general notion of rectangle. Anembedded rectangle Rin DN is a
triple (B, A1, A2) whereA1 andA2 are disjoint subsets ofN andB ⊆ DN satisfies:
(i) The projectionBN−A1−A2 consists of a single partial inputσ , (ii) If τ1∈ BA1,
τ2∈ BA2 then the pointτ1τ2σ ∈ B. B is called thebodyof R andA1 andA2 are the
feetof R. The setsBA1 and BA2 are thelegsof the rectangle andσ is thespine.
Abusing terminology, we typically use the same letter for an embedded rectangle
and its body, writingR= (R, A1, A2). This could cause trouble if we needed to
refer to two rectangles with the same body but different feet, but this will not come
up in this paper. We sometimes omit the word “embedded” and simply say thatR
is a rectangle.

We can specify an embedded rectangle by its feet, legs and spine. LetA1 and
A2 be disjoint subsets ofN, Y1 ⊆ DA1 andY2 ⊆ DA2, andσ be a partial input
on N − A1 − A2. Then the set{τ1τ2σ : τ1∈Y1, τ2∈Y2} is the body of the unique
embedded rectangle with feet (A1, A2), legs (Y1,Y2) and spineσ .

For an embedded rectangleR= (R, A1, A2), and j ∈ {1, 2}, we define:

—mj (R)= |Aj |,
—m(R)= min{m1(R),m2(R)},
—α j (R)= |RAj |/|D||Aj |,
—α(R)= min{α1(R), α2(R)}.
α(R) is called theleg-densityof Randα j (R) is called thej -densityof R for j = 1, 2.
Let m∈ [n], ε ∈ [0, 1] andλ : [n] −→ [0, 1]. We say thatR is:

—c-balancedif m1(R) ≤ cm2(R) andm2(R) ≤ cm1(R).
—balancedif it is 1-balanced, that is,m1(R)=m2(R).
—λ-denseif α(R) ≥ λ(m(R)) andλ-sparse, otherwise.
—(m, λ)-large if m(R) ≥ m, andR is λ-dense.

Let (R, A1, A2) be a rectangle with legsY1= RA1 and Y2= RA2 and spine
σ . Let 51= RA1−B1 and 52= RA2−B2. For eachπ1∈51 and π2∈52, the
set R(π1π2)= R ∩ Dn(π1π2) is a rectangle with feet (B1, B2), spine σπ1π2,
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and legsYj (π j )=Yj ∩ Dn(π j ), for j ∈ {1, 2}. The collection of rectangles
{(R(π1π2), B1, B2) : π1∈51, π2∈52} partitions R and is called the (B1, B2)-
refinement of R, and is denoted Refine(R, B1, B2).

2.3. BRANCHING PROGRAMS. Since we are only interested in the computation
of decision (single output) functions here, we present our definitions of branching
programs only for this case. A(deterministic) branching programB on domainD
and index setN is an acyclic directed graph with the following properties:

—There is a unique source node, denotedstartB.
—Each sink nodev has a labeloutput(v), which is 0 or 1.

—Each nonsink nodev is labeled by an indexi (v)∈ N

—There are exactly|D|arcs out of each nonsink node, each with a different element
value(a) of D.

Intuitively, a branching program is executed on inputx by starting atstartB, reading
the variablexi (startB) and following the unique arc labeled byxi (startB). This process
is continued until a sink is reached and the output of the computation is the output
value of the sink.

We say thatB acceptsthe inputx if the sink reached on inputx is labeled 1. We
viewB as a decision function fromDn by definingB(x)= 1 if and only ifB accepts
x. For a functionf : DN −→ {0, 1}, we say thatB computesf if B(x)= f (x) for
all x and thatB approximates f with error at mostε if the fraction of inputsx such
that f (x) 6=B(x) is at mostε.

Two measures associated withB aresize, which equals the number of nodes, and
length, which is the length of the longest path.

A branching program of lengthd is leveledif the nodes can be partitioned into
d setsV0,V1, . . . ,Vd whereV0={startB} is the source,Vd is the set of sink nodes
and every arc out ofVi goes toVi+1, for 0≤ i < d. By a well-known observation
(see, e.g., Borodin et al. [1981]), every branching programB of sizes and length
d, can be converted into a leveled branching programB′ of lengthd that has at
mosts nodes in each of its levels and computes the same function asB (and is
deterministic ifB is).

For our purposes, arandomizedbranching program̃B with domainD and index
setN is a probability distribution over deterministic branching programs with do-
mainD and index setN. ExecutingB̃ on inputx ∈ DN corresponds to selecting the
deterministic branching programB according to the distributioñB and evaluating
B(x). We say that̃B computes the functionf with error at mostε if for every
input x, Pr [B̃(x)= f (x)] ≥ 1 − ε. The length (respectively, size) of̃B is the
maximum length of any branching program that gets nonzero probability under
the distribution.

This notion of probabilistic branching program differs from the standard notion,
which is obtained by modifying the definition of deterministic branching program to
allow “random” nodes which are not labeled by variables, but where the execution
randomly selects an output arc. It is well known and easy to see that our notion is
at least as powerful as the standard notion and thus is sufficient for the purpose of
proving lower bounds.

We note the following well-known fact.
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PROPOSITION 2.1. Let f : Dn−→{0, 1} and supposeB̃ is a randomized
branching program of size at most S and length at most T that computes f with
error probability at mostε. Then there is a deterministic branching programB of
size at most S and length at most T that approximates f with error at mostε.

PROOF. For deterministic branching programB and inputx, let g(B, x)= 1
if B(x) 6= f (x) and 0 otherwise. Defineq(B)= |D|−n

∑
x∈Dn g(B, x). For

eachx, the probability that̃B(x) 6= f (x) is equal to the expectation ẼB[g(B̃, x)]
which is at mostε, by hypothesis. Averaging overx, we have ẼB[q(B)] ≤ ε which
means there is aB having nonzero probability under̃B such thatq(B) ≤ ε.

2.4. DECISION TREES ANDDECISION FORESTS. A decision treeis a branching
programBwhose underlying graph is a tree rooted atstartB. In particular, a decision
tree is leveled. Every function onn variables is computable by a deterministic
decision tree of lengthn. Following common practice, the length of a decision tree
is referred to as itsheight.

A decision forestis a set of decision trees. More precisely for domainD and
integersn andr andε >0, ann-variate (r, ε)-decision forestF overD is a collection
of at mostr decision trees such that each tree is ann-variate tree over domainD and
has height at mostεn. F is viewed as a function onDn by the ruleF(x)=∧T∈F T(x).
A decision forestF is inquisitiveif on every inputx, for eachi ∈ [n], at least one
of the treesT ∈ F readsxi .

2.5. CONVERTING BRANCHING PROGRAMS TO A DISJUNCTION OF DECISION
FORESTS. The following result is a minor variant of a lemma proved in Beame
et al. [1998, 2001], which says roughly that the function computed by a branching
program that is not too large and not too deep can be expressed as the OR of a
not too large collection of decision forests, each of which consists of a small set of
shallow trees.

LEMMA 2.2. Let k, S∈R and n∈N and D be a finite set. LetB be an n-variate
branching program over domain D having length at most kn and size at most2S.
Then for any integer r∈ [kn], the function f computed byB can be expressed as:

f =
u∨

i=1

Fi ,

where u≤ 2Sr, each Fi is an inquisitive(r, k+2
r )-decision forest, and the sets F−1

i (1)
are pairwise disjoint sets of inputs.

PROOF. As noted in Section 2.3, there is a leveled branching programB′ of
lengthkn with at most 2S nodes per level that computes the same function asB.
Furthermore, letB′′ be the length (k+ 1)n branching program obtained fromB′ by
addingn layers at the beginning that obliviously query each variable. For distinct
nodesv andw of B′′, let fv,w denote the function onDn which is 1 on inputσ
if, starting fromv, the path consistent withσ leads tow. It is easy to see that ifv
is at leveli andw is at level j > i , then fv,w can be computed by a decision tree
of height j − i . For each positive integeri less thanr definel i =d ikn

r e. Note that
l1 < · · · < lr−1 < kn divides the interval [0, kn] into r intervals each of size at
mostkn

r +1≤ ( k+1
r )n. An input is accepted byB′′ if and only there is a sequence of

nodesv0, v1, v2, . . . , vr−1, vr , wherev0 is the start node,vr is the accepting node
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TABLE I. PROPERTIES OFEMBEDDED RECTANGLE R FOUND GIVEN A D-WAY BRANCHING PROGRAM

WITH TIME T = kn AND SPACE SCOMPUTING A FUNCTION f : Dn → {0, 1} WITH δ( f )= | f −1(1)|/|Dn|.

Foot Size Leg Deficiency Program Error on
Paper m(R) log2(δ( f )/α(R)) Type f −1(0) Applicability

Beame et al. 2−O(k)n O(k)m+ 2O(k)S nondet. 0 k=O(logn),
[1998, 2001] |D| =2Ä(k)

Ajtai [1999a, 2002], k−O(k)n O(k logk)m+ kO(k)S det./ 0 k=O( logn
log logn ),

Pagter [2001] 1-sided err.ε 0 |D| = kÄ(k)

Here 2−O(k)n O(k)m+ 2O(k)S 2-sided err.ε O(ε) k=O(logn),
|D| =2Ä(k)

Ajtai [1999a, 2002] 2−kO(k)
n 2−kÄ(k)

m+ 2kO(k)
S det. 0 k=O( log logn

log log logn )

Here k−O(k2)n k−Ä(1)m+ kO(k2)S det. 0 k=O(
√

logn
log logn )

Here k−O(k2)n k−Ä(1)m+ kO(k2)S 2-sided err.ε O(kε) k=O(
√

logn
log logn )

and fori ∈ [r −1], vi is at levell i , such thatfvi−1,vi (σ )= 1 for eachi ∈ [r ]. Therefore

f =
∨

v1,...vr−1

r−1∧
i=0

fvi ,vi+1.

There are at most 2S(r−1) terms in the
∨

, and each term is a (r, k+2
r ) decision forest.

Finally, each input follows a unique path, and so is accepted by at most one of the
decision forests. Note that sinceB′′ obliviously reads all variables at the beginning,
each of the decision forests in the decomposition produced in the above argument
is inquisitive.

3. Overview and Comparison to Previous Results

The main approach taken in Beame et al. [1998, 2001] and Ajtai [1999a, 1999b,
2002] for proving time-space trade-off lower bounds is to show that for any branch-
ing program running in timeT and spaceS, whereT andS are suitably small, if
the fraction of inputs for which the branching program outputs 1 is not too small
then there must be some embedded rectangleR having large feet and leg-density
consisting entirely of inputs on which the program outputs 1.

There are two main differences between our results and previous results for
decision problems. First of all, we obtain substantially larger values for the foot
size and leg-density of the obtained rectangles. Secondly, we show that not only
is there one large embedded rectangle on which the branching program outputs 1
but there is a collection of such embedded rectangles that together cover most of
the inputs on which the branching program outputs 1, and such that no input is
covered too many times. This allows us to prove lower bounds for randomized and
distributional as well as deterministic branching program complexity.

We summarize the relationships between the different results in Table I. Each
result has the following form: Given a branching program of depth (time)T = kn
and 2S nodes (spaceS) of the indicated program type that computes functionf that
is 1 on at least aδ( f ) fraction of its inputs, then there is a (balanced) embedded
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rectangleR that is (m, λ)-large (as defined in Section 2.2), for suitably largemandλ,
that contains very few inputs off −1(0). The lower bound on foot sizemhas the form
n/β0(k), and the lower bound on leg density has the formλ(m)= δ( f )/2β1(k)m+β2(k)S,
whereβ0, β1, β2 are nonnegative valued functions. The quantityβ1(k)m+ β2(k)S,
which appears in the exponent of 2 in the expression forλ(m) provides an upper
bound on log2(δ( f )/α(R)), which we call theleg-deficiencyof R. Smaller values of
β0(k), β1(k), β2(k) give larger embedded rectangles and better time-space tradeoff
lower bounds.

The Error column indicates the fraction of inputs of the rectangle that belong to
f −1(0). This error is 0 except in the case that the branching program has 2-sided
errorε, in which case it is proportional toε.

Any nonempty rectangle has leg-deficiency at mostm log |D|, and to obtain
nontrivial time-space trade-offs results, we will need leg-deficiency considerably
smaller. Thus, in the expressionβ1(k)m+ β2(k)S, we needβ1(k) to be sufficiently
smaller than log|D|. In particular, the first group of bounds in the table is useful
only if |D| is sufficiently large. The second group of bounds hasβ1(k)= o(1) which
enables us to obtain results for the most interesting case,D={0, 1}.

In general, the best lower bound achievable from each result will be of the form
T =Ä(nβ−1(n log |D|

S )) whereβ(k)=β0(k) · β2(k). The upper bound onk= T/n
listed in the last column is the limit on the best lower bound achievable given a
polynomial size branching program.

Section 5 contains the precise statements and proofs of the new stronger re-
sults outlined above that iff is a decision function computed by a small and
shallow branching program then there is a collection of large rectangles that cov-
ers a substantial portion off −1(1). As in Beame et al. [1998, 2001], the main
step (which appears in Section 4) is to prove corresponding results for the case
that f is computed by a small and shallow decision forest. Straightforward ap-
plication of Lemma 2.2 then gives the desired results about small branching pro-
grams. Applications of this result to lower bounds on specific functions are given in
Section 6.

4. Finding Large Embedded Rectangles in Decision Forests

Throughout this section,D is a fixed finite domain,n ≥ r ≥ k ≥ 1 are integers
andF is a fixed inquisitiveD-way (r, k/r )-decision forest over index set [n]. (Such
an F arises from a branching program of depth (k− 2)n using the construction of
Lemma 2.2.) Our goal here is to show that one can find a collection of embedded
rectangles, such that:

(G1) Each rectangle is contained inF−1(1).
(G2) No single input belongs to “many” rectangles.
(G3) The union of the rectangles covers all but a small number of inputs inF−1(1).
(G4) Each rectangle in the collection has foot size at leastn/β0 whereβ0 depends

only onk and is as small as possible.
(G5) Each rectangle in the collection isλ-dense whereλ : [n] −→ [0, 1] is a

function that is as large as possible and, in particular, satisfiesλ(m) ≥ |D|−εm
for some constantε < 1.

(G6) Each rectangle is balanced.
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All but the first and last of these conditions depend on parameters that will be
selected as we proceed. The first three conditions, (G1), (G2), (G3), concern the
coverage of the set of rectangles with respect toF−1(1), whereas the last three,
(G4), (G5), (G6) refer to parameters of the individual rectangles within the cover.
We will first concentrate on obtaining sets of rectangles with the coverage properties
that satisfy the parameter conditions (G4), (G5), which together imply that each
rectangle is large; we will only derive the balance condition (G6) at the end of
the argument. However, in proving conditions (G4) and (G5) we will find it useful
to first ensure that the rectangles are all approximately balanced, more precisely
3-balanced; the final balance condition will follow easily afterward.

4.1. CONSTRUCTING A RECTANGLE PARTITION FROM TWO DISJOINT FORESTS.
Our first step is to show that any pair (F1, F2) of disjoint subforests ofF is naturally
associated with a partitionR(F1, F2) of F−1(1) into embedded rectangles. We start
by looking at the combinatorial structure induced by a single subforest on the set
of inputs. LetT ∈ F , F1 ⊆ F , andx ∈ Dn. We define:

—read(x, T) is the set of indices read byT on inputx.
—read(x, F1)=

⋃
T∈F1

read(x, T).
—core(x, F1)= read(x, F1) − read(x, F − F1), the F1-core of x, is the set of

indices which on inputx are read by at least one tree inF1 and by no tree
outside ofF1. By our assumption thatF is inquisitive, this is the same as [n] −
read(x, F − F1).

—stem(x, F1), the F1-stem ofx, is the partial input obtained by projectingx to
[n] − core(x, F1). SinceF is inquisitive, this means thatstem(x, F1) is the
projection ofx ontoread(x, F − F1).

—stems(F1), the set ofF1 stems, is the set of partial inputsρ for which there exists
x ∈ Dn with stem(x, F1)= ρ.

For ρ ∈ stems(F1), it is clear from the definition that anyx ∈ Dn satisfy-
ing stem(x, F1)= ρ belongs toDn(ρ). The converse of this also true, though
less obvious:

LEMMA 4.1. Let Fj be a subforest of an inquisitive decision for-
est F and let ρ ∈ stems(Fj ). For all x ∈ Dn(ρ), stem(x, Fj )= ρ and
core(x, Fj )= unfixed(ρ).

PROOF. Let x ∈ Dn(ρ). Since ρ ∈ stems(Fj ), there is an inputy with
ρ= stem(y, Fj ). SinceF is inquisitive,ρ is the projection ofy ontoread(y, F −
Fj ), which means that on inputy, the trees ofF − Fj read precisely the indices
of fixed(ρ). Sincex ∈ Dn(ρ), eachT ∈ F − Fj behaves the same onx as it does
on y. Soread(x, F − Fj )= fixed(ρ). Thuscore(x, Fj )= unfixed(ρ), and the
restriction ofx to read(x, F − Fj ) is alsoρ, that is,stem(x, Fj )= ρ.

Now we consider the combinatorial structure induced by a pair of subforestsF1
andF2 which are disjoint subsets ofF . Define:

—stem(x, F1, F2) is the partial input on [n]−core(x, F1)−core(x, F2) obtained
from projectingx.

We say that inputsx, y∈ F−1(1) are (F1, F2)-equivalent if and only if
core(x, F1)= core(y, F1), core(x, F2)= core(y, F2), and stem(x, F1, F2)=
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stem(y, F1, F2). Let R(F1, F2) be the set of (F1, F2)-equivalence classes. For
R∈R(F1, F2), we write core(R, F1) for the common value ofcore(x, F1)
shared by allx ∈ R and definecore(R, F2) andstem(R, F1, F2) analogously. For
x ∈ F−1(1), let R(x, F1, F2) denote the equivalence class containingx.

LEMMA 4.2. Let F1, F2 ⊂ F be disjoint subforests of the inquisitive deci-
sion forest F. Let R∈ R(F1, F2). Then R is an embedded rectangle with feet
(core(R, F1), core(R, F2)) and spinestem(R, F1, F2).

PROOF. Let A1= core(R, F1) and A2= core(R, F2) and σ =
stem(R, F1, F2). By definition, A1 and A2 are disjoint. LetL1={τ1∈ DA1 :
τ1σ ∈ stems(F2)} andL2={τ2∈ DA2 : στ2∈ stems(F1)}. Let Q be the embedded
rectangle with feetA1 and A2, legs L1 and L2, and spineσ . It suffices to show
that R= Q.

First, we showR ⊆ Q. Let x ∈ R. By definition of R, core(x, F1)= A1 and
core(x, F2)= A2. Write x ∈ R as τ1στ2 where τ1∈ DA1, and τ2∈ DA2. Since
τ1σ = stem(x, F2) andστ2= stem(x, F2), we haveτ1∈ L1 andτ2∈ L2 and there-
fore x ∈ Q.

Next, we show Q ⊆ R. Let x= τ1στ2∈ Q such that τ1∈ L1 and
τ2∈ L2. Now sinceτ1σ ∈ stems(F2) and στ2∈ stems(F1), by Lemma 4.1 we
havecore(x, F2)= unfixed(τ1σ )= A2 and core(x, F1)= unfixed(στ2)= A1.
Therefore,x ∈ R.

Thus, each pair of disjoint forestsF1, F2 induces a partitionR(F1, F2) of F−1(1)
into embedded rectangles (which thus satisfies the covering conditions (G1), (G2)
and (G3)). However, we also want the rectangles in our collection to be suitably
large (and balanced). There is no guarantee, for an arbitrary pair of forestsF1, F2,
if we eliminate rectangles of its associated partition that are not suitably large, that
the remainder will cover a sufficiently large fraction ofF−1(1) (violating (G3)). To
help with this, we use the probabilistic method to choose a pair of forestsF1, F2
for which this idea suffices in certain cases. Depending on the notions of “suitably
large” that we require, even applying this idea with a single pair of forests may
not suffice. For these stronger results, we need to apply the probabilistic method to
obtain several different choices of pairs of forests whose associated partitions have
the property that the suitably large rectangles in the union of the partitions covers
most of the inputs inF−1(1). If the number of different choices is not too large,
then we will be able to satisfy (G3) without violating (G2).

4.2. ANALYSIS OFCORESIZE FORRANDOMLY CHOSENFORESTS. We begin by
defining a parameterized family of probability distributions over pairs (F1, F2) of
forests and analyzing properties ofR(F1, F2) when (F1, F2) is chosen according to
a distribution in this family. In Beame et al. [1998, 2001], (F1, F2) was chosen to
be a random partition ofF into two parts. Ajtai [1999a, 2002] used a more general
parameterized family of distributions, and we use a variant of the ones he used.
For q∈ (0, 1

2], let Fq be the distribution that chooses (F1, F2) by independently
assigning each decision treeT ∈ F as follows:

T ∈


F1 with probabilityq
F2 with probabilityq
F − F1− F2 with probability 1− 2q.
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For x ∈ Dn, let µ(x,q)= E[|core(x, F1)|]= E[|core(x, F2)|] for (F1, F2) se-
lected according toFq. We now show thatµ(x,q) is a fairly large fraction ofn,
and also that for eachx, with high probability, bothcore(x, F1) andcore(x, F2)
are close toµ(x,q). This lemma generalizes a lemma proved in Beame et al.
[1998, 2001] for theq= 1/2 case. Ajtai proved tighter concentration bounds for
his distributions using a more detailed analysis, but since the tighter bounds are
not significant in the final results, we content ourselves with a simple second
moment argument.

LEMMA 4.3. Let n ≥ r ≥ k and let F be an n-variate inquisitive(r, k/r )-
decision forest. Let x be any input. For any q, if(F1, F2) is chosen according toFq,
then:

(a) µ(x,q) ≥ qkn.

(b) for each j∈ {1, 2}, Pr [
∣∣|core(x, Fj )| − µ(x,q)

∣∣ ≥ 1
2µ(x,q)] ≤ 4k2

rqk

PROOF. By symmetry, it is enough to consider the casej = 1.
For i ∈ [n]. Pr [i ∈ core(x, F1)]=qt(i ), wheret(i ) is the number of trees that

access variablei on inputx. Thus E[|core(x, F1)|]=
∑

i∈[n] qt(i ). SinceF makes
at mostkn reads on inputx, 1

n

∑
i∈[n] t(i ) ≤ k. By the arithmetic-geometric mean

inequality, E[|core(x, F1)|]=
∑

i qt(i ) ≥ nq
1
n

∑
i t(i ) ≥ qkn.

Next we upper bound Var[|core(x, F1)|]. Let M(i ) be the event that
i ∈ core(x, F1). For 1≤ i, i ′ ≤ n, we sayi ∼ i ′ if there isT ∈ F that accesses
bothxi andxi ′ on inputx. Now

Var[|core(x, F1)|]=
∑
i,i ′

(Pr [M(i ) ∧ M(i ′)] − Pr [M(i )] · Pr [M(i ′)]).

If ¬(i ∼ i ′), then the eventsM(i ) andM(i ′) are independent and the correspond-
ing term in the sum is 0. Ifi ∼ i ′, then we upper bound Pr [M(i ) ∧ M(i ′)] −
Pr [M(i )] ·Pr [M(i ′)] crudely by Pr [M(i )]=qt(i ). Since on inputx, each tree reads
at mostkr n variables, for eachi the number ofi ′ such thati ∼ i ′ is at mostt(i ) k

r n.
Thus,

Var[|core(x, F1)|] ≤ k

r
n

n∑
i=1

t(i )qt(i ) ≤ k

r

n∑
i=1

t(i )
n∑

j=1

qt( j ) ≤ k2n

r
µ(x,q).

(The second inequality uses a form of Chebyshev’s inequality (e.g., Hardy et al.
[1952, Theorem 43, page 43]), which says that whenai andbi are positive and
anti-correlated,

∑n
i=1 ai bi ≤

∑n
i=1 ai

∑n
j=1 bj /n.)

We now use the more usual form of Chebyshev’s inequality: for any random
variableZ with finite expectation and variance, Pr [|Z−E[Z]| ≥ ζ ] ≤ Var[Z]/ζ 2.

Pr

[∣∣|core(x, F1)| − µ(x,q)
∣∣ ≥ 1

2
µ(x,q)

]
≤ 4Var[|core(x, F1)|]/µ(x,q)2

≤ 4k2n

rµ(x,q)
≤ 4k2

rqk
.

4.3. CHOOSING RECTANGLES WITH HIGH LEG-DENSITY: OVERVIEW. The
lemma in the previous subsection implies that for (F1, F2) chosen according to
Fq, the subset ofR(F1, F2) consisting of those rectangles that both have foot
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size at leastqkn/2 and are 3-balanced covers all but a few inputs ofF−1(1).
Provided thatq is not too small, this would produce a set of rectangles that
satisfy some version of the covering conditions (G1),(G2),(G3) as well as the
lower bound on foot-size (G4) and approximate balance. If we did not care about
the leg-density bound (G5), then we would chooseq= 1/2, and we would es-
sentially be done. However, we want the chosen rectangles to have sufficiently
high leg-density to satisfy (G5). To obtain the time-space trade-offs for the
various functions considered in Beame et al. [1998, 2001] and Ajtai [1999a,
1999b, 2002], we will want the leg-density boundλ(m)= |D|−εm for some
ε < 1. (Notice that forλ(m) ≤ |D|−m, any nonempty rectangle is trivially
λ-dense.)

We would like that forF1, F2 chosen according to theFq, almost all inputs in
F−1(1) are in rectangles that areλ-dense, for some appropriateλ(m). In the special
case that all of the trees inF areoblivious(that is, the choice of variables queried
in a given tree depends only on the level and not on the path followed by the input),
it is easy to show that this is true foreverychoice of (F1, F2) even if we takeλ(m)
to be a constant function. In this case, for any given pair (F1, F2), core(x, F1) and
core(x, F2) are the same for all inputsx, so all of the rectangles inR(F1, F2) have
the same pair of feet (A1, A2). Thus, these rectangles are determined only by their
spinesσ on [n] − A1− A2. For anyη>0, and for j ∈ {1, 2}, any rectangleR with
α j (R) ≤ η covers at mostη|D||A1|+|A2| inputs and there are only|D|n−|A1|−|A2|
rectangles inR(F1, F2). Therefore, for the constant functionλ(m)= η, the number
of inputs that are not inλ-dense rectangles is at most 2η|Dn|.

The idea of this argument is that the definition ofλ-sparse imposes an upper bound
on the size of eachλ-sparse rectangle and we multiply this by (an upper bound on)
|R(F1, F2)|. In the general (nonoblivious) case, the rectangles inR(F1, F2) do
not all have the same feet, which creates two problems: (1) the size upper bound
on aλ-sparse rectangle also depends on the size of the feet, and so is different for
different rectangles, and, more significantly, (2) it is harder to get good upper bounds
on |R(F1, F2)|.

The rest of this section is devoted to proving two lemmas, Lemma 4.4 and
Lemma 4.13. The first lemma uses a simple argument that achieves a leg-density
lower boundλ(m)= 2−O(km), which is enough to prove time-space trade-offs for
some functions in the case that the domainD is large, in particular larger than 2ck

for some constantc. The second lemma is much harder and achieves a leg-density
lower boundλ(m)= 2−εm for ε < 1, which is needed for the time—space trade-offs
for Boolean functions and for the element distinctness problem.

4.4. WEAK LOWERBOUNDS ONLEG-DENSITY.

LEMMA 4.4. Let F be an n-variable inquisitive(r, k/r ) decision forest where
n ≥ r ≥ k ≥ 2 are integers. Let1>γ ′, δ′> 0 and suppose that r≥ 2k+4k2/γ ′.
Then there is a familyR of disjoint rectangles such that each rectangle R∈R is
a subset of F−1(1) and satisfies m(R)=m1(R)=m2(R) ≥ dn/2k+1e andα(R) ≥
2−12(k+1)m(R)δ′, and such that the set| ∪R∈R R| has size at least(1− γ ′)|F−1(1)| −
δ′|Dn|.

PROOF. Let r ≥ 2k+4k2/γ ′ and choose (F1, F2) according toF1/2. By
Lemma 4.3, for eachx ∈ F−1(1), there is awx = 1

2µ(x, 1/2) ≥ n/2k+1 such that
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Pr[|core(x, Fj )| 6∈ [wx, 3wx]] ≤ γ ′/2 for j = 1, 2. Therefore, there is a pair
(F1, F2) such that|core(x, F1)|, |core(x, F2)| ∈ [wx, 3wx] for all inputsx in a sub-
setJ of F−1(1) of size at least (1− γ ′)|F−1(1)|. LetQ be the set of all embedded
rectanglesR∈R(F1, F2) that contain at least one element ofJ. By construction,
every embedded rectangleR in Q hasn/2k+1 ≤ m(R)= min(m1(R),m2(R)) and
max(m1(R),m2(R)) ≤ 3m(R).

We first partition each of the embedded rectangles inQ to produce a setQ′ of
balanced rectangles as follows: For each embedded rectangle (R, A1, A2) in Q, if
j ∈ {1, 2} is an index such thatm(R)=mj (R)= |Aj |, we defineBj = Aj , define
B3− j ⊆ [n] to be the set consisting of the smallestm(R) elements ofA3− j and
replace (R, A1, A2) by its partition into embedded rectangles with feetB1 andB2,
Refine(R, B1, B2) (as defined in Section 2.2). Clearly each embedded rectangle
R′ ∈Refine(R, B1, B2) hasm(R′)=m1(R′)=m2(R′)=m(R) ≥ n/2k+1.

We now define the subsetR ofQ′ to be those embedded rectanglesR′ such that
|R′| ≥ 2−12(k+1)m(R′)δ′|D|2m(R′). We claim that the union of all rectangles inQ′ −R
contains at mostδ′|D|n inputs.

Each rectangle inQ is defined by its feet corresponding to the common core sets
A1, A2 ⊂ [n] and its spine, the partial assignmentσ ∈ D[n]−A1−A2 corresponding
to the common stem. Furthermore, each refined rectangleR′ in Q′ is defined by
specifying the rectangleR inQ from which it was derived, together with the partial
assignment to the max(m1(R),m2(R)) − m(R) variables of largest index in the
larger ofA1 or A2.

We count the rectangles inQ′ separately based on the possible values ofm1(R)
andm2(R) of the rectangleR from which they are derived. For each fixed pair
(m1,m2) of integers, there are at most (n

m1
)( n

m2
)|D|n−m1−m2 rectanglesR∈Q with

m1(R)=m1 andm2(R)=m2 and thus at most(
n

m1

)(
n

m2

)
|D|n−m1−m2|D|max(m1,m2)−min(m1,m2)

=
(

n

m1

)(
n

m2

)
|D|n−2 min(m1,m2)

rectanglesR′ ∈Q′ derived from such rectanglesR. By construction, we only
need to consider integer pairs (m1,m2) with n ≥ m1,m2 ≥ n/2k+1 such that
max(m1,m2) ≤ 3 min(m1,m2). Now, using the fact (easily checkable given
the standard bound (n

m) ≤ 2H2(m/n)n where H2(p)= p log2(1/p) + (1 − p)
log2(1/(1− p))) that for` ≥ 1 if m ≥ n/2` then (nm) ≤ 22`m, for these values of
m1 andm2,(

n

m1

)(
n

m2

)
|D|n−2 min(m1,m2) ≤ 22(k+1)(m1+m2)|D|n−2 min(m1,m2)

≤ 28(k+1) min(m1,m2)|D|n−2 min(m1,m2).

Therefore, the total number of inputs in rectanglesR′ in Q′ with |R′|<
2−12(k+1)m(R′)δ′|D|2m(R′) such that m1(R)=m1 and m2(R)=m2 is at most
2−4(k+1) min(m1,m2)δ′|D|n. Summing over all pairs (m1,m2), we need to consider
shows that the number of inputs inJ not covered byR is at most
n22−4(k+1)n/2k+1

δ′|D|n≤ δ′|D|n since m1,m2≥ n/2k+1 and n/ log2 n≥ 2k/k for
n≥ r ≥ 2k+4k2.
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Since any rectangleR′ with both feet of size m(R′) has precisely
α1(R′)α2(R′)|D|2m(R′) elements and sinceα j (R′) ≤ 1 for j = 1, 2, for every rect-
angleR′ inR, α(R′)= min(α1(R′), α2(R′)) ≥ 2−12(k+1)m(R′)δ′ as required.

The proof of Lemma 4.4 is very similar to that of the result of Beame et al. [1998,
2001] cited in Table I. The main difference is that their argument only produces a
single rectangle that is suitably large and dense, while the above lemma gives a col-
lection of disjoint rectangles that covers all but a small number of points inF−1(1);
this extension will permit lower bounds for randomized branching programs with
2-sided error. We get a small savings of a 2−r factor in the bound and the 12 in the
exponent is slightly worse because of our extension to the randomized case, but
these will not significantly change the lower bound when we extend it to the entire
branching program.

This lemma is the only part of this section needed to prove the time-space trade-
offs for branching programs for the Hamming closeness function and for quadratic
forms over large fields. The reader who wishes to get an idea how the “large
rectangle” results are applied can go to Section 5.1 and then the relevant parts
of Section 6.

4.5. A SUFFICIENT CONDITION FORHIGH LEG-DENSITY. We turn to the harder
task of improving the density lower bounds on the rectangles in our cover to be
much larger than 2−m. Conceptually, our approach closely follows that used to prove
the main lemma of Ajtai [1999a, 2002]. The overall strategy involves classifying
inputs based on the pattern of accesses to their input variables made by the various
trees in the decision forest.

We will begin by developing a general condition on a pair of forestsF1, F2
and an arbitrary subsetJ ⊆ Dn of inputs that will allow us to obtain good leg-
density lower bounds on the rectangles inR(F1, F2) that cover most ofJ. We will
then show that this condition holds if the restrictions of the access patterns of the
inputs in J to the trees ofF1 and F2 satisfy a certain property. Finally, we will
show that there is a small set0 of probabilitiesq satisfying the following. If the
inputs are partitioned into classes based on their overall access patterns, for any
such class of inputsJ there is someq∈0 such that, forF1, F2 chosen fromFq,
the restrictions of the access patterns of the inputs inJ to F1 and F2 satisfy the
desired property.

We now work out the condition that implies large leg-density. Fix a pair of
forestsF1, F2. We begin with an alternate characterization of leg-density in terms
of Fj -stems.

LEMMA 4.5. Letρ ∈ stems(Fj ) and let R∈R(F1, F2) satisfy R∩ Dn(ρ) 6= ∅.
Thenα j (R)= |R∩ Dn(ρ)|/|Dn(ρ)|.

PROOF. Letρ andR be as hypothesized. LetA1, A2 be the feet ofR, σ be the
spine andY1,Y2 be the legs. Supposex ∈ R ∩ Dn(ρ). Let τ be the restriction of
x to A3− j . Thenτ ∈Y3− j andστ = stem(x, Fj ). By Lemma 4.1,ρ= στ . Since
R={π1π2σ : π1∈Y1, π2∈Y2}, we have thatR∩ Dn(ρ)={π j τσ : π j ∈Yj } and
thus|R∩ Dn(ρ)| = |Yj | =α j (R)|DAj | =α j (R)|Dn(ρ)|.

Now fix a subsetJ ⊆ Dn of inputs. Very roughly, if one could show that for
any x ∈ J there are very few rectangles inR(F1, F2) containing inputs inJ that
extendstem(x, Fj ), then by some kind of averaging one would expect that most
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points in J will lie in rectangles that have relatively largej -density. In order to
make this rough argument precise, we need the following property ofstems(Fj )
which follows immediately from Lemma 4.1.

LEMMA 4.6. {Dn(ρ) : ρ ∈ stems(Fj )} is a partition of Dn.

Let λ : [n] → [0, 1] be an arbitrary function and letQ j be the set of rectangles
R in R(F1, F2) with α j (R) < λ(mj (R)). The number of inputs ofJ that belong
to elements ofQ j is

∑
R∈Q j |R∩ J|. To upper bound this sum, we classify points

according to theirFj -stem and separately upper bound the number of points in each
class that are contained in such sparse rectangles.∑
R∈Q j

|R∩ J|

=
∑

ρ∈stems(Fj )

∑
R∈Q j

|R∩ J ∩ Dn(ρ)|

≤
∑

ρ∈stems(Fj )

∑
R∈Q j

R∩J∩Dn(ρ)6=∅

|R∩ Dn(ρ)|

=
∑

ρ∈stems(Fj )

∑
R∈Q j

R∩J∩Dn(ρ)6=∅

α j (R) · |Dn(ρ)|

<
∑

ρ∈stems(Fj )

|{R ∈ R(F1, F2):R∩ J ∩ Dn(ρ) 6= ∅}| · λ(|unfixed(ρ)|) · |Dn(ρ)|.

Definenumrects(ρ, J)= |{R∈R(F1, F2) : R∩ J ∩ Dn(ρ) 6= ∅}|. We rewrite
the last line and continue:∑

ρ∈stems(Fj )

|Dn(ρ)| · λ(|unfixed(ρ)|) · numrects(ρ, J)

≤ max
ρ∈stems(Fj )

λ(|unfixed(ρ)|) · numrects(ρ, J)
∑

ρ∈stems(Fj )

|Dn(ρ)|

= |Dn| · max
ρ∈stems(Fj )

λ(|unfixed(ρ)|) · numrects(ρ, J),

where the last equality follows from Lemma 4.6. LetPm, j ={ρ ∈ stems(Fj ) :
|unfixed(ρ)| =m}. Since

max
ρ∈stems(Fj )

λ(|unfixed(ρ)|) · numrects(ρ, J)

= max
m, Pm, j 6=∅

(λ(m) max
ρ∈Pm, j

numrects(ρ, J)),

we thus arrive at the following:

LEMMA 4.7. Let F be an n-variable inquisitive decision forest on domain
D, let F1, F2 be subforests of F and J⊆ F−1(1). Let j∈ {1, 2}, η∈ [0, 1], and
for each m∈ [n] let Pm, j ={ρ ∈ stems(Fj ) : |unfixed(ρ)| =m}. If λ : [n] −→
[0, 1] satisfies

λ(m) ≤ η

maxρ∈Pm, j numrects(ρ, J)
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for each m such that Pm, j 6= ∅, then the rectangles R inR(F1, F2) with α j (R) <
λ(mj (R)) together cover at mostη|Dn| points of J .

4.6. UPPERBOUNDING numrects(ρ, J). To use this lemma, we need a good
upper bound on maxρ∈Pm, j numrects(ρ, J). Of course, this quantity depends
on F1, F2 and J. To this end, we prove an alternative characterization of
numrects(ρ, J):

PROPOSITION 4.8. Fix the forest pair F1, F2. Let J be a subset of F−1(1).
For j ∈ {1, 2}, and ρ ∈ stems(Fj ), numrects(ρ, J) is equal to the number
of subsets C of[n] for which there is an x∈ J with stem(x, Fj )= ρ and
core(x, F3− j )=C.

PROOF. For x ∈ Dn(ρ), we have core(x, Fj )= unfixed(ρ) and
stem(x, F1, F2) is simply the projection ofρ onto fixed(ρ) − core(x, F3− j ).
From this we conclude that forx, y∈ Dn(ρ) ∩ J, R(x, F1, F2)= R(y, F1, F2) if
and only if core(x, F3− j )= core(y, F3− j ). The conclusion of the proposition
is immediate.

Thus,numrects(ρ, J) is the size of a particular collection of subsets of [n],
which we will upper bound using:

PROPOSITION 4.9. If C is a collection of subsets of[n] such that for any two sets
A, B∈ C, the symmetric difference A1B has size at most d, then|C| ≤ S(n, d),
where S(n, d)= ∑ j≤d(n

j ).

Thus, an upper bound onnumrects(ρ, J) will follow from an upper bound for
j = 1, 2 on |core(x, F3− j )1core(y, F3− j )| for all x, y∈ J having the sameFj -
stem. We will carefully partition almost all ofF−1(1) into setsJ and choose sub-
forestsF1, F2 depending on certain properties ofJ so that for j = 1, 2 all x, y∈ J
with the sameFj -stem will be such thatcore(x, F3− j )1core(y, F3− j ) is much
smaller thancore(x, Fj )= core(y, Fj ).

In order to do this, forj = 1, 2 we will associate each inputx ∈ J with a subset of
variables (depending onj ) so that for any two inputsx, y with the sameFj -stem,
core(x, F3− j )1core(y, F3− j ) is contained in the union of the subset associated
with x and the subset associated withy. Our goal will be achieved by showing
that for j = 1, 2 and everyx ∈ J the subset of variables associated withx is much
smaller thancore(x, Fj ).

The subset associated withx will be determined by classifying variables accord-
ing to which trees read them on inputx. In particular, it will depend onF1 andF2
and also on an auxiliary parameter` which we will be free to choose later.

With (F1, F2) fixed, we define forj ∈ {1, 2} and positive integer̀ ≤ r :

vset(x, `) = {i ∈ [n] : on inputx, exactly` trees ofF readxi }
Bj (x, `) = core(x, Fj )− vset(x, `)
B′j (x, `) = {i ∈ [n] : on inputx, i is read in exactlỳ trees ofFj ,

in at least one tree ofF3− j and in no trees ofF − F1− F2. }.
We now show that associating eachx ∈ Dn to the subsetB3− j (x, `)∪ B′3− j (x, `),

we get the desired property.
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LEMMA 4.10. Let (F1, F2) be a pair of disjoint subforests of the forest F
and let ` be a positive integer. For j∈ {1, 2} and inputs x, y∈ Dn such that
stem(x, Fj )= stem(y, Fj ) we have

core(x, F3− j )1core(y, F3− j ) ⊆ B3− j (x, `)∪B′3− j (x, `)∪B3− j (y, `)∪B′3− j (y, `).

PROOF. By symmetry in j, x, y, it suffices to consider the casej = 2 and
i ∈ core(x, F1)− core(y, F1) and showi ∈ B1(x, `) ∪ B′1(y, `).

If i 6∈ vset(x, `), then i ∈ B1(x, `). Supposei ∈ vset(x, `). On input x, i is
read by exactlỳ trees inF1, and by no trees ofF − F1 − F2, and the same
is true for y since x and y agree outside ofcore(x, F2)= core(y, F2). Since
i 6∈ core(y, F1), at least one tree ofF2 readsi on inputy, soi ∈ B′j (y, `). Therefore,
i ∈ B1(x, `) ∪ B′1(y, `).

The free parameter̀in the above lemma gives us some freedom in choosing the
sets to associate to each input. We want to choose (F1, F2) and` so that for almost
all inputsx, B3− j (x, `) ∪ B′3− j (x, `) is substantially smaller thancore(x, Fj ).

The key observation is that no variable whose index is inB3− j (x, `)∪ B′3− j (x, `)
is read in exactlỳ trees ofF . We will group inputs inF−1(1) into classesJq,`
for a certain small set of values ofq∈ (0, 1/2] and`∈ [r ] such that for (F1, F2)
chosen according toFq for almost allx ∈ Jq,`, the overwhelming majority of the
variables incore(x, F1) andcore(x, F2) are read in exactlỳ trees ofF . Therefore,
for almost allx ∈ Jq,`, the sizes ofB1(x, `) andB2(x, `) will be substantially smaller
than the sizes of the cores,core(x, F1) andcore(x, F2); a similar argument will
allow us to obtain comparable upper bounds on the sizes ofB′1(x, `) andB′2(x, `).

We now show how to group the inputs into the setsJq,`. Our bounds substantially
improve those implicit in Ajtai [1999a, 1999b, 2002] because we give a more precise
description of these two quantities and give a sharper calculation of their expected
sizes. Roughly speaking, in each case, the analysis in Ajtai [1999a, 2002] only uses
the randomness of one of the forests in the pair (F1, F2) while holding the other
fixed. We restructure the analysis so that we can use the randomness of both forests.

LEMMA 4.11. Let F be an n-variable inquisitive(r, k/r )-decision forest with
n ≥ r ≥ k ≥ 3. Let q1 ≤ 1/4k. For every input x, there is a pair(`, b)= (`(x), b(x))
of integers with1≤ ` ≤ k and1< b ≤ 2k, such that for(F1, F2) chosen according
toFqb

1
and for j∈ {1, 2},

(a) E[|Bj (x, `)|] ≤ 4q1 · µ(x,qb
1).

(b) E[|B′j (x, `)|] ≤ 2kq1 · µ(x,qb
1).

PROOF. Let νh= |vset(x, h)| for h= 1, . . . , r . It is easy to see that
µ(x,q)= ∑r

h=1 νhqh. We choosè andq=qb
1 so that termν`q` overwhelmingly

dominates the sum.
Fora ≥ 1, letqa=qa

1 . Leth(a) be the least index such thatνh(a)qh(a)
a ≥ νhqh

a for
all h ≥ 1. Clearly,h(a) is a positive integer and we claim:

(1) h(1)≤ k.
(2) h(a) is nonincreasing with respect toa.

For the first claim, by Lemma 4.3,
∑

h νhqh
1 =µ(x,q1) ≥ qk

1n. Since∑
h> k νhqh

1 < nqk+1
1 ≤ n

k+1qk
1, we have

∑
h≤k νhqh

1 >
kn

k+1qk
1, and so for some
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`∈ {1, . . . , k}, ν`q`1> n
k+1qk

1 ≥
∑

h>k νhqh
1 , which proves the first claim. For

the second claim, we have for allh> h(a), νh(a)qh(a)
a ≥ νhqh

a , which implies
νh(a)q

h(a)
a+1>νhqh

a+1, soh(a+ 1)≤ h(a).
By the pigeonhole principle, there exists ab∈ {2, . . . ,2k} such thath(b −

1)= h(b)= h(b+1). Set̀ = `(x) to beh(b) and letb(x)= b. Forh ≥ `,νhq(b−1)h
1 ≤

ν`q
(b−1)̀
1 impliesνhqh

b ≤ ν`q`bqh−`
1 . Similarly, forh ≤ `, νhq(b+1)h

1 ≤ ν`q(b+1)̀
1 im-

pliesνhqh
b ≤ ν`q`bq`−h

1 . Thus forh 6= `, νhqh
b ≤ ν`q`b · q|h−`|1 . Then, for (F1, F2)

chosen according to the distributionFqb, we have:

E[|Bj (x, `)|] =
∑
h6=`

νhqh
b ≤

∑
h6=`

ν`q
`
b · q|`−h|

1

≤ 2ν`q
`
b

∞∑
p=1

qp
1 ≤ 4ν`q

`
b · q1

≤ 4q1 · µ(x,qb),

proving the first part of the lemma.
Note B′j (x, `) ⊆ ∪h≥`+1vset(x, h). For h ≥ ` + 1 and i ∈ vset(x, h),

i ∈ B′j (x, `) if and only if exactly` out of theh trees that readi on x are inFj and
the rest are inF3− j , which happens with probabilityqh

b (h
`
)=qh

b
`+1

1
`+2

2 · · · h
h−` ≤

qh
b (k+ 1)h−`, since` ≤ k. Summing overh>` andi ∈ vset(x, h), we have:

E
[∣∣B′j (x, `)∣∣] = r∑

h=`+1

νhqh
b

(
h

`

)
≤

r∑
h=`+1

νhqh
b (k+ 1)h−` ≤

r∑
h=`+1

ν`q
`
b(k+ 1)h−`qh−`

1

≤ ν`q
`
b(k+ 1)q1

∞∑
p=0

((k+ 1)q1)
p ≤ 2kq1µ(x,qb),

where the last inequality usesk ≥ 3 (so that (k + 1) ≤ 4k
3 ), q1 ≤ 1

4k andν`q`b ≤
µ(x,qb).

4.7. PUTTING THINGS TOGETHER. For b∈ {2, . . . ,2k} and `∈ {1, . . . , k}, let
C`,b={x ∈ F−1(1) : `(x)= `, b(x)= b}, and letCb= ∪` C`,b. We now apply
the probabilistic method for eachb separately to show that ifI ⊆ Cb for some
b∈ {2, . . . ,2k}, we can choose a pair of disjoint subforests (Fb

1 , Fb
2 ) so that for

most pointsx of I , the rectangleR(x, Fb
1 , Fb

2 ) is large.

LEMMA 4.12. Let F be an n-variable inquisitive(r, k/r ) decision forest with
n ≥ r ≥ k ≥ 8. Let q1 ≤ 1/(4k), let b∈ {2, . . . ,2k} and let qb=qb

1 . Let I ⊆ Cb.
Let γ, δ >0, and suppose r≥ 4k2

γqk
b
. Then there is a pair of forests(F1, F2) and

a subset I′ of I with |I ′| ≥ |I |(1− 6γ ) − 2δ|D|n such that for each x∈ I ′ and
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j ∈ {1, 2} the rectangle R= R(x, F1, F2) satisfies:

mj (R) ∈
[
µ(x,qb)

2
,

3µ(x,qb)

2

]
α j (R) ≥ δ

kS

(
n,

10kq1

γ
mj (R)

) .
PROOF. Select (F1, F2) according toFqb.
Let z∈ I and let`= `(z). We claim that with probability at least 1− 6γ , the

following three events hold for bothj ∈ {1, 2}.

(i) 1
2µ(z,qb) ≤ |core(z, Fj )| ≤ 3

2µ(z,qb),

(ii) |B3− j (z, `)| ≤ 8q1|core(z, Fj )|/γ ,

(iii) |B′3− j (z, `)| ≤ 4kq1|core(z, Fj )|/γ .

Conditions (ii) and (iii) follow from (i) and the conditions (ii′) |B3− j (z, `)| ≤
4q1µ(z,qb)/γ and (iii′) |B′3− j (z, `)| ≤ 2kq1µ(z,qb)/γ . For eachj , Lemma 4.3 says
that (i) fails with probability at most 4k2/(rqk

b), which is at mostγ by hypothesis,
and Lemma 4.11 with Markov’s inequality implies that (ii′) and (iii′) each fail with
probability at mostγ . This proves the claim.

It follows that there is a fixed pair (F1, F2) and aI ′′ ⊆ I with |I ′′| ≥ (1−6γ )|I |,
such that for eachz∈ I ′′, (i), (ii), and (iii) hold for j = 1 and j = 2. Note that (i)
implies the desired bounds onmj (R(z, F1, F2)).

For each`∈ [k], let I ′′` ={x ∈ I ′′ : `(x)= `}. We will apply Lemma 4.7
with J= I ′′` separately for each̀ and j = 1, 2. Consider theFj -stem ρ
of some input in I ′′` . Lemma 4.10 with (ii) and (iii) above imply that for
x, y∈ Dn(ρ) ∩ I ′′` , |core(y, F3− j )1core(x, F3− j )| ≤ (8k+16)q1

γ
|unfixed(ρ)|

since core(x, Fj )= core(y, Fj )= unfixed(ρ). Since k ≥ 8 this is at most
10kq1

γ
|unfixed(ρ)|. By Propositions 4.8 and 4.9,numrects(ρ, I ′′` ) ≤

S(n, 10kq1

γ
|unfixed(ρ)|).

Now apply Lemma 4.7 forj = 1, 2 with η= δ/k andλ(m)= η/S(n, 10kq1

γ
m).

This givesI ′` ⊆ I ′′` of size at least|I ′′` | − 2δ|D|n/k, such that for everyx ∈ I ′`, for
R= R(x, F1, F2) and for j = 1, 2,α j (R) ≥ δ/(kS(n, 10kq1

γ
mj (R))) which gives the

claimed bound onα j (R) as a function ofmj (R). Let I ′ = ∪k
`=1 I ′`. Then|I ′| ≥

|I ′′| − 2δ|D|n ≥ |I |(1− 6γ )− 2δ|D|n.

We now combine the results for eachb∈ {2, . . . ,2k} from Lemma 4.12 and con-
vert (most of) the resulting rectangles into balanced rectangles to arrive at the main
result of this section, which says that we can find a collection of large rectangles,
each contained inF−1(1), that covers all but a small number of inputs inF−1(1).

LEMMA 4.13. Let F be an n-variable inquisitive(r, k/r ) decision forest where
n ≥ r ≥ k ≥ 8are integers. Let q1 ≤ 1/(4k). Letγ ′, δ′> 0, and suppose r≥ 48k2

γ ′q2k2
1

.

Then there is a familyR of rectangles each contained in F−1(1) such
that

⋃
R∈R R covers a subset of F−1(1) of size at least|F−1(1)|(1− γ ′)− |Dn|δ′,

and such thatR can be partitioned into subcollections{Rb : b∈ {2, . . . ,2k}},
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where for each b, the rectangles inRb are disjoint and each R∈Rb satisfies

m(R)=m1(R)=m2(R) ≥ 1

2
qbk

1 n

α1(R), α2(R) ≥ γ ′δ′

8k2S

(
n,

360kq1

γ ′
m(R)

) .
PROOF. For eachb∈ {2, . . . ,2k}, apply the previous lemma withI = I b=Cb

andγ = γ ′/12 andδ= δ′/4k. Let (Fb
1 , Fb

2 ) be the set of subforests andJb be the
set I ′ from the conclusion of the lemma. LetQb={R(x, Fb

1 , Fb
2 ) : x ∈ Jb}. Let

J= ⋃2k
b=2 Jb andQ= ⋃2k

b=2Qb. Then |J| = ∑b |Jb| ≥ ∑
b(|I b|(1 − γ ′/2) −

|Dn|δ′/2k) ≥ |F−1(1)|(1− γ ′/2)−|Dn|δ′. The rectangles inQ are all 3-balanced.
We would like to replace this by a collection of balanced rectangles. Consider
(Q, A1, A2)∈Q and without loss of generality assume that|A2| ≤ |A1|. From the
conclusion of Lemma 4.12, we haveα1(Q), α2(Q)≥ δ′/(4k2S(n, 360kq1

γ ′ |A2|)) since
|A1| ≤3|A2| . ChooseB1⊆ A1 such that|B1| = |A2| and consider the (B1, A2)-
refinement ofQ, Refine(Q, B1, A2) as defined in Section 2.2. It is easy to see that
α2(P)=α2(Q) for everyP ∈Refine(Q, B1, A2). Also, eachP ∈Refine(Q, B1, A2)
satisfies|P| =α1(P)|D||B1|. Since there are at most|D||A1|−|B1| such rectan-
gles, the number of points covered by rectanglesP with α1(P)≤ γ ′

2 α1(Q) is
at most γ

′
2 α1(Q)|D||A1| = γ ′

2 |Q|. Thus, if we replaceQ by the set of rectangles
P ∈Refine(Q, B1, A2) with α1(P)≥ γ ′

2 α1(Q), we obtain a collectionR(Q) of
disjoint subrectangles ofQ each with feet (B1, A2) that together cover at least
(1 − γ ′/2)|Q| points and such that eachR∈R(Q) satisfiesα2(R)=α2(Q) and
α1(R) ≥ γ ′α1(Q)/2. TakeR to be the union ofR(Q) overQ∈Q, andJ ′ to be the
union of all the rectangles inR, so|J ′| ≥ |J|(1−γ ′/2)≥ |F−1(1)|(1−γ ′)−|Dn|δ′.
The conclusion of Lemma 4.12, together with the lower bound onµ(x,q) given by
Lemma 4.3 implies that the rectangles inR have the claimed properties.

5. Embedded Rectangles in Branching Programs

Lemmas 4.4 and 4.13 showed that every suitably small decision forest admits
a nice family of rectangles that covers most of the accepted inputs. In this sec-
tion, we use the connection between branching programs and decision forests
given by Lemma 2.2 together with these two lemmas to show that most inputs
accepted by an efficient branching program can be covered by a nice family
of rectangles.

5.1. EMBEDDED RECTANGLES WITH SMALL LEG-DENSITY. We use the sim-
ple bound given in Lemma 4.4 to show the existence of embedded rectangles in
branching programs.

THEOREM 5.1. Let k ≥ 4 be an integer and n≥ r ≥ 2k+6k2. Let B be a
branching program of length at most(k − 2)n and size2S. There is a collection
R of disjoint embedded rectangles such that each rectangle R∈R is a subset
of B−1(1) and satisfies m(R)=m1(R)=m2(R) ≥ n/2k+1 and α1(R), α2(R) ≥
2−12(k+1)m(R)−2−Sr|B−1(1)|/|D|n, and such that

⋃
R∈R R covers at least|B−1(1)|/2

inputs inB−1(1).
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PROOF. By Lemma 2.2, there is a familyS consisting of 2Sr inquisitive (r, k/r )-
decision forests, such thatB= ∨F∈S F . Note that the collection of sets{F−1(1) :
F ∈S} partitionsB−1(1).

For each forest F ∈S, apply Lemma 4.4 with γ ′ = 1/4, and δ′ =
|B−1(1)|/(2Sr+2|Dn|), and letRF be the family of embedded rectangles obtained
in the conclusion of the lemma. DefineR= ⋃F∈S RF . By construction,

⋃
R∈R R

covers a subset ofB−1(1) of size at least (1−γ ′)|B−1(1)|−2Srδ′|Dn| = 1
2|B−1(1)|,

and eachR∈R has m(R)=m1(R)=m2(R) ≥ n/2k+1 and α1(R), α2(R) ≥
2−12(k+1)m(R)δ′ = 2−12(k+1)m(R)−2−Sr|B−1(1)|/|D|n as required.

COROLLARY 5.2. Let k ≥ 4 be an integer and n≥ r ≥ 2k+6k2. Let B be
an n-variate branching program over domain D of length at most(k − 2)n and
size2S.

(i ) [Beame et al.1998, 2001]There is an embedded rectangle R contained
in B−1(1) satisfying m(R)=m1(R)=m2(R) ≥ n/2k+1 and α(R) ≥
2−12(k+1)m(R)−Sr−2|B−1(1)|/|D|n.

(ii ) Let f be an n-variate decision function over D and supposeB agrees with f on
at least(1− ε)|Dn| inputs. Letδ ≤ | f −1(1)|/|Dn|. Then there is an embedded
rectangle R contained inB−1(1) satisfying m(R)=m1(R)=m2(R) ≥ n/2k+1

andα(R) ≥ 2−12(k+1)m(R)−Sr−2(δ− ε), such that f is 0 on at most a2ε/(δ− ε)
fraction of points in R.

PROOF. Apply Theorem 5.1 and letR be the resulting collection of rectangles
contained inB−1(1). The first part of the corollary follows by choosing anyR∈R.
For the second part, the hypothesis onB implies that|B−1(1)|/|Dn| ≥ δ − ε so all
rectanglesR∈R satisfyα(R) ≥ 2−12(k+1)m(R)−Sr−2(δ− ε) and together they cover
at least (δ − ε)|Dn|/2 points inB−1(1). SinceB and f differ on at mostε|Dn|
inputs, f is 0 for at mostε|Dn| of the at least (δ − ε)|Dn|/2 points covered by
R. Since the rectangles inR are disjoint, there must be some rectangleR∈R in
which f is 0 on at most 2ε/(δ − ε) fraction of the points inR.

5.2. EMBEDDED RECTANGLES WITHLARGE LEG-DENSITY. Now, using a simi-
lar argument and Lemma 4.13 in place of Lemma 4.4, we derive our main theorem
which is more widely applicable than Theorem 5.1.

THEOREM 5.3. Let k ≥ 8 be an integer, q1 ≤ 2−40k−8, n ≥ r ≥ 200k2/q4k2

1 .
LetB be a branching program of length at most(k − 2)n and size2S. There is a
collectionR of embedded rectangles that satisfies:

(1) Each rectangle ofR is contained inB−1(1).
(2) |⋃R∈R R| ≥ |B−1(1)|/2.
(3) No input belongs to more than2k− 1 rectangles ofR.

(4) Each rectangle R∈R satisfies m(R)=m1(R)=m2(R) ≥ q2k2

1 n/2andα(R) ≥
2−q1/2

1 m(R)−Sr|B−1(1)|/|D|n.

PROOF. By Lemma 2.2, there is a familyS consisting of 2Sr inquisitive (r, k/r )-
decision forests, such thatB= ∨F∈S F . Note that the collection of sets{F−1(1) :
F ∈S} partitionsB−1(1).
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For each forest F ∈S, apply Lemma 4.13 withγ ′ = 1/4 and δ′ =
|B−1(1)|/(2Sr+2|Dn|), and letRF be the family of embedded rectangles obtained
in the conclusion of the lemma. DefineR= ⋃F∈S RF . We claim thatR satisfies
the four conditions asserted in the conclusion of the theorem.

The rectangles ofRF are contained inF−1(1) so everyR∈R is contained in
B−1(1). Since no input is covered by more than 2k−1 rectangles inRF and the sets
covered byF−1(1) are disjoint for distinctF ∈S, each input is covered by at most
2k−1 rectangles ofR. For eachF ,RF covers at least34|F−1(1)|− |B−1(1)|/2Sr+2

points ofF−1(1), so summing over at most 2Sr differentF , we have thatRF covers
at least|B−1(1)|/2 points ofB−1(1).

Again by the conclusion of Lemma 4.13 eachR∈RF hasm(R)=m1(R)=
m2(R) ≥ q2k2

1 n/2 andα(R) ≥ |B−1(1)|/(2Sr|Dn|128k2S(n, 1440kq1m(R))). It
remains only to show that, under the given hypotheses onk,q1, r andn, this last
quantity is at least the claimed lower bound onα(R), and for this it suffices to show
that the following two inequalities hold:

128k2 ≤ 2q1/2
1 m(R)/2,

S(n, 1440kq1m(R)) ≤ 2q1/2
1 m(R)/2.

For the first inequality, we note thatq1/2
1 m(R)/2 ≥ q2k2+1/2

1 n/4 ≥ 128k2 by the
hypotheses onq1 andn. For the second inequality, letβ = 1440kq1m(R)/n. Since
β ∈ [0, 1], we haveS(n, βn)= ∑k≤βn (n

k ) ≤∑k≤βn (n
k )βk−βn ≤ β−βn(1+ β)n ≤

(e/β)βn. Therefore, it suffices to show (e/β)βn ≤ 2q1/2
1 m(R)/2 which is equivalent to

showing (e/β)2880k(q1)1/2 ≤ 2. Sincem(R) ≥ q2k2

1 n/2, e/β ≤ q−4k2

1 and so:

(e/β)2880k(q1)1/2 ≤
(

1

q1

)11520k3(q1)1/2

≤
(

1

q1

)q1/8
1

≤ 2

sincex1/x1/8 ≤ 2 for all x ≥ 248.

In the above theorem, we obtain a rectangle cover that misses at most half of
the points inB−1(1). By a straightforward but tedious change in the analysis, we
can strengthen the conclusion so that the fraction of uncovered points ofB−1(1)
is arbitrarily small. This stronger version is not needed for the branching program
lower bounds.

The first part of the following corollary is a quantitative strengthening of Ajtai’s
main technical result for proving time-space trade-offs for branching programs; the
second part extends this to branching programs that are allowed to make a small
fraction of errors.

COROLLARY 5.4. Let k≥ 8 be an integer, q1 ≤ 2−40k−8, n ≥ r ≥ q−5k2

1 . Let
B be an n-variate branching program over domain D of length at most(k − 2)n
and size2S.

(i ) There is an embedded rectangle R contained inB−1(1) satisfying
m(R)=m1(R)=m2(R) ≥ q2k2

1 n/2 andα(R) ≥ 2−q1/2
1 m(R)−Sr|B−1(1)|/|D|n.
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(ii ) Let f be an n-variate decision function over D and supposeB agrees with f on
at least(1− ε)|Dn| inputs. Letδ ≤ | f −1(1)|/|Dn|. Then, there is an embedded
rectangle R contained inB−1(1) satisfying m(R)=m1(R)=m2(R) ≥ q2k2

1 n/2
andα(R) ≥ 2−q1/2

1 m(R)−Sr(δ − ε), such that f is 0 on at most a4εk/(δ − ε)
fraction of points in R.

PROOF. Apply Theorem 5.3 (noting that the lower bound onr in the hypothesis
of the present corollary implies the hypothesis onr for that theorem) and letR be
the resulting collection of rectangles. The first part of the corollary follows by
choosing anyR in R. For the second part, note that the hypotheses imply that
|B−1(1)|/|Dn| ≥ δ − ε, so all rectangles inR satisfyα(R) ≥ 2−q1/2

1 m(R)−Sr(δ − ε),
and together the rectangles cover at least (δ − ε)|Dn|/2 inputs ofB−1(1). Call an
inputx badif B(x) 6= f (x) and forR∈R, let Bad(R) be the set of bad inputs ofR.
Now

∑
R∈R |Bad(R)| ≤ 2kε|Dn| since each input appears in at most 2k rectangles.

Also
∑

R∈R |Bad(R)| ≥ minR
|Bad(R)|
|R|

∑
R∈R |R| ≥ minR

|Bad(R)|
|R|

δ−ε
2 |Dn|. So the

rectangle minimizing|Bad(R)|/|R| satisfies|Bad(R)|
|R| ≤ 4εk/(δ − ε).

6. Lower Bounds

We now use our two branching program characterizations from Corollaries 5.2
and 5.4 to derive lower bounds for a number of natural decision problems on
branching programs and random access machines. These include two general
classes of problems: problems based on quadratic forms over finite fields and
problems involving all pairwise comparisons between input variables over large
domains such as element distinctness and a related problem that we call Hamm-
ing closeness.

Most of these bounds apply for domains in which each input variable is from
a relatively large domainD. For these our largest lower bounds are of the form
T =Ä(n log(n logn

S )) and are the largest known for general nonuniform computation
of problems inNP. More importantly, we also obtain lower bounds for the most in-
teresting case of Boolean computation and improve bounds of Ajtai [1999b] for the
computation of quadratic forms overGF(2) to T =Ä(n

√
log(n/S)/ log log(n/S))

which is substantially better than the best previous bounds for Boolean problems.
In all cases, our lower bounds apply to randomized computation with 2-sided error
as well as to deterministic computation.

There are three axes on which to consider our lower bounds: the function an-
alyzed, deterministic versus randomized computation, and whether the bounds of
Corollary 5.2 can be used or the bounds of Corollary 5.4 are required. (In gen-
eral, where it is applicable, Corollary 5.2 will give larger lower bounds but its
applicability is much more limited than Corollary 5.4.)

We analyze the problems related to quadratic forms first. For these problems, we
present the arguments for the randomized case directly since the proof that no large
embedded rectangles with small error exist is not much more involved than the one
that no large error-free embedded rectangles exist. The lower bound for Boolean
branching programs, which requires Corollary 5.4, is given in Theorem 6.6, then, the
lower bounds over large finite fields using Corollary 5.2 are given in Theorems 6.9
and 6.10.

We then analyze the element distinctness and Hamming closeness problems. For
these problems, the deterministic analysis is much simpler than the randomized
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analysis so we present the deterministic lower bounds separately first. The methods
for element distinctness and Hamming closeness are very similar to each other
although the element distinctness lower bounds require the use of Corollary 5.4,
but Corollary 5.2 suffices for Hamming closeness. The reader who wishes to see
the simplest application of the embedded rectangle methods is encouraged to read
to the deterministic lower bounds for element distinctness first.

While we state all of our results for branching programs, they apply to gen-
eral sequential computation [Borodin and Cook 1982], which includes random
access machines (even nonuniform ones) and Turing machines. For the func-
tions defined over large domains in particular, the implications of these results
for random access machines are especially natural and we include a number of
these corollaries.

6.1. QUADRATIC FORMS. If D is a finite field andM is an n × n matrix
with entries in D, let FM denote the quadratic form function onDn given by
FM (x)= xT Mx.

Inspired by Borodin, Razborov, and Smolensky’s use of bilinear forms to
prove lower bounds for read-k branching programs [Borodin et al. 1993], Beame
et al. [1998, 2001] considered quadratic forms over finite fields. In particular,
taking M to be a slightly modified version of any of the Sylvester matrix used
in Borodin et al. [1993], and employing a variant of the deterministic case of
Corollary 5.2, they showed that determining whether or notFM (x)= 0 requires
T =Ä(min{n log logn, n log(n logn

S )}).
To derive this lower bound, they extended ideas of Borodin et al. [1993] to show

that, in the caseD=GF(p) for prime powerp, if M is a symmetric matrix that is
rigid, in the sense that all sub-matrices ofM have rank that is suitably large relative
to their size, thenxT Mx cannot be constant on any large embedded rectangle. The
lower bounds for the quadratic forms based on modified Sylvester matrices follow
from a lower bound on the rigidity of Sylvester matrices.

By considering different quadratic form functions in the caseD=GF(2), Ajtai
[1999b] constructed an explicit family of Boolean functions that cannot be com-
puted by a deterministic branching program of subexponential size and linear length.
To derive nontrivial bounds, in addition to a more generally applicable branching
program analysis than Corollary 5.2(i), he required matrices with larger rigidity
than that of Sylvester matrices. Using our stronger branching program analysis we
obtain aT =Ä(n

√
log(n/S)/ log log(n/S)) lower bound for this Boolean function

and aT =Ä(n log(n logn
S )) lower bound for related functions over larger finite fields,

both of which hold for randomized branching programs.
We begin by strengthening the previous properties of quadratic forms derived

from matrix rigidity for use with randomized branching programs. As a preliminary,
we analyze bilinear forms and show that for anm×m matrix P of suitably high
rank andc∈GF(p), any large rectangleU × V ∈GF(p)×GF(p) has many pairs
(u, v) of vectors such thatuT Pv= c.

LEMMA 6.1. Let P be an m×m matrix over GF(p) where p is a prime power.
Let U,V ⊆ GF(p)m, α= |U |/pm, andβ = |V |/pm. Let c∈GF(p) and Nc be the
number of pairs(u, v)∈U × V such that uT Pv= c. Then|Nc − |U‖V |/p| is at
most p−1√

αβprank(P)
|U‖V |/p.
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PROOF. Let r = rank(P) and forx ∈GF(p) define

γc(x)=


1− 1

p
if x= c

− 1

p
if x 6= c.

Let1= Nc − |U‖V |/p and observe that1= ∑u∈U
∑

v∈V γc(uT Pv).
Eachx ∈GF(p) can be realized as ak-dimensional vector overGF(q) for some

primeq and some integerk. Forx, y∈GF(p), define〈x, y〉 to be the scalar product
of vectors corresponding tox, y. For h∈GF(p), let χh(x)= exp(2π i 〈h, x〉/q)
be characters ofGF(p). γc can be expressed as a linear combination ofχh (for
h∈GF(p)) as follows:

γc =
∑

h∈GF(p)

α jχ j ,

whereα0= 0 andαh= 1
p exp(−2π i 〈h, c〉/q) for h 6= 0.

We can writeP= K T L where K and L are eachr × m matrices of rankr
overGF(p). Define integer-valued vectorsa, b indexed byGF(p)r wherea(y) for
y∈GF(p)r is the number of vectorsu∈U such thatKu= y andb(z) for z∈GF(p)r

is the number of vectorsv ∈V such thatLv= z.
For h∈GF(p), let Mh be the pr × pr complex matrix whose rows

and columns are indexed by vectors inGF(p)r with Mh(y, z)=χh(yT z)
where yT z is the inner product modp. Observe that, forh∈GF(p),
M∗h Mh(y1, y2)=

∑
z∈GF(p)r χ

∗
h (yT

1 z)χh(yT
2 z)= ∑z∈GF(p)r χh((y2−y1)T z), which

is 0 if y1 6= y2 and pr if y1= y2. Then

12 =
(∑

u∈U

∑
v∈V

γc(u
T K T Lv)

)2

=
( ∑

h∈GF(p),h6=0

αh

∑
u∈U

∑
v∈V

χh(uT K T Lv)

)2

≤ (p− 1)
∑

h∈GF(p),h6=0

|αh|2
∣∣∣∣∣∑
u∈U

∑
v∈V

χh(uT K T Lv)

∣∣∣∣∣
2

= p− 1

p2

∑
h∈GF(p),h6=0

∣∣∣∣∣∑
u∈U

∑
v∈V

χh(uT K T Lv)

∣∣∣∣∣
2

= p− 1

p2

∑
h∈GF(p),h6=0

∣∣∣∣∣ ∑
y∈GF(p)r

∑
z∈GF(p)r

χh(yT z)a(y)b(z)

∣∣∣∣∣
2

= p− 1

p2

∑
h∈GF(p),h6=0

∣∣aT Mhb
∣∣2
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≤ p− 1

p2

∑
h∈GF(p),h6=0

‖a‖2‖Mhb‖2

= p− 1

p2

∑
h∈GF(p),h6=0

‖a‖2bT M∗h Mhb

= p− 1

p2

∑
h∈GF(p),h6=0

‖a‖2‖b‖2 pr

= (p− 1)2

p2
‖a‖2‖b‖2 pr ,

where‖ · ‖ is the Euclidean norm. (The inequalities on the third and seventh line
are applications of the Cauchy–Schwartz inequality; the fifth line follows using the
definitions ofa andb and the next-to-last line follows by the properties ofMh.)

Now ‖a‖2 ≤ maxx a(x)
∑

x a(x) ≤ pm−r |U |, and similarly‖b‖2 ≤ pm−r |V |.
Thus,12 ≤ (1− 1

p)2 p2m−r |U‖V | and so

1 ≤
√

(p− 1)2 p2m

|U‖V |pr
|U‖V |/p = p− 1√

αβpr
|U‖V |/p

as required.

LEMMA 6.2. Let M be a n× n matrix with entries in GF(p) and suppose that
(R, A1, A2) is an embedded rectangle in GF(p)n with |A1| = |A2|. Let P be the
submatrix of M+MT induced on A1× A2. Suppose thatα(R) ≥ p3−rank(P)/2. Then
for each c∈GF(p), the fraction of inputs of x∈ R for which xT Mx ≡ c (mod p)
is more than1/(4p).

PROOF. Let m= |A1| = |A2|, A0= [n] − A1 − A2, and, for (i, j )∈ {0, 1, 2}2,
let Mi, j denote the submatrix ofM indexed byAi × Aj . Let σ be the spine ofR.
For x ∈ R, writing x1 for xA1 andx2 for xA2 we have:

xT Mx = C + f1(x1)+ f2(x2)+ xT
1 Px2,

whereC= σ T M0,0σ , P=M1,2 + MT
2,1 and for j ∈ {1, 2}, f j is a function with

domainRAj which is defined byf j (xj )= xT
j M j, j x j + xT

j (M j,0+ MT
0, j )σ .

We partitionR based on the values of thef j on theRAj for j = 1, 2. For each
pair (c1, c2)∈GF(p)2, let Uc1= f −1

1 (c1) ∩ RA1 andVc2= f −1
2 (c2) ∩ RA2.

For at least 1/2 the elementsx ∈ R the unique (c1, c2) such that (x1, x2)∈Uc1×Vc2

satisfy|Uc1‖Vc2| ≥ |R|/(2p2), which implies that|Uc1‖Vc2|/p2m ≥ p4−rank(P)/2.
For each such (x1, x2)∈Uc1 × Vc2, we have (x1x2σ )T M(x1x2σ )=C + c1 + c2 +
xT

1 Px2. By Lemma 6.1,xT
1 Px2= c− C − c1 − c2 for more than|Uc1‖Vc2|/(2p)

of the pairs (x1, x2)∈Uc1 × Vc2. For each such pair,x= x1x2σ is a point inR such
thatxT Mx= c. Since these elements over all such (c1, c2) account for at least 1/2
of R, in total more than a 1/(4p) fraction of the pointsx ∈ R havexT Mx= c.

Combining this lemma with Corollary 5.4 gives the following result which says
that if M is a matrix overGF(2) whose quadratic form function is well approximated
by a small branching program thenM must have a large submatrix of small rank,
that contains no entry on the diagonal.
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THEOREM 6.3. Let n, r, k be positive integers and q1> 0 with k ≥ 8, q1 ≤
2−40k−8, n ≥ r ≥ q−5k2

1 . Let M be an n× n matrix with entries in GF(2), with
associated quadratic form function f . Suppose thatB is an n-variate branching
program over GF(2) of length at most(k−2)n and size2S that disagrees with f on
at most a fraction1/80k of inputs. Then there are two disjoint subsets A1, A2 ⊆ [n]
with |A1| = |A2| =m where m≥ q2k2

1 n/2 such that the submatrix of P=M +MT

induced by A1× A2 has rank at most2Sr+ 2q1/2
1 m+ 10.

PROOF. Let b∈ {0, 1} be such that| f −1(b)| ≥ 2n−1. Define the functionf ′ by
f ′(x)= f (x)+ b− 1 and define the branching programB′ analogously fromB by
replacing output 0 byb− 1 and output 1 byb.

Applying the second part of Corollary 5.4 tof ′ andB′ with δ ≥ 1/2 and
ε= 1/80k, we get a balanced rectangleR= (R, A1, A2) contained in (B′)−1(1)
satisfyingm(R)= |A1| = |A2| ≥ q2k2

1 n/2 andα(R) ≥ 2−q1/2
1 m(R)−Sr( 1

2 − 1
80k ) ≥

2−q1/2
1 m(R)−Sr−2 such that f ′ is 0 on at most a 4(1/80k)k/(1/2− 1/80k) < 1/8

fraction of points of R. By Lemma 6.2 with p= 2, α(R) must be less than
23−rank(P)/2. Combining the upper and lower bounds onα(R), we deduce rank(P) ≤
2Sr+ 2q1/2

1 m(R)+ 10.

This theorem can be applied to give time-space trade-offs for the quadratic form
function for any matrixM over GF(2) for which M + MT has the property that
every large submatrix that avoids the diagonal has large enough rank. The Sylvester
matrices considered in Borodin et al. [1993] and Beame et al. [1998] have the
property that everys×s submatrix has rank at leasts2/n. However, this property is
not strong enough to get good time-space trade-off lower bounds overGF(2) using
Theorem 6.3.

Ajtai looked instead at Hankel matrices, matrices whose every anti-diagonal is
constant. Given a vectory∈GF(p)2n−1, define the Hankel matrixH [y] whosei, j
entry isH [y] i, j = yi+ j−1. Ajtai proved the following lemma concerning the rigidity
properties of random Hankel matrices overGF(p). (Here a random Hankel matrix
means a matrixH [y] wherey is chosen uniformly at random fromGF(p)2n−1.)

LEMMA 6.4 [AJTAI 1999b, LEMMA 9]. Assume that n, s, R, t are positive in-
tegers, t2 < s < n, R< Q=bs/t2c. If H is a random n× n Hankel matrix over
GF(p), the probability that there is some s× s submatrix of H of rank less than R
is at most (

n

Qt

)2( Q

Q− R+ 1

)
p−

1
4 (Q−R+1)t2

.

As a direct consequence, we get:

COROLLARY 6.5. Let n be an integer and H be a random n×n Hankel matrix
over GF(p). With probability at least 1/2, for all integers s satisfying(1024+
64 logpn)2 < s < n every s× s submatrix of H has rank at least1

2s/(1024+
64 logp(n/s))2− 2.

PROOF. Lets be an integer in the range given in the hypothesis, lett =b1024+
64 logp(n/s)c, let Q=bs/t2c, and R=bQ/2c (which is at least12s/(1024+
64 logp(n/s))2− 2). By Lemma 6.4, the probability thatH has ans× s submatrix
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of rank less thanR is at most:(
n

Qt

)2( Q

Q− R+ 1

)
p−

1
4 (Q−R+1)t2 ≤

(
en

Qt

)2Qt

2Q p−s/8 ≤
(

4n

Qt

)2Qt

p−s/8

≤
(

4nt

s

)2s/t

p−s/8 ≤ p−s/16 ≤ 2−s/16.

The first inequality uses (Q− R+1)t2 ≥ s/2 and (nk ) ≤ (en/k)k. The second uses
21/2te≤ √2e≤ 4 and the third uses the fact that uses that (4n/k)k is increasing in
k for k < n, and thatQt ≤ s/t < n. The fourth inequality uses (4nt/s) ≤ pt/32

which follows fromt < 2t/64 ≤ pt/64 and 4n/s< pt/64.
Finally, summing the above bound over all integerss ≥ s0=d(1024+

64 logp n)2e, we get that the failure probability is at most 2−s0/16/(1 − 2−1/16).
Using 1− 2−x > x/2 for x ∈ (0, 1), this is at most 2−s0/16+5, which is easily seen
to be less than 1/2.

The rigidity property of random Hankel matrices above is strong enough but to
prove a trade-off for the functionFM using Theorem 6.3 we need thatM + MT

be rigid rather thanM itself. Hankel matrices are symmetric, which means that
M + MT = 0 since we are overGF(2), which seems like a serious problem. Ajtai
showed how this problem is easily overcome. DefineL(M) to be the lower triangular
matrix obtained by changing all entries ofM that are on or above the diagonal to
0. ThenL(M) + L(M)T agrees withM except on the diagonal and we can apply
Theorem 6.3 toL(M) instead ofM .

Another important issue is that we want lower bounds for explicit functions; we
already know that hard functions exist by simple counting arguments. A random
Hankel matrix does not give an explicit function. However, since a Hankel matrix is
specified by only 2n−1 values, we can prove lower bounds on the explicit function
Gn(x, y) wherex ∈GF(2)n andy∈GF(2)2n−1, which is defined to bexT Mx where
M = L(H [y]).

THEOREM 6.6. There is a constant c′> 0 such that any randomized Boolean
branching program computing Gn(x, y) in time T and size2S with probability of
error at most c′n/T requires T≥ c′n

√
log(n/S)/log log(n/S).

PROOF. Choosen to be a sufficiently large integer. Let̃B be a randomized
branching program with input variablesx1, . . . , xn, y1, . . . , y2n−1 of length at most
(k−2)n and size 2S and suppose that the probabilitỹB(x, y) 6=G(x, y) is less than
1/160k. We want to show that for some constantc′,k ≥ c′

√
log(n/S)/ log log(n/S).

We apply Theorem 6.3 and, to this end, we assume without loss of generality
that k ≥ 8 and define forq1= 2−40k−8, andr =dq−5k2

1 e. If n < r 2, thenk ≥
c
√

logn/ log logn for somec, and the desired result is trivial. So we may assume
thatk is such thatn ≥ r 2.

By Proposition 2.1, we can fix a deterministic branching programB that agrees
with G(x, y) on at least a 1− 1/160k fraction of all inputs. For eachy, let B[y]
be the branching program obtained fromB by hardwiring the values ofy, and let
ε(y) be the fraction of inputsx such thatB[y](x) 6= xT H [y]x. Let Y be the set of
all y∈Y, such thatH [y] has the rigidity property specified in the conclusion of
Corollary 6.5. By that corollary, half of ally belong toY. Therefore, there must
exist ay∈Y such thatε(y) < 1/80k. Fix such ay and apply Theorem 6.3 for the
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matrix H [y] and the branching programB[y]. We conclude that there are disjoint
subsetsA1, A2 of [n], of equal sizem≥ q2k2

1 n/2 such that the submatrixM of H [y]
induced onA1×A2 has rank at most 2Sr+2q1/2

1 m+10. For sufficiently largen and
anyk satisfying the restrictions at the beginning of the proof,m=q2k2

1 n ≥ √n ≥
(1024+ 64 log2 n)2 and sincey∈Y, Corollary 6.5 implies thatM has rank at least
b= 1

2m/(1024+ 64 log2(n/m))2 − 2. Again, for sufficiently largen, it is easy to
see 2q1/2

1 m+10< b/2 so we conclude that 2Sr> b/2> 2q1/2
1 mwhich impliesS≥

q1/2
1 m/r which is at leastn/kck2

for some constantc> 0. It follows that for some
constantc′> 0 and sufficiently largen, k ≥ √log(n/S)/ log log(n/S).

COROLLARY 6.7. For any ε < 1/2, there is a constant c> 0 such that any
randomized Boolean branching program computing Gn(x, y) in time T and size2S

with probability of error at mostε requires T≥ cn log1/2(n/S)/(log log(n/S))3/2.

PROOF. LetB be such a branching program. As in standard probability ampli-
fication if one run of a randomized algorithm has error at mostε < 1/2, taking
the majority answer from somecε log log(n/S) independent copies of the algo-
rithm run on the same input suffices to reduce the error to less than 1/ log(n/S).
This can be computed by chaining togethercε log log(n/S) copies ofB where
each node is also replicatedcε log log(n/S) times at each time step to store
the running tally of the number of copies ofB in which 1 has been produced
so far. The resulting branching program will have timeT ′ = cεT log log(n/S)
and spaceS′ ≤ S + c′ε log log log(n/S) for some constantc′ε > 0. Applying
Theorem 6.6 implies a lower bound onT ′ (and thus the desired lower bound onT)
since if T is smaller thanc′n log1/2(n/S)/(log log(n/S))3/2 the error c′n/T ′
permitted there is at least

√
log log(n/S′)/ log(n/S′) which is larger than

1/ log(n/S).

We also can define quadratic form functions over large domains for which we
can obtain even larger lower bounds using Corollary 5.2. We could apply the de-
terministic part of this corollary (implicit in Beame et al. [1998]) to the problem
of determining ifFM (x)= 0 with M andx overGF(p) for p ≥ n to derive lower
bounds of the formT =Ä(n log(n logn

S )). To be able to show bounds for constant-
error randomized algorithms, we define related functions that are more balanced
between outputs 0 and 1.

For M andn× n matrix overGF(p) andG ⊆ GF(p), defineFM,G : GF(p)n→
{0, 1} by FM,G(x)= 1 iff xT Mx ∈G. Natural examples of setsG to choose include
elements with low-order bit equal 1, the quadratic residues modulop in the casep
is prime, or if p= 2p′ some linear mapφ : GF(p)→ GF(2).

THEOREM 6.8. Let n≥ r ≥ k be positive integers with k≥ 4 and r ≥ 2k+6k2.
Let M be an n× n matrix with entries in GF(p) for p> 2 a prime power, and let
G ⊂ GF(p) be any set of sizebp/2c. Suppose thatB is an n-variate branching
program over GF(p) of length at most(k−2)n and size2S that disagrees with FM,G
on at most a1/50fraction of inputs. Then there are two disjoint subsets A1, A2 ⊆ [n]
with |A1| = |A2| =m where m≥ n/2k+1 such that the submatrix of P=M + MT

induced by A1× A2 has rank at most(2Sr+ 24(k+ 1)m(R)+ 8)/log2 p+ 6.

PROOF. Let b∈ {0, 1} be such that|F−1
M,G(b)| ≥ pn/2. Define the functionf

by f (x)= FM,G(x)+b−1 and define the branching programB′ analogously from
B by replacing output 0 byb− 1 and output 1 byb.
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Applying the second part of Corollary 5.2 tof and B′ with δ≥ 1/2 and
ε= 1/50, we get a balanced rectangleR= (R, A1, A2) contained in (B′)−1(1)
satisfying m(R)= |A1| = |A2| ≥ n/2k+1 and α(R) ≥ 2−12(k+1)m(R)−Sr−2(1

2 −
1
50)≥ 2−12(k+1)m(R)−Sr−4 such thatf is 0 on at most a 2(1/50)/(1/2−1/50)= 1/12
fraction of points ofR. There are at least (p− 1)/2 elementsc∈GF(p) such that
xT Mx= c implies f (x)= 0. Therefore, there is some valuec∈GF(p) such that
xT Mx= c for at most a 1

6(p−1) ≤ 1/(4p) fraction of points ofR. By Lemma 6.2,α(R)

must be less thanp3−rank(P)/2. Combining the upper and lower bounds onα(R),
we deduce rank(P) ≤ 6+ (2Sr+ 24(k+ 1)m(R)+ 8)/ log2 p.

We now apply this to the functionsJn
p,G : GF(p)3n−1→ {0, 1} based on Hankel

matrices overGF(p) given by Jn
p,G(x, y)= FL(H [y]),G(x); that is, Jn

p,G is 1 if and
only if xT L(H [y])x ∈G.

THEOREM 6.9. Let p≥ n be a prime power. Let G⊂ GF(p) with |G| = bp/2c.
Any randomized GF(p)-way branching program computing Jn

p,G in time T and
size2S with probability of error at most1/100requires T=Ä(n log(n logn

S )).

PROOF. Choosen to be a sufficiently large integer. Let̃B be a random-
izedGF(p)-way branching program with input variablesx1, . . . , xn, y1, . . . , y2n−1
of length at most (k − 2)n and size 2S and suppose that the probability
B̃(x, y) 6= Jp,G(x, y) is less than 1/100. We want to show that for some constantc′,
k ≥ c′ log(n logn

S ).
We apply Theorem 6.8 and to this end, we assume without loss of generality

thatk ≥ 4 and definer = 2k+6k2. Assume thatk ≤ 2−29 log2 n since otherwise the
theorem follows immediately.

By Proposition 2.1, we can fix a deterministic branching programB that disagrees
with Jp,G(x, y) on at most a 1/100 fraction of all inputs. For eachy, let B[y] be
the branching program obtained fromB by hardwiring the values ofy, and letε(y)
be the fraction of inputsx such thatB[y](x) does not compute the value of the
predicatexT L(H [y])x ∈G. Let Y be the set of ally∈Y, such thatH [y] has the
rigidity property specified in the conclusion of Corollary 6.5. By that corollary, half
of all y belong toY. Therefore, there must exist ay∈Y such thatε(y) ≤ 1/50.

Fix such ay and apply Theorem 6.8 for the matrixH [y] and the branching
programB[y]. We conclude that there are disjoint subsetsA1, A2 of [n], of equal
sizem≥ n/2k+1, such that the submatrixMR of L(H [y]) + L(H [y])T induced on
A1× A2 has rank at most (2Sr+ 24(k+ 1)m+ 8)/ log2 p+ 6. Observe that, since
Hankel matrices are symmetric andMR contains no elements from the diagonal of
L(H [y])+L(H [y])T , MR is a submatrix ofH [y]. Therefore, by Corollary 6.5, since
m≥ n/2k+1, the submatrixMR has rank at least12m/(1024+64 logp(n/m))2−2≥
m/223− 2. Thus, (2Sr+ 24(k+ 1)m+ 8)/ log2 p+ 6≥ m/223− 2 and so

S ≥ 1

r
([2−24 log2 p− 12(k+ 1)]m− 4 log2 p− 4)

≥ 1

k22k+6
([2−24 log2 p− 12(k+ 1)]n/2k+1− 4 log2 p− 4)

≥ C
1

k222k
n log2 n
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for some constantC andn sufficiently large since log2 p ≥ log2 n> 229(k+ 1) in
this case. This implies thatk ≥ c′ log2(

n logn
S ) for some constantc′> 0.

It is easy to see that, by applying probability amplification using a constant
number of independent copies of the branching program as in Corollary 6.7, the
asymptotic bound of Theorem 6.9 also applies for any errorε < 1/2.

We can also applying Theorem 6.8 to themodified Sylvester matricesstudied
in Beame et al. [1998]; for example, these matrices include the standard Hadamard
matrices over{1,−1} with their diagonals replaced by the value 0. This result
extends the bound of Beame et al. [1998, 2001] to randomized branching programs.

THEOREM 6.10. Let p≥ n be a prime power. Let M be a modified Sylvester
matrix over GF(p) and G⊂ GF(p) with |G| = (p−1)/2. Any randomized GF(p)-
way branching program computing FM,G in time T and size2S with probability of
error at most1/50 requires T=Ä(min{n log log n, n log(n logn

S })).
6.2. ELEMENT DISTINCTNESS ANDHAMMING CLOSENESS. Ajtai [1999a, 2002]

gave the first general time-space trade-off lower bounds for element distinctness
and also gave lower bounds for a related problem he defined which we call the
Hamming closeness problem.

The bounds for Hamming closeness use significantly simpler techniques than
those for element distinctness. While Ajtai only claimed nontrivial time-space trade-
off lower bounds for Hamming closeness when timeT is linear inn, Pagter [2001]
observed that by optimizing the technique of Ajtai [1999a, 2002], one can de-
rive nontrivial lower bounds for Hamming closeness whenT ≤ cn logn/ log logn
for somec> 0 and these bounds apply in the presence of 1-sided error (but not
nondeterminism, which is stronger).

However, the technique of Beame et al. [1998] mentioned in Table I and predat-
ing Ajtai [1999a] yields even better trade-offs for Hamming closeness. It applies
when T ≤ cn logn for some constantc> 0 and even applies to nondetermin-
istic branching programs. Corollary 5.2 extends this technique to 2-sided error
randomized computation and we show how it applies to the Hamming closeness
problem. Since the deterministic lower bound is considerably simpler, we present
it first.

To derive lower bounds for element distinctness, Ajtai developed most of the
machinery required for his Boolean branching program lower bounds. Again
he only claimed to produce lower bounds when timeT is linear inn but, as in the
Boolean case, a careful analysis of his arguments show that they apply even when
T is as large ascn log logn/ log log logn for somec> 0. Our results improve this
range up toT ≤ cn

√
logn/ log logn and generalize the bounds to randomized

branching programs with 2-sided error.

6.2.1. Deterministic Branching Programs.To prove a lower bound for a deter-
ministic branching program, all we need is a lower bound on the fraction of inputs
on which the function takes on a given value as well as an upper bound on the sizes
of embedded rectangles on which the function can take on that value.

Element Distinctness.Define the element distinctness functionED: Dn →
{0, 1} is 1 if and only if there is no pairi 6= j ∈ X such thatx(i )= x( j ).



Time-Space Trade-Off Lower Bounds 187

PROPOSITION 6.11. If |D| ≥ n2, at least a1/e fraction of all inputs x∈ Dn

have ED(x)= 1.

PROOF. It is easy to check that forN ≥ n2, N!/(N − n)! ≥ Nn/e.

LEMMA 6.12. Let ED: Dn → {0, 1}. Any embedded rectangle R⊆ Dn such
that ED(x)= 1 for all x ∈ R hasα(R) ≤ 2−m(R).

PROOF. Let A1, A2 be the feet ofR, and for j ∈ {1, 2}, let Sj = ∪i∈Aj Ri (where
Ri is the set of elements ofD that appear in coordinatei of some point ofR).
ED(x)= 1 for all x ∈ R implies S1 ∩ S2=∅, so for some indexh, |Sh| ≤ |D|/2.
Thus,αh(R) ≤ (|Sh|/|D|)mh(R) ≤ 1/2

m(R).

THEOREM 6.13. Any [n2]-way deterministic branching program
computing ED: [n2]n→{0, 1} in time T and size 2S requires T=
Ä(n

√
log(n/S)/log log(n/S)).

PROOF. Suppose we have a branching programB of length (k − 2)n and
size 2S for ED. Apply Corollary 5.4(i) withq1= 2−40k−8 and r =dq−5k2

1 e. We
obtain an embedded rectangle on whichB outputs 1 such thatm ≥ q2k2

1 n/2
and α ≥ 2−q1/2

1 m−Sr/e> 2−q1/2
1 m−Sr−2. Using Lemma 6.12, this means

2−q1/2
1 m−Sr−2 ≤ 2−m and thusSr ≥ m(1− q1/2

1 )− 2≥ q2k2

1 n/4 or S≥ q2k2

1 n/(4r ).
Thus, for some constantc> 0 any algorithm solvingED in time (k− 2)n requires
space at leastk−ck2

n. SubstitutingT = (k − 2)n and rearranging, we obtain the
claimed trade-off.

COROLLARY 6.14. For any ε ≥ 0, there is a constant cε , such that any
RAM algorithm for element distinctness on inputs in[n2] taking at most
cεn
√

log n/log log n time requires at least n1−ε space.

Hamming Closeness.We now define the Hamming closeness problemHAMγ

for 0< γ < 1/2. For 0< γ < 1/2 let c= c(γ ) ≥ 0 be minimum such that for all
b ≥ 1, 22b/S(γ cb, cb) ≤ 1 whereS(d, n) is the size of the Hamming ball of radius
d about a vector of lengthn. Recall thatS(d, n)= ∑ j≤d(n

j ) ≤ 2H2(d/n)n whereH2
is the binary entropy function,H2(q)= − q log2 q− (1− q) log2(1− q). Observe
by this bound onS(d, n) thatc(γ ) ≤ 2/(1− H2(γ )).

Given two elementsu, v ∈ [N], we say thatu andv areγ -closeto each other if
the Hamming distance betweenu andv represented in binary,1H (u, v) ≤ γ log2 N
andγ -far from each other otherwise. (Also, given two subsetsU,V ⊂ [N], we
say thatU andV areγ -closeif there is a pair of elementsu∈U andv ∈V that are
γ -close to each other, andU andV areγ -far if all such pairs of elements areγ -far
from each other.) The Hamming closeness problemHAMγ : [N]n→ {0, 1} where
N is a power of 2 and 0< γ < 1/2. HAMγ (x1, . . . , xn)= 1 if and only if there is
some pair of indicesi 6= j such thatxi andxj areγ -close to each other.

The following propositions are minor variants of those shown by Ajtai [1999a,
2002].

PROPOSITION 6.15. For 0< γ < 1/2, there is a constant c(γ )= 2/(1−H2(γ ))
such that for c≥ c(γ ) and N= nc, HAM−1

γ (0) contains at least1/2 of all inputs
in [N]n.
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PROOF. Let c ≥ 2/(1− H2(γ )) andb= log2 N= c log2 n be the number of
bits in eachxi . The Hamming ball of radiusγb about any element of [N] contains
S(γb, b) ≤ 2H2(γ )b elements, where we recall thatS(d, n)= ∑ j≤d(n

j ) ≤ 2H2(d/n)n.
Therefore, the fraction of pairsx andy from [N] that areγ -close to each other is
at most

2H2(γ )b
/

2b= 2−(1−H2(γ ))b= 2−(1−H2(γ ))c log2 n ≤ n−2.

There are (n2) pairs (xi , xj ) with i 6= j soHAMγ has value 1 for at most (n
2) n−2 ≤

1/2 of the inputs in [N]n.

PROPOSITION 6.16. For 0 < γ < 1/2, there is a constantβ =β(γ )> 0 such
that any two sets U,V ⊆ [N] with |U |, |V | ≥ N1−β areγ -close.

PROOF. Let b= log2 N and chooseβ as large as possible such that
S(( 1−γ

2 )b, b) < 2(1−β)b. (Thus,β >0 will be roughly 1−H2(
1−γ

2 ) since log2 S(d, n)
is asymptotic toH2(d/n)n asn→∞ andd/n is fixed.) By the classic isoperimet-
ric bound of Harper [1966], theγb-Hamming neighborhood ofU will contain a
set of size> S(( 1+γ

2 )b, b) and thus will only miss a set of size< S((1−γ
2 )b, b) <

2(1−β)b ≤ |V |.
LEMMA 6.17. Let 0 < γ < 1/2 and HAMγ : [N]n → {0, 1}. Then there

is a constantβ =β(γ )> 0 such that any embedded rectangle R⊆ [N]n with
HAMγ (x)= 0 for all x ∈ R hasα(R) ≤ N−βm(R).

PROOF. Let A1, A2 be the feet ofR, and for j ∈ {1, 2}, let Sj = ∪i∈Aj Ri
(whereRi is the set of elements ofD that appear in coordinatei of some point
of R). Let β =β(γ )> 0 be the constant from Proposition 6.16.HAMγ (x)= 0 for
all x ∈ R impliesS1 andS2 are notγ -close, so by Proposition 6.16 for some index
h |Sh| ≤ N1−β . Thusαh(R) ≤ (|Sh|/N)mh(R) ≤ N−βm(R).

THEOREM 6.18. Letγ < 1/2 and c≥ 2/(1− H2(γ )). Any[nc]-way determin-
istic branching program computing HAMγ : [nc]n → {0, 1} in time T and size2S

requires T=Ä(n log(n log n
S )).

PROOF. LetB be a deterministic branching program of length (k−2)n and size
2S computingHAMγ . Therefore, there is branching programB′ of the same length
and size computing¬HAMγ on [N]= [nc]. By Proposition 6.15,B′ outputs 1 on at
least 1/2 of the inputs in [N]n. Assume without loss of generality thatk ≤ 1

8 log2 n
and apply Corollary 5.2(i) withr = 2k+6k2 to B′ to obtain an embedded rectangle
(R, A1, A2) on whichHAMγ is 0 satisfyingm(R)=m1(R)=m2(R) ≥ n/2k+1 and
α(R) ≥ 2−12(k+1)m(R)−Sr−3. Using Lemma 6.17, this means 2−12(k+1)m(R)−Sr−3 ≤
N−βm(R) for some constantβ =β(γ )> 0. Therefore,S> ((β log2 N − 3)m(R) −
12(k + 1))/r ≥ (C2−3kn log2 n) for someC> 0 for n sufficiently large and the
theorem follows.

COROLLARY 6.19. For anyε ≥ 0 andγ with 0 < γ < 1/2 and c≥ 2/(1−
H2(γ )) there is a constant cε,γ > 0, such that any RAM algorithm for HAMγ on
inputs in[nc] taking at most cε,γn logn time requires at least n1−ε space.

6.2.2. Randomized Branching Programs.We now consider randomized
branching programs for both element distinctness and Hamming closeness. We
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already have lower bounds on the fraction of inputs for which these functions take
on particular values. To apply the second parts of Corollaries 5.2 and 5.4, respec-
tively, we will now need to show that any rectangle on which the functions mostly
have those values cannot be very dense. The two arguments are very similar to each
other but unfortunately will only be able to tolerate rather small error.

Element Distinctness.

LEMMA 6.20. If (R, A1, A2) is an n-variate embedded rectangle over[N] with
|A1| = |A2| =m such that at most anε < 1

24 fraction of x∈ R have ED(x)= 0, then

α(R) ≤ 8(8/9)m/2max
{
1, (8/9)m/22

H2(8ε)
3 N/m

}
.

PROOF. Call a point of Dm non-repetitiveif all the coordinates are distinct
and repetitiveotherwise. Forj ∈ {1, 2}, let Qj be the set of nonrepetitive points
of RAj . Let Q be the subrectangle ofR having QAj = Qj for each j . Clearly,
α j (Q) ≥ α j (R)

2 since otherwiseR has too many pointsx with ED(x)= 0. Thus,
rectangleR′ ⊆ R with legs Q1 and Q2 hasα(R′) ≥ α(R)/2. Observe that each
element ofQj corresponds to anm-subset of [N] and that for any pointx ∈ R′ with
ED(x)= 1 the sets corresponding to thexQ1 ∈ Q1 andxQ2 ∈ Q2 must be disjoint.

We now apply an argument used by Babai et al. [1986] to derive a lower
bound onε-error communication complexity for this set-disjointness problem.
(Note that the arguments used later by Kalayanasundaram and Schnitger [1987]
or Razborov [1990] to get optimal communication complexity bounds are not use-
ful to us because these require precise linear relationships between the set and
universe sizes.) However, because differentm-subsets of [N] may correspond to
different numbers of them-permutations in theQj , we will need to argue that
our translation into the set-disjointness problem preserves not only the size of
the rectangle involved but also its relative error. For this, we apply the following
easy lemma.

LEMMA 6.21. Let Y and Z be sets such that|Y| =M · |Z|; let S : Y → Z be
such that for all z∈ Z, |S−1(z)| =M and let f : Z → [0, 1]. If Y′ ⊆ Y satisfies
|Y′| ≥ β|Y| andEy∈Y′ [ f (S(y))] ≤ ε, then there is a Z′ ⊆ Z such that|Z′| ≥ β

2 |Z|
and for every z∈ Z′, f (z) ≤ 2ε.

PROOF. By Markov’s inequality, there is a setY′′ ⊆ Y′ such that|Y′′| ≥
|Y′|/2 ≥ β

2 |Y| such that for ally∈Y′′, f (S(y)) ≤ 2ε. Define Z′ = S(Y′′). Then
|Z′| ≥ |Y′′|/M ≥ β

2 |Y|/M = β

2 |Z| and forz∈ Z′ there is somey∈Y′′ such that
f (z)= f (S(y)) ≤ 2ε.

Given setsT andT ′ define the indicator variableχT,T ′ to be 1 ifT ∩ T ′ 6= ∅ and
0 otherwise. We first apply Lemma 6.21 withY the set ofm-permutations of [N],
Z= ( [n]

m ), the set ofm-subsets of [N], Y′ = Q2, S the map from anm-permutation
to its correspondingm-subset, and, forT ′ ∈ ( [n]

m ), f (T ′) equal to Eq∈ Q1[χS(q),T ′ ].
SinceED(x)= 0 for at most anε fraction of elements ofR′, Ey∈Q2[ f (S(y))] ≤ ε.
Therefore, by Lemma 6.21, we obtain a setG of m-subsets of [N] such that|G| ≥
α(R)

4 ( N
m) and for everyT ′ ∈G, Eq∈Q1[χS(q),T ′ ] ≤ 2ε so

Eq∈Q1ET ′∈G[χS(q),T ′ ] ≤ 2ε.
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We now apply Lemma 6.21 again with the same values ofS, Y, and Z but with
Y′ = Q1 and f (T)=ET ′∈G[χT,T ′ ] We obtain a setF of m-subsets of [N] such that
|F |, |G| ≥ α(R)

4 ( N
m) and for everyT ∈ F , ET ′∈G[χT,T ′ ] ≤ 4ε ≤ 1/6; that is, each

element ofF intersects at most 4ε ≤ 1/6 of all elements ofG. The following is a
simple generalization of part of the argument in Babai et al. [1986]

PROPOSITION 6.22. Let d ≥ 3 and let F be a collection of m-subsets of[N].
If |F |> 2(4(d − 1)/d2)m/2( N

m), then F contains a sequence of p=dN/(dm)e sets
S1, . . . , Sp such that|Sj ∩

⋃
i< j Si | ≤ m/2 for j = 1, . . . , p, that is, at least half

the elements of Sj do not occur in earlier sets.

PROOF. We constructS1, . . . , Sp inductively. SelectS1∈ F arbitrarily. For
j > 1, having chosenS1, . . . , Sj−1, we show that forj ≤ p, the number of sets
that have more than half their elements in earlier sets is less than|F | and so we can
selectSj ∈ F as required. LetU j =

⋃
i< j Si . Since j ≤ dN/(dm)e, |U j | ≤ N/d,

the number ofm-subsets of [N] having more than half their elements inU j is at
most

∑
h≥m/2(

|U j |
h )(n−|U j |

m−h ) ≤ ∑
h≥m/2(

N/d
h )( 1−1/d

m−h ). It is easy to check that since
d ≥ 3 ash increases, each successive term is at most half the previous so the
sum is at most 2(N/ddm/2e )(

(1−1/d)N
bm/2c ). Using the easily verifiable inequalities that for

b ≥ a ≥ c ≥ d, (a
c )( b

d ) < ( 4ab
a+b)c( (a+b)/2

c )( (a+b)/2
d ) and (N/2c )( N/2

d ) ≤ ( N
c+d ) we

upper bound this strictly by 2(4(d − 1)/d2)m/2( N
m) which is less than|F |.

If α(R) ≤ 8(8/9)m/2, then we are done. Otherwise, applying the proposition
with d= 3 to our setF , we can findp=dN/(3m)e setsS1, . . . , Sp in F each of
which contains at leastm/2 elements not occurring in earlier sets. ForT ∈G, let
w(T) be the number ofSj that intersect it. Since eachSj ∈ F , 1

|G|
∑

T w(T) ≤ 4εp,
so at most half of theT ∈G havew(T)> 8εp. Let G′ be the set ofT ∈G with
w(T) ≤ 8εp. Thus,|G′| ≥ |G|/2.

We now upper bound the number of elements inG′ and thusG. An element
T of G′ can be described by giving a subsetJ ⊆ [ p] of (1 − 8ε)p indices such
thatT ∩ Sj =∅ for all j ∈ J and then specifyingT as anm-subset of the elements
outside these subsets. By the claim, any collection of (1− 8ε)p of the sets has a
total of m(1− 8ε)p ≥ N/9 elements sinceε ≤ 1

24. Therefore,|G| ≤ 2|G′| ≤
2( p

8εp)( 8N/9
m ) < 21+H2(8ε)N/(3m)(8/9)m( N

m) and thusα(R) ≤ 23+H2(8ε)N/(3m)(8/9)m

proving Lemma 6.20.

THEOREM 6.23. There is a constant c> 0 such that any randomized[n2]-way
branching program computing ED: [n2]n→ {0, 1} in time T and size2S with prob-
ability of error at most(T/n)−c(T/n)2

requires T=Ä(n
√

log (n/S)/log log(n/S)).
Furthermore, any randomized[n2]-way branching program computing ED:
[n2]n → {0, 1} in time T and size2S with probability of error at most S/n re-
quires T=Ä(n

√
log(n/S)log log(n/S)).

PROOF. By Proposition 2.1, it suffices to prove the lower bound for determin-
istic branching programs that approximateED within errorε.

Choosen to be a sufficiently large integer. We apply the second part of Corol-
lary 5.4 and to this end, we assume without loss of generality thatk ≥ 8 and
define forq1= 2−40k−8, andr =dq−5k2

1 e. There is a constantc> 0 such that for all
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positiveε ≤ (k− 2)−c(k−2)2 andk ≥ 8, H2(8ε) ≤ 16ε log2 1/ε ≤ 1
16(32k)−32k2

and
4εk

1/e−ε ≤ 1
24. Fix such ac and assume thatε ≤ (k− 2)−c(k−2)2.

Let B be a deterministic branching program of length at most (k − 2)n and
size 2S that approximatesED within ε. We will show that for somec′> 0, k ≥
c′
√

log(n/S)/ log log(n/S). If n < r 2, this is immediate, so assumen> r 2.
Applying Corollary 5.4(ii) and the fact thatED is 1 for least a 1/e frac-

tion of all inputs in [n2] and 1/e− ε >1/4, we obtain a balanced rectangleR
with m=m(R) ≥ q2k2

1 n/2 andα(R) ≥ 2−Sr−q1/2
1 m−5 such thatED is 0 for at

most a fraction 4kε
(1/e−ε) ≤ 1

24 of inputs in R by our assumption onε. Applying

Lemma 6.20, we have thatα(R) ≤ 8(8/9)m/2 max{1, (8/9)m/22(H2(8ε)/3)n2/m}. Now
n2/m≤ 4mq−4k2

1 ≤ 4m(240k8)4k2= 4m(32k)32k2
so

(8/9)m/22(H2(8ε)/3)n2/m ≤ 2−m/12+(4H2(8ε)/3)m(32k)32k2

≤ 2−
m
3 (1/4−4H2(8ε)(32k)32k2

)

≤ 1

sinceH2(8ε) ≤ 1
16(32k)−32k2

. Therefore,α(R) ≤ 8(8/9)m/2 ≤ 23−m/12. Combining
the upper and lower bounds onα(R) and simplifying we get 2Sr ≥ 2m/12−q1/2

1 m−8,
which, for n sufficiently large andk satisfying the restrictions above, is at least
2m/13. From this, we deduceS ≥ m

13r ≥ r−1q2k2

1 n/26, which is at leastc0n/kc1k2

for somec0, c1 independent ofn andk. It follows that for some constantc′> 0 and
sufficiently largen, k ≥ c′

√
log(n/S)/log log(n/S).

Also observe that our conditions onε hold forε= r−1q2k2

1 /26 which is our lower
bound onS/n and from this the second part of the theorem follows.

COROLLARY 6.24. For anyδ ≥ 0, there is a constant cδ such that for n suffi-
ciently large any randomized RAM algorithm for element distinctness on inputs in
[n2] taking at most cδn

√
log n/log log n time and having at most n−δ error requires

at least n1−δ space.

Hamming Closeness.

LEMMA 6.25. If (R, A1, A2) is an n-variate embedded rectangle over[N] with
|A1| = |A2| =m such that at most anε < 1

24 fraction of x∈ R have HAMγ (x)= 1
then

α(R) ≤ 8(36N−β)m/2max

{
1,

(
N−β

36

)m/2

23H2(8ε)N1−β/m

}
.

PROOF. As in the proof of Lemma 6.20 but replacing the conditionED(x)= 0
with HAMγ (x)= 1, we find two collections ofm-subsets of [N], F andG, such
that|F |, |G| ≥ α(R)/4(N

m) and for eachT ∈ F at most a 4ε fraction ofT ′ ∈G have
the property that there existt ∈ T andt ′ ∈ T ′ such that1H (t, t ′) ≤ γ log2 N.

Let d= Nβ/3 where the value ofβ =β(γ ) is given by Proposition 6.16. By
Proposition 6.22, ifα(R)> 8(36N−β)m/2> 8(4(d − 1)/d2)m/2, then F contains
p=dN/(dm)e setsS1, . . . , Sp such that each setSj has at mostm/2 elements
occurring inSi for i < j .

As in the proof of Lemma 6.20, pruneG to obtain a setG′ with |G′| ≥ |G|/2
such that each elementT ′ ∈G is γ -close to at most 8εp of S1, . . . , Sp. We can
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describe a setT ′ in G′ by naming the (1− 8ε)p setsSi from which it isγ -far and
then specifying each element inT ′ from among the elements that areγ -far from
these sets. The (1− 8ε)p sets together contain at leastmp/3 ≥ N/(3d)= N1−β
elements of [N] and so by Proposition 6.16 at mostN1−β elements of [N] areγ -far
from these sets. Therefore

|G| ≤ 2|G′| ≤ 2

(
p

8εp

)(
N1−β

m

)
≤ 21+3H2(8ε)N1−β/mN−βm

(
N

m

)
and thusα(R) ≤ 8N−βm23H2(8ε)N1−β/m from which the lemma follows.

Although the parameters in this lemma make it appear stronger than Lemma 6.20,
the value ofN for which we will need to use it is much larger than in the case of
element distinctness and we will only be able to obtain lower bounds for much
smaller error. It is conceivable that a much stronger result holds since (1) the
collection of setsS1, . . . , Sp in Proposition 6.22 was chosen to maximize the unions
of subcollections rather than to maximize the number of elements that areγ -close
to these subcollections, and (2) no use was made of the property that each set inF
andG must only contain elements that areγ -far from each other.

THEOREM 6.26. Let 0 < γ < 1/2 and c≥ 2/(1− H2(γ )). Any randomized
[nc]-way branching program computing HAMγ : [nc]n→ {0, 1} in time T and size
2S with probability of error at most n2−c requires T=Ä(n log(n logn

S )).

PROOF. By Proposition 2.1, it suffices to prove the lower bound for determin-
istic branching programs that approximateHAMγ within errorε= n2−c.

Choosen to be a sufficiently large integer. Letk ≥ 4 and letB be a deterministic
branching program of length at most (k − 2)n and size 2S approximatesHAMγ

within ε. Therefore, the branching programB′, set to beB with the labels of its two
sink nodes swapped, approximates¬HAMγ within ε.

We show that, for somec′> 0, k ≥ c′ log((n logn)/S). Let β =β(γ )> 0 be
the constant from Proposition 6.16. Ifk ≥ (cβ log2 n)/32 then we are done so
assume without loss of generality that 2k < ncβ/32. Letr = 2k+6k2 and apply Corol-
lary 5.2(ii) toB′ to obtain a balanced rectangleR with m=m(R) ≥ n/2k+1 and
α(R) ≥ 2−12(k+1)m−Sr−5 such thatHAMγ is 1 for at most a fraction 2ε

(1/2−ε) ¿ 1
24 of

inputs inR.
Applying Lemma 6.25 withN= nc, we have

α(R) ≤ 8(36n−cβ)m/2max

{
1,

(
n−cβ

36

)m/2

23H2(8ε)nc(1−β)/m

}
.

Now sincem2 ≥ n2/22k+2, nc(1−β)/m≤ 22k+2nc(1−β)−2m so(
n−cβ

36

)m/2

23H2(8ε)nc(1−β)/m ≤
(

n−cβ/2212H2(8ε)22knc−2−cβ

6

)m

≤
(

n−cβ/2212H2(8ε)nc−2−cβ/2

6

)m

≤ 1,
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where the second line follows from our assumption onk and the third follows since
H2(8ε) ≤ 16(c− 2)n2−c log2 n ≤ 1

12n2−c+cβ/2 for n sufficiently large.
Therefore,α(R)≤ 8(36n−cβ)m/2≤ 23−m((cβ/2) log2 n−3). Combining the upper and

lower bounds onα(R) and simplifying we get 2Sr≥ 2m((cβ/2) log2 n−(12k+15))−8≥
2(cβ/8)m log2 n by our assumptions onk. From this, we deduceS≥
cβ2−2k−2 log2 k−10n log2 n ≥ cβ2−3k−14n log2 n sincek ≥ 4. Rearranging, we obtain
k ≥ c′ log(n logn

S ) for some positive constantc′.

7. Discussion

The time-space trade-off lower bounds we obtain for decision problems on gen-
eral randomized branching programs are nearly as good as the best lower bounds
known even for the much simpler oblivious deterministic branching programs. The
best lower bounds in the oblivious case have all been obtained using some form
of communication complexity. Using two-party communication complexity, Alon
and Maass [1988] derived lower bounds of the formT =Ä(n log(n/S)) and using
multiparty communication complexity, Babai et al. [1992] derived the best current
lower bounds which are of the formT =Ä(n log2(n/S)).

The use of rectangles in our results as well as all those referenced in Table I
is related to 2-party communication complexity (see, e.g., Kushilevitz and Nisan
[1997]) and most of the difficulty in these arguments is in extending the bounds from
the oblivious to the general case. In fact, the basic approach provides an alternate
way to obtain the same bounds as Alon and Maass [1988] for oblivious branch-
ing programs (see the discussion prior to Lemma 4.4). Recently, these methods
have been extended [Beame and Vee 2002] to include multiparty communication
complexity ideas which yield an alternate way to obtain the bounds of Babai et al.
[1992] for oblivious branching programs. These results also extend the technique
of Beame et al. [2001] using multiparty communication complexity ideas to obtain
lower bounds over large domains. However, it is not at all clear if it is possible to ex-
tend results to include multiparty communication complexity ideas in the Boolean
case using the ideas of Ajtai [1999b]; a key stumbling block seems to be the lack
of a multiparty analogue of Lemma 4.10 in that case.

A larger goal would be to extend these lower bounds to apply when time is
n(logn)ω(1) and even achieve trade-offs for decision problems such asT =Ä(n2/S),
a bound we already can prove for multi-output problems such as sorting. Attempting
to show this first for oblivious branching programs seems like a good way to start.

Finally, we remark that in our lower bounds the error bounds on the randomized
algorithms that our arguments tolerate vary a great deal from problem to prob-
lem. We are able to obtain time-space trade-off lower bounds for branching pro-
grams whose error approaches 1/2 when solving the quadratic form problems. How-
ever, for the element distinctness and Hamming closeness problems, the bounds
we prove are for error that is inverse polynomial in the input size; probability
amplification of these bounds does not yield nontrivial lower bounds for error
approaching 1/2.
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