W.J. Paul ${ }^{1)}$
Fakultät für Mathematik der Universität Bielefeld D-4800 Bielefeld 1
Germany

R. E. Tarjan ${ }^{2)}$
Computer Science Department
Stanford University
Stanford, Ca. 94305
USA

Abstract: A certain pebble game on graphs has been studied in various contexts as a model for time and space requirements of computations $[1,2,3,7]$. In this note it is shown that there exists a family of directed acyclic graphs G_{n} and constants c_{1}, c_{2}, c_{3} such that

1) G_{n} has n nodes and each node in G_{n} has indegree at most 2 .
2) Each graph G_{n} can be pebbled with $c_{1} \sqrt{n}$ pebbles in n moves.
3) Each graph G_{n} can also be pebbled with $c_{2} \mid n$ pebbles, $c_{2}<c_{1}$. but every strategy which achieves this has at least $2^{c} 3 \sqrt{n}$ moves.

Let $S(k, n)$ be the set of all directed acyclic graphs with n nodes where each node has indegree at most k. On graphs $G \in S\left(x_{4} k\right)$ the following one person game is considered. The game is played by putting pebbles on the nodes of G according to the following rules:
i) an input node (i.e. a node without ancestor) can always be pebbled.
ii) if all immediate ancestors of a node c have pebbles one can put a pebble on c.
iii) one can always remove a pebble from a node.

Goal of the game is to put according to the rules a pebble on some output node (i.e. a node without successor) of G in such a way, that the total number of pebbles which are simultaneously on the graph is minimized. The game models time and space requirements of computations in the following sense. The nodes of G correspond to operations and the pebbles correspond to storage locations. If a pebble is on a node this means that the result of the operation to which the node corresponds is stored in some storage location. Thus the rules have the following meaning:

1) Research partially supperted by DAAD (German Academic Exchange Service) Grant No. $430 / 402 / 653 / 5$.
2) Research partially supported by the National Science Foundation, Grant No. MCS $75-22870$ and by the Office of Naval Research, Contract No. N oo14-76-c-o688.
i) input data are always accessible.
ii) if all operands of an operation are known and stored somewhere the operation can be carried out and the result be stored in a new location.
iii) storage locations can always be freed. Dy the rules a single node can be pebbled many times. This corresponds to recomputation of intermediate results.

In particular the game has been used to model time and space of Turing ma.chines $[1,2]$ as well as length and storage requirements for straight line programs $[7]$.

Known resulta about the pebble game inciude
A: Every graph $G \in S(k, n)$ can be pebbled with $c_{k}{ }_{k} / \log n$ pebbles where the constant c_{k} depends only on $k[2]$.
B : There is a constant c and a family of graphs $G \in S(2, n)$ such that for infinitely many $n G_{n}$ cannot be pebbled with less than $\mathrm{cn} / \mathrm{log} \mathrm{n}$ pebbles $[4]$.

For more results see $[1,3,4,7]$.
By putting pebbles on the nodes of a graph G in topological order (i.e. if there is an edge from node c to node c then c is pebbled first) one can pebble each graph $G \in S(k, n)$ with n pebbles and n moves. However the strategy known to achieve $0(n / \log n)$ pebbles on every graph uses exponential time. Thus it is a natural question to asle if there are graphs $G_{n} \in S(k, n)$ such that every strategy which achieves a minimal number of pebbles requires necessarily exponential time. This is indeed the case.

Theorem: There exists a family of graphs $G_{n} \in S(2, n), n=1,2, \ldots$ and constants $c_{1}, c_{2}, c_{3}, c_{2}<c_{1}$ such that for infinitely many n

1) G_{n} can be pebbled with c_{1} lin pebbles in n moves.
2) G_{n} can also be pebblec with $c_{2} \mathrm{~m}$ pebbles.
3) Every strategy which pebbles G_{n} using only $c_{2} \sqrt{n}$ pebbles has at least $2^{c} 3^{1 / n}$ noves.

Thus even saving only a constant fraction of the pebbles already forces the time from linear to exponential.

Proof of the theorem: as building blocks for the graphs G we need certain special graphs: A directed bipartite graph is a graph whose nodes can be partitioned into two disjoint sets N_{1}, N_{2} suchthat all edges go fron nodes

$\left|N_{1}\right|=\left|N_{2}\right|=n(|A|$ denotes the cardinality of A) and for all subsets of N_{2} of size n/i holds:
$\| c \mid c \in N_{1}$ and there is an eage from c to a noce in $N \|^{\prime} \mid>n / j$.
Lemma 1: For big enough n there exist $n-8 / 2$-expanders where the indegree of each node in N_{2} is exactly 16.
Proof of Lemma 1: With every function $f:\{1, \ldots, \mathrm{cn}\} \rightarrow\{1, \ldots, n\}$ we associate a bipartite graph $G_{f} \in S(c, 2 n)$ with n inputs and n outputs in the following way: The inputs and outputs are numbered from 1 to n and if $f(j)=i$ then there is an edge from input i to output (j mod n). Different functions may produce the same graph. A function f is bad if there is a set I of $n / 2$ inputs and a set 0 of $n / 8$ outputs such that all edges into 0 come from I. Otherwise the function f is called good. Clearly if f is good G_{f} is an $n-8 / 2$ expander with the desired properties.

In order to prove the existence of a good function we prove that the fraction of bad functions to all such functions tends with growing n to zero 5,6. There are $n^{c n}$ functions $f:\{1, \ldots, c n\} \rightarrow\{1, \ldots, n\}$. There are $\binom{n}{n / 2}\left(\begin{array}{c}n / 8\end{array}\right)$ ways to choose $n / 2$ inputs I and $n / 8$ outputs 0 . For every choice of I and 0 there are $(n / 2)^{\mathrm{cn} / 8} \cdot n^{7 \mathrm{cn} / 8}$ functions f such that f is bad because in G_{f} all edges into O come from I. Hence there are at most $\binom{n}{n / 2}\binom{n}{n / 8} \cdot(n / 2)^{c n / 8} \cdot n^{7 \mathrm{cn} / 8}$ bad functions. Thus the fraction we want to estimate is

$$
\left(\begin{array}{c}
n / 2^{n}
\end{array}\right)\left(\begin{array}{c}
n / 8
\end{array}\right) \cdot(n / 2)^{c n / 8} \cdot n^{7 c n / 8} / n^{c n}=\binom{n}{n / 2}\left(\begin{array}{c}
n / 8
\end{array}\right) / 2^{c n / 8}=0(1) \text { for } c \geq 16
$$

Let E_{n}^{\prime} be an $n-8 / 2$-expander as in lemma 1. Construct E_{n} from E_{n}^{\prime} by replacing for every output node the 16 incoming edges by a complete binary tree with 16 leaves, identifying v with the root of the tree and the ancestors of v with the leaves. Obviously $E_{n} \in S(2,16 n)$.
Let $H_{b, d}$ be the graph consisting of d copies of $E_{b}: E_{b}^{1}, \ldots, E_{b}^{d}$ where for $2 \leq i \leq d$ the input nodes of E_{b}^{i} are identified with the output nodes of E_{b}^{i-1}. Thus $H_{b, d} \in S(2,(15 d+1) b)$.
The set of output nodes of E_{b}^{i} is called the $i^{\text {th }}$ level. The input nodes of E_{b}^{1} form level 0 .

Lemma 2: H, d can be pebbled with $2 b+16$ pebbles and (15d+1)b moves.
Proof: We say level i is full if all nodes of level i have pebbles. The strategy is to fill the levels one after another. Each level is a cut set. Thus once a new level i has been filled all pebbles above level i can be
removed. Hence at most $2 b$ pebbles have to be kept on two successive levels. In the process of filling level i+1 if level i is full the 16 extra pebbles are used on the trees between the levels. Because all trees are disjoint except for the leaves each node is pebbled exactly once.

Lemma 3: H_{b}, d can be pebbled with $4 d+2$ pebbles.
Proof: The depth of node v is the number of edges in the longest path into v. In a graph $G \in S(2, n)$ every node of depth t can be pebbled with $t+2$ pebbles (this follows easily by induction on t). Every node in $H_{b, d}$ has depth at most $4 d$.

The crucial point is
Lemma 4: For all i $\in\{0,1, \ldots, d\}$ holds: If C is any configuration of at most $b / 8$ pebbles on $H_{b, d}, N$ is any subset of level i s.t. $|N|=b / 4$, and M is any sequence of moves, which starts in configuration C, uses never more than $b / 8$ pebbles, and during the execution of this sequence of moves each node in N has a pebble at least once, then M has at least 2^{i} moves.

Proof: by induction on i. For $i=0$ there is nothing to prove. Suppose the lema is true for $i-1$. In configuration C at most $b / 8$ pebbles are on the graph. Thus for at least $b / 8$ of the nodes v in N no pebble is on v nor anywhere on the tree which joins v with level i-1 except possibly on the leaves. Let N^{*} be a subset of these nodes of size $b / 8$ and let p \$a the set of nodes in level $i-1$ which are connected to N^{\prime}. By construction of $H_{b, d}:|p| \geq b / 2$. Because none of the nodes in N^{\prime} nor any node of their trees have pebbles except for the leaves, during the execution of M each node in P must have a pebble at some time (possibly right at the start).

Divide the strategy M into two parts M_{1}, M_{2} at the earliest move such that during M_{1} some $b / 4$ nodes of P have or have had pebbles and the remaining $b / 4$ or more nodes of P have never had a pebble. For M_{1} the hypothesis of the lemmapplies, thus M_{1} has at least 2^{i-1} moves. Because M_{1} leaves at most $b / 8$ pebbles on the graph and H_{2} also never uses more than $b / 8$ pebbles the hypothesis also applies to M_{2}. Hence M_{2} has at least 2^{i-1} moves too and the lemma follows.

Choose b such that $4 \mathrm{~d}+2 \leq \mathrm{b} / 8$, e.g. $\mathrm{b}=32 \mathrm{~d}+16$. Then any strategy which pebbles any $b / 4$ output nodes of H_{b}, d using at most $4 d+2$ pebbles has at least 2^{d} moves. Thus for at least one of these nodes v pebbling v
 Now $n=(15 d+1) b$ is the number of nodes of $H_{b, d}$. Hence $d=0(V n)$ and
$b=0(\underline{n})$ and the theorem follows.
The above construction also yields:
Corollary: There exists a family of graphs $G_{n} \in S(2, n)$ such that for every $\epsilon>0$ holds :any strategy which pebbles G_{n} using $n^{1-\epsilon}$ pebbles has more than polynomially many moves.
Proof: Choose $G_{n}=H_{b, d}$ with $b=n^{1-1 / \log \log n}$ and $d=O\left(n^{1 / \log \log n}\right)$.
An interesting open problem is: does there exist a family of graphs $G_{n} S(2, n), n=1,2, \ldots$ such that pebbling the graphs G_{n} with $O(n / \log n)$ pebbles requires more than polynomially many moves?

References:

1 S.A. Cook: An observation on time-storage trade off Proceedings $5^{\text {th }}$ ACM-STOC 1973. 29-33
2 J. Hoperoft, W. Paul: and L. Valiant

On time versus space and related problems $16^{\text {th }}$ IEEE FOCS 1975, 57-64

3 M.S. Paterson and C.E. Hewitt

Comparative schematology
Record of Project MAC Conf. on Concurrent Systems and Parallel Computation 1970, 119-128
4 W. Paul, R.E. Tarjan : and J.R. Celoni

5 M.S. Pinsker:

6 N. Pippenger:

7 R. Sethi:
Space bounds for a game on graphs 8th ACM-STOC 1976, 149-160

On the complexity of a concentrator $7^{\text {th }}$ International Teletraffic Congress, Stockholm 1973

Superconcentrators Technical Report IBM Yorktown Heights 1976
Complete register allocation problems Proceedings $5^{\text {th }}$ ACM-STOC 1973, 182-195

