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For the same functions considered by Ajtai, we prove a time-space trade-off (for randomized branching
programs with error) of the form = Q(n./log(n/S)/TogTog(/S)). In particular, for spac®(n*~¢),
this improves the lower bound on time &(n./logn/loglogn).

In the large domain case, we prove lower bounds of the formQ(n./log(h/S)/loglogh/S))
for randomized computation of the element distinctness function and lower bounds of the form
T =Q(nlog(n/S)) for randomized computation of Ajtai's Hamming closeness problem and of certain
functions associated with quadratic forms over large fields.

Categories and Subject Descriptors: F.1Qornputation by Abstract Deviceg: Modes of
Computation—probabilistic computationF.1.3 [Computation by Abstract Deviceg: Complexity
Measures and Classesefations among complexity measuré2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problemssemputations on discrete struc-
tures F.2.3 JAnalysis of Algorithms and Problem Complexity]: Tradeoffs between Complexity
Measures

General Terms: Theory

Additional Key Words and Phrases: Branching programs, random-access machines, quadratic forms,
element distinctness

1. Introduction

The efficiency of an algorithm is typically measured according to its use of some
relevant computational resource. The most widely studied resource in this context
is computation timgbut another important resource is memorycomputation
space Typically, algorithmic design problems focus on the goal of minimizing
one of these resources. It is very natural to study the relationship between these
two goals.

It is well known that these goals are somewhat compatible; if we have an upper
bound of S on the amount of space used by a terminating algorithm, then that
algorithm has at mostZistinct memory configurations and therefore runs in time
at most 2. This observation shows that a very space-efficient algorithm is at least
somewhat time efficient.

Typically, this 2 upper bound on time is very weak, and there are algorithms
having much better time bounds. Indeed, for many fundamental computational
problems such as sorting, matrix multiplication, and directed graph connectivity,
the goals of minimizing time and space seem to be in conflict; the most time-
efficient algorithms known require heavy memory resources, and as one decreases
the amount of memory used, the amount of time needed to solve the problem ap-
parently increases significantly. This apparent trade-off between time and space has
motivated a large body of research within complexity theory [Borodin 1993]. Such
research has a dual motivation. First, we seek to provide a sound basis for the belief
that such trade-offs are inherent, and to understand the underlying characteristics
of problems that exhibit such trade-offs. Second, such research fits into the broader
goal of proving computational lower bounds. Since we have had only very limited
success in proving lower bounds on the time needed to solve a particular computa-
tional problem, or on the space needed to solve a particular computational problem,
one might hope to make progress by considering the simultaneous restriction of
time and space.

As with most lower-bound problems in complexity theory, research divides into
uniformandnonunifornmodels. In the uniform computational setting, an algorithm
is modeled by a single program or, more formally, by a Turing machine, that operates
on inputs of all lengths. In the nonuniform setting, an algorithm is modeled by a
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sequence of simple combinatorial structures (typically, directed graphs), one for
each input size. A further dichotomy is drawn betweegisionproblems (whose
output is a single bit, indicating “Yes” or “No”) anehulti-outputproblems.

In the uniform setting, a series of recent papers have established time-space
limitations on Turing machines that are able to solve the CNF-satisfiability (SAT)
decision problem. The first work along these lines was by Fortnow [1997], which
was followed by Lipton and Viglas [1999] and Fortnow and van Melkebeek [2000].
The latter gives the best current result: any algorithm for SAT that runs in space
n°® requires time at leas®(n®—€) where¢ = (+/5 — 1)/2 ande is any positive
constant. Although some of these lower bounds apply even to co-nondeterministic
computation, none of them give any results for randomized algorithms.

In the nonuniform setting, the standard model islirenching programin this
model, a program for computing a functidifixs, . . . , X)) (where the variables take
values in some finite domail) is represented as a DAG with a unique start node.
Each nonsink node is labeled by a variable and the arcs out of a node correspond
to the possible values of the variable. Each sink node is labeled by an output
value. Executing the program on a given input corresponds to following a path
from the start node using the values of the input variables to determine the arcs to
follow. The output of the program is the value labelling the sink node reached. The
maximum length of a path corresponds to time and the logarithm of the number
of nodes corresponds to space. This model is often calledtay branching
program model; in the case that the domBirs {0, 1} is referred to as thBoolean
branching progranmodel.

In this model (or, more precisely, an extension that permits outputs along arcs
during the course of computation), there was considerable success in proving time-
space trade-off lower bounds fanulti-output functionsuch as sorting, pattern
matching, matrix-vector product and hashing [Borodin and Cook 1982; Beame
1991; Abrahamson 1990, 1991; Mansour et al. 1993]. The basic technique is to
consider a space-limited computation, and show that in any short span of time, it
is impossible to accurately produce more than a very small amount of the output.
This technique is inherently incapable of providing results in the case of decision
problems, where the entire output is a single bit.

Until recently, the only time-space trade-off results for decision problems were
for models where the access to the input was limited in some significant way. In
thecomparison branching program modg¥here the inputs are numbers, and the
only access to the input allowed is pairwise comparison to determine order), strong
time-space trade-offs were obtained for the element distinctness decision problem
[Borodin et al. 1987; Yao 1988]. There is also an extensive literature on various
restrictedread-kmodels [Borodin et al. 1993; Okol'nishnikova 1993] which have
strict limitations on the number of times that any one variable may appear on any
path in the branching program.

Recently, the first results have been obtained for decision problems on unre-
stricted branching programs using time more thailn the D-way model, Beame,
Jayram} and Saks [1998, 2001] exhibited a problemAnwhere the domairD
grows with the number of variables for which any subexponential size nonde-
terministic branching program has lengdtn log logn). (As we discuss later, the

1 T.S Jayram, formerly Jayram S. Thathachar.
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technique is powerful enough to show length lower bound3(oflog n) for subex-
ponential size branching programs.) In the Boolean case, they obtained the first
(barely) nontrivial bound by exhibiting a problem B and a constant > O for

which any subexponential size branching program requires length at lejasjrf1

The lower bounds in Beame et al. [1998, 2001] were shown for functions based on
guadratic forms over finite fields extending techniques of Borodin et al. [1993]
that showed size lower bounds for reladbranching programs computing
bilinear forms.

In a remarkable breakthrough, Ajtai [1999b] exhibitedPa&ime computable
Boolean function (also based on quadratic forms) for which any subexponential size
deterministic branching program requires superlinear length. Much of the technical
argument for this result was contained in a previous paper of Ajtai [1999a, 2002]
which developed a key tool for analyzing the branching programs. The earlier
paper gave similar lower bounds for two non-Boolean problems whose input is a
list of n binary strings, each of length= O(logn) bits: (1) Hamming closeness—
determine whether the list contains a pair of strings within Hamming distémnce
for some fixeds > 0, and (2) Element distinctness—determine whether the strings
are all distinct. Ajtai's proof of the lower bound for Hamming closeness used ideas
similar to those used by Okol'nishnikova [1993] to prove lower bounds in thekead-
case; however, his argument for element distinctness contains deeper ideas that are
the key to his lower bounds for Boolean branching programs.

The basic approach of all of these time-space trade-offs for decision problems
on branching programs was to show that any branching program of “small” length
and size must accept a subset of inputs that form a “laeg@iedded rectangland
then to exhibit concrete functions that accept no large embedded rectangles. (We
will define embedded rectangle in Section 2.1; for now it suffices for the reader
to know that it is a highly structured subsetBf'.) This was done for syntactic
readk branching programs in Borodin et al. [1993] and Okol'nishnikova [1993].
The first lower bounds on embedded rectangle size for general branching programs
of small size and length were shown in Beame et al. [1998, 2001]. These bounds
gave the results from that paper mentioned above, and are also strong enough to
give the Hamming closeness result of Ajtai [1999a, 2002], but were not strong
enough to give the element distinctness and Boolean function lower bounds. Ajtai
obtained these bounds by proving a striking sequence of combinatorial lemmas that
gave a much stronger lower bound on embedded rectangle size. This directly gave
his tradeoff results for element distinctness and was the basis for the subsequent
Boolean branching program lower bound.

1.1. QURRESULTS Inthis article, we extend Ajtai’s approach for deterministic
branching programs in order to obtain the first time-space trade-off results for (two-
sided error) randomized branching programs, and also for deterministic branching
programs that are allowed to err on a small fraction of inputs. Previously, there
were no known time-space trade-offs even in the uniform setting for these modes
of computation. We also extend the lower bound technique of Beame, Jayram, and
Saks to randomized branching programs. Since the branching program model is
stronger than the RAM model our results apply to (two-sided error) randomized
RAM algorithms as well.

We obtain substantial quantitative improvement over the previous results. More
specifically, we show that, for element distinctness and the Boolean quadratic form
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considered by Ajtai, any two-sided error branching program of subexponential

size must have length at lea®(n,/ -=3"_). Ajtai does not explicitly give the
functional form of his length bounds, gbut analyzing his argument gives at most an

Q(n |0';E)E’ﬁ)gn) bound.

For functions whose variables take on values from a large domain, stronger
lower bounds were already known, and we improve on these slightly. For certain
guadratic forms over larger fields, &{nloglogn) lower bound on length for de-
terministic branching programs of subexponential size was proved in Beame et al.
[1998, 2001]. The same techniques can be applied to the natural generalizations
of the quadratic forms considered by Ajtai to large domains, to immediately yield
Q(nlogn) length lower bounds for deterministic branching programs of subexpo-
nential size. We obtain the same bound for two-sided error randomized branching
programs For the Hamming closeness problem, Pagter [2001] had obtained an
Q(n log%gn) lower bound for one-sided error randomized branching programs of
subexponential size by careful analysis of Ajtai’s argument in Ajtai [1999a]. We
improve this to an2(nlogn) lower bound that again holds for two-sided error
branching programs.

Finally, while our argument relies heavily on Ajtai's approach, our version is
considerably simpler.

One superficial difference in our presentation that makes some of the exposition
simpleristhatwe apply the basic approach developed in Beame etal.[1998, 2001] of
breaking up branching programs into collections of decision trees called decision
forests and then analyzing the resulting decision forests. This has the effect of
applying the space restriction only once, early in the argument, rather than carrying
the space restriction throughout the argument. Our approach simplifies the analysis
without fundamentally changing its ideas.

Our extension of Ajtai's lemma shows that for a small deterministic branching
program not only is there a large embedded rectangle of accepted inputs, but there
is a set of large embedded rectangles of accepted inputs that cover almost all such
inputs without covering any one input too many times. From this we show that
if the given branching program agrees with a given target funcfiam all but
a small fraction of inputs then there is a large embedded rectangle almost all of
whose inputs are ones 6f We obtain our lower bounds for random algorithms by
strengthening Ajtai's arguments about element distinctness, Hamming closeness,
and the quadratic forms to show that, not only do the functions not accept any
relatively large embedded rectangle, they reject a significant fraction of inputs in
any such rectangle.

2. Preliminaries

2.1. E1s AND FUNCTIONS.  Throughout this articlel) denotes a finite set and
n a positive integer. We writen] for the set{1, ..., n}. For finite setN, DN is, as
usual, the set of maps frol to D. An element ofN is called avariable indexor,
simpIP/,] anindex We normally takeN to be |n] for some integen, and writeD"
for DI"

If A< N,apointc € DAis apartial input on A For a partial inputr, fixed(o)
denotes the index s&& on which it is defined andnfixed(o) denotes the set
N — A. If o andn are partial inputs withfixed(o) N fixed(w) =@, thenon
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denotes the partial input dnixed(o) U fixed(r) that agrees witlr onfixed(o)
and withz on fixed(r).

Forx e DN andA C N, theprojection x of x onto Ais the partial input orA
that agrees witlx. ForS< DN, Sy ={xa: x € S}.

For a partial inputr, DN (o), the set ofextensionof o in DN, is {x e DN :
Xfixed(o) = 0}-

Afunction whose range i®, 1} is adecision functionA decision function whose
domain is{0, 1}N for some index sell is aBoolean function

2.2. BVBEDDED RECTANGLES A productU x V of two finite sets is called
a (combinatorial) rectanglelf A € N is an index subset, and C DA and
Z < DN=A then the product set x Z is naturally identified with the subset
R={op:o €Y, peZ}of DN, and a set of this form is calledractangle in D".
This notion of rectangle has been used, for example, in the study of communication
complexity in the “best-partition” model and in the study of read-once branch-
ing programs.

We need a more general notion of rectangleefbedded rectangleiRDN is a
triple (B, A1, A>) whereA; andA; are disjoint subsets & andB < DN satisfies:
(i) The projectionBy_a,—a, consists of a single partial inpuat, (ii) If 71 € Ba,,
72 € Bp, then the point; o0 € B. B is called thebodyof R and A; and A; are the
feetof R. The setsBa, and Ba, are thelegsof the rectangle and is thespine
Abusing terminology, we typically use the same letter for an embedded rectangle
and its body, writingR= (R, Az, A2). This could cause trouble if we needed to
refer to two rectangles with the same body but different feet, but this will not come
up in this paper. We sometimes omit the word “embedded” and simply saRthat
is a rectangle.

We can specify an embedded rectangle by its feet, legs and spinéy lagtd
A, be disjoint subsets dfl, Y; € D”t andY, € D”, ando be a partial input
onN — A; — Ay. Then the setrito0 : 11 € Y1, 72 € Y} is the body of the unique
embedded rectangle with feek{, Ay), legs (Y1, Y>2) and spiner.

For an embedded rectangRe= (R, A1, A2), andj € {1, 2}, we define:

—m;(R)=|Ajl,

—m(R) = min{my(R), mz(R)},
—aj(R)=|Ra,|/ID|'"A,
—a(R) = min{ai(R), a2(R))}.

«(R) is called thdeg-densityf Randxj (R) is called thej-densityof Rfor j =1, 2.
Letme[n], € €[0, 1] andx : [n] — [0, 1]. We say thaR is:

—c-balancedf m;(R) < cmp(R) andm,(R) < cny(R).
—balancedf it is 1-balanced, that ian;(R) = my(R).
—A-denséf a(R) > A(m(R)) andA-sparse otherwise.
—(m, A)-large if m(R) > m, andR is A-dense.
Let (R, A1, Ay) be a rectangle with leg¥1 = Ra, and Yo = Ra, and spine

o. Let I11=Ra,—g, and [I=Ra,_g,. For eachmr;€Il; and m,eIly, the
set R(mymo) = R N D"(mymp) is a rectangle with feetR;, By), spine oo,
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and legsY;(rj)=Y; N D"(xj), for je{1,2}. The collection of rectangles
{(R(r170), B1, Bp) : w1 €Iy, mo € Iy} partitions R and is called the By, By)-
refinement of Rand is denoted RefinB( By, By).

2.3. BRANCHING PROGRAMS.  Since we are only interested in the computation
of decision (single output) functions here, we present our definitions of branching
programs only for this case. @eterministic) branching prograi on domainD
and index seN is an acyclic directed graph with the following properties:

—There is a unique source node, denoted- .
—Each sink node has a labebutput(v), which is 0 or 1.
—Each nonsink node is labeled by an indelv) € N

—There are exactlyD | arcs out of each nonsink node, each with a different element
value(a) of D.

Intuitively, a branching program is executed on inpbly starting aktartz, reading

the variable;s;qr¢,;) and following the unique arc labeled By;q.+,). This process

is continued until a sink is reached and the output of the computation is the output
value of the sink.

We say thai3 acceptghe inputx if the sink reached on inputis labeled 1. We
view B as a decision function fro@" by defining3(x) = 1 if and only if 5 accepts
x. For a functionf : DN — {0, 1}, we say tha3 computesf if B(x) = f (x) for
all x and that3 approximates f with error at mostif the fraction of inputsc such
that f (x) £ B(x) is at most.

Two measures associated witaresize which equals the number of nodes, and
length which is the length of the longest path.

A branching program of lengtt is leveledif the nodes can be partitioned into
d setsVp, V1, ..., Vg whereVy = {startp} is the sourceyy is the set of sink nodes
and every arc out of; goes toV;, 1, for 0 < i < d. By a well-known observation
(see, e.g., Borodin et al. [1981]), every branching progtaof sizes and length
d, can be converted into a leveled branching progiznof lengthd that has at
mosts nodes in each of its levels and computes the same functidh (asd is
deterministic ifB is).

For our purposes, mndomizedranching progranﬁ? with domainD and index
setN is a probability distribution over deterministic branching programs with do-
main D and index seN. Executing3 on inputx € DN corresponds to selecting the
deterministic branching prografhaccording to the distributios and evaluating
B(x). We say that3 computes the functiorf with error at mosk if for every
mput X, PriB(x)= f(x)] = 1 — €. The length (respectively, size) & is the
maximum length of any branchlng program that gets nonzero probability under
the distribution.

This notion of probabilistic branching program differs from the standard notion,
which is obtained by modifying the definition of deterministic branching program to
allow “random” nodes which are not labeled by variables, but where the execution
randomly selects an output arc. It is well known and easy to see that our notion is
at least as powerful as the standard notion and thus is sufficient for the purpose of
proving lower bounds.

We note the following well-known fact.
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PrOPOSITION2.1. Let f:D"— {0,1} and supposeB is a randomized
branching program of size at most S and length at most T that computes f with
error probability at mosk. Then there is a deterministic branching progr&hof
size at most S and length at most T that approximates f with error atenost

ProOOF  For deterministic branching prograthand inputx, let g(5, x) =1
if B(x)# f(x) and 0 otherwise. Defineq(B)=|D|™" ), p» 9(B, Xx)._ For
eachx, the probability that3(x) # f(x) is equal to the expectationzFg(B, x)]
which is at most, by hypothesis. Averaging over we have B[q(B)] < € which
means there is B having nonzero probability undé such thag(B) < e. O

2.4. DeCISION TREES ANDDECISION FORESTS A decision treds a branching
program3 whose underlying graphis atree rootedtat-¢ . In particular, a decision
tree is leveled. Every function on variables is computable by a deterministic
decision tree of length. Following common practice, the length of a decision tree
is referred to as itheight

A decision forests a set of decision trees. More precisely for domBirand
integers andr ande > 0, ann-variate (, €)-decision foresk overD is a collection
of at most decision trees such that each tree isarmriate tree over domaid and
has heightat mogh. F is viewed as a function oB" by the ruleF (x) = Atcp T (X).

A decision forestF is inquisitiveif on every inputx, for eachi € [n], at least one
of the treesT € F readsx;.

2.5. GONVERTING BRANCHING PROGRAMS TO A DISJUNCTION OF DECISION
FORESTS The following result is a minor variant of a lemma proved in Beame
et al. [1998, 2001], which says roughly that the function computed by a branching
program that is not too large and not too deep can be expressed as the OR of a
not too large collection of decision forests, each of which consists of a small set of
shallow trees.

LEMMA 2.2. Letk SeRandneN and D be afinite set. L& be an n-variate
branching program over domain D having length at most kn and size at2fost
Then for any integer e [kn], the function f computed ly can be expressed as:

u
f:\/Fi,
i=1

k2

t2)-decision forest, and the sets K1)

where u< 25", each Fis aninquisitive(r,
are pairwise disjoint sets of inputs.

PROOF.  As noted in Section 2.3, there is a leveled branching prodsawf
lengthkn with at most 2 nodes per level that computes the same functioBi.as
Furthermore, le8” be the lengthK + 1)n branching program obtained frofi by
addingn layers at the beginning that obliviously query each variable. For distinct
nodesv andw of B”, let f,, denote the function o®" which is 1 on inputo
if, starting fromuv, the path consistent with leads tow. It is easy to see that if
is at leveli andw is at levelj > i, then f, ,, can be computed by a decision tree
of heightj —i. For each positive integérless thamr definel; = ['kT”}. Note that
I, < -+ < ly_1 < kn divides the interval [0kn] into r intervals each of size at
most@ +1< (@)n. Aninputis accepted bg” if and only there is a sequence of
nodesvg, vy, vo, ..., Ur_1, Ur, Whereu is the start nodey, is the accepting node
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TABLE |I. PROPERTIES OFEMBEDDED RECTANGLE R FOUND GIVEN A D-WAY BRANCHING PROGRAM
WITH TIME T =Kkn AND SPACE S COMPUTING A FUNCTION f : D" — {0, 1} wiTH 8(f) =| f ~1(2)|/|D"].

Foot Siz¢  Leg Deficiency Program | Error on
Paper m(R) l0g,(8(f)/a(R)) Type f~1(0) | Applicability
Beame et al. 2-00Mn O(k)m + 2°Ws nondet. 0 k= O(logn),
[1998, 2001] ID| = 290
Ajtai [1999a, 2002]| k-°®n | O(klogk)m + kO®S|  det./ 0 | k=0(g2n),
Pagter [2001] 1-sided erre 0 |D| = k%0
Here 2-00n O(K)m+ 2°0s | 2-sided erre | O(e) k= O(logn),
|D|=2%®
Ajtai [1999a, 2002] 2°“n | 27K m 4 kg det. 0 |k=0(peaea)
Here k=00 n | k—2Wm 4 KOKIS det. 0 k=0( |O':E)';n)
Here k=00 | k=2Wm + kOIS | 2-sided erre | O(ke) |k=O( lo';ff)';n)

and fori € [r —1], v; is atlevel;, such thatf, , ,,(0) = 1foreach e[r]. Therefore

r—1
f = \/ /\ fUi»Ui+1'
1 0

V1,...0r—1 i=

There are at most¥ ~V terms in the\/, and each term is a,(@) decision forest.

Finally, each input follows a unique path, and so is accepted by at most one of the
decision forests. Note that sint€ obliviously reads all variables at the beginning,
each of the decision forests in the decomposition produced in the above argument
is inquisitive. [

3. Overview and Comparison to Previous Results

The main approach taken in Beame et al. [1998, 2001] and Ajtai [1999a, 1999b,
2002] for proving time-space trade-off lower bounds is to show that for any branch-
ing program running in tim@ and spaces, whereT and S are suitably small, if

the fraction of inputs for which the branching program outputs 1 is not too small
then there must be some embedded rectaRghaving large feet and leg-density
consisting entirely of inputs on which the program outputs 1.

There are two main differences between our results and previous results for
decision problems. First of all, we obtain substantially larger values for the foot
size and leg-density of the obtained rectangles. Secondly, we show that not only
is there one large embedded rectangle on which the branching program outputs 1
but there is a collection of such embedded rectangles that together cover most of
the inputs on which the branching program outputs 1, and such that no input is
covered too many times. This allows us to prove lower bounds for randomized and
distributional as well as deterministic branching program complexity.

We summarize the relationships between the different results in Table I. Each
result has the following form: Given a branching program of depth (tilme)kn
and 2 nodes (spac8) of the indicated program type that computes functichat
is 1 on at least &( f) fraction of its inputs, then there is a (balanced) embedded
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rectangleRthatis m, A)-large (as defined in Section 2.2), for suitably lamganda,

that contains very few inputs df-%(0). The lower bound on foot size has the form

n/ Bo(k), and the lower bound on leg density has the fagm) = §( f)/2/:(dm+£2(9S,
wheregy, 81, B2 are nonnegative valued functions. The quargitfk)m + g-(k)S,

which appears in the exponent of 2 in the expression.for) provides an upper
bound on log(8( f)/«(R)), which we call théeg-deficiencyf R. Smaller values of
Bo(K), B1(K), B2(k) give larger embedded rectangles and better time-space tradeoff
lower bounds.

The Error column indicates the fraction of inputs of the rectangle that belong to
f ~1(0). This error is 0 except in the case that the branching program has 2-sided
errore, in which case it is proportional ta

Any nonempty rectangle has leg-deficiency at modog|D|, and to obtain
nontrivial time-space trade-offs results, we will need leg-deficiency considerably
smaller. Thus, in the expressiga(k)m + B2(k)S, we needB1(K) to be sufficiently
smaller than logD|. In particular, the first group of bounds in the table is useful
only if | D] is sufficiently large. The second group of bounds figk) = o(1) which
enables us to obtain results for the most interesting dase{0, 1}.

In general, the best lower bound achievable from each result will be of the form
T = Q(ng~(™°4Pl)) where B(k) = o(k) - B2(K). The upper bound ok=T/n
listed in the last column is the limit on the best lower bound achievable given a
polynomial size branching program.

Section 5 contains the precise statements and proofs of the new stronger re-
sults outlined above that if is a decision function computed by a small and
shallow branching program then there is a collection of large rectangles that cov-
ers a substantial portion of ~1(1). As in Beame et al. [1998, 2001], the main
step (which appears in Section 4) is to prove corresponding results for the case
that f is computed by a small and shallow decision forest. Straightforward ap-
plication of Lemma 2.2 then gives the desired results about small branching pro-
grams. Applications of this result to lower bounds on specific functions are given in
Section 6.

4. Finding Large Embedded Rectangles in Decision Forests

Throughout this sectiorD is a fixed finite domainph > r > k > 1 are integers
andF is a fixed inquisitiveD-way (r, k/r)-decision forest over index set][ (Such

anF arises from a branching program of depith{ 2)n using the construction of
Lemma 2.2.) Our goal here is to show that one can find a collection of embedded
rectangles, such that:

(G1) Each rectangle is containedmT(1).
(G2) No single input belongs to “many” rectangles.
(G3) The union of the rectangles covers all but a small number of inpEsifd).

(G4) Each rectangle in the collection has foot size at Iegs wheres, depends
only onk and is as small as possible.

(G5) Each rectangle in the collection isdense wheré. : [n] — [0, 1] is a
function that is as large as possible and, in particular, satisfigs> |D|~<™
for some constant < 1.

(G6) Each rectangle is balanced.
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All but the first and last of these conditions depend on parameters that will be
selected as we proceed. The first three conditions, (G1), (G2), (G3), concern the
coverage of the set of rectangles with respecEtd(1), whereas the last three,
(G4), (G5), (G6) refer to parameters of the individual rectangles within the cover.
We will first concentrate on obtaining sets of rectangles with the coverage properties
that satisfy the parameter conditions (G4), (G5), which together imply that each
rectangle is large; we will only derive the balance condition (G6) at the end of
the argument. However, in proving conditions (G4) and (G5) we will find it useful
to first ensure that the rectangles are all approximately balanced, more precisely
3-balanced; the final balance condition will follow easily afterward.

4.1. GONSTRUCTING ARECTANGLE PARTITION FROM TwWO DISJOINT FORESTS
Ouir first step is to show that any paky( F,) of disjoint subforests o is naturally
associated with a partitigR(F1, F») of F~1(1) into embedded rectangles. We start
by looking at the combinatorial structure induced by a single subforest on the set
of inputs. LetT € F, F; € F, andx € D". We define:

—read(X, T) is the set of indices read By on inputx.

—read(X, F1) = Urcg, read(x, T).

—core(X, F1) =read(x, F1) — read(x, F — F3), the F;-core of x is the set of
indices which on inpuik are read by at least one tree 3 and by no tree
outside ofF;. By our assumption thd is inquisitive, this is the same as][—
read(X, F — Fy).

—sten(X, F1), the F;-stem ofX, is the partial input obtained by projectingto
[n] — core(X, F1). SinceF is inquisitive, this means thattem(x, F;) is the
projection ofx ontoread(x, F — Fy).

—stems(F,), the set ofF; stems, is the set of partial inpytgor which there exists
x € D" with stem(X, F1) = p.

For p € stems(F), it is clear from the definition that any € D" satisfy-
ing stem(x, F1) = p belongs toD"(p). The converse of this also true, though
less obvious:

LEMMA 4.1. Let F be a subforest of an inquisitive decision for-
est F and let pestems(F;). For all xeD"(p), stem(x,F;)=p and
core(X, Fj) =unfixed(p).

PROOF Let xe D"(p). Since p estems(F;), there is an inputy with
p =sten(y, F;). SinceF is inquisitive,p is the projection ofy ontoread(y, F —
F;), which means that on inpw, the trees off — F; read precisely the indices
of fixed(p). Sincex € D"(p), eachT € F — F; behaves the same oras it does
ony. Soread(X, F — Fj) =fixed(p). Thuscore(X, Fj) =unfixed(p), and the
restriction ofx to read(x, F — Fj) is alsop, that is,stem(X, F;)=p. O

Now we consider the combinatorial structure induced by a pair of subfdfgsts
andF, which are disjoint subsets &f. Define:

—stem(X, F1, Fp) is the partial input onrf] — core(X, F1) — core(X, F,) obtained
from projectingx.

We say that inputsx, ye F~1(1) are i, F2)-equivalentif and only if
core(X, F1) =core(y, F1), core(X, F2)=core(y, F2), and stem(x, Fy, F;) =
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stem(y, F1, F2). Let R(F1, F2) be the set of 1, F;)-equivalence classes. For
ReR(F1, Fp), we write core(R, F;) for the common value okore(x, Fy)
shared by alk € R and definecore(R, F;) andstem(R, F1, F,) analogously. For
x € F71(1), let R(x, F1, F») denote the equivalence class containing

LEMmMA 4.2. Let R, F, ¢ F be disjoint subforests of the inquisitive deci-
sion forest F. Let Re R(F1, F2). Then R is an embedded rectangle with feet
(core(R, F1), core(R, F,)) and spinesten(R, F1, ).

PrROOF Let Aj=core(R,F) and A,=core(R,F;) and o=
stem(R, F1, F,). By definition, A; and A, are disjoint. LetL,={r; € DA :
110 € stems(F,)} andL, = {1p € D*? : 61, € stems(F1)}. Let Q be the embedded
rectangle with feetA; and A,, legsL; andL,, and spiner. It suffices to show
thatR= Q.

First, we showR C Q. Let x € R. By definition of R, core(x, F1) = A; and
core(X, F2) = Ay. Write X e R as 1101 where t; € D1, and 1, € D*2. Since
110 = stem(X, F,) ando 1, = stem(X, F;), we haver; € L; andt; € L, and there-
forex e Q.

Next, we show Q < R. Let x=1101,€Q such thatr;el; and
72 € Lo. Now sincerio € stems(F,) and o1p € stems(F71), by Lemma 4.1 we
have core(X, F;) =unfixed(ri0) = A, and core(X, F1) =unfixed(o 1) = As.
Thereforexe R. O

Thus, each pair of disjoint foresks, F, induces a partitioR(F1, F,) of F~1(1)
into embedded rectangles (which thus satisfies the covering conditions (G1), (G2)
and (G3)). However, we also want the rectangles in our collection to be suitably
large (and balanced). There is no guarantee, for an arbitrary pair of féredts,
if we eliminate rectangles of its associated partition that are not suitably large, that
the remainder will cover a sufficiently large fractionff(1) (violating (G3)). To
help with this, we use the probabilistic method to choose a pair of foFgsts,
for which this idea suffices in certain cases. Depending on the notions of “suitably
large” that we require, even applying this idea with a single pair of forests may
not suffice. For these stronger results, we need to apply the probabilistic method to
obtain several different choices of pairs of forests whose associated partitions have
the property that the suitably large rectangles in the union of the partitions covers
most of the inputs irF~%(1). If the number of different choices is not too large,
then we will be able to satisfy (G3) without violating (G2).

4.2. ANALYSIS OF CORE SIZE FORRANDOMLY CHOSENFORESTS We begin by
defining a parameterized family of probability distributions over pdss F,) of
forests and analyzing properties®{F:, F,) when (F,, F,) is chosen according to
a distribution in this family. In Beame et al. [1998, 2001f; ( F») was chosen to
be a random patrtition df into two parts. Ajtai [1999a, 2002] used a more general
parameterized family of distributions, and we use a variant of the ones he used.
Forqe (O, %], let 74 be the distribution that chooseB;( F,) by independently
assigning each decision tré@ec F as follows:

F1 with probabilityq
Telk with probabilityq
F — F1 — F>,  with probability 1—- 2q.
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Forx e D", let u(x, q) = E[|core(X, F1)|] = E[|core(X, F,)|] for (F1, F2) se-
lected according td-;. We now show thaf(x, q) is a fairly large fraction oh,
and also that for eack, with high probability, bothcore(x, F;) andcore(x, F»)
are close tou(x, q). This lemma generalizes a lemma proved in Beame et al.
[1998, 2001] for theg =1/2 case. Ajtai proved tighter concentration bounds for
his distributions using a more detailed analysis, but since the tighter bounds are
not significant in the final results, we content ourselves with a simple second
moment argument.

LEMMA 4.3. Letn>r > k and let F be an n-variate inquisitivg, k/r)-
decision forest. Let x be any input. For any o(ff, ) is chosen according t&y,
then:

() wn(x,q) = g*n.

(b) for each je (1, 2}, Pr[||core(x, Fj)| — (X, Q)| = 3u(x, )] < &

rgk

PROOF By symmetry, it is enough to consider the case 1.

Fori e[n]. Pr[i € core(x, F1)] =q'®, wheret(i) is the number of trees that
access variableon inputx. Thus E[core(X, F1)[]= ) ;. l q'®. SinceF makes
at mostkn reads on inpux, %Zie[n] t(i) < k. By the arithmetic-geometric mean
inequality, E[core(x, F1)[] = Y, ') > ngn Zit0) > gkn,

Next we upper bound Vadore(x, Fi1)[]. Let M(i) be the event that
i €ecore(X, F1). For1<i,i’ < n,we sayi ~ i’ ifthereisT € F that accesses
bothx; andx;: on inputx. Now

Var[|core(x, F1)|] = Z(Pr[M(i) AM(@I)] = Pr[M@)] - PriM(i]).
i
If =(i ~ i), then the eventM (i) andM(i’) are independent and the correspond-
ing term in the sum is 0. If ~ i’, then we upper bound PM(i) A M(i")] —
Pr[M(i)] - Pr[M(i")] crudely by PrM(i)] = q'™). Since on inpuk, each tree reads
at mostrkn variables, for eachthe number of’ such thai ~ i’ is at mosit(i)%n.
Thus,

Var[|core(x, F1)[] < on > t(i)g'¥ < . Y (i) gl < T“(X’Q)'
i=1 i=1 =1

(The second inequality uses a form of Chebyshev’s inequality (e.g., Hardy et al.
[1952, Theorem 43, page 43]), which says that waeandb; are positive and
anti-correlated) [ aby < > & >[_; bj/n.)

We now use the more usual form of Chebyshev’s inequality: for any random
variableZ with finite expectation and variance, PZ[— E[Z]| > ¢] < Var[Z]/¢2.

1
Pr [||core(x, FO)l = (%, )] = Sp(x, q)] < 4Var[jcore(x, Fy)[]/u(x. g)?
4k2n 4k?
S S =
ru(x,q) — rq
4.3. (HOOSING RECTANGLES WITH HIGH LEG-DENSITY: OVERVIEW. The

lemma in the previous subsection implies that fBi,(F,) chosen according to
Fq, the subset ofR(Fy, F») consisting of those rectangles that both have foot
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size at leastj“n/2 and are 3-balanced covers all but a few inputsFof(1).
Provided thatqg is not too small, this would produce a set of rectangles that
satisfy some version of the covering conditions (G1),(G2),(G3) as well as the
lower bound on foot-size (G4) and approximate balance. If we did not care about
the leg-density bound (G5), then we would chogse 1/2, and we would es-
sentially be done. However, we want the chosen rectangles to have sufficiently
high leg-density to satisfy (G5). To obtain the time-space trade-offs for the
various functions considered in Beame et al. [1998, 2001] and Ajtai [1999a,
1999b, 2002], we will want the leg-density boundm)=|D|—<™ for some
€ < 1. (Notice that forA(m) < |D|™™, any nonempty rectangle is trivially
A-dense.)

We would like that forFy, F> chosen according to th&y, almost all inputs in
F~1(1) are in rectangles that akedense, for some appropriatém). In the special
case that all of the trees in areoblivious(that is, the choice of variables queried
in a given tree depends only on the level and not on the path followed by the input),
it is easy to show that this is true fewerychoice of 1, F,) even if we taker(m)
to be a constant function. In this case, for any given gair E»), core(x, F1) and
core(X, F,) are the same for all inpuis so all of the rectangles iR(F;, F,) have
the same pair of feetd;, Az). Thus, these rectangles are determined only by their
spiness on [n] — A; — A,. For anyn > 0, and forj € {1, 2}, any rectangldR with
aj(R) < n covers at mosp|D|'A*!%l inputs and there are onliyD |~ A=Al
rectangles iR (F1, F2). Therefore, for the constant functiagm) = n, the number
of inputs that are not in-dense rectangles is at most/D"|.

The idea ofthis argumentis thatthe definition.edparse imposes an upper bound
on the size of each-sparse rectangle and we multiply this by (an upper bound on)
IR(F1, F2)|. In the general (nonoblivious) case, the rectangle®R (., F;) do
not all have the same feet, which creates two problems: (1) the size upper bound
on aA-sparse rectangle also depends on the size of the feet, and so is different for
differentrectangles, and, more significantly, (2) itis harder to get good upper bounds
on |R(F1, F2)|

The rest of this section is devoted to proving two lemmas, Lemma 4.4 and
Lemma 4.13. The first lemma uses a simple argument that achieves a leg-density
lower boundi(m) =2-°&m which is enough to prove time-space trade-offs for
some functions in the case that the domBiis large, in particular larger tharf'2
for some constartt. The second lemma is much harder and achieves a leg-density
lower bound.(m) =2"<"fore < 1, whichis needed for the time—space trade-offs
for Boolean functions and for the element distinctness problem.

4.4, WEAK LOWER BOUNDS ONLEG-DENSITY.

LEMMA 4.4. Let F be an n-variable inquisitivé, k/r) decision forest where
n>r >k > 2are integers. Lel > y’, §' > 0 and suppose that i 2Kt4k?/y’.
Then there is a familR of disjoint rectangles such that each rectangle R is
a subset of F1(1) and satisfies fR) = m(R) = my(R) > [n/2*t1] anda(R) >
2-126+Dm(R)5’ and such that the s¢tUrcr R| has size at leagil — y')|F ~1(1)| —
8'|D"|.

PROOF. Letr > 2k?/y’ and choose Ry, F») according toFy12. By
Lemma 4.3, for each € F~1(1), there is awx = $u(x, 1/2) > n/2*1 such that
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Prlicore(X, Fj)| & [wx, 3wy]] < y'/2 for j =1, 2. Therefore, there is a pair
(F1, F2) suchthatcore(x, F1)|, [core(X, F2)| € [wx, 3w] forallinputsx in a sub-
setJ of F~1(1) of size at least (+ y')|F~(1)|. Let Q be the set of all embedded
rectanglesR € R(F;, F,) that contain at least one elementhfBy construction,
every embedded rectangRein Q hasn/2t! < m(R) = min(my(R), my(R)) and
max(my(R), my(R)) < 3m(R).

We first partition each of the embedded rectangle@ ito produce a se®’ of
balanced rectangles as follows: For each embedded rectdRghg (Ay) in Q, if
j €{1, 2} is an index such than(R) =m;(R) =|A;|, we defineB; = A;, define
Bs—j < [n] to be the set consisting of the small@stR) elements ofA;_; and
replace R, Ay, Ay) by its partition into embedded rectangles with f8etand By,
RefineR, By, By) (as defined in Section 2.2). Clearly each embedded rectangle
R e RefineR, By, By) hasm(R) = my(R) = my(R) =m(R) > n/2k+1,

We now define the subs@& of Q' to be those embedded rectangiésuch that
|R| > 2~ 12&+1Im(R)5/| D|2m(R) We claim that the union of all rectangles@ — R
contains at most’'|D|" inputs.

Each rectangle i@ is defined by its feet corresponding to the common core sets
A1, A; C [n] and its spine, the partial assignmeng DIN~A1~A2 corresponding
to the common stem. Furthermore, each refined rectaRgie Q' is defined by
specifying the rectanglR in Q from which it was derived, together with the partial
assignment to the maxg(R), mz(R)) — m(R) variables of largest index in the
larger of A; or A,.

We count the rectangles @' separately based on the possible valuendiR)
and my(R) of the rectanglerR from which they are derived. For each fixed pair
(mq, my) of integers, there are at mo§Tf10(r22)| D|"™M™M~M2 rectangleR € Q with
my(R) = my; andmy(R) = m, and thus at most

n n |Dln—ml—m2|D|max(m1,m2)—min(m1,m2)
my/ \mz

— n n | Dln—z min(my, my)
my my

rectanglesR’ € Q' derived from such rectangleR. By construction, we only
need to consider integer pairs{, my) with n > my, my, > n/21 such that
max(;, my) < 3min(mg, my). Now, using the fact (easily checkable given
the standard bound}) < 27" where Hy(p)= plog,(1/p) + (1 — p)
log,(1/(1 — p))) that for¢ > 1 if m > n/2" then (1) < 2%™, for these values of
my; andms,

(r:1> (n:2> | D |n—2 min(mg,my) < 22(k+1)(m1+m2)| D |n—2 min(mg,my)

< 28(k+1) min(ml,m2)| D |n—2 min(ml,mz)'

Therefore, the total number of inputs in rectanglBs in Q@ with |R| <
2-R6+DmR) 571D |2M(R) such thatmy(R)=m; and my(R)=m, is at most
2-4tlyminm,mo) 57 31" Summing over all pairsnf;, my), we need to consider
shows that the number of inputs iid not covered byR is at most
n22-4&+0n/2 s D" < 5| DM since my, my > n/2¥t and n/log, n > 2¢/k for
n>r > k42,
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Since any rectangleR’ with both feet of size m(R) has precisely
a1(R)az(R)|D[*R) elements and sinag;(R') < 1 for j =1, 2, for every rect-
angleR in R, «(R) = min(a1(R)), az(R)) > 2-12k+ImR)s’ a5 required.

The proof of Lemma 4.4 is very similar to that of the result of Beame et al. [1998,
2001] cited in Table I. The main difference is that their argument only produces a
single rectangle that is suitably large and dense, while the above lemma gives a col-
lection of disjoint rectangles that covers all but a small number of poirfes1);
this extension will permit lower bounds for randomized branching programs with
2-sided error. We get a small savings of a factor in the bound and the 12 in the
exponent is slightly worse because of our extension to the randomized case, but
these will not significantly change the lower bound when we extend it to the entire
branching program.

This lemma is the only part of this section needed to prove the time-space trade-
offs for branching programs for the Hamming closeness function and for quadratic
forms over large fields. The reader who wishes to get an idea how the “large
rectangle” results are applied can go to Section 5.1 and then the relevant parts
of Section 6.

4.5. A SUFFICIENT CONDITION FORHIGH LEG-DENSITY.  We turn to the harder
task of improving the density lower bounds on the rectangles in our cover to be
much larger than2". Conceptually, our approach closely follows that used to prove
the main lemma of Ajtai [1999a, 2002]. The overall strategy involves classifying
inputs based on the pattern of accesses to their input variables made by the various
trees in the decision forest.

We will begin by developing a general condition on a pair of fordstsF,
and an arbitrary subset € D" of inputs that will allow us to obtain good leg-
density lower bounds on the rectanglesd(F1, F,) that cover most ofl. We will
then show that this condition holds if the restrictions of the access patterns of the
inputs inJ to the trees ofF; and F, satisfy a certain property. Finally, we will
show that there is a small sEtof probabilitiesq satisfying the following. If the
inputs are partitioned into classes based on their overall access patterns, for any
such class of inputg there is some| € I' such that, forF;, F, chosen fromFy,
the restrictions of the access patterns of the input3 to F, and F, satisfy the
desired property.

We now work out the condition that implies large leg-density. Fix a pair of
forestsFi, Fo. We begin with an alternate characterization of leg-density in terms
of F;-stems.

LEMMA 4.5. Letp e stems(F;) and let Re R(Fy, F) satisfy RN D"(p) # ¢.
Thena (R)=[RN D"(p)|/|D"(p)I.

PROOF. Letp andR be as hypothesized. L&Y, A; be the feet oR, o be the
spine andyYi, Y, be the legs. Supposec RN D"(p). Let t be the restriction of
X 10 Az_j. Thent € Ys_j andot =stem(X, Fj). By Lemma 4.10=0o7. Since
R={mimo0 : m1 € Y1, m2 € Y2}, we have thaR N D"(p) = {mjro : 7; €Y;} and
thus|R N D"(p)| =1Yj| =j(R)D*|=a;j(R)ID"(p)|. [

Now fix a subsetl € D" of inputs. Very roughly, if one could show that for

any x € J there are very few rectangles ®(F;, F;) containing inputs inJ that
extendstem(Xx, F;), then by some kind of averaging one would expect that most
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points in J will lie in rectangles that have relatively largedensity. In order to
make this rough argument precise, we need the following property@fs(F;)
which follows immediately from Lemma 4.1.

LEMMA 4.6. {D"(p) : p € stems(Fj)} is a partition of D".

Leti : [n] — [0, 1] be an arbitrary function and I&’ be the set of rectangles
Rin R(F1, F2) with «;(R) < A(m;(R)). The number of inputs of that belong
to elements oD/ is Y 5. oi IRN J| To upper bound this sum, we classify pomts
according to theiF; -stem and separately upper bound the number of points in each
class that are contained in such sparse rectangles.

> IRNJ|

ReQ]

= Y. ) IRNIND)

pestems(Fj) ReQl

< > Y. IRNDYp)

pestems(F;) ReQl
RNJIND"(p)#0

= ) > (R Do)
pestems(Fj) ReQi
RNJIND"(p)#£0

< ). HReR(FL F):RNINDYp) # B} - Ajuntixed(p)]) - [D"(p)!.

pestems(Fj)

Definenumrects(p, J)=|{Re R(F1, F2) : RN J N D"(p) # B}|. We rewrite
the last line and continue:

Z ID"(p)| - A(Junfixed(p)|) - numrects(p, J)

pestems(Fj)

< max_ A(lunfixed(p)|) - numrects(p, J) Z ID"(p)]

t F
pestens(F)) pestems(Fj)

= |D"|- max_ A(lunfixed(p)|) - numrects(p, J),

pestems(Fj)

where the last equality follows from Lemma 4.6. LRt ; = {p € stems(Fj) :
|lunfixed(p)| =m}. Since

max _ A(Jlunfixed(p)|) - numrects(p, J)

pestems(Fj)
= _max (A(m) max numrects(p, J)),
m, Pm, ﬁé@ PEPN

we thus arrive at the following:

LEMMA 4.7. Let F be an n-variable inquisitive decision forest on domain
D, let F, F» be subforests of F and & F~1(1). Let je {1, 2}, n<[0, 1], and
for each me [n] let Py j ={p € stems(Fj) : [unfixed(p)|=m}. If L : [n] —

[0, 1] satisfies
Ui

A(m) <
(m) =< maX,cp,, nunrects(o, J)
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for each m such that R; # ¢, then the rectangles R iR(Fy, F,) with ¢ (R) <
A(m;(R)) together cover at mosf|D"| points of J.

4.6. UPPERBOUNDING numrects(p, J). To use this lemma, we need a good
upper bound on maxp,  numrects(p, J). Of course, this quantity depends
on F,F, and J. To this end, we prove an alternative characterization of
numrects(p, J):

PROPOSITION4.8. Fix the forest pair I, F,. Let J be a subset of F(1).
For je{1, 2}, and p € stems(F;j), numrects(p, J) is equal to the number
of subsets C ofn] for which there is an x J with stem(x, Fj)=p and
core(x, Fs_j)=C.

PrROOF For xeD"(p), we have core(X, Fj)=unfixed(p) and
stem(X, F1, F2) is simply the projection ofp onto fixed(p) — core(X, Fz_j).
From this we conclude that for, y € D"(p) N J, R(X, F1, F2) = R(y, F1, Fp) if
and only if core(x, F3—j) = core(y, Fz—j). The conclusion of the proposition
is immediate. [

Thus,numrects(p, J) is the size of a particular collection of subsets of, [
which we will upper bound using:

PrOPOSITION4.9. If Cis a collection of subsets fifi] such that for any two sets
A, B eC, the symmetric difference B has size at most d, thefi| < S(n, d),

where $n, d) = ngd(?)'

Thus, an upper bound arumrects(p, J) will follow from an upper bound for
j =1,2 on|core(X, Fs_j)Acore(y, F3_;)| for all X, y e J having the samé;-
stem. We will carefully partition almost all & ~%(1) into setsJ and choose sub-
forestsF;, F, depending on certain propertiesdto that forj =1,2 allx, ye J
with the sameF;-stem will be such thatore(x, F3—j)Acore(y, Fz_j) is much
smaller tharcore(x, Fj) = core(y, Fj).

In order to do this, foj =1, 2 we will associate each inpute J with a subset of
variables (depending oj) so that for any two inputg, y with the sameF;-stem,
core(X, Fs_j)Acore(y, F3_;) is contained in the union of the subset associated
with x and the subset associated withOur goal will be achieved by showing
that for j =1, 2 and every € J the subset of variables associated witis much
smaller tharcore(X, Fj).

The subset associated witlwill be determined by classifying variables accord-
ing to which trees read them on inputin particular, it will depend or; and F,
and also on an auxiliary parametewhich we will be free to choose later.

With (F;, F») fixed, we define foij € {1, 2} and positive integet <r:

vset(X, £) = {i €[n]: oninputx, exactlyl trees ofF readx;}
Bj(x, £) = core(Xx, Fj) — vset(x, £)
B]f(x, ¢) = {i e[n] : oninputx,i is read in exactly trees ofF;,
in at least one tree d¥;_; and in no trees oF — F; — F>. }.

We now show that associating each D" to the subseBs_;(x, £) U B;_;(X, ¢),
we get the desired property.
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LEMMA 4.10. Let (F1, F;) be a pair of disjoint subforests of the forest F
and let ¢ be a positive integer. For ¢ {1, 2} and inputs xy e D" such that
stem(X, Fj) =stem(y, Fj) we have

core(X, F3_j)Acore(y, F3-j) € Bs—j(X, £)UB3_(X, £)UBs_j(y, £)UB;_;(y, ¢).

PROOF By symmetry inj, x, y, it suffices to consider the cage=2 and
I € core(X, F1) — core(y, F1) and show e B(x, £) U B(y, £).

If i & vset(X, £), theni e By(X, £). Supposé € vset(X, £). On inputx, i is
read by exactly trees inF;, and by no trees oF — F; — F,, and the same
is true fory sincex andy agree outside otore(X, F;) =core(y, F;). Since
i € core(y, F1), atleastone tree ¢f, reads oninputy, soi € ij (y, £). Therefore,

I € By(x, &)U By(y, £). O

The free parametérin the above lemma gives us some freedom in choosing the
sets to associate to each input. We want to chobgeH,) and¢ so that for almost
all inputsx, Bs_j(x, £) U Bg_j(x, £) is substantially smaller thatbre(x, F;).

The key observation is that no variable whose index Bain; (x, £) U Bg_j (%, £)
is read in exactly trees of F. We will group inputs inF ~1(1) into classesly ¢
for a certain small set of values gfe (0, 1/2] and ¢ € [r] such that for Eq, )
chosen according t&, for almost allx € Jy ¢, the overwhelming majority of the
variablesincore(x, F1) andcore(X, F,) are read in exactlgtrees ofF. Therefore,
foralmostallx € J ¢, the sizes 0B, (x, £) andBy(x, £) will be substantially smaller
than the sizes of the corespre(X, F1) andcore(X, F;); a similar argument will
allow us to obtain comparable upper bounds on the siz&; (@f, £) and By(x, £).

We now show how to group the inputs into the s&ts. Our bounds substantially
improve those implicitin Ajtai[1999a, 1999b, 2002] because we give a more precise
description of these two quantities and give a sharper calculation of their expected
sizes. Roughly speaking, in each case, the analysis in Ajtai [1999a, 2002] only uses
the randomness of one of the forests in the p&ir, £2) while holding the other
fixed. We restructure the analysis so that we can use the randomness of both forests.

LEMMA 4.11. Let F be an n-variable inquisitivé, k/r)-decision forest with
n>r >k> 3. Letqg < 1/4k. Foreveryinputx, thereis apa(t, b) = (£(x), b(x))
ofintegerswithl < ¢ < kandl < b < 2k, such that fofFy, F,) chosen according
to }'qf and for je {1, 2},

(@) E[IBj(x. O)I] < 4qs - (X, qp).
(b) E[IBj(x, O] < 2kep - (X, qf).

PROOF Let vy=|vset(x,h)] for h=1,...,r. It is easy to see that
CN) E vhg". We choosée andq = q{’ so that termv,q* overwhelmingly
dominates the sum.

Fora > 1, letg, = g2. Leth(a) be the least index such thaj,)g"@® > v,ql! for
allh > 1. Clearly,h(a) is a positive integer and we claim:

(1) h(1) =k
(2) h(a) is nonincreasing with respect &

For the first claim, by Lemma 4.3}, th?=M(X, q1) > q'l‘n. Since

Yhokvndy < ngftt < ogf, we haved), _, vhay > ZLa¥, and so for some



Time-Space Trade-Off Lower Bounds 173

efl, ...k}, vaf > kilq'l‘ > 3.k vhdy, which proves the first claim. For
the second claim, we have for dll> h(a), vhg?®@ > vngl!, which implies
Vh(a)qa+1 > vhqa+1, soh(a+ 1) < h(a).

By the pigeonhole principle, there existsba {2, ..., 2k} such thath(b —
1)=h(b) = h(b+1).Set£:£(x) to beh(b) and leto(x) = b. Forh > ¢, vpg®™" <
Vgt |mpIie5vhqb < vgigh Slmllarly, forh < £, g™ <y qf’”y im-
pliesvhal < veafqi ™. Thus forh ¢, vhal! < vegf - gi"~“. Then, for F1, Fy)
chosen according to the distributidfy,, we have:

E[IBj(x, O)l] = thqb < qub IZ h|

ha¢ h=¢

< 2u0y ) df <4vgs-
p=1

< 4q: - u(X, ),

proving the first part of the lemma.

Note Bj(X,£) < Unsepavset(x,h). Forh > ¢ + 1 andi evset(x, h),
i€ B/ (X, E) if and only if exactly¢ out of theh trees that readonx are in FL and
the rest are irFs_;, which happens with probabilitg(}) =g 4252 ... b <

2 h—¢
(o N(k 4+ 1)"¢, sincet < k. Summing oveh > ¢ andi € vset(X h) we have:

! h
8ol = Y- mal(7)
h=¢+1
r r

D onapk+ 1" < D ek + 1)

h=¢+1 h=¢+1

veg(K + 1aa > (K + 1)an)P < 2kappu(X, Gp),
p:O

A

IA

where the last inequality usés> 3 (so thatk + 1) < %k), g < 4—lk andv, g <
p(X, Op). [

4.7. RUTTING THINGS TOGETHER Forbe{2,...,2k} andZe{1,...,k}, let
CtPb={xeF 1) : £(x)=¢,b(x)=Db}, and letC®= U, C-P. We now apply
the probabilistic method for eadhseparately to show that if < CP for some
be(2, ..., 2k}, we can choose a pair of d|310|nt subforesﬂ-‘é’ (F2) so that for
most pomtS( of 1, the rectangldR(x, F°, F )|s large.

LEMMA 4.12. Let F be an n-variable inquisitivé, k/r) deC|S|on forest with
n>r >k>8 Letq < 1/(4k), Ietbe{2 ,2k} and let ¢ = q1 Let | € CP.

Lety, 8 >0, and suppose > ;‘—q; Then there is a pair of foresi{d=1, F,) and

a subset 1of | with [I’] > |I|(1 — 6y) — 25|D|" such that for each x |” and
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j € {1, 2} the rectangle R= R(x, F1, F,) satisfies:

2 2
8

kS(n, 10';%m,-(R))

PrROOF.  Select £, F) according taFy,.
Let ze | and let¢ =¢(z). We claim that with probability at least-% 6y, the
following three events hold for bothe {1, 2}.

m, (R) c |:M(X7 qb) 3M(X’ Clb)]

aj(R) >

(I) %/’L(Z’ Qb) = |core(Z, Fj)l = %/’L(Z’ Qb),
(ii) [Bs-j(z. €)I < 8au|core(z, F))l/v,
(i) |B3_j(z £)| < 4kau|core(z, Fj)l/y.

Conditions (ii) and (iii) follow from (i) and the conditions {ji| Bs_j(z, £)| <
4914(z, Gp)/y and (i) |B;_;(z, £)| < 2kauu(z, gp)/y . Foreach, Lemmad4.3says
that (i) fails with probability at mostld?/(rq'g), which is at mosy by hypothesis,
and Lemma 4.11 with Markov’s inequality implies that)(and (iii') each fail with
probability at mosty. This proves the claim.

It follows that there is a fixed pailFg, F,) andal” C | with |17] > (1—6y)|l |,
such that for eaclze 1, (i), (ii), and (iii) hold for j =1 andj = 2. Note that (i)
implies the desired bounds om; (R(z, F1, F2)).

For eachlZelk], let I/={xel” : £(x)=¢}. We will apply Lemma 4.7
with J=1/ separately for eaclt and j=1,2. Consider theF;-stem p
of some input inl;. Lemma 4.10 with (ii) and (iii) above imply that for
X,ye D"(p) N 1/, |core(y, Fs_j)Acore(X, Fa_j)| < (SKJFVi)qllunfixed(pﬂ
since core(X, Fj) =core(y, F;) =unfixed(p). Sincek > 8 this is at most
1% ynfixed(p)|. By Propositions 4.8 and 4.9numrects(p, 1)) <

n, 1Ko lunfixed(p)|).

Now apply Lemma 4.7 folj =1, 2 with n=6/k and A(m)=n/S(n, lokT"“lm).
This givesl; C 1/ of size at leas}l;'| — 25| D|"/k, such that for everx €1/, for
R=R(x, F1, Fp) andforj =1, 2,«;(R) > §/(kSn, 10kqlmj(R))) which gives the
claimed bound omy;(R) as a function oim;(R). Let |’ = U‘gzl l,. Then|l'| >
1" = 25|D|" > [1](1 - 6y) — 25|D|". O

We now combine the results for eaok {2, . . ., 2k} from Lemma 4.12 and con-
vert (most of) the resulting rectangles into balanced rectangles to arrive at the main
result of this section, which says that we can find a collection of large rectangles,
each contained iff ~1(1), that covers all but a small number of inputsAn*(1).

LEMMA 4.13. Let F be an n-variable inquisitivé, k/r) decision forest Wgere
n>r > k > 8areintegers. Letg=< 1/(4k). Lety’, §’ > 0, and suppose &~ ‘fa;kz.

Then there is a familyR of rectangles each contained in —K1) such
that| . R covers a subset of #(1) of size at leastF ~*(1)|(1 — y’) — [D"|¢,
and such thatR can be partitioned into subcollectiod®R® : be{2, ..., 2k}},
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where for each b, the rectanglesRP are disjoint and each R R satisfies

m(R)=my(R) = m(R) = San

8k2S (n, qlm(R)) .

PROOF. Foreachhe {2, ..., 2k}, apply the previous lemma with= | ® = CP
andy =y’/12 ands =§'/4k. Let (F2, FD) be the set of subforests add be the
setl’ from the conclusmn of the lemma. L&@° = {R(x, FY, F)) : x e J®}. Let
J=UX, b andQ=[JZ, Qb Then|J|= Y, 137 = S, (1°1(Q — ¥'/2) —
|ID"|8"/2K) > |F~1(1)|(1—y’/2)— |D"|§’. The rectangles i@ are all 3-balanced.
We would like to replace this by a collection of balanced rectangles. Consider
(Q, A1, A2) € Q and without loss of generality assume thag| <|A;|. From the
conclusion of Lemma 4.12, we hawg(Q), a2(Q) > &' /(4k2S(n, 2%% | A, [}) since
|A1] <3|Az| . ChooseB; C A; such that|B;| =|A,| and conS|dVer theR, Ao)-
refinement ofQ, RefineQ, B, Ay) as defined in Section 2.2. It is easy to see that
az2(P) = a2(Q) for everyP e RefineQ, B, A2). Also, eachP € Refine@Q, B1, A))
satisfies|P| = a1(P)|D|'B!l. Since there are at mos;DHAll B1l such rectan-
gles, the number of points covered by rectangfesvith o;(P) <5 s La1(Q) is
at most%a;(Q)|D|'"™ = £ |Q|. Thus, if we replaceQ by the set of rectangles
Pe Refme(Q B, A2) W|th a1(P) > —al(Q) we obtain a collectioriR(Q) of
disjoint subrectangles o each W|th feet By, Ay) that together cover at least
(1 — y’/2)|Q| points and such that eadRe R(Q) satisfiesaz(R) = «2(Q) and
@1(R) > y’a1(Q)/2. TakeR to be the union oR (Q) overQ € Q, andJ’ to be the
union of allthe rectangles iR, so|J'| > |J|(1—y'/2) > |[F~}(1)|(1—y')—|D"|8".
The conclusion of Lemma 4.12, together with the lower bound @ q) given by
Lemma 4.3 implies that the rectanglesRnhave the claimed properties]

,)//8/

a1(R), a2(R) =

5. Embedded Rectangles in Branching Programs

Lemmas 4.4 and 4.13 showed that every suitably small decision forest admits
a nice family of rectangles that covers most of the accepted inputs. In this sec-
tion, we use the connection between branching programs and decision forests
given by Lemma 2.2 together with these two lemmas to show that most inputs

accepted by an efficient branching program can be covered by a nice family

of rectangles.

5.1. BVBEDDED RECTANGLES WITH SMALL LEG-DENSITY. We use the sim-
ple bound given in Lemma 4.4 to show the existence of embedded rectangles in
branching programs.

THEOREM 5.1. Let k > 4 be an integer and > r > 2*%k2, Let B be a
branching program of length at mogt — 2)n and size2S. There is a collection
R of disjoint embedded rectangles such that each rectangdeRRis a subset
of B71(1) and satisfies fR) =my(R)=my(R) > n/2*! and a1(R), a2(R) >
2~ 12t m(R)=2-Sr 3=1(1)| /| D|", and such that 5 R covers at leagB—1(1)|/2
inputs inB~1(1).
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PROOF. BylLemma?2.2, thereis afamily consisting of 2" inquisitive ¢, k/r)-
decision forests, such th&t= \/_s F. Note that the collection of sef§ ~*(1) :
F € S} partitionsB—(1).

For each forestFeS, apply Lemma 4.4 withy'=1/4, and § =
IB~Y(1)|/(25*2|D"|), and letR ¢ be the family of embedded rectangles obtained
in the conclusion of the lemma. Defife= | J-_s Rr. By construction| Jz_» R
covers a subset &~1(1) of size at least (+ y')|B~1(1)| — 25'8'|D"| = 3|1B-1(2)),
and eachRe R has ng2 =my(R) =my(R) > n/2! and a1(R), a2(R) >
2—12k+1)M(R) g/ — 9—12k+1)m R)727$r|871(1)|/| D |n as required. n

COROLLARY 5.2. Let k > 4 be an integer and > r > 2%k2, Let B be
an n-;/ariate branching program over domain D of length at n{&st 2)n and
size2>.

(i) [Beame et al.1998, 2001]There is an embedded rectangle R contained
in B~1(1) satisfying nfR)=m;(R)=my(R) > n/2! and «(R) >
2—12(k+1)m(R)—Sr—2|B—l(1)|/| Dln

(ii) Let f be an n-variate decision function over D and supp®sgrees with f on
atleast(l — €)|D"| inputs. Lets < | f ~1(1)|/|D"|. Then there is an embedded
rectangle R contained is—1(1) satisfying nfR) = my(R) = my(R) > n/2+1
ando(R) > 2-12k+Dm(R=Sr-2(5 _ ¢) such that f is 0 on at mostZ /(8 — €)
fraction of points in R.

PROOF  Apply Theorem 5.1 and IR be the resulting collection of rectangles
contained in3~1(1). The first part of the corollary follows by choosing aRy R..
For the second part, the hypothesis®implies that|3~%(1)|/|D"| > § — € so all
rectanglesR € R satisfya(R) > 2-12&+DmR)-Sr-2(5 _ ¢) and together they cover
at least § — €)|D"|/2 points inB~1(1). SinceB and f differ on at moste|D"|
inputs, f is 0 for at moste|D"| of the at least§ — €)|D"|/2 points covered by
‘R. Since the rectangles iR are disjoint, there must be some rectanBle R in
which f is 0 on at most /(s — €) fraction of the points irR. [

5.2. BMBEDDED RECTANGLES WITHLARGE LEG-DENSITY. Now, using a simi-
lar argument and Lemma 4.13 in place of Lemma 4.4, we derive our main theorem
which is more widely applicable than Theorem 5.1.

THEOREM 5.3. Letk > 8 be aninteger, < 27*% 8 n>r > 20(](2/q1“‘2.
Let B be a branching program of length at ma&t— 2)n and size2S. There is a
collection’R of embedded rectangles that satisfies:

(1) Each rectangle oR is contained in3~%(1).
(2) |Urer Rl = IBY(1)l/2.
(3) No input belongs to more th&k — 1 rectangles ofR.
(4) Eachrectangle R R satisfies IR) = m;(R) = mz(R) > qszn/z anda(R) >
2~ mR-S13-1(1) /| D|".
PROOF. BylLemma 2.2, thereis afamilyconsisting of 2" inquisitive ¢, k/r)-

decision forests, such thBt= \/_ s F. Note that the collection of sef§ ~*(1) :
F € S} partitionsB(1).
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For each forestFeS, apply Lemma 4.13 withy’=1/4 and § =
|1B~1(1)/(25™?|D")), and letR be the family of embedded rectangles obtained
in the conclusion of the lemma. Defifie= Jg_; Rr. We claim thatR satisfies
the four conditions asserted in the conclusion of the theorem.

The rectangles oR¢ are contained irF ~1(1) so everyRe R is contained in
B~1(1). Since no input is covered by more than-21 rectangles ifR r and the sets
covered byF ~1(1) are disjoint for distincF € S, each input is covered by at most
2k — 1 rectangles oR. For eachF, R covers at leas| F (1) — [B-1(1)| /252
points of F~1(1), so summing over at mostAifferent F, we have thaR ¢ covers
at least B-1(1)|/2 points of B~1(1).

Again by the conclusion of Lemma 4.13 eaBhe R hasm(R) =my(R) =
my(R) > 9%’n/2 anda(R) > |B~1(1)|/(25'|D"|1282S(n, 144kaim(R))). It
remains only to show that, under the given hypotheses, gqn, r andn, this last
quantity is at least the claimed lower bounded(ifir), and for this it suffices to show
that the following two inequalities hold:

1282 < 2%°m(R)/2.
S(n, 144&kqm(R)) < 2% MR/2

For the first inequality, we note thaf’’m(R)/2 > g *¥?n/4 > 1282 by the

hypotheses og; andn. For the second inequality, I8t= 144kg.m(R)/n. Since
B €0, 1], we haveS(n, Bn) = 3"y 40 (1) < Dyepn (VBN < B7FA"(1 4 B)" <
(e/B)P". Therefore, it suffices to showe(B)#" < 2% MR/2 which is equivalent to
showing &/8)?88%@)" < 2. Sincem(R) > g%*’n/2,e/g < q;* and so:

115203(q) /2 g8
(e/B)2BH@™* < (i) l < (i) <2
(o[} 1

sincex¥*"® < 2 forallx > 28, O

In the above theorem, we obtain a rectangle cover that misses at most half of
the points inB~1(1). By a straightforward but tedious change in the analysis, we
can strengthen the conclusion so that the fraction of uncovered poits¢t)
is arbitrarily small. This stronger version is not needed for the branching program
lower bounds.

The first part of the following corollary is a quantitative strengthening of Ajtai’s
main technical result for proving time-space trade-offs for branching programs; the
second part extends this to branching programs that are allowed to make a small
fraction of errors.

COROLLARY 5.4. Letk> 8be aninteger, g< 2% 8 n>r > q1‘5"2. Let
B be an n-variate branching program over domain D of length at nlost 2)n
and size2S.

(i) There is an embedded rectangle R contained Bni(1) satisfying
M(R) =my(R) = my(R) > ¢?“n/2 ande(R) > 274" ™(R-S13-Y(1)/|D|".
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(i) Let f be ann-variate decision function over D and supp®sagrees with f on
atleast(1—¢€)|D"| inputs. Lets < |f~(1)|/|D"|. Then, there is an embedded
rectangle R contalned iB~1(1) satisfying nfR) = my(R) = mx(R) > q n/2
anda(R) > 2-% MR-S1(s _ ) such that f is 0 on at most4ek/(s — ¢)
fraction of points in R.

PrROOF  Apply Theorem 5.3 (noting that the lower boundran the hypothesis
of the present corollary implies the hypothesisdor that theorem) and IR be
the resulting collection of rectangles. The first part of the corollary follows by
choosing anyR in R. For the second part, note that the hypotheses imply that
IB-1(1)|/|D"| > & — ¢, so all rectangles iR satisfya(R) > 2-% MR-Sr(5 _ ),
and together the rectangles cover at least €)|D"|/2 inputs of B71(1). CaII an
inputx badif B(x) # f(x) and forR e R, letBad R) be the set of bad inputs &.
Now ) .. IBadR)| < 2ke|D"| smce each input appears in at mdst@ctangles.

Also 3" r.r IBadR)| > ming 'BTgl IS eer IRl = ming 'Bj‘g‘ o< |D"|. So the

rectangle minimizingBad(R)|/|R) satisfies®&R < 4ek/(s — €). O

6. Lower Bounds

We now use our two branching program characterizations from Corollaries 5.2
and 5.4 to derive lower bounds for a number of natural decision problems on
branching programs and random access machines. These include two general
classes of problems: problems based on quadratic forms over finite fields and
problems involving all pairwise comparisons between input variables over large
domains such as element distinctness and a related problem that we call Hamm-
ing closeness.

Most of these bounds apply for domains in which each input variable is from
a relatively large domai. For these our largest lower bounds are of the form

T=Q(n Iog(”"’%)) and are the largest known for general nonuniform computation
of problems inNP. More importantly, we also obtain lower bounds for the most in-
teresting case of Boolean computation and improve bounds of Ajtai [1999b] for the
computation of quadratic forms ov&(2) to T = Q(n./log(n/S)/loglogn/9))

which is substantially better than the best previous bounds for Boolean problems.
In all cases, our lower bounds apply to randomized computation with 2-sided error
as well as to deterministic computation.

There are three axes on which to consider our lower bounds: the function an-
alyzed, deterministic versus randomized computation, and whether the bounds of
Corollary 5.2 can be used or the bounds of Corollary 5.4 are required. (In gen-
eral, where it is applicable, Corollary 5.2 will give larger lower bounds but its
applicability is much more limited than Corollary 5.4.)

We analyze the problems related to quadratic forms first. For these problems, we
present the arguments for the randomized case directly since the proof that no large
embedded rectangles with small error exist is not much more involved than the one
that no large error-free embedded rectangles exist. The lower bound for Boolean
branching programs, which requires Corollary 5.4, is givenin Theorem 6.6, then, the
lower bounds over large finite fields using Corollary 5.2 are given in Theorems 6.9
and 6.10.

We then analyze the element distinctness and Hamming closeness problems. For
these problems, the deterministic analysis is much simpler than the randomized
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analysis so we present the deterministic lower bounds separately first. The methods
for element distinctness and Hamming closeness are very similar to each other
although the element distinctness lower bounds require the use of Corollary 5.4,
but Corollary 5.2 suffices for Hamming closeness. The reader who wishes to see
the simplest application of the embedded rectangle methods is encouraged to read
to the deterministic lower bounds for element distinctness first.

While we state all of our results for branching programs, they apply to gen-
eral sequential computation [Borodin and Cook 1982], which includes random
access machines (even nonuniform ones) and Turing machines. For the func-
tions defined over large domains in particular, the implications of these results
for random access machines are especially natural and we include a number of
these corollaries.

6.1. QUADRATIC FORMS. If D is a finite field andM is ann x n matrix
with entries inD, let Fy denote the quadratic form function dd" given by
Fum(X) =x" Mx.

Inspired by Borodin, Razborov, and Smolensky’s use of bilinear forms to
prove lower bounds for reaklbranching programs [Borodin et al. 1993], Beame
et al. [1998, 2001] considered quadratic forms over finite fields. In particular,
taking M to be a slightly modified version of any of the Sylvester matrix used
in Borodin et al. [1993], and employing a variant of the deterministic case of
Corollary 5.2, they showed that determining whether or Rg{x) =0 requires
T = Q(min{nlog logn, nlog(™%2")}).

To derive this lower bound, they extended ideas of Borodin et al. [1993] to show
that, in the cas® = GF(p) for prime powerp, if M is a symmetric matrix that is
rigid, in the sense that all sub-matricesvdfhave rank that is suitably large relative
to their size, thex™ Mx cannot be constant on any large embedded rectangle. The
lower bounds for the quadratic forms based on modified Sylvester matrices follow
from a lower bound on the rigidity of Sylvester matrices.

By considering different quadratic form functions in the cse GF(2), Ajtai
[1999b] constructed an explicit family of Boolean functions that cannot be com-
puted by a deterministic branching program of subexponential size and linear length.
To derive nontrivial bounds, in addition to a more generally applicable branching
program analysis than Corollary 5.2(i), he required matrices with larger rigidity
than that of Sylvester matrices. Using our stronger branching program analysis we
obtain aT = Q(n+/log(n/S)/Toglog(n/S)) lower bound for this Boolean function
and aT = (n log(™%")) lower bound for related functions over larger finite fields,
both of which hold for randomized branching programs.

We begin by strengthening the previous properties of quadratic forms derived
from matrix rigidity for use with randomized branching programs. As a preliminary,
we analyze bilinear forms and show that forranx m matrix P of suitably high
rank andc € GF(p), any large rectangle x V € GF(p) x GF(p) has many pairs
(u, v) of vectors such that" Pv =c.

LEMMA 6.1. Let P be an mx m matrix over GEp) where p is a prime power.
LetU,V C GF(p)", a=|U|/p™, andB =|V|/p™. Let ce GF(p) and N. be the
number of pairqu, v) e U x V such that 4 Pv=c. Then|N; — |U|V|/p| is at

most—\/(g;i;wUHVVp.
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PROOF Letr =rank(P) and forx € GF(p) define

1 .
1-— ifx=c

ve()=1{ 1P ;
—— IT X C.
: #

LetA=N; — |U|V|/pand observe thak = Y, ., >,y (U Pv).

Eachx € GF(p) can be realized asladimensional vector oveBF(q) for some
primeq and some integék. Forx, y € GF(p), define(x, y) to be the scalar product
of vectors corresponding t®, y. For h e GF(p), let xn(X) = exp(2zi(h, X)/q)
be characters 0GF(p). y. can be expressed as a linear combinatiorypffor
h € GF(p)) as follows:

Ye = Z o Xj»

heGF(p)

whereoo =0 anday, = % exp(=2xi(h, c)/q) for h # 0.

We can writeP =KTL whereK andL are eaclr x m matrices of rank
over GF(p). Define integer-valued vectoss b indexed byGF(p)" wherea(y) for
y € GF(p)" isthe number of vectorse U such thak u = y andb(z) for ze GF(p)"
is the number of vectorse V such that.v =z

For he GF(p), let My be the p" x p" complex matrix whose rows
and columns are indexed by vectors ®BF(p)" with Mp(y, 2) = xn(y'2)
where y'z is the inner product modp. Observe that, forhe GF(p),
MEMA(Y1, Y2) = D 2cGFpy Xn (Y1 Dxn(Ys 2 = Y2 GFpy Xh((Y2—Y1)" 2), which
is0ify; # yoandp' if yi=V,. Then

AZ

2
(Z Z Ye(UTKT Lv))
uelU veV
2
(X aryauc)
heGF(p),h+£0 ueU veV
DD (UK L)

(P—1 > ol
ueU veV

heGF(p),h=£0

:pp—zl Y Y WK LY)

heGF(p),h#£0 |ueU veV

P2y Y Y w0 9amb@

P hecf(p).h0 | yeGR(p) zeGR(p)

Pl S jaTmf

2
P hecf(p).h£0

2

A

2

2




Time-Space Trade-Off Lower Bounds 181

p—1
= Y_  lal®IMsb|?
P®  hecf(p).h£0

-1
=P Y a2t MpMeb
P®  hecf(p).h£0

-1
=P S lal?ibip

2
P®  heof(p).h£0

_(p—1y
=5

IA

lall?|lblI*p",

where| - || is the Euclidean norm. (The inequalities on the third and seventh line
are applications of the Cauchy—Schwartz inequality; the fifth line follows using the
definitions ofa andb and the next-to-last line follows by the properties\vi.)

Now [|a)? < max a(x) Y, a(x) < p™"|U|, and similarly|b[> < p™"|V|.
Thus,A? < (1 — %)2 p?™"|U||V| and so

— 1)2p2m -1
A< PPy = 2o Lo vip
UIVIp VB

as required. [

LEMMA 6.2. Let M be a nx n matrix with entries in GFp) and suppose that
(R, A1, Ay) is an embedded rectangle in GB" with |A;] =|Az|. Let P be the
submatrix of M+ MT induced on Ax A,. Suppose thai(R) > p®"2P)/2 Then
for each ce GF(p), the fraction of inputs of x R for which X Mx = ¢ (mod p
is more tharil/(4p).

PROOF Letm=|A|=|Ay|, Ap=[n] — A1 — A, and, for {, j) €{0, 1, 2,
let M; ; denote the submatrix d#l indexed byA; x Aj. Leto be the spine oR.
Forx € R, writing x; for xa, andx; for xa, we have:

XTMx = C + f1(x1) + fa(X2) + X7 PXs,

whereC =0"Mooo, P=Mz2 + Mj, and forj € {1, 2}, f; is a function with
domainRa; which is defined byf;(x;) = x| Mj jx; + ] (Mj .0 + Mg ;)o-

We partitionR based on the values of thg on theR,, for j =1, 2. For each
pair (1, ¢2) € GF(p)?, letUg, = f;1(c1) N Ra, andVg, = f,1(c2) N Ra,.

For atleast 1/2 the element& Rthe unique¢;, cz) suchthatxy, X2) € Ug, x Ve,
satisfy|Ue, [ Ve,| = |RI/(2p?), which implies thatUs, |[Ve,|/p2™ = p*rak®) /2.
For each suchxg, xp) € Uc, x V,, we have ¥1%20) T M(X1X20) =C + ¢1 + C +
X{ PX. By Lemma 6.1x; Px;=c — C — ¢; — ¢, for more than/U, || Ve, |/(2p)
of the pairs K1, X2) € U, x V,. For each such paix = x;Xz0 is a point inR such
thatx” Mx = c. Since these elements over all such ¢,) account for at least 1/2
of R, in total more than a A4p) fraction of the pointx € R havex' Mx=c. [

Combining this lemma with Corollary 5.4 gives the following result which says
thatif M is a matrix oveGF(2) whose quadratic form function is well approximated
by a small branching program théh must have a large submatrix of small rank,
that contains no entry on the diagonal.
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THEOREM 6.3. Let n,r, k be positive integers and; & 0 with k > 8, q; <

274%8 n >r > g7 Let M be an nx n matrix with entries in GE2), with
associated quadratic form function f. Suppose thas an n-variate branching
program over GK2) of length at mostk — 2)n and size2® that disagrees with f on
at most a fractiorl/80k of inputs. Then there are two disjoint subsets A C [n]
with | A¢| = | Aol = m where m> q n/2 such that the submatrix of M + M7
induced by A x A, has rank at mos2Sr + 2ql ’m + 10.

PROOF. Letbe {0, 1} be such thatf ~(b)| > 2"~1. Define the functionf’ by
f’'(x) = f(x) + b — 1 and define the branching progré&hanalogously froni3 by
replacing output O by — 1 and output 1 b.

Applying the second part of Corollary 5.4 t& and 5’ with § > 1/2 and
€ =1/80k, we get a balanced rectangR= (R, A1, Ay) contained in B')~1(1)
satisfyingm(R) = | At =| Al = /2 anda(R) = 276 ™R-S(§ — L) >
2-%"m(RI-S-2 gch thatf’ is 0 on at most a 4(BOK)k/(1/2 — 1/80k) < 1/8
fraction of points of R. By Lemma 6.2 withp=2, «(R) must be less than
23-1ankP)/2 Combining the upper and lower boundsediR), we deduce rankg) <

2Sr + 2g;°m(R) + 10. [

This theorem can be applied to give time-space trade-offs for the quadratic form
function for any matrixM over GF(2) for whichM + MT has the property that
every large submatrix that avoids the diagonal has large enough rank. The Sylvester
matrices considered in Borodin et al. [1993] and Beame et al. [1998] have the
property that everg x s submatrix has rank at least/ n. However, this property is
not strong enough to get good time-space trade-off lower bound<zy@) using
Theorem 6.3.

Ajtai looked instead at Hankel matrices, matrices whose every anti-diagonal is
constant. Given a vectgre GF(p)?"~1, define the Hankel matriki [y] whosei, |
entryisH[yli j = Yi+j—1. Ajtai proved the following lemma concerning the rigidity
properties of random Hankel matrices o@(p). (Here a random Hankel matrix
means a matrid [y] wherey is chosen uniformly at random fro@F(p)>"—1.)

LEMMA 6.4 [AJTAI 1999h LEMMA 9]. Assume that s, R, t are positive in-
tegers, t <s < n, R< Q=[s/t?]. If H is a random nx n Hankel matrix over
GF(p), the probability that there is somexss submatrix of H of rank less than R

is at most
n)° Q pH(Q-Rr)?
Qt Q-R+1 '

As a direct consequence, we get:

COROLLARY 6.5. Letn be aninteger and H be a randonxm Hankel matrix
over GH p). With probability at least 1/2, for all integers s satisfyi(024 +
64 Iogpn)2 < S < n every sx s submatrix of H has rank at Ieaé‘s/(1024+

64log,(n/s))* —

PROOF. Letsbe aninteger in the range given in the hypothesis$ de{1024+
64log,(n/s)], let Q= |s/t?], and R=|Q/2] (which is at Ieastls/(1024+
64 Iogp(n/s))2 2). By Lemma 6.4, the probability th&t has ars x s submatrix
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of rank less tharR is at most:

(n )2( Q )p HQ-R+E2 _ (ﬂ)th 20p-s/8 < <ﬂ>2Qt /8
ot) \o—Rr+1 =\t =\t

< (ﬂ)zs/t pfs/8 < pfs/16 < 275/16.
S
The first inequality usesg — R+ 1)t? > s/2 and Q) < (en/k)k. The second uses
2Y/%e < \/2e < 4 and the third uses the fact that uses thay g is increasing in
k for k < n, and thatQt < s/t < n. The fourth inequality uses 4/s) < p'/%?
which follows fromt < 2/64 < p'/64and 4 /s < p'/%4.
Finally, summing the above bound over all integers> sp=(1024 +
64Iog n)?], we get that the failure probability is at most59216/(1 2-1/16),
Using 1o oS x/2 for x € (0, 1), this is at most 2%/16+5 which is easily seen
to be less than 1/2.00

The rigidity property of random Hankel matrices above is strong enough but to
prove a trade-off for the functioffy using Theorem 6.3 we need thisit + MT
be rigid rather tharM itself. Hankel matrices are symmetric, which means that
M + MT =0 since we are oveBF(2), which seems like a serious problem. Ajtai
showed how this problem is easily overcome. Delifkl) to be the lower triangular
matrix obtained by changing all entries M that are on or above the diagonal to
0. ThenL(M) + L(M)T agrees withM except on the diagonal and we can apply
Theorem 6.3 td_(M) instead ofM.

Another important issue is that we want lower bounds for explicit functions; we
already know that hard functions exist by simple counting arguments. A random
Hankel matrix does not give an explicit function. However, since a Hankel matrix is
specified by only A — 1 values, we can prove lower bounds on the explicit function
Gn(X, y) wherex e GF(2)" andy € GF(2)>"~1, which is defined to ba" Mx where

M = L(H[y]).

THEOREM 6.6. There is a constant’c- 0 such that any randomized Boolean
branching program computing 6, y) in time T and siz&S with probability of
error at most én/ T requires T> ¢'n,/log(n/S)/log log(n/S).

ProOF Choosen to be a sufficiently large integer. L& be a randomized
branching program with input variables, . .., Xn, Y, - - . , Y2n—1 Of length at most
(k — 2)n and size 2 and suppose that the probabllﬂs‘{(x y) # G(X, y) is less than
1/160k. We want to show that for some constahk > ¢’/log(n/S)/loglogh/S).

We apply Theorem 6.3 and, to this end, we assume without loss of generality
thatk > 8 and define foig; =2-%%8, andr = rq*5k] If n < r2, thenk >
c/logn/Toglogn for somec, and the deswed result is trivial. So we may assume
thatk is such than > r2.

By Proposition 2.1, we can fix a deterministic branching progkathat agrees
with G(x, y) on at least a - 1/16Ck fraction of all inputs. For eacl, let B[y]
be the branching program obtained frd#by hardwiring the values of, and let
€(y) be the fraction of inputg such that3[y](x) # x" H[y]x. Let Y be the set of
all yeY, such thatH[y] has the rigidity property specified in the conclusion of
Corollary 6.5. By that corollary, half of a} belong toY. Therefore, there must
exist ay € Y such thak(y) < 1/80k. Fix such ay and apply Theorem 6.3 for the
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matrix H[y] and the branching prograiﬁ{y]. We conclude that there are disjoint
subsetd\;, A, of [n], of equal sizen > qfk n/2 such that the submatri¥ of H[y]

induced oM; x A, has rank at most$r+2q11/2m+10. For sufficiently large and

anyk satisfying the restrictions at the beginning of the proot: qszn >.J/n>
(1024+ 64 log, n)? and sincey € Y, Corollary 6.5 implies thaM has rank at least
b= %m/(1024+ 64 log,(n/m))? — 2. Again, for sufficiently largen, it is easy to
see 2,/°m+10 < b/2 sowe conclude thatsr > b/2 > 2q,”’mwhichimpliess >
ql/ m/r which is at leash/k for some constant > 0. It follows that for some
constant’ > 0 and sulfficiently larga, k > /log(h/S)/loglog(n/S). [

COROLLARY 6.7. For anye < 1/2, there is a constant s 0 such that any
randomized Boolean branching program computinng y)intime T and siz@S
with probability of error at most requires T> cnlog2(n/S)/(log log(n/S))%2.

PROOF Let B be such a branching program. As in standard probability ampli-
fication if one run of a randomized algorithm has error at neost 1/2, taking
the majority answer from some loglog(n/S) independent copies of the algo-
rithm run on the same input suffices to reduce the error to less thimg/S).
This can be computed by chaining togetleetog log(n/S) copies of 5 where
each node is also replicategj loglog(h/S) times at each time step to store
the running tally of the number of copies 6fin which 1 has been produced
so far. The resulting branching program will have timé=c,T loglog(n/S)
and spaceS < S+ c.logloglog(/S) for some constant, > 0. Applying
Theorem 6.6 implies a lower bound @t (and thus the desired lower bound th
since if T is smaller thanc'nlogt?(n/S)/(loglog(n/S))*? the errorcn/T’
permitted there is at least/loglognh/S)/log(n/S) which is larger than
1/log(n/S). O

We also can define quadratic form functions over large domains for which we
can obtain even larger lower bounds using Corollary 5.2. We could apply the de-
terministic part of this corollary (implicit in Beame et al. [1998]) to the problem
of determining ifFy (x) = 0 with M andx over GF(p) for p > n to derive lower
bounds of the fornT = Q(n Iog(”"’sg”)). To be able to show bounds for constant-
error randomized algorithms, we define related functions that are more balanced
between outputs 0 and 1.

For M andn x n matrix overGF(p) andG < GF(p), defineFy ¢ : GF(p)" —

{0, 1} by Fy.c(x) = 1iff X" Mx e G. Natural examples of se@ to choose include
elements with low-order bit equal 1, the quadratic residues maogliidhe casep

is prime, or if p= 2" some linear map : GF(p) — GF(2).

THEOREM 6.8. Letn>r > k be positive integers with k 4 and r > 2k+6k2,
Let M be an nx n matrix with entries in GFp) for p > 2 a prime power, and let
G c GF(p) be any set of sizgp/2]. Suppose thaB is an n-variate branching
program over GKEp) of length at mostk — 2)n and siz&S that disagrees with 7 ¢
onatmostd/50fraction of inputs. Then there are two disjoint subseis A < [n]
with | A7| = | A2| = m where m> n/2%t1 such that the submatrix of B M + M7
induced by A x A, has rank at mos2Sr + 24(k + 1)m(R) + 8)/log, p + 6.

PROOF Letbe {0, 1} be such thatF,\],lG(b)| > p"/2. Define the functionf
by f(x) = Fm.c(X) + b — 1 and define the branching progrdthanalogously from
B by replacing output 0 b — 1 and output 1 b.
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Applying the second part of Corollary 5.2 tb and B’ with § >1/2 and
€ =1/50, we get a balanced rectangk= (R, A;, A) contained in B)~%(1)
satisfyingm(R) = |A1| =|Az| > n/2! anda(R) > 2-12k+Lm(R-Sr=2(1 _
&) > 2712+ DmR)-Sr-4 gch thatf is 0 on at most a 2(60)/(1/2— 1/50)=1/12
fraction of points ofR. There are at leasp(— 1)/2 elements € GF(p) such that
xTMx =c implies f(x) =0. Therefore, there is some valoe GF(p) such that
xTMx = cforat mostam <1/(4p)fraction of points oR. By Lemma 6.2¢(R)

must be less thap3-2k®P)/2_ Combining the upper and lower bounds @fR),
we deduce rani) < 6 4 (2Sr + 24k + 1)m(R) + 8)/log, p. [

We now apply this to the functiond) ; : GF( p)*"~! — {0, 1} based on Hankel
matrices ovelGF(p) given byJS,G(x, Y) = FL(npyp.c(X); that is,Jr’j)G is 1 if and

only if xTL(H[y])x € G.

THEOREM 6.9. Let p> nbe aprime power. Let @ GF(p)with|G|=|p/2].
Any randomized Gfp)-way branching program computing{)‘,g in time T and
size2S with probability of error at mosiL,/100requires T= Q(n Iog(”"’%)).

ProoOF Choosen to be a sufficiently large integer. L& be a random-
izedGF(p)-way branching program with input variables ..., Xn, Y1, - . ., Y2n-1
of length at most K — 2)n and size 2 and suppose that the probability
B(x, y) # Jp.c(X, y) is less than 1100. We want to show that for some constelnt
k > ¢ log(X2).

We apply Theorem 6.8 and to this end, we assume without loss of generality
thatk > 4 and define = 2*6k?. Assume thak < 2-*°log, n since otherwise the
theorem follows immediately.

By Proposition 2.1, we can fix a deterministic branching progithmat disagrees
with Jp (X, y) on at most a 1100 fraction of all inputs. For each, let B[y] be
the branching program obtained frasrby hardwiring the values of, and lete(y)
be the fraction of inputx such that5[y](x) does not compute the value of the
predicatex" L(H[y])x € G. Let Y be the set of aly € Y, such thatH[y] has the
rigidity property specified in the conclusion of Corollary 6.5. By that corollary, half
of all y belong toY. Therefore, there must existyae Y such thak(y) < 1/50.

Fix such ay and apply Theorem 6.8 for the matrkt[y] and the branching
programB[yL. We conclude that there are disjoint subs&is A, of [n], of equal
sizem > n/2%1, such that the submatriMg of L(H[y]) + L(H[y])" induced on
A1 x Az has rank at most @r + 24(k + 1)m+ 8)/ log, p + 6. Observe that, since
Hankel matrices are symmetric aMk contains no elements from the diagonal of
L(H[yD+L(H[y]T, Mris asubmatrix oH[y]. Therefore, by Corollary 6.5, since
m > n/2*"! the submatri®Mg has rank at leagfm/(1024+ 64 log,(n/m))?—2 >
m/2% — 2. Thus, (Br + 24K + 1)m + 8)/log, p + 6 > m/2%3 — 2 and so

S > r}([Z‘Z“Iog2 p— 12K + 1)jm — 4log, p — 4)
1

>
— k22k+6

(12-%1og, p — 12k + 1)]n/2“t1 — 410g, p — 4)

1
> C@nlogzn
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for some constart andn sufficiently large since logp > log, n > 22°(k + 1) in
this case. This implies th&t> ¢’ Iogz(&s‘g’”) for some constart > 0. [

It is easy to see that, by applying probability amplification using a constant
number of independent copies of the branching program as in Corollary 6.7, the
asymptotic bound of Theorem 6.9 also applies for any errarl/2.

We can also applying Theorem 6.8 to tmedified Sylvester matricesudied
in Beame et al. [1998]; for example, these matrices include the standard Hadamard
matrices ovef{l, —1} with their diagonals replaced by the value 0. This result
extends the bound of Beame et al. [1998, 2001] to randomized branching programs.

THEOREM 6.10. Let p > n be a prime power. Let M be a modified Sylvester
matrix over GKp) and G ¢ GF(p) with |G| =(p—1)/2. Any randomized Gfp)-
way branching program computingys in time T and siz&® with probability of
error at mostl/50requires T= Q(min{n log log n n Iog(&sgn})).

6.2. EEEMENT DISTINCTNESS ANDHAMMING CLOSENESS Ajtai [1999a, 2002]
gave the first general time-space trade-off lower bounds for element distinctness
and also gave lower bounds for a related problem he defined which we call the
Hamming closeness problem.

The bounds for Hamming closeness use significantly simpler techniques than
those for element distinctness. While Ajtai only claimed nontrivial time-space trade-
off lower bounds for Hamming closeness when times linear inn, Pagter [2001]
observed that by optimizing the technique of Ajtai [1999a, 2002], one can de-
rive nontrivial lower bounds for Hamming closeness whegr cnlogn/loglogn
for somec > 0 and these bounds apply in the presence of 1-sided error (but not
nondeterminism, which is stronger).

However, the technique of Beame et al. [1998] mentioned in Table | and predat-
ing Ajtai [1999a] yields even better trade-offs for Hamming closeness. It applies
whenT < cnlogn for some constant > 0 and even applies to hondetermin-
istic branching programs. Corollary 5.2 extends this technique to 2-sided error
randomized computation and we show how it applies to the Hamming closeness
problem. Since the deterministic lower bound is considerably simpler, we present
it first.

To derive lower bounds for element distinctness, Ajtai developed most of the
machinery required for his Boolean branching program lower bounds. Again
he only claimed to produce lower bounds when times linear inn but, as in the
Boolean case, a careful analysis of his arguments show that they apply even when
T is as large asnlog logn/ log log logn for somec > 0. Our results improve this
range up toT < cn./logn/loglogn and generalize the bounds to randomized
branching programs with 2-sided error.

6.2.1 Deterministic Branching Programs.To prove a lower bound for a deter-
ministic branching program, all we need is a lower bound on the fraction of inputs
on which the function takes on a given value as well as an upper bound on the sizes
of embedded rectangles on which the function can take on that value.

Element Distinctness. Define the element distinctness functieD: D" —
{0, 1} is 1 if and only if there is no pair # j € X such thatx(i) = x(j).
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PROPOSITION6.11. If |[D| > n?, at least al/e fraction of all inputs x D"
have EOx) = 1.

PROOF. Itis easy to check that fdd > n? N!/(N —n)! > N"/e. O

LEMMA 6.12. Let ED: D" — {0, 1}. Ané/ embedded rectangle ® D" such
that ED(x) = 1 for all x € R hasa(R) < 2~M(R)

PROOF. LetA;, A; bethe feetoR, andforj € {1, 2}, letS; = Ujca, R (Where
R is the set of elements dD that appear in coordinaieof some point ofR).
ED(x) =1 for all x e R implies §; N S =0, so for some indek, |S,| < |D|/2.
Thus,an(R) < (1S1/|D))™® < MR, O

THEOREM 6.13. Any [n?]-way deterministic  branching  program
computing ED[n?]"—{0,1} in time T and size 25 requires T=

Q(ny/log(n/9S)/log log(n/9)).

PROOF Suppose we have a branching progr&nof length k — 22n and
size 2 for ED. Apply Corollary 5.4(j) withqy =2%%8 andr = [q;> 1 We
obtain an embedded rectangle on whiShoutputs 1 such tham > g2 n/2
and o > 2° o ‘m-Sr /g . 20y "m-Sr— 2. Usmg Lemma 6.12, thls means
2-6°m-Sr=2 < 2-m and thusSr > m(1 — )—2>q2kn/4orS>q n/(4r)
Thus, for some constant> 0 any algorlthm solvingD in time (k — 2)n requires
space at least™ ok, SubstitutingT = (k — 2)n and rearranging, we obtain the
claimed trade-off. []

COROLLARY 6.14. For any ¢ > O, there is a constant.¢c such that any
RAM algorithm for element distinctness on inputs [inf] taking at most

c.n,/log n/log log n time requires at least'n¢ space.

Hamming Closeness.We now define the Hamming closeness probleAiM,,
forO<y <1/2.ForO< y < 1/2letc=c(y) > 0 be minimum such that for all
b > 1,2%/S(ych, cb) < 1 whereS(d, n) is the size of the Hamming ball of radius
d about a vector of length. Recall thatS(d, n) = 3 (") < 2Md/Mn whereH,
is the binary entropy functiorH,(q) = — qlog, q — (1 q) log,(1— q). Observe
by this bound or§(d, n) thatc(y) < 2/(1 — Ha(y)).

Given two elements, v € [N], we say thau andv arey-closeto each other if
the Hamming distance betweeandv represented in binarp n (u, v) < y log, N
andy-far from each other otherwise. (Also, given two subdets/ c [N], we
say thal andV arey-closeif there is a pair of elementse U andv € V that are
y-close to each other, atdlandV arey-far if all such pairs of elements agefar
from each other.) The Hamming closeness prolteéaM, : [N]" — {0, 1} where
N is a power of 2 and 6&< y < 1/2. HAM, (X1, ..., X,) =1 if and only if there is
some pair of indices # j such thak; andx; arey-close to each other.

The following propositions are minor variants of those shown by Ajtai [1999a,
2002].

PrROPOSITION6.15. For0 < y < 1/2,thereisaconstant(¢g) =2/(1— Ha(y))
such that for ¢c> c(y) and N=n°¢, HAM;l(O) contains at leas/2 of all inputs

in [N]".
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PROOF Letc > 2/(1 — Hy(y)) andb= log, N =clog, n be the number of
bits in eachx;. The Hamming ball of radiugb about any element o] contains
S(yb, b) < 2H=(")b elements, where we recall th&td, n) = Y i<a() < 2H(d/nn,
Therefore, the fraction of paissandy from [N] that arey -close to each other is
at most

2Hz(y)b/2b — 2~ (A-H())b _ p—(1-Ha(y))clogn — -2,

There are {) pairs ;, x;) with i # j soHAM, has value 1 for at mosgq n—?<
1/2 of the inputs in N]". [

PROPOSITION6.16. For 0 < ¥ < 1/2, there is a constang = 8(y) > 0 such
that any two sets UV € [N] with |U|, V| > N*# are y-close.

PROOF Let b=1log, N and choosef as large as possible such that
S((54)b, b) < 2= (Thus,8 > 0 will be roughly 1- Hp(*5%) since log S(d, n)
is asymptotic tdH,(d/n)n asn — oo andd/nis fixed.) By the classic isoperimet-
ric bound of Harper [1966], thg b-Hamming neighborhood dfi will contain a
set of size> S(13X)b, b) and thus will only miss a set of size S((3X)b, b) <
2P0 < |V|. O

LEMMA 6.17. LetO < y < 1/2 and HAM, : [N]" — {0, 1}. Then there
is a constant8 = B8(y) > 0 such that any embedded rectangle R [N]" with
HAM, (x) = 0 for all x € R hasa(R) < N=#m(R),

PROOF. Let A, A; be the feet ofR, and forj € {1, 2}, let Sy = Ujca, R
(where R is the set of elements dd that appear in coordinaieof some point
of R). Let 8 = B(y) > 0 be the constant from Proposition 6.6AM, (x) =0 for
all x e Rimplies S and$; are noty-close, so by Proposition 6.16 for some index
h S| < N*£. Thusan(R) < (|Si|/N)™® < N=#m® 7

THEOREM 6.18. Lety < 1/2and c> 2/(1— Hx(y)). Any[n®]-way determin-
istic branching program computing HAM [n°]" — {0, 1} in time T and siz@®
requires T= Q(n log(™&")).

PROOF. LetB be a deterministic branching program of lend¢h-(2)n and size
25 computingHAM,,. Therefore, there is branching progr#inof the same length
and size computinggHAM,, on [N] =[n°]. By Proposition 6.15/3’ outputs 1 on at
least J/2 of the inputs in N]". Assume without loss of generality tHat< % log, n
and apply Corollary 5.2(i) with = 2<+6k? to B’ to obtain an embedded rectangle
(R, Aq, Az) on whichHAM, is 0 satisfyingn(R) = m;(R) = my(R) > n/2+! and
a(R) > 2-12k+Im(R-Sr-3 Ysing Lemma 6.17, this means2&+1Im(R-Sr-3
N—#m(R) for some constang = g(y) > 0. Therefore S> ((8log, N — 3)m(R) —
12(k + 1))/r > (C2~*nlog, n) for someC > 0 for n sufficiently large and the
theorem follows. [

COROLLARY 6.19. Foranye > Oandy with0O < y < 1/2andc> 2/(1 —
Hy(y)) there is a constant.g, > 0, such that any RAM algorithm for HAMon
inputs in[n°] taking at most g, nlogn time requires at leastn® space.

6.2.2 Randomized Branching ProgramsWe now consider randomized
branching programs for both element distinctness and Hamming closeness. We
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already have lower bounds on the fraction of inputs for which these functions take
on particular values. To apply the second parts of Corollaries 5.2 and 5.4, respec-
tively, we will now need to show that any rectangle on which the functions mostly
have those values cannot be very dense. The two arguments are very similar to each
other but unfortunately will only be able to tolerate rather small error.

Element Distinctness.

LEMMA 6.20. If (R, Ag, Ay)isann- vanate embedded rectangle o/ with
|A1] = |Az| =m such thatat mostan< 5 fractlon of xe R have E¥x) =0, then

«(R) < 8(8/9)"2max 1, (8/9)™22 N/m}.

ProoOF Call a point of D™ non-repetitiveif all the coordinates are distinct
andrepetitiveotherwise. Forj € {1, 2}, let Q; be the set of nonrepetitive points
of Ra;. Let (% be the subrectangle d@® having Qa, = Q; for eachj. Clearly,
aJ(Q) > 4R since otherwiseR has too many pointg with ED(x) =0. Thus,
rectangIeR’ C Rwith legsQ; and Q, hasa(R) > «(R)/2. Observe that each
element ofQ; corresponds to am-subset of N] and that for any point € R with
ED(x) = 1 the sets corresponding to tkg, € Q1 andxq, € Q2 must be disjoint.

We now apply an argument used by Babai et al. [1986] to derive a lower
bound one-error communication complexity for this set-disjointness problem.
(Note that the arguments used later by Kalayanasundaram and Schnitger [1987]
or Razborov [1990] to get optimal communication complexity bounds are not use-
ful to us because these require precise linear relationships between the set and
universe sizes.) However, because diffen@rsubsets of IN] may correspond to
different numbers of then-permutations in theQ;, we will need to argue that
our translation into the set-disjointness problem preserves not only the size of
the rectangle involved but also its relative error. For this, we apply the following
easy lemma.

LEMMA 6.21. LetY and Z be setssuchthatj=M - |Z|;letS:Y — Z be
such thatforall z Z, |S*(z) =M and let f: Z — [0,1]. If Y/ C Y satisfies
IY'| = BIY| andEyey [ f(S(y))] < €, then there isa ZS Z such thatz'| > £|Z|
and for every 2 Z', f(2) < 2e.

PrRoOOF By Markov's inequality, there is a s&f” C Y’ such that|Y”| >
Y'|/2 > §|Y| such that for ally e Y”, f(S(y)) < 2¢. DefineZ’ = §(Y”). Then
1Z'| > |Y'|/M > £1Y|/M=£|Z| and forze Z' there is some/ € Y” such that
f(2=1(S(y) <2. O

Given setsI andT’ define the indicator variabler - tobe 1 if T N T’ # ¢ and
0 otherW|se We first apply Lemma 6.21 WWnthe set oim-permutations ofIN],

—( ) the set oin-subsets of N], Y' = % Sthe map from am-permutation
to its correspondlngm -subset, and, fol’ € (21])1 f(T’) equal to e q,[xsq),1]-
SinceED(x) = 0 for at most are fraction of elements oR’, Eycq,[ f (S(y))] < €.
Therefore, by Lemma 6.21, we obtain a €bf m-subsets of[N] such thatG| >
«R)(N) and for everyT’ € G, Eqeo,[xs(q), 7] < 2€ SO

Eqea.Ereclxsq).1] < 2e.
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We now apply Lemma 6.21 again with the same value§,of, and Z but with

= Qi and f(T) =Ercc[xr.7/] We obtain a seE of m-subsets of[N] such that
IFI, 1G] > “R (N and for everyT € F, Ereclxt.1] < 4€ < 1/6; that is, each
element ofF intersects at mosted< 1/6 of all elements of5. The following is a
simple generalization of part of the argument in Babai et al. [1986]

PROPOSITION6.22. Letd > 3 and let F be a collection of m-subsets[df].
If IF| > 2(4@d — 1)/d®)™?()), then F contains a sequence o= N/(dm)] sets
., Spsuchtha§ NU;_; S| < m/2for j=1,..., p, thatis, at least half
the elements of;Qlo not occur in earlier sets.

PROOF.  We constructS,, ..., S, inductively. SelectS, € F arbitrarily. For
j > 1, having choserg,, ..., S;_1, we show that forj < p, the number of sets
that have more than half their elements in earlier sets is lesgFjamd so we can
selectS; € F as required. LeU; = U,<J S. Sincej < [N/(dm)], |U;| < N/d,
the number ofm-subsets of IN] having more than half their elementsun is at
mostzh>m/2(IU (i < Zh>m/2('\'/d)(l 9. Itis easy to check that since
d > 3 ash mcreases each successive term is at most half the previous so the

sum is at most /21)((1er]1.;gj)N) Using the easily verifiable inequalities that for
) we

b= azc=d @) < GRTTIP? and () = (s
upper bound this strictly by 2(d(- 1)/d%)™?(}") which is less thanF|. [J
If «(R) < 8(8/9)™?, then we are done. Otherwise, applying the proposition
with d =3 to our setF, we can findp=[N/(3m)] setsS,, ..., S, in F each of
which contains at leash/2 elements not occurring in earlier sets. Hoe G, let
w(T) be the number o§; that intersect it. Since eay € F, |_(13| Y 1 w(T) < 4ep,

so at most half of thd € G havew(T) > 8¢p. Let G’ be the set ofl € G with
w(T) < 8ep. Thus,|G'| > |G|/2.

We now upper bound the number of elementsGhand thusG. An element
T of G’ can be described by giving a subskiC [p] of (1 — 8¢)p indices such
thatT N S; =¥ for all j € J and then specifying as anm-subset of the elements
outside these subsets. By the claim, any collection of &) p of the sets has a
total of m(1 — 8¢)p > N/9 elements since < 2i4. Therefore,|G| < 2|G'| <

2(gfp) (") < 2HHECANEM(B/QY(T) and thusu(R) < 2%+HEIN/Em(g/9)
proving Lemma 6.20.

THEOREM 6.23. There is a constant s 0 such that any randomizdd?]-way
branching program computing E[[)nz]n — {0, 1} intime T and siz&S with prob-
ability of error at most{(T/n)~ o(T/ny? requires T=Q(n,/log (n/S)/log log(n/S)).
Furthermore, any randomizefh?]-way branching program computing ED
[n?]" — {0,1} in time T and siz&® with probability of error at most $ re-
quires T=(n,/log(n/S)log log(n/ ).

PROOF By Proposition 2.1, it suffices to prove the lower bound for determin-
istic branching programs that approxim&® within errore.

Choosen to be a sufficiently large integer. We apply the second part of Corol-
lary 5.4 and to this end, we assume without loss of generalitykhat 8 and
define forq, =2-4%-8, andr = [q; **7. There is a constamt> 0 such that for all
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posrtrvee < (k — 2)~°*—27 andk > 8, Ha(8¢) < 16¢ log, 1/e < L(32)~%* and
1;‘;56 < 4. Fix such a and assume that < (k — 2)~¢<-2,

Let B be a deterministic branching program of Iength at mést-(2)n and
size 2 that approximate&D within €. We will show that for some’ >0, k >
¢ /Tog(n/S)/loglog(n/S). If n < r?, this is immediate, so assume- r?.

Applying Corollary 5.4(ii) and the fact thaED is 1 for least a le frac-
tion of all inputs in h ] and /e — € > 1/4, we, obtaln a balanced rectandg®e
with m=m(R) > q “n/2 anda(R) > 2754 M-5 such thatED is O for at
most a frac'uon(l/e g = 1 of inputs in R by our assumption oa. Applying

Lemma 6.20, we have tha(R) < 8(8/9)™2max1, (8/9)™/22(Ha(8)/3n*/my Now
n?/m < 4mgr* < 4m(290k8)** = 4m(32k)32° s0

@ /g)m/zz(Hz(se)/s)nz/m < 2—m/12+(4H2(86)/3)m(32k)32k2

o 2(1/4-4Hy(86)(329°%)
1

sinceH,(8¢) < &(32) 3. Thereforeq(R) < 8(8/9)™? < 28-m/12, Comlt/)zrnrng
the upper and lower bounds afR) and simplifying we get 2 > om/12-q; 8
which, for n sufficiently large and satisfying the restrictions ; above, is at Ieast

2™13 From this, we deduc& > % > r1q 2°n /26, which is at leaston/ ke’
for somecy, c; independent of andk. It foIIows that for some constagt > 0 and
sufficiently largen, k > ¢/,/log(n/S)/log log(n/S).

Also observe that our conditions ethold fore =r ‘1qfk2/26 which is our lower
bound onS/n and from this the second part of the theorem followisl

IATA

COROLLARY 6.24. For anyé > 0, there is a constantscsuch that for n suffi-
ciently large any randomized RAM algorithm for element distinctness on inputs in
[n?] taking at most m,/log n/log log n time and having at mostherror requires
at least % space.

Hamming Closeness.

LEMMA 6.25. If (R, Az, A))isann- varrate embedded rectangle o/l Wlth
|A1] = |Az| = m such that at most an < fractron of xe R have HAM(x) =
then

—-B m/2
Ol(R) = 8(36N_ﬁ)m/2maX{1, (%) 23H2(8€)N1ﬁ/m} .

PROOF.  As in the proof of Lemma 6.20 but replacing the conditi€ld(x) =0
with HAM,, (x) =1, we frnd two collections ofm-subsets of N], F andG, such
that|F|, |G| > a(R)/4( ) and for eaci € F at most a 4 fraction of T’ € G have
the property that there exise T andt’ € T’ such thatAy(t, t") < y log, N

Let d = N#/3 where the value of = B(y) is given by Proposition 6.16. By
Proposition 6.22, ifx(R) > 8(36N~#)™2 > 8(4(d — 1)/d?)™?, then F contains
p=[N/(dm)] setsS,, ..., S, such that each s&§ has at mosm/2 elements
occurring in§ fori < j.

As in the proof of Lemma 6.20, prur@® to obtain a seG’ with |G’| > |G|/2
such that each elemefit € G is y-close to at most& of S, ..., S,. We can
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describe a set’ in G’ by naming the (+ 8¢)p setsS from which it isy-far and
then specifying each element i from among the elements that grefar from
these sets. The (& 8¢)p sets together contain at leasp/3 > N/(3d) = N4
elements of N] and so by Proposition 6.16 at md$t—# elements of N] arey -far
from these sets. Therefore

1—
Glzae)<2( P ) (N7 < grsreans timy-pm(N
- - 8ep m /)~ m

and thusx(R) < 8N—#m23H8IN"/m from which the lemma follows. [

Although the parameters in this lemma make it appear stronger than Lemma 6.20,
the value ofN for which we will need to use it is much larger than in the case of
element distinctness and we will only be able to obtain lower bounds for much
smaller error. It is conceivable that a much stronger result holds since (1) the
collectionof sets5,, . .., S, in Proposition 6.22 was chosen to maximize the unions
of subcollections rather than to maximize the number of elements thatelese
to these subcollections, and (2) no use was made of the property that eack set in
andG must only contain elements that arefar from each other.

THEOREM 6.26. LetO < y < 1/2and c> 2/(1 — Hx(y)). Any randomized
[n°]-way branching program computing HAM [n°]" — {0, 1} intime T and size
25 with probability of error at most fr ¢ requires T= Q(n Iog(”"’%)).

PrROOF. By Proposition 2.1, it suffices to prove the lower bound for determin-
istic branching programs that approxim&t&M, within errore =n?-¢,

Choosen to be a sufficiently large integer. Liet> 4 and let3 be a deterministic
branching program of length at mo$t € 2)n and size 2 approximatesHAM,
within €. Therefore, the branching prograh set to be5 with the labels of its two
sink nodes swapped, approximateldAM, within .

We show that, for some’ >0, k > c’'log((nlogn)/S). Let 8 =p8(y) >0 be
the constant from Proposition 6.16. Kf > (cg log, n)/32 then we are done so
assume without loss of generality th&t2 n%/32, Letr = 2¢+6k2 and apply Corol-
lary 5.2(ii) to B’ to obtain a balanced rectangRwith m=m(R) > n/2*! and
«(R) > 271+IM=ST5 guch thaHAM, is 1 for at mostafractiogﬁ—_é) < 2 of
inputs inR.

Applying Lemma 6.25 witiN = n®, we have

—cB m/2
(X(R) < 8(36‘]—Cﬂ)m/2max{ 1 < ) 23H2(86)nc(l,8)/m} .
- '\ 36

Now sincem? > n?/2%+2 n1-F) /m < 2%+2nc1-F)-2m so

(n—c/3 )m/ 8P m (n—cﬂ/2212H2(8e)22kn°2°ﬁ ) m
) 23t

36 6

nfcﬂ/2212H2(8e)n°*2*Cﬁ/2 m
6

IA

1,
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where the second line follows from our assumptiork@md the third follows since
Ha(8¢) < 16(c — 2)n*Clog, n < £n2-¢+%/2for n sufficiently large.

Thereforep(R) < 8(36n~%)M/2 < 23-m((c/2)lo;n=3) Combining the upper and
lower bounds orx(R) and simplifying we get 9 > 2m(c/2)log;n—(12+15)}-8 >
2cA/8mlogn  hy  our assumptions onk. From this, we deduceS>
cp2-%-210%:k=10n |og, n > cB2~*~1%nlog, n sincek > 4. Rearranging, we obtain
k>c Iog(ﬁsgn) for some positive constact. [

7. Discussion

The time-space trade-off lower bounds we obtain for decision problems on gen-
eral randomized branching programs are nearly as good as the best lower bounds
known even for the much simpler oblivious deterministic branching programs. The
best lower bounds in the oblivious case have all been obtained using some form
of communication complexity. Using two-party communication complexity, Alon
and Maass [1988] derived lower bounds of the fofre: Q2(nlog(n/S)) and using
multiparty communication complexity, Babai et al. [1992] derived the best current
lower bounds which are of the forfi= Q(nlog?(n/S)).

The use of rectangles in our results as well as all those referenced in Table |
is related to 2-party communication complexity (see, e.g., Kushilevitz and Nisan
[1997]) and most of the difficulty in these arguments is in extending the bounds from
the oblivious to the general case. In fact, the basic approach provides an alternate
way to obtain the same bounds as Alon and Maass [1988] for oblivious branch-
ing programs (see the discussion prior to Lemma 4.4). Recently, these methods
have been extended [Beame and Vee 2002] to include multiparty communication
complexity ideas which yield an alternate way to obtain the bounds of Babai et al.
[1992] for oblivious branching programs. These results also extend the technique
of Beame et al. [2001] using multiparty communication complexity ideas to obtain
lower bounds over large domains. However, itis not at all clear if it is possible to ex-
tend results to include multiparty communication complexity ideas in the Boolean
case using the ideas of Ajtai [1999b]; a key stumbling block seems to be the lack
of a multiparty analogue of Lemma 4.10 in that case.

A larger goal would be to extend these lower bounds to apply when time is
n(logn)*® and even achieve trade-offs for decision problems sugh-as2(n?/S),

a bound we already can prove for multi-output problems such as sorting. Attempting
to show this first for oblivious branching programs seems like a good way to start.

Finally, we remark that in our lower bounds the error bounds on the randomized
algorithms that our arguments tolerate vary a great deal from problem to prob-
lem. We are able to obtain time-space trade-off lower bounds for branching pro-
grams whose error approaches 1/2 when solving the quadratic form problems. How-
ever, for the element distinctness and Hamming closeness problems, the bounds
we prove are for error that is inverse polynomial in the input size; probability
amplification of these bounds does not yield nontrivial lower bounds for error
approaching 1/2.
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