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ABSTRACT

While the evidence on time-varying systematic risk of U.S. assets is

well documented in the literature, little work has been conducted in

the Australian equity market. This paper intends to fill this gap in

the literature by employing an alternative testing procedure to those

used in previous studies. Moreover, a new methodology of determining

the p-value of a test statistic is applied. The results of our study

suggest that there is evidence of time-varying systematic risk for both

individual assets and portfolios in Australia.
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1. INTRODUCTION

The notion of risk and its measurement is of fundamental

importance, to modern finance theory. For many years the dominant

paradigm of the equilibrium risk/return tradeoff has been the capital

asset pricing model (CAPM). According to the CAPM, the relevant risk

measure for any asset is the asset's systematic risk (beta) because any

non-systematic risk can be diversified away through holding the mark
et

portfolio. Empirically, beta is often estimated by applying ordina
ry

least squares (OLS) to the market model. However,by using OLS, it 
is

assumed that beta is constant through time.

The study by Blume (1971) represents the pioneering work that

first subjected the assumption of beta stationarity to close empirical

scrutiny. Based on an examination of seven-year estimation periods 
he

found assets' betas to have a "regression tendency", i.e. over time t
he

estimated betas tended to regress toward the grand mean of unity. For

example, a portfolio which has an extremely high estimated beta in one

period will tend to have a less extreme estimate in the successive

period. Blume (1975) examined this phenomenon further and showed that

the explanation conventionally given, of a statistically induced "order

bias" was at best a misleading argument
1
. Instead he claimed that the

regression tendency truly reflected real nonstationarities of

individual firm's betas.

In recent times there has been an expanding empirical literature

related to the stability of the beta in the market model. This

literature provides strong evidence that beta is best described by some

type of stochastic parameter model. Such research is well represented
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by Fabozzi and Francis (1978), Sunder (1980), Lee and Chen (1982),

Ohlsen and Rosenberg (1982), Alexander and Benson (1982), Bey (1983b),

Bos and Newbold (1984), Simonds, La Motte and McWhorter (1986),

Collins, Ledolter and Rayburn (1987) and Rahman, Kryzanowski and Sim

(1987). It is notable that all these papers examine US data. In these

studies, two basic types of stochastic parameter model have been

considered: (1) random and (2) sequential. The most common example of

the latter is a first-order autoregressive process (AR(1)). We argue

that the AR(1) process is indeed an appropriate and parsimonious model

of beta variation, encapsulating the explanation and evidence of Blume

(1971,1975). Hence using Australian equity return data, the aim of this

paper is to test whether the betas of assets (both individual and

portfolio) are constant against the alternative hypothesis that they

vary according to an AR(1) process. A further aim of this paper is to

apply an alternative procedure for testing this hypothesis than that

used by other researchers. The majority of previous studies use

standard large sample tests such as the likelihood ratio test. However,

in our analysis, a locally best invariant (LBI) test is used similar to

that derived by King (1987).

This paper is organised as follows. In section 2 a summary of

previous empirical research of beta stationarity is given. Section 3

provides some justification for treating beta variation as a AR(1)

process. In the fourth section we develop the market model with an

AR(1) beta process. Section 5 outlines the application of the LBI test

to our problem. In section 6 the data is described, while in the

penultimate section the empirical results are presented and discussed.

In the final section a summary and conclusions are provided.
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2. PREVIOUS EMPIRICAL RESEARCH

The early work of Blume (1971, 1975) and others was based on an ad

hoc analysis of the cross-sectional correlation between beta estimates

from successive periods. A limitation of this approach is the implicit

assumption that beta is stationary within each period. Consequently,

these tests lacked power compared to the later work that formally

modelled beta variation and in doing so, readily allowed more formal

testing to be conducted.

Fabozzi and Francis (1978) applied the Hildreth-Houck random

coefficient model to beta. That is

gt =  dt
[1]

where g
t 
is the systematic risk and d

t 
are serially uncorrelated random

error terms. Their results provided strong evidence in favour of the

random coefficient model for individual stocks over a six year period. -

However, in a re-examination of their work, Alexander and Benson (1982)

concluded that Fabozzi and Francis overstated the case for the random

coefficient model.

Sunder (1980) considered two alternative models for beta

variation: a random walk model and an AR(1) model. The random walk

model suggests that beta varies according to

= 
13t-1

The AR(1) model may be written as

(gt = P(gt-1 13") dt

[2]

[3]

where the d
t 

for both [2] and [3] are serially uncorrelated random
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error terms. Empirically, Sunder tested only against the random walk

model. He examined both individual stocks and randomly generated

portfolios over periods of twenty-five and fifty years. Not

surprisingly, he found stationarity was soundly rejected for these long

periods, but did not find a significant incidence of nonstationarity

for shorter subperiods of seventy-five months duration.

Simonds, La Motte and McWhorter (1986) re-examined the Sunder

(1980) results using an exact test for the random walk specification of

beta variability. In constrast to Sunder (1980), they detected

considerable beta instability for eight-year subperiods which they

attributed to the much stronger power of the tests they applied.

Bos and Newbold (1984) investigated the relative merits of an

AR(1) beta process, a random coefficient model and a standard fixed

parameter market model. They concluded that there is strong evidence in

favour of nonstationary systematic risk of individual assets over a ten

year period. However the evidence on which model best described the

stochastic behaviour of beta is inconclusive.

Ohlsen and Rosenberg (1982) proposed a model which accommodates

both autocorrelated variation and random variation in the same model.

According to this model the beta coefficient varies in the following

way

where

(3t = +-tit at

6t = P6t-1 dt.

This model may be written as
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(Pt - -(3-) ut = P((f3t-1 - 13-) - ut-1) dt
[4]

where u
t 

and d
t 

are two independent sequences of serially uncorrelated

random error terms. This model implies an ARMA(1,1) process for the

beta coefficient. Over a fifty year period, using a value-weighted

index to proxy market returns, they found that the beta of an equally-

weighted index revealed highly significant mixed random and

autoregressive behaviour.

An extensive examination of the Ohlsen and Rosenberg model was

conducted by Collins, Ledolter and Rayburn (1987). They analysed a

large sample of individual securities and random portfolios of various

sizes. They also reported a limited analysis of size based portfolios.

In addition both monthly and weekly data were used and results for

five-year and ten-year subperiods compared. Generally, their results

comfirm the support for the mixed random and autoregressive model,

found by Ohlsen and Rosenberg.

Generally, while there exists considerable U.S. evidence of beta

nonstationarity, the findings are mixed regarding its specific nature.

Following this previous research, it is apparent that several aspects

f the research design are of interest e.g. individual versus

portfolios assets, the portfolio dimension, the portfolio selection

process and different time periods. These issues will be examined in

the empirical work that follows.

3. BETA AS AN AR(1) PROCESS : SOME JUSTIFICATION

It is not the purpose of this paper to resolve the issue of which
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of the models discussed in the previous section is the most

appropriate. Rather we are interested in testing whether the betas of

assets are stationary or not using Australian equity return data. For

this purpose, the alternative model which we choose to test against is

the AR(1) model.

The AR(1) model is considered because it incorporates the

arguments Blume (1975) provided regarding the nonstationarities of the

betas over time. In particular, the AR(1) model incorporates a "memory"

into the model such that deviations in the beta from its mean are

serially correlated. This is consistent with Blume's (1975) "formal

model"
2
,

*

E((3it+i\Pit) - 1 = p (pit -1)

where p = p(Pit+1,(3it). This model is based on the assumption that pit

and it+1 are bivariate normal random variables, with mean equal to

unity.

Furthermore, the AR(1) model is more parsimonious than the other

models considered in the previous section in that it encompasses the

other models depending on the value of p. For example, in [3] when p is

one, we will have a random walk model and when p is 0, we have a

Hildreth-Houck random coefficient model. However, it does not encompass

the ARMA(1,1) model proposed by Ohlson and Rosenberg (1982).

In this framework, the beta of any asset will have a tendency to

revert towards the grand mean of unity, as implied by CAPM, which is

the grand mean of all betas. This means that firms of extreme risk,

either high or low, will tend to have less extreme risk characteristics

over time. Blume (1975) provides two alternative explanations as to how
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this may be so. The first explanation is that when firms engage in any

project which is risky, the risk of the project may tend to become less

extreme over time. However, while this explanation seems appropriate

for high risk firms, it is not applicable to low risk firms. The second

explanation is based on the notion that firms tend to take on new

projects which have less extreme risk characteristics than their

existing projects. This might occur, for example, as the result of a

relative scarcity of profitable risky projects over time. This

explanation is plausible for both high risk and low risk firms.

Empirically, Blume (1975) provided evidence consistent with this

argument. He found that the estimated beta coefficients of various

portfolios are less extreme or closer to the market beta of one in

later periods than the estimated beta coefficients in earlier periods.

Therefore, based on Blume's (1975) explanation and evidence we should

expect the beta of any asset to be serially correlated in the manner

described in [3].

4. THE MARKET MODEL WITH AN AR(1) BETA PROCESS

The implication of the above discussion is that the beta

coefficient in the market model varies according to an AR(1) process.

Given this, we can write the market model as

where

Rit = a + gitRmt + C.

git = PPit-1 (1-P)13-

t = 1, . [5]

[6]

R is the return on asset i in period t and R
mt 

is the return on ait

market index in period t. We can omit the subscript i on the g since g
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should be the 'same for all assets. Alternatively, the market model can

be written as

where

R
it 

= a + 611
mt 

+ v
it

vit = (Pit - 'fj)Rmt 
c

it.

[7]

[8]

Before proceeding, we need to make a number of fairly general

assumptions about the error terms cit and dit 
and the coefficient p.

'

Assumption 1: Let cbe a independently and identically distributed

random variable with E(c
it
) = 0 and E(c

2

it
) 

_ 2

Assumption 2: Let di be an independently and identically distributed

random variable with E(dit) = 0 and E(d
2
it) = c

2
d.

Assumption 3: c
it 

and d
it 

are mutually independent, ie Cov(c.
it 
d. ) = 0.

Assumption 4: p satisfies the stationarity condition, ie I p I < 1. In

fact, this assumption is implied by a stationary AR(1)

model.

If we repeatedly substitute for the gi in [6], we can rewrite

[6] as
03

it 

j=1

where E(Pit) Var(Pit) = c
2
d/(1 - p

2
) and Cov((3.

t
P.

i it-1)

pa.
2

d
/(1 p

2
) and so on. We can generalise this as

g N01, PE(P)]

where p = 
2

d
/(1 - p

2
)a.
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1 is a n x 1 vector of ones and

ECM =

1 p p
2 
. ...p

n-1

•
p 1

•

• P
n-1

p• 1

Given the distribution of p, we can determine the distribution of

the error term in the market model. In matrix notation [8] can be

written as

V = DP - Dih + c

where D is a diagonal matrix with elements Rml, Rm2,   , R on the
mn 

diagonal. This implies that the distribution of V is

V - N[0, pDE(p)D + c2cIn].

V - N[0, c
2

d
DE(p)D/(1 - p

2
) + c

2

c
I
n
]

5. THE LBI TEST

or

[9].

To test whether assets' betas are constant or not against the

alternative that they vary according to an AR(1) model, most of the

previous studies use standard large sample tests such as the likelihood

ratio test. However, Watson and Engle (1985) argued that these tests

cannot be used in the usual fashion because for this application, under

the null hypothesis, the autoregressive parameter (p) is unknown and

unidentified. They suggest an alternative test procedure based on

Davies' (1977) approach. Unfortunately, their test statistic has no
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closed form and is approximated by maximisation using a grid search.

Furthermore, both its finite sample and asymptotic distribution are

unknown under the null hypothesis.

King (1987) proposed an alternative test which helps overcome

some of the problems associated with Watson and Engle's (1985) test

procedure. This test is a locally best invariant test (LBI). An

advantage of the LBI test is that it is also LBI against the hypothesis

that the beta coefficient follows a random walk process
3

In our testing problem, a LBI test similar to that derived by King

(1987) can be derived. From [9], a test of H
o 

: (7.
2

d 
= 0 against

H
a 

as
2

d 
> 0, p = p

1 
is equivalent to a test of

2
H
o 
: V - N[0, cr I ] against

c n

2, c2
H V - N[0, cr2 DE(p )D/(1 

4. 
--

a d 1 P1 j c n

This belongs to the class of problems considered by King and Hillier

(1985). Their result implies that a LBI test of H
o 

against H
a 

is to

reject Ho for large values of

^ ^ ^ ^

S = v'Av/v'v

where v is the OLS residual vector from [7]. Shively (1988) showed that

A in this testing problem is

DE(p)D,/(1 - p1
2
).

Therefore, the LBI test of H
o 

against H
a 

is to reject H for large

S = Y'MAMY/Y'MY [10]

11
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,
where A = DE(p1)D/(1 - p12),

M = I
n 
- X(X'X)-1X' and

X = the matrix of independent variables.

However, in order to implement the LBI test, a value for the p

must be set. Since the test is a LBI test, setting p to different

values should not affect the size of the test but may have an

effect on its power. This conjecture will be addressed in the empirical

analysis.

Traditionally, when carrying out an empirical application, the

critical values of a test statistic are first determined. However, a

more useful approach to take is to calculate the p-value for a given

value of the test statistic. This can be determined through the use of

a member of the general system of distributions proposed by Burr

(1942). For any distribution, the shape of the distribution can be

described adequately by its first four moments. These are the mean,

variance, skewness and kurtosis. This information can be used to

approximate the distribution of ourtest statistic with one selected

from Burr's family of distributions. This approach is described in

detail in Evans and Fry (1990). In this case, the particular Burr

distributions used are the Type XII and its "reciprocal" Type III. The

appeal of these two distributions is that their distribution functions

and associated inverses have simple closed forms. Consequently, this

allows us to calculate the approximate p-value for a given value of the

test statistic.

The distribution function of a random variable X, which follows a

Burr Type XII distribution is given by

12



F(X) = 1 - (1 + Xc) k X 0 c, k > 0

=0 X < 0

where c and k are the parameters of the distribution. Selecting the

appropriate Burr distribution involves finding values for the

parameters c and k, which involves solving two non-linear simultaneo
us

equations, to match the skewness and kurtosis of the test statist
ic
4
.

The computed c and k then identify the Burr distribution to be use
d as

an approximation to that of the LBI test statistic.

Having found the closest approximating Burr distribution, the

approximate p-value for any given value of the LBI test statistic, say

x, can be calculated from the distribution of interest. Suppose that

random variable X has the distribution with mean ps and standard

deviation c . Then the p-value for x is given by

p = P(X > x) = P(Z > (x µs)/cs) =. P(Z > z)

^ c -k
= [1 + (µ

B 
+

B
z) I,

where the values of c and k have been determined by matching the

skewness and kurtosis for the distribution of interest, and µB and cB

are the mean and standard deviation of the Burr distribution.

In Appendix 1, the manner in which the mean, variance, skewness and

kurtosis of the LBI test statistic can be calculated is shown.

One final point to note is that if the test statistic has skewness

and kurtosis values close to the boundary of such values covered by the

Burr distributions, this boundary defines a "limit" distribution for

13



the Burr family. This "limit" distribution is that of the Weibull,

which also has a convenient closed form for the distribution function.

The p-value for x using the Weibull distribution is given by

p = P(X > x) = P(Z > (x - µ
S 
)/

S
(7. ) = P(Z > z)

= exp[ -(pw + z)
c
]

where pw and crw are the mean and standard deviation of the Weibull

distribution respectively. The mean and standard deviation of the Burr

and Weibull distributions can be calculated as shown in Appendix 2.

6. DATA

The data used in the following empirical analysis is monthly

returns on ordinary Australian equities, obtained from the Price

Relatives File of the Centre for Research in Finance (CRIF), at the

Australian Graduate School of Management (AGSM). Two periods are

examined : 1978/1 to 1982/12 and 1983/1 to 1987/9. Securities are

included in each period only if they have a complete price relative

history for that period. This resulted in two samples of 159 and 310

individual assets, respectively. Two different indices are used to

obtain a measure of the return on the market portfolio. The first is an

equally weighted index of all firms in the Price Relatives File. The

second is a value weighted index supplied by CRIF.

Tests were performed on both individual and portfolio returns.

Portfolios were formed according to beginning of period market

capitalisation and on a random basis. The market capitalisation based

portfolios were examined in three alternative dimensions : five assets,

14



ten assets and twenty assets per portfolio. This resulted in

thirty-one, fifteen and seven portfolios respectively for the 1978 to

1982 period and sixty-two, thirty-one and fifteen portfolios,

respectively, for the period 1983 to 1987. In each period one hundred

randomly formed portfolios were examined comprising ten securities

each.

Finally, returns were measured on both a discrete and continuously

compounded basis. The discrete return for firm i in period t, R is
it'

given by

R. =P -P
it it it-1

P
it-1

where Pis the security's price at time t and Dit is the dividend

paid, by firm i, at time t. The associated continuously compounded

return in period t, Rit', is given by,

7. EMPIRICAL RESULTS

As discussed earlier it is necessary to set a value of p in any

empirical application. Three values were examined in this paper : 0.2,

0.5 and 0.8. These were chosen to be sufficiently representative of the

range appropriate for a stationary AR(1) model. However, we report for

the case of p equal to 0.5 only as the results were not greatly

sensitive to the p value chosen
5
. Furthermore, King (1990) provided

some justification for choosing p to be 0.5.
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The basic results, for the individual assets for the 1978 to 1982

and 1983 to 1987 time periods are reported in Table 1. The table shows

the number of times the LBI test statistic rejects the null hypothesis

[ TABLE 1 INSERT HERE ]

for the sample of assets considered at three different significance

levels. The number of rejections expressed as a percentage of the

sample are in parentheses. The tests were conducted for both the

discrete and continuous returns cases. In addition the results for both

an equally-(EWMI) and value-weighted market index (VWMI) are reported.

In Table 1, for the first time period, there is a 10% - 15%

rejection at the 5% significance level when the EWMI is used. For this

market index, there are more rejections for discrete returns than

continuous returns. But when VWMI is used, the number of rejections are

substantially more than when the EWMI is used. Similarly, there are

more rejections for discrete returns than continuous returns when VWMI

is used.

From the same table, for the period 1983 to 1987, the difference

between the EWMI and the VWMI in terms of the number of rejections is

much smaller. Again for both market indices there are more rejections

for discrete returns than for continuous returns. There seems to be a

smaller proportion of rejections in general compared to the period 1978

to 1982 especially when VWMI is used. Nevertheless, there is some

evidence that the beta of some assets is not stationary.

It is of some interest to consider whether there is any systematic

relationship between the tendency toward rejection and some specific

firm characteristic. Three potentially important firm characteristics
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are riskiness, size and industrial sector. These are analysed in turn

in Tables 2 to 4. In Table 2 we examine whether there is some

relationship between the estimated beta value and beta nonstationary

across the samples, considered in Table 1. Firstly, each sample was

[ TABLE 2 INSERT HERE ]

divided into estimated betas less than 1 and into estimated betas

greater than 1. Secondly, they were divided into three groups: less

than 0.8; greater than 0.8 but less than 1.2; and greater than 1.2.

Finally, the rank correlation coefficient between the estimated beta

value and the associated LBI statistic is reported.

Generally, the analysis indicates a tendency of greater non-

stationarity for higher risk firms. The percentage of nonstationary

betas is between two and four times greater for assets with an

estimated beta greater than unity relative to assets with estimated

betas less than one. This tendency toward greater nonstationarity for

high risk versus low risk firms is further accentuated in a comparison

of firms with estimated betas less than 0.8 versus firms with estimated

betas greater than 1.2. For example consider the EWMI, discrete return

case for the period 1983 to 1987 where the comparison is a 7.1% versus

a 42.2% rejection rate, respectively, at a 5% significance level.

Finally, note that the rank correlations are all significantly positive

further indicating a positive relationship between a tendency toward

nonstationarity and the riskiness of the firm. This evidence is

consistent with the notion that the risk of any project tends to become

less extreme over time. This was an explanation proposed by Blume

(1975) of the observed "regression tendency" of betas as discussed in

an earlier section.
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We also investigated whether there was any relationship between

firm size and beta nonstationarity. This analysis is reported in Table

3. For both periods the sample is split up into five groups according

[ TABLE 3 INSERT HERE]

to firm size denoted Si (smallest firms), S2, S3, S4 and. S5 (largest

firms). The percentage rate of rejections at 5% significant level are

reported for each group. There appears to be no discernible pattern of

rejections across firm size. This is confirmed by the rank correlation

coefficients between firm size and the associated LBI statistics. All

are insignificantly different from zero.

An analysis of whether the industrial sector to which a firm

belonged, influenced the likelihood of a rejection of stationarity in

beta, is reported in Table 4. Firms in each time period sample are

[ TABLE 4 INSERT HERE ]

split into two groups, All Resources versus All Industrials. In five

out of eight cases there is minimal difference between the rejection

rates of the two industry sectors. However, in the other cases, there

is a considerably higher rejection rate for the All Resources firms,

For example in the 1978 to 1982 period, using discrete returns and the

EWMI, the rejection rate is 26.2% versus 11.1%. This may be simply

reflecting the higher risk of resource stocks and so be echoing the

result of Table 2. Note however, that if this is so it is not

consistently occuring across all cases, in contrast to the analysis in

Table 2.

Tables 5 and 6 present the results for the portfolios formed by

market capitalisation for the two periods considered. Similar to the

18



case of the individual assets, there are more rejections when VWMI is

used than when EWMI is used for the period 1978 to 1982. But the

[ TABLES 5 AND 6 INSERT HERE]

difference is much smaller between the two market indices for the

period 1983 to 1987. In terms of the dimensions of the portfolios, for

both periods, there are more rejections for portfolios of increasing

dimension. For example, for the period 1978 to 1982 using discrete

returns, there is 100% rejection at 5% significant level when the

portfolio size is twenty but only 74.2% rejection when the portfolio

size is five. There are slightly more rejections using discrete returns

than using continuous returns as in the case of individual assets.

Similarly, the number of rejections are higher for the period 1978 to

1982 than for the period 1983 to 1987.

Table 7 presents the results of beta stationarity for portfolios

grouped randomly with ten assets in each portfolio. Again, there is

[ TABLE 7 INSERT HERE ]

a substantial difference in the number of rejections between using

VWMI and using EWMI in the period 1978 to 1982 but not the period 1983

to 1987. In fact, most of the results in this table are similar to

those previously discussed.

8. CONCLUSION AND SUMMARY

In this paper we tested the hypothesis that betas of Australian

equities are stationary against the alternative that they vary

according to an AR(1) process. In contrast to previous studies, our
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analysis employed a LBI test similar to that derived by King (1987).

Generally, it was found that across all variations of our analysis

a nontrivial degree of nonstationarity was evident. In the case of

individual assets nonstationaity was more prevalent when discrete

feturns, as opposed, to continuously compounded returns, were used.

There was some weaker evidence of greater nonstationarity when a

value-weighted market index, as opposed to an equally-weighted market

index, was used to proxy general market movements. In addition, the

analysis suggested that risker firms (higher betas) tended to be less

stationary than low beta firms. However, no strong pattern between firm

size or industry sector and nonstationarity was detected. Portfolios

whether random or grouped according to market capitalisation showed

increasing beta nonstationarity as the dimension of the portfolio

increased. This is consistent with the results of Collins et. al.

(1987). They argued that this reflected a higher ratio of beta variance

to background noise in larger portfolios. As the portfolios become

larger, the background noise decreases at a faster rate than the

variability in beta, and so leads to more powerful tests of

stationarity hypothesis
6 
.

The results of the current work potentially has important

implications for any Australian empirical research which involves the

estimation of systematic risk using equity return data. Studies that

have utilised some form of fixed parameter regression to estimate risk

and/or abnormal returns must be interpreted cautiously. Evidence here

confirms the results of previous research that significant cases of

beta variability exist, particularly for portfolios of assets.

Researchers need to consider whether the degree of beta nonstationarity

identified from statistical tests translates into nonstationarity that
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is significant in economic terms, so as to warrant explicit modelling

of beta variability. While there is growing awareness of this issue, it

has by no means achieved widespread recognition.

One interesting potential implication of beta nonstationarity,

discussed by Collins et. al. (1987), is to the capital market anomalies

literature. Their work showed some evidence of a systematic

relationship between beta variability and risk-adjusted returns for

size based portfolios. In particular, they suggested that in using a

fixed parameter model there is greater uncertainty in estimating the

beta risk of small firm portfolios
7
. This may have some potential in

providing a partial explanation of the "firm size" effect.

This paper has not resolved the controversy in the empirical

literature regarding which model best describes the stochastic

behaviour of betas. It may be true that no one model will prevail.

Some assets' betas might vary according to an AR(1) process, whereas,

others might vary according to the model suggested by Ohlson and

Rosenberg (1982), le an ARMA(1,1) model. On the other hand, it may be

true that none of these models adequately describe the stochastic

behaviour of betas. Theoretically, beta is a measure of an asset's

systematic risk which is defined as the covariance of the asset return

with the market portfolio divided by the variance of the market

portfolio return. Therefore, the non-stationarity of betas could be due

to the time-varying covariance and/or variance of the returns. In fact,

there is a large body of evidence on time-varying variance of returns,

for example, Pagan and Schwert (1990) and Schwert (1989). Further

research is needed to investigate the relationship between time-varying

betas and time-varying variance of returns similar to that of Schwert

and Seguin (1990), and Braun, Nelson and Sunier (1990).
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APPENDIX 1

by

Given [10], the mean of the LBI test statistic can be calculated

= trK/m,
1

the variance of the test statistic by

112 
= 2[mtrK

2 
- (trK)

2
]/[m

2
(m+2)],

the coefficient of Skewness by

11 /11
3/2 

= 8{m
2
trK
3 
- 3mtrKtrK

2 
+ 2(trK)

3
} , and

3 2

m
3
(m + 2)(m + 4)11

3/2

2

the coefficient of kurtosis by

114/112 
2 
= 12fm

3
[4trK

4 
+ (trK

2
)
2
] - 2m

2
[8trKtrK

3

+ trK
2
(tr

K
)
2
] + m[24trK

2
(trK)

2 
+ (trK)

4
]

2
- 12(trK)

4
l/fm

4
(m + 2)(m + 4)(m + 6)112

where m = n - k,

n = number of observations,

k = number of parameters,

K = MA in [10] and

tr denotes the trace of a matrix.
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APPENDIX 2

The mean and standard deviation of the Burr distribution can be

calculated in the following way

µ
B 
= r(i + 1/c)r(c - 1/c)

cr
B

F(k)

2
rci + 2/c)r(k - 2/c) - AB •

r(c)

The Weibull mean and standard deviation are calculated in the following

way

pw = 11(1 + 1/c)]

2
c
w 
= /fro. + 2/c) - µ

w
1.
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FOOTNOTES

1) See Blume (1975, pp 786-788).

2) Refer to Blume (1975, pp. 788-790). The version of the "formal

model" given in the text, is for the case where the order bias is

zero (in Blume's equation 2) and hence it focusses on real

nonstationarities in the underlying beta values.

3) See King (1987, pp. 380)

4) . See Evans and Fry (1990) on how to compute the c and k values.

Alternatively, Burr (1973) produced tables of c and k for various

values of skewness and kurtosis of the distribution of interest.

5) Results for the case of p equal to 0.2 and/or 0.8 can be obtained

from the authors.

6) See Collins, Ledolter and Rayburn (1987, pp. 442-443).

7) ibid.
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TABLE 1

LBI TEST RESULTS OF BETA STATIONARITY
a
:

INDIVIDUAL ASSETS USING (A) DISCRETE AND (B) CONTINUOUS

RETURNS; AND (C) EQUALLY-WEIGHTED AND (D)

VALUE-WEIGHTED MARKET INDEX. NUMBER OF REJECTIONS

FOR THREE SIGNIFICANCE LEVELS

Discrete Returns

Significance Levels

Continuous Returns

Significance Levels

0.01 0.05 0.10 0.01 0.05 0.10

1978/1982 (N=159)

EWMI 9
b

24 33 7 19 26

(5.7%) (15.1%) (20.8%) (4.4%) (11.9%) (16.4%)

VWMI 46 57 66 24 47 57

(28.9%) (35.8%) (41.5%) (15.1%) (29.6%) (35.8%)

1983/1987 (N=310)

EWMI 38 70 90 17 41 64

(12.3%) (22.6%) (29.0%) (5.5%) (13.2%) (20.6%)

VWMI 36 65 87 17 40 68

(11.6%) (21.0%) (28.1%) (5.5%) (12.9%) (21.9%)

a. Cases where stationary p is rejected against the AR(1) alternative,

using the LBI test.

b. The number of rejections for the sample at the stated significance

level. This is expressed as a percentage of the sample in

parentheses.
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TABLE 2

PERCENTAGE OF SECURITIES WITH BETA NONSTATIONARITY
a

BY p AND RANK CORRELATION BETWEEN p

AND TENDENCY TOWARD NONSTATIONARITY
b

1978/1982

Discrete (N) Continuous (N)

1983/1987

Discrete (N) Continuous (N)

EWMI ,

p < 1 9.3% (118) 9.4% (117) 10.1% (178) 6.1% (179)

„

p > 1 31.7% (41) 19.0% (42) 39.4% (132) 22.9% (131)

„

p < 0.8 8.7% (104) 9.9% (101) 7.1% (156) 4.5% (154)

0.8 <p< 1.2 11.1% (18) 10.0% (20) 26.3% (38) 15.4% (39)

„

p > 1.2 35.1% (37) 18.4% (38) 42.2% (116) 23.9% (117)

Rank Correlation 0.364 0.238 0.549 0.377

(0.0001)c (0.0025) (0.0001) (0.0001)

VWMI ,

p < 1 27.3% (117) 21.9% (114) 8.8% (171) 6.3% (176)

„

p > 1 59.5% (42) 48.9% (45) 36.0% (139) 21.6% (134)

„

p < 0.8 25.3% (99) 21.2% (99) 8.5% (130) 5.3% (131)

„

0.8 <p< 1.2 36.4% (22) 26.1% (23) 15.7% (70) 9.7% (72)

„

p > 1.2 63.2% (38) 54.1% (37) 39.1% (110) 24.3% (107)

Rank Correlation 0.447 0.403 0.452 0.356 .

(0.0001) (0.0001) (0.0001) (0.0001)

a. Cases where stationary p is rejected against the AR(1) alternative,

using the LBI test at 5% significance level.

b. The rank correlation between g and the associated LBI statistic is

reported.

c. The p-value for the associated rank correlation is given in

parentheses.

30



TABLE 3

PERCENTAGE OF SECURITIES WITH BETA NONSTATIONARITY
a

BY SIZE AND RANK CORRELATION BETWEEN SIZE AND TENDENCY TOWARD

NONSTATIONARITY
b

1978/1982

Discrete (N) Continuous

1983/1987

Discrete (N) Continuous

EWMI 51
c

25.8% (31) 12.9% 21.0% .(62) 16.1%

S2 15.6% (32) 15.6% 27.4% (62) 14.5%

S3 9.3% (32) 6.3% 25.8% (62) 17.7%

S4 9.3% (32) 12.5% 19.4% (62) 9.7%

S5 15.6% (32) 12.5% 19.4% (62) 8.1%

Rank Correlation -0.064 -0.056 -0.017 -0.033

(0.426) (0.487) (0.762) (0.568)

VWMI 51 35.5% (31) 25.8% 22.6% (62) 17.7%

S2 37.5% (32) 34.4% 21.0% (62) 14.5%

S3 25.0% (32) 21.9% 22.6% (62) 9.7%

S4 34.4% (32) 25.0% 19.4% (62) 14.5%

S5 46.9% (32) 40.6% 19.4% (62) 8.1%

Rank Correlation 0.149 0.118 -0.041 -0.039

(0.061) (0.138) (0.468) (0.497)

a. Cases where stationary p is rejected against the AR(1) alternative,

using the LBI test at 5% significance level.

b. The rank correlation between firm size (beginning of period market

capitalisation) and the associated LBI statistic is reported.

c. Both subperiods were partitioned into five quintiles according to

size. The smallest (largest) firms are represented by 51 (S5).

d. The, p-value for the associated rank correlation is given in

parentheses.
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TABLE 4

PERCENTAGE OF SECURITIES WITH BETA NONSTATIONARITY
a

BY INDUSTRY SECTOR: ALL RESOURCES VERSUS ALL INDUSTRIALS.

1978/1982

Discrete (N) Continuous

1983/1987

Discrete (N) Continuous

EWMI

ALL RESOURCES 26.2% (42) 14.2% 22.2% (135) 14.1%

ALL INDUSTRIALS 11.1% (117) 11.1% 22.9% (175) 12.6%

VWMI

ALL RESOURCES 52.4% (42) 45.2% 17.8% (135) 11.1%

ALL INDUSTRIALS 29.9% (117) 23.9% 23.4% (175) 14.3%

,

a. Cases where stationary g is rejected against the AR(1) alternative,

using the LBI test at 5% significance level.
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TABLE 5

LBI TEST RESULTS OF BETA STATIONARITY :PERIOD 1978/1982.

PORTFOLIOS GROUPED ON BEGINNING OF PERIOD MARKET CAPITALISATION
a

USING (A) DISCRETE AND (B) CONTINUOUS RETURNS; AND (C)

EQUALLY-WEIGHTED AND (D) VALUE-WEIGHTED MARKET INDEX

NUMBER OF REJECTIONS FOR THREE SIGNIFICANCE LEVELS

Discrete Returns

Significance levels

Continuous Returns

Significance levels

0.01 0.05 0.10 0.01 0.05 0.10

N=7

EWMI 2
b

2 3 2 2 2 ,

(28.6%) (28.6%) (42.9%) (28.6%) (28.6%) (28.6%)

VWMI 7 7 7 6 7 7

(100%) (100%) (100%) (85.7%) (100%) 100%)

N=15

EWMI 2 4 4 2 4 4

(13.3%) (26.7%) (26.7%) (13.3%) (26.7%) 26.7%)

VWMI 12 13 14 12 13 13

(80%) (86.7%) (93.3%) (80.0%) (86.7%) (86.7%)

N=31

EWMI 3 7 9 1 6 8

(9.7%) (22.6%) (29.0%) (3.2%) (19.4%) (25.8%)

VWMI 19 23 25 11 20 23

(61.3%) (74.2%) (80.6%) (35.5%) (64.5%) (74.2%)

a. Securities are grouped into portfolios according to market

capitalisation as measured at the end of December 1977.

b. The number of rejections for the sample at the stated significance

level. This is expressed as a percentage of the sample in

parenthesesd.
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TABLE 6

LBI TEST RESULTS OF BETA STATIONARITY :PERIOD 1983/1987

PORTFOLIOS GROUPED ON BEGINNING OF PERIOD MARKET CAPITALISATIONa

USING (A) DISCRETE AND (B) CONTINUOUS RETURNS; AND (C)

EQUALLY-WEIGHTED AND (D) VALUE-WEIGHTED MARKET INDEX.

NUMBER OF REJECTIONS FOR THREE SIGNIFICANCE LEVELS

Discrete Returns

Significance levels

Continuous Returns

Significance levels

0.01 0.05 0.10 0.01 0.05 0.10

N=15

EWMI
b7b

8 9 5 7 8

(46.7%) (53.3%) (60.0%) (33.3%) (46.7%) (53.3%)

VWMI 6 9 9 5 8 8

(40.0%) (60.0%) (60.0%), (33.3%) (53.3%) (53.3%)

N=31

EWMI 11 17 20 4 14 18

(35.5%) (54.8%) (65.5%) (12.9%) (45.2%) (58.1%)

VWMI 9 14 16 6 14 15

(29.0%) (45.2%) (51.6%) (19.4%) (45.2%) 48.4%)

N=62

EWMI 18 23 24 10 16 19

(29.0%) (37.1%) (38.7%) (16.1%) (25.8%) (30.6%)

VWMI 14 19 25 8 15 19

(22.6%) (30.6%) 40.3%) (12.9%) (24.2%) (30.6%)

a. Securities are grouped into portfolios according to market

capitalisation as measured at the end of December 1982.

b. The number of rejections for the sample at the stated significance

level. This is expressed as a percentage of the sample in

parentheses.
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TABLE 7

LBI TEST RESULTS OF BETA STATIONARITY : PORTFOLIOS
a

GROUPED RANDOMLY (N=100) USING (A) DISCRETE AND

(B) CONTINUOUS RETURNS; AND (C) EQUALLY-WEIGHTED AND

(D) VALUE-WEIGHTED MARKET INDEX.

NUMBER OF REJECTIONS FOR THREE SIGNIFICANCE LEVELS.

Discrete Returns

Significance levels

Continuous Returns

Significance levels

0.01 0.05

_

0.10 0.01 0.05 0.10

1978/1982

..

EWMI 7
b

13 20 7 11 18

VWMI 89 93 95 69 87 93
,

1983/1987

EWMI 41 52 61 33 41 53

VWMI 36 48 56 30 47 51

a. Portfolios are comprised of ten securities each.

b The number of rejections for the sample at the stated significance

level.
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