TIME-SPACE TRADE-OFFS IN A PEBBLE GAME

W.J. Paul¹⁾ Fakultät für Mathematik der Universität Bielefeld D-4800 Bielefeld 1 Germany R.E. Tarjan²⁾ Computer Science Department Stanford University Stanford, Ca. 94305 USA

<u>Abstract:</u> A certain pebble game on graphs has been studied in various contexts as a model for time and space requirements of computations [1,2,3,7]. In this note it is shown that there exists a family of directed acyclic graphs G_n and constants c_1, c_2, c_3 such that

- 1) G has n nodes and each node in G has indegree at most 2.
- 2) Each graph G can be pebbled with $c_1 \sqrt{n}$ pebbles in n moves.
- 3) Each graph G can also be pebbled with $c_2 \sqrt{n}$ pebbles, $c_2 < c_1$, but every strategy which achieves this has at least $2^{c_3 \sqrt{n}}$ moves.

Let S(k,n) be the set of all directed acyclic graphs with n nodes where each node has indegree at most k. On graphs $G \in S(n,k)$ the following one person game is considered. The game is played by putting pebbles on the nodes of G according to the following rules:

- i) an input node (i.e. a node without ancestor) can always be pebbled.
- if all immediate ancestors of a node c have pebbles one can put a pebble on c.
- iii) one can always remove a pebble from a node.

Goal of the game is to put according to the rules a pebble on some output node (i.e. a node without successor) of G in such a way, that the total number of pebbles which are simultaneously on the graph is minimized.

The game models time and space requirements of computations in the following sense. The nodes of G correspond to operations and the pebbles correspond to storage locations. If a pebble is on a node this means that the result of the operation to which the node corresponds is stored in some storage location. Thus the rules have the following meaning:

Research partially supported by DAAD (German Academic Exchange Service) Grant No. 430/402/653/5.

Research partially supported by the National Science Foundation, Grant No. MCS 75-22870 and by the Office of Naval Research, Contract No. N ool4-76-C-0688.

- i) input data are always accessible.
- if all operands of an operation are known and stored somewhere the operation can be carried out and the result be stored in a new location.
- iii) storage locations can always be freed. By the rules a single node can be pebbled many times. This corresponds to recomputation of intermediate results.

In particular the game has been used to model time and space of Turing machines [1,2] as well as length and storage requirements for straight line programs [7].

Known results about the pebble game include

- A: Every graph $G \in S(k,n)$ can be pebbled with $c_k^{n/\log n}$ pebbles where the constant c_k depends only on k [2].
- B: There is a constant c and a family of graphs $G_n \in S(2,n)$ such that for infinitely many n G_n cannot be pebbled with less than cn/log n pebbles [4].

For more results see [1,3,4,7].

By putting pebbles on the nodes of a graph G in topological order (i.e. if there is an edge from node c to node c' then c is pebbled first) one can pebble each graph $G \in S(k,n)$ with n pebbles and n moves. However the strategy known to achieve $O(n/\log n)$ pebbles on every graph uses exponential time. Thus it is a natural question to ask if there are graphs $G_n \in S(k,n)$ such that every strategy which achieves a minimal number of pebbles requires necessarily exponential time. This is indeed the case.

<u>Theorem:</u> There exists a family of graphs $G_n \in S(2,n)$, n=1,2,... and constants $c_1, c_2, c_3, c_2 < c_1$ such that for infinitely many n

- 1) G can be pebbled with $c_1\sqrt{n}$ pebbles in n moves.
- 2) G can also be pebbled with $c_0 \sqrt{n}$ pebbles.
- 3) Every strategy which pebbles G_n using only $c_2 \sqrt{n}$ pebbles has at least $c_3 \sqrt{n}$ moves.

Thus even saving only a constant fraction of the pebbles already forces the time from linear to exponential.

<u>Proof of the theorem</u>: as building blocks for the graphs G_n we need certain special graphs: A <u>directed bipartite graph</u> is a graph whose nodes can be partitioned into two disjoint sets N_1 , N_2 such that all edges go from nodes in N_1 to nodes in N_2 . A directed bipartite graph is an <u>n-i/j-expander</u> if

366

 $|N_1| = |N_2| = n$ (|A| denotes the cardinality of A) and for all subsets N' of N₂ of size n/i holds:

 $|\{c|c \in N_1 \text{ and there is an edge from } c$ to a node in $N^i\}| > n/j$.

Lemma 1: For big enough n there exist n-8/2-expanders where the indegree of each node in N₂ is exactly 16.

<u>Proof of Lemma 1:</u> With every function $f:\{1,...,cn\} \rightarrow \{1,...,n\}$ we associate a bipartite graph $G_f \in S(c,2n)$ with n inputs and n outputs in the following way: The inputs and outputs are numbered from 1 to n and if f(j) = ithen there is an edge from input i to output (j mod n). Different functions may produce the same graph. A function f is <u>bad</u> if there is a set I of n/2 inputs and a set 0 of n/8 outputs such that all edges into 0 come from I. Ctherwise the function f is called <u>good</u>. Clearly if f is good G_f is an n-8/2-expander with the desired properties.

In order to prove the existence of a good function we prove that the fraction of bad functions to all such functions tends with growing n to zero 5, 6. There are n^{cn} functions $f: \{1, \ldots, cn\} \rightarrow \{1, \ldots, n\}$. There are $\binom{n}{n/2} \binom{n}{n/8}$ ways to choose n/2 inputs I and n/8 outputs 0. For every choice of I and 0 there are $(n/2)^{cn/8} \cdot n^{7cn/8}$ functions f such that f is bad because in G_f all edges into 0 come from I. Hence there are at most $\binom{n}{n/2} \binom{n}{n/8} \cdot n^{7cn/8}$ bad functions. Thus the fraction we want to estimate is

$$\binom{n}{n/2}\binom{n}{n/8} \cdot \binom{n/2}{cn/8} \cdot \binom{n^{7}cn/8}{n^{cn}} = \binom{n}{n/2}\binom{n}{n/8} / \binom{2^{cn/8}}{cn} = 0(1) \text{ for } c \ge 16.$$

Let E_n' be an n-8/2-expander as in lemma 1. Construct E_n from E_n' by replacing for every output node v the 16 incoming edges by a complete binary tree with 16 leaves, identifying v with the root of the tree and the ancestors of v with the leaves. Obviously $E_n \in S(2,16n)$.

Let $H_{b,d}$ be the graph consisting of d copies of $E_b:E_b^1,\ldots,E_b^d$ where for $2 \le i \le d$ the input nodes of E_b^i are identified with the output nodes of E_b^{i-1} . Thus $H_{b,d} \in S(2,(15d+1)b)$.

The set of output nodes of E_b^i is called the <u>ith level</u>. The input nodes of E_b^1 form <u>level</u> <u>0</u>.

Lemma 2: $H_{b,d}$ can be pebbled with 2b+16 pebbles and (15d+1)b moves.

<u>Proof:</u> We say level i is <u>full</u> if all nodes of level i have pebbles. The strategy is to fill the levels one after another. Each level is a cut set. Thus once a new level i has been filled all pebbles above level i can be removed. Hence at most 2b pebbles have to be kept on two successive levels. In the process of filling level i+1 if level i is full the 16 extra pebbles are used on the trees between the levels. Because all trees are disjoint except for the leaves each node is pebbled exactly once.

Lemma 3: H_{b.d} can be pebbled with 4d+2 pebbles.

<u>Proof:</u> The <u>depth</u> of a node v is the number of edges in the longest path into v. In a graph $G \in S(2,n)$ every node of depth t can be pebbled with t+2 pebbles (this follows easily by induction on t). Every node in $H_{h,d}$ has depth at most 4d.

The crucial point is

Lemma 4: For all $i \in \{0, 1, ..., d\}$ holds: If C is any configuration of at most b/8 pebbles on $H_{b,d}$, N is any subset of level i s.t. |N| = b/4, and M is any sequence of moves, which starts in configuration C, uses never more than b/8 pebbles, and during the execution of this sequence of moves each node in N has a pebble at least once, then M has at least 2^{i} moves.

<u>Proof:</u> by induction on i. For i=0 there is nothing to prove. Suppose the lemma is true for i-1. In configuration C at most b/8 pebbles are on the graph. Thus for at least b/8 of the nodes v in N no pebble is on v nor anywhere on the tree which joins v with level i-1 except possibly on the leaves. Let N' be a subset of these nodes of size b/8 and let P be the set of nodes in level i-1 which are connected to N'. By construction of $H_{b,d}$: $|P| \ge b/2$. Because none of the nodes in N' nor any node of their trees have pebbles except for the leaves, during the execution of M each node in P must have a pebble at some time (possibly right at the start).

Divide the strategy M into two parts M_1, M_2 at the earliest move such that during M_1 some b/4 nodes of P have or have had pebbles and the remaining b/4 or more nodes of P have never had a pebble. For M_1 the hypothesis of the lemma applies, thus M_1 has at least 2^{i-1} moves. Because M_1 leaves at most b/8 pebbles on the graph and M_2 also never uses more than b/8 pebbles the hypothesis also applies to M_2 . Hence M_2 has at least 2^{i-1} moves too and the lemma follows.

Choose b such that $4d+2 \le b/8$, e.g. b = 32d + 16. Then any strategy which pebbles any b/4 output nodes of $H_{b,d}$ using at most 4d+2 pebbles has at least 2^d moves. Thus for at least one of these nodes v pebbling v alone with 4d+2 pebbles must require $2^d/(b/4) \ge 2^{(1-\varepsilon)d}$ moves as b=O(d). Now n=(15d+1)b is the number of nodes of $H_{b,d}$. Hence $d=O(\sqrt{n})$ and

368

 $b=O(\sqrt{n})$ and the theorem follows.

The above construction also yields:

<u>Corollary:</u> There exists a family of graphs $G_n \in S(2,n)$ such that for every $\varepsilon > 0$ holds: any strategy which pebbles G_n using $n^{1-\varepsilon}$ pebbles has more than polynomially many moves.

<u>Proof:</u> Choose $G_n = H_{b,d}$ with $b=n^{1-1/\log \log n}$ and $d=O(n^{1/\log \log n})$.

An interesting open problem is: does there exist a family of graphs $G_n S(2,n)$, n=1,2,... such that pebbling the graphs G_n with $O(n/\log n)$ pebbles requires more than polynomially many moves?

References:

1	S.A. Cook:		An observation on time-storage trade off Proceedings 5 th ACM-STOC 1973. 29-33
2	J. Hopcroft, W. Paul and L. Valiant	:	On time versus space and related problems 16 th IEEE-FOCS 1975, 57-64
3	M.S. Paterson and C.E. Hewitt	:	Comparative schematology Record of Project MAC Conf. on Concurrent Systems and Parallel Computation 1970, 119-128
4	W.Paul, R.E. Tarjan and J.R. Celoni	:	Space bounds for a game on graphs 8 th ACM-STOC 1976, 149-160
5	M.S. Pinsker:		On the complexity of a concentrator 7 th International Teletraffic Congress, Stockholm 1973
6	N. Pippenger:		Superconcentrators Technical Report IBM Yorktown Heights 1976
7	R. Sethi:		Complete register allocation problems Proceedings 5 th ACM-STOC 1973, 182-195