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Abstract

We study the dynamical density matrix renormalization group (DDMRG) and time-

dependent density matrix renormalization group (td-DMRG) algorithms in the ab initio

context, to compute dynamical correlation functions of correlated systems. We ana-

lyze the strengths and weaknesses of the two methods in small model problems, and

propose two simple improved formulations, DDMRG++ and td-DMRG++, that give

increased accuracy at the same bond dimension, at a nominal increase in cost. We

apply DDMRG++ to obtain the oxygen core-excitation energy in the water molecule

in a quadruple-zeta quality basis, which allows us to estimate the remaining correlation

error in existing coupled cluster results. Further, we use DDMRG++ to compute the

local density of states and gaps, and td-DMRG++ to compute the complex polarization

function, in linear hydrogen chains with up to 50 H atoms, to study metallicity and

delocalization as a function of bond-length.
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1 Introduction

The calculation of dynamical quantities is essential for the interaction between theory and ex-

periment. Most commonly, dynamical quantities such as the single-particle Green’s function

or optical absorption are considered in the linear response regime. In the frequency domain,

the linear response of a wavefunction to a field can be written as the second derivative of

a Lagrangian1,2 and frequency-domain response theory in quantum chemistry has closely

followed the theory of analytic energy derivatives, similar to that in structural optimiza-

tion. Thus algorithms exist to compute dynamical correlation functions from Hartree-Fock,3

density functional theory,4 configuration interaction,5 coupled cluster,6 and Jastrow-Slater

wavefunctions7,8 amongst others, using analytic derivative techniques. Dynamical quantities

can also be calculated in the time-domain. Here, quantum chemical methods typically for-

mulate the equation of motion for the wavefunction from the Dirac-Frenkel (time-dependent)

variational principle.9–11 Both kinds of algorithms can be found implemented in many mod-

ern quantum chemistry codes.

Dynamical quantities have also been studied with density matrix renormalization group

(DMRG) or matrix product state (MPS) wavefunctions. Here a wide range of numerical

algorithms have been explored. In the frequency domain, the first dynamical correlation

functions were computed in a fixed linear space of DMRG renormalized states (i.e. by opti-

mizing a single tensor in the MPS).12 Subsequent algorithms, such as the dynamical DMRG

(DDMRG)13–16 or analytic DMRG response theory,17,18 further considered the response of

the DMRG renormalized basis (i.e. all tensors in the MPS). DDMRG is widely used as

a benchmark method for DMRG dynamical correlation functions, but unlike the analyti-

cal DMRG response theory does not correspond to a true derivative of a Lagrangian. The

analytic DMRG response theory is equivalent to the later “tangent space” formulations of

DMRG dynamical correlation functions.19

Time-propagation has also been investigated in conjunction with DMRG wavefunctions.

Although a wide variety of time-propagation algorithms have been discussed,20–27 some, such
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as time-evolving block decimation,21 are specialized to Hamiltonians with short-range inter-

actions on a 1D lattice. For quantum chemistry, it is necessary to work with long-range

interactions, and one of the early time-dependent DMRG (td-DMRG) algorithms that sup-

ported such Hamiltonians was the time-step targeting time-dependent DMRG method.23

There have also been many other important developments in time-dependent DMRG which

we do not discuss here, including translating time-propagation algorithms such as Chebyshev

expansion and Krylov space techniques to work with MPS,28–30 analytic time-propagation

using the time-dependent variational principle,25,26 and matrix product operator represen-

tations of the time-evolution operator with improved global time-step error.27

In the current work, we explore frequency-dependent and time-dependent DMRG al-

gorithms for dynamical quantities to better understand the behaviour and applicability of

these algorithms in the ab initio DMRG context.31–46 There has been relatively little work

computing ab initio dynamical quantities with DMRG. Earlier work in our group compared

dynamical DMRG and analytic DMRG response theory for computing frequency depen-

dent polarizabilities.17 Subsequent investigations exploited the analogy between the analytic

DMRG response theory and the random phase approximation to obtain DMRG excitation

energies and RPA-like correlation energy contributions for some small molecules.18 To our

knowledge, time-dependent DMRG techniques have not yet been explored with ab initio

Hamiltonians, although some studies have been carried out with model Hamiltonians of

conjugated systems.47

We will focus here on the dynamical DMRG (DDMRG) and time-step targeting time-

dependent DMRG (td-DMRG) methods. We concentrate on these techniques rather than

the analytic DMRG response or other time-dependent formulations for two reasons. First,

DDMRG and td-DMRG are simple to implement in existing DMRG codes (and are thus com-

monly used in applications outside of quantum chemistry). Second, our work on analytic

DMRG theories showed that the quality of the response functions is tied to the similarity

between the excited states and the ground-state, thus excited states with quite different

2
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entanglement structure to the ground-state are poorly described except using large bond

dimensions.18 Since the primary purpose of DMRG in quantum chemistry is to describe

strongly correlated systems where we can often find states of different electronic character

at low energies, it is of interest to work with techniques which treat states with different

character in a relatively balanced way. This is the case with DDMRG and td-DMRG meth-

ods, which treat the response wavefunction or time-evolved state on an equal footing with

the ground-state or initial state. In particular, we will introduce two small improvements

to the techniques, that we call DDMRG++ and td-DMRG++. Although the change to the

algorithms is small and easy to implement within existing DDMRG and td-DMRG codes,

the subsequent improvement in accuracy and concomitant savings in cost is significant.

The outline of the paper is as follows. In the section 2 we give a brief overview of linear

response theory dynamical correlation functions as well as frequency-dependent and time-

dependent algorithms to compute Green’s functions. We subsequently give some background

on DMRG and MPS, before discussing the detailed theory of the DDMRG and td-DMRG

algorithms, as well as their DDMRG++ and td-DMRG++ improvements. In section 3 we

benchmark DDMRG++ and td-DMRG++ on small systems which can be exactly treated by

full configuration interaction. We next use DDMRG++ to compute the O 1s core excitation

energy of the water molecule in realistic basis sets. Finally, we use DDMRG++ to compute

the LDOS and gaps of hydrogen chains up to H50 within a minimal basis, and further use

td-DMRG++ to obtain the complex polarization function to characterize the metallicity of

the ground-state as a function of bond-length. We finish with some perspectives in section 4.

2 Theoretical Methods

2.1 Linear response

When the applied fields are not too strong, linear response theory underpins spectroscopy.

We briefly recap the essentials here. Consider a system in an initial eigenstate Ψ0 of a

3
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Hamiltonian Ĥ0, and consider a time-dependent perturbation f(t)V̂ (t), where f(t) is the

field strength. The linear response of the observable Ô is given by

δ〈Ψ0|Ô(t)|Ψ0〉 =
∫ t

−∞

dt′χ(t− t′)f(t′) (1)

where Ô(t) = eiĤ0tÔe−iĤ0t and the Kubo formula48 for the generalized susceptibility χ(t−t′)

is:

χ(t− t′) = −iθ(t− t′)〈Ψ0|[Ô(t), V̂ (t′)]|Ψ0〉. (2)

The frequency dependent susceptibility is:

χ(ω) =

∫ ∞

−∞

d(t− t′)eiω(t−t′)χ(t− t′)

=
∑
m

〈Ψ0|Ô|Ψm〉〈Ψm|V̂ |Ψ0〉
ω − (Em − E0) + iη

−
∑
n

〈Ψ0|V̂ |Ψn〉〈Ψn|Ô|Ψ0〉
ω − (E0 − En) + iη

, (3)

where η is a infinitesimal positive number, Ψm(n) are excited states of the system, Em(n) are

the associated eigenvalues. The imaginary part of the susceptibility is the spectral function,

which is proportional to the rate of absorption of the applied field,49

S(ω) = − 1

π
Imχ(ω). (4)

Different spectroscopies are described by different combinations of the operators Ô and V̂ .

For example, optical spectroscopy is described by Ô, V̂ = µ̂, where µ̂ is the dipole operator.

Likewise, photoelectron spectroscopy can be described by the retarded Green’s function,

GR
ij(t− t′) = −iθ(t− t′)〈ΨN

0 |[ai(t), a†j(t′)]+|ΨN
0 〉, (5)

where Ô, V̂ = ai/a
†
j respectively, a

(†)
i are creation/annihilation operators, and [Â, B̂]+ =

4
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ÂB̂ + B̂Â is the anticommutator. Its Lehmann representation reads

GR
ij(ω) =

∑
m

〈ΨN
0 |ai|ΨN+1

m 〉〈ΨN+1
m |a†j|ΨN

0 〉
ω − (EN+1

m − EN
0 ) + iη

+
∑
n

〈ΨN
0 |a†j|ΨN−1

n 〉〈ΨN−1
n |ai|ΨN

0 〉
ω − (EN

0 − EN−1
n ) + iη

. (6)

The spectral function or density of states (LDOS) becomes

Sij(ω) = − 1

π
ImGR

ij(ω)

=
∑
m

〈ΨN
0 |ai|ΨN+1

m 〉〈ΨN+1
m |a†j|ΨN

0 〉δ(ω − (EN+1
m − EN

0 ))

+
∑
n

〈ΨN
0 |a†j|ΨN−1

n 〉〈ΨN−1
n |ai|ΨN

0 〉δ(ω − (EN
0 − EN−1

n )). (7)

In this work, we will focus on the Green’s function and density of states as measured by

photoelectron spectroscopy, but the formalism can easily be extended to other spectroscopies.

2.2 Frequency and time-domain calculations of Green’s functions

We can obtain equivalent information on the linear response in the frequency and in the

time-domain. We now discuss general strategies to compute the Green’s function in these

two settings. Notice that the Green’s function has two contributions, see Eq. (6). The first

part corresponds to the electron addition (EA) component of the Green’s function, while

the second part corresponds to the electron removal (IP) one. Computationally, we can

compute the two pieces separately. Below we present explicit formulae only for the IP part,

and analogous derivations apply to the EA part.

Formally, the frequency (ω)-dependent IP Green’s function matrix element Gij(ω) (6)

can be rewritten as,

Gij(ω) = 〈Ψ0|a†j
1

ω + Ĥ0 − E0 + iη
ai|Ψ0〉. (8)

It is convenient to compute the Green’s function from the response equation:

[Ĥ0 − E0 + ω + iη]|c(ω)〉 = ai|Ψ0〉 (9)

5
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where c(ω) is referred to as the correction vector,15,16 such that the Green’s function element

is the expectation value

Gij(ω) = 〈Ψ0|a†j|c(ω)〉. (10)

Using real arithmetic, we solve for the real (|X(ω)〉 = Re|c(ω)〉) and imaginary parts

(|Y (ω)〉 = Im|c(ω)〉) of the correction vector separately. To compute the imaginary part

from the equation,

[(Ĥ0 − E0 + ω)2 + η2]|Y (ω)〉 = −ηai|Ψ0〉, (11)

we can in general minimize the Hylleraas-like functional,13

L[Y (ω)] = 〈Y (ω)|[(Ĥ0 − E0 + ω)2 + η2]|Y (ω)〉+ 2η〈Y (ω)|ai|Ψ0〉. (12)

From the imaginary part, the real part can be obtained as:

|X(ω)〉 = −Ĥ0 − E0 + ω

η
|Y (ω)〉. (13)

In the time (t) domain the IP part of the Green’s function (5) is written as:

Gij(t− t′) = −iθ(t− t′)〈Ψ0|a†jei(Ĥ−E0)(t−t′)ai|Ψ0〉. (14)

The steady state Green’s function is obtained at sufficiently long time t → ∞. From this,

the frequency dependent Green’s function (8) can be obtained by Fourier transform,

Gij(ω) =

∫ ∞

−∞

d(t− t′)eiω(t−t′)Gij(t− t′). (15)

Eq. (14) can be evaluated by a real-time propagation of an initial state (ai|Ψ0〉). There

are many methods to carry out the time-propagation;20–24,27 in this work we use the simple

6
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Runge-Kutta (RK4) algorithm, which requires calculating four vectors:

|r1〉 = τ(Ĥ0 − E0)|Ψ(t)〉

|r2〉 = τ(Ĥ0 − E0)[|Ψ(t)〉+ 1/2|r1〉]

|r3〉 = τ(Ĥ0 − E0)[|Ψ(t)〉+ 1/2|r2〉]

|r4〉 = τ(Ĥ0 − E0)[|Ψ(t)〉+ |r3〉] (16)

where |Ψ(t)〉 is the wavefunction at the initial time-step and τ is the time-step. From these

four vectors the state at time t+ τ can then be obtained as:

|Ψ(t+ τ)〉 ≈ 1

6
[|r1〉+ 2|r2〉+ 2|r3〉+ |r4〉]. (17)

The total accumulated time-step error is O(τ 4).

We will next see how to translate these general expressions to compute Green’s functions

in the language of DMRG.

2.3 DMRG and MPS

To lay some foundations for the time-dependent algorithms, we recall the main ideas of

DMRG and Matrix Product States (MPS). For details, the reader is referred to the recent

reviews, see Refs. 43,50 and 51. The MPS is the underlying variational wavefunction ansatz

used in DMRG algorithms, and is a non-linear parametrization for the wave function of the

form:

|Ψ〉 =
∑

{nk},{αk}

An1

α1
[1]An2

α1α2
[2] · · ·AnK

αK−1
[K] |n1n2 . . . nK〉 (18)

where |n1n2 · · ·nK〉 is an occupation vector in the Fock space, and Ank [k] is anM×M matrix

of numbers, while An1 [1] and AnK [K] are 1×M and M × 1 vectors. For a given occupancy

7
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vector, the product of matrices (with vectors for the leftmost and rightmost sites) yields

the scalar wavefunction amplitude. M is the bond dimension (also known as the number of

renormalized states) of the DMRG wavefunction. As M → ∞ (or in a finite Fock space F ,

M →
√
dimF) the MPS becomes an exact representation of any state.

In the most general sense, the DMRG algorithm provides a way to determine the tensors

in the MPS one by one from An1 [1] to AnK [K] (holding all other tensors fixed at each step)

from the variational principle, or equivalently the minimization of the Lagrangian,

L[Ψ] = 〈Ψ|Ĥ|Ψ〉 − E(〈Ψ|Ψ〉 − 1). (19)

One such determination of all the tensors (going forwards and backwards) is called a sweep.

Note that the tensors are not unique because of the product form of the MPS; gauge matrices

GG−1 may be inserted in between the tensors while keeping the state invariant. To properly

condition the optimization, when optimizing the kth tensor, we use the so-called mixed

canonical gauge around site k:

Ψn1n2···nK =
∑
{αk}

Ln1

α1
[1] · · ·Lnk−1

αk−2αk−1
[k − 1]Cnk

αk−1αk
[k]Rnk+1

αkαk+1
[k + 1] · · ·RnK

αK−1
[K] (20)

where the tensors to the left and right of k satisfy the orthogonality conditions respectively:

∑
nk

LnkTLnk = 1

∑
nk

RnkRnkT = 1. (21)

Because of the orthogonality conditions, the L and R tensors collectively define orthogonal

8
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sets of many-particle renormalized bases, recursively,

|lαk−1
〉 =

∑
n1···nk

(Ln1 [1]Ln2 [2] · · ·Lnk−1 [k − 1])αk−1
|n1 · · ·nk−1〉

|rαk
〉 =

∑
nk+1···nK

(Rnk+1 [k + 1]Rnk+2 [k + 2] · · ·RnK [K])αk
|nk+1 · · ·nK〉 (22)

and the MPS wavefunction may be equivalently written in the space of these renormalized

states as:

|Ψ[k]〉 =
∑

αk−1nkαk

Cnk

αk−1αk
[k] |lαk−1

nkrαk
〉 , (23)

where the symbol [k] indicates that the wave function is in the mixed canonical form at

site k. At each site in a DMRG sweep one performs several operations: constructing the

renormalized bases and the renormalized operators in these bases at each site k (blocking);

determining the site wavefunction Cnk

αk−1αk
[k] (solving); and transforming all quantities to

the canonical form of the next site (decimation).

For example, in the ground-state DMRG algorithm, at each site k, we build the renor-

malized site Hamiltonian (Ĥ[k]) by projecting the Hamiltonian (Ĥ) into the renormalized

basis of the site:

Ĥ[k] = P [k]ĤP [k] (24)

where P [k] =
∑

α |m[k]α〉 〈m[k]α| projects into the basis {|m[k]α〉} = {|lαk−1
nkrαk

〉}. Then,

Eq. (19) becomes a quadratic function in Cnk

αk−1αk
[k]. We then solve for the ground-state of

Ĥ[k] through:

Ĥ[k]|Ψ[k]〉 = E|Ψ[k]〉, (25)

which amounts to a standard eigenvalue problem for Cnk

αk−1αk
[k] in Eq. (23). The final step

is to transform all quantities to the mixed canonical gauge at the neighbouring site. We do

so by building the density matrix Γ[k](Cnk [k]) in the blocked basis {|lαk−1
nk〉} with matrix

9
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elements:

Γ[k]αk−1nk,α
′

k−1
n′

k
= (C[k]C[k]†)αk−1nk,α

′

k−1
n′

k
, (26)

where C[k] is the reshaped matrix Cαk−1nk,αk
[k] from the tensor Cnk

αk−1αk
[k]. The M eigen-

vectors of the Γ[k] with the largest eigenvalues form a matrix with elements L[k]αk−1nk,αk
;

when reshaped to L[k]nk

αk−1,αk
this becomes the tensor that replaces Cnk [k] in the MPS. A

guess for the site-wavefunction at site k + 1 can be obtained by transforming Cnk [k]:36

Cnk+1

αkαk+1
[k + 1] =

∑
α′

k

(L[k]†C[k])αkα
′

k
R

nk+1

α′

k
αk+1

[k + 1], (27)

where both L[k] and C[k] are the matrix versions of the site tensors, respectively.

In many DMRG algorithms, one is interested in simultaneously representing multiple

states |Ψi〉 as matrix product states. It can be convenient computationally to constrain

these MPS such that different states use the same renormalized bases at each site; then each

state is distinguished only by its respective site wavefunction Cnk [k]i. Such algorithms are

known as state-averaged algorithms. To construct the common renormalized bases at each

site, one transforms bases from site to site via the “state-averaged” density matrix:

Γ[k] =
∑
i

wiΓ[k]i(C
nk [k]i) (28)

where wi are weights and Γ[k]i are the density matrices of the individual states entering into

the average computed using Eq. (26). In this case, the density matrix has more thanM non-

zero eigenvalues and the transformation from site to site does not precisely preserve the states

unless M → ∞. For finite M this requires choosing a site at which to compute observables.

In our case, we report observables calculated at the middle of the sweep, although other

choices are possible.

Finally, we mention that in the following sections, the action of an operator Ô on an MPS

Ô|Ψ0〉 will be frequently encountered (e.g. ai|Ψ0〉 on the right hand side of Eq. (11)). In

10
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certain cases, it is necessary to reduce the bond dimension of the state Ô|Ψ0〉, for example in

the variational compression used in the benchmark td-DMRG(G) algorithm below, or if one

needs to use a smaller bond dimension in the DDMRG++ calculation than in the ground-

state DMRG calculation. The reduction in bond dimension can in general be achieved via a

variational compression by constructing the “least-squares” functional,

L[Ψ] = 〈Ψ− ÔΨ0|Ψ− ÔΨ0〉. (29)

Similar to the minimization of Eq. (19) for the ground state, the MPS representation |Ψ〉 for

Ô|Ψ0〉 can be obtained by minimizing this functional using analogous DMRG sweeps. The

only difference is that instead of solving an eigenvalue problem (25), a linear equation needs

to be solved at each site k, whose solution in the mixed canonical form is simply given by

the local projection |Ψ[k]〉 = P [k]Ô|Ψ0〉.

2.4 DDMRG++

We now discuss how to determine the frequency-dependent Green’s function using MPS and

the dynamical DMRG (DDMRG) algorithm. As discussed earlier, the DDMRG algorithm

has proven to be one of the most accurate methods to compute Green’s functions and other

frequency dependent correlation functions within a MPS representation. We earlier stud-

ied its performance for chemical problems in Ref. 17. First, we recap the algorithm and

then describe a modification to improve its formal properties and accuracy which we term

DDMRG++.

The basic path to transcribe the equations in Sec. 2.2 into a DMRG algorithm is to

translate each equation to the wavefunctions and operators at each site of the DMRG sweep.

The states and operators are then expressed in the renormalized basis {|m[k]α〉} at site k.

The simplest choice is to work with a state-averaged formalism, such that all MPS share

the same renormalized basis at each site. In the standard DDMRG algorithm, we first solve

11
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equation (25) at site k for the ground-state wavefunction |Ψ0[k]〉. Then, we solve for the

correction vector |c[k]〉 at each site, where in Eq. (12) we additionally use the projected

quantities Ĥ0[k] and ak[k]|Ψ0[k]〉. Note that the Hylleraas functional of Eq. (12) involves

the square of the Hamiltonian operator, and P [k]Ĥ2
0P [k] 6= Ĥ0[k]

2, but this approximation

becomes exact in the limit M → ∞. To ensure that all states continue to share the same

renormalized basis throughout the sweep, we construct the density matrix for the decimation

using equally weighted contributions from |Ψ0[k]〉, a(†)i [k]|Ψ0[k]〉, |X(ω)[k]〉, |Y (ω)[k]〉.

The accuracy of the DDMRG procedure is controlled by the bond dimension M . This

governs the quality of the representation of the states such as |Ψ0[k]〉 and |c(ω)[k]〉, as well

as the quality of the resolution of the identity approximation for Ĥ2
0 . In a finite system,

the imaginary factor iη can be chosen arbitrarily, but a smaller η leads to more iterations

in minimizing the Hylleraas functional, and a larger bond dimension is needed to represent

|c(ω)[k]〉 accurately.

Despite the established power of the DDMRG, there are a few drawbacks to the algorithm,

some of which we discussed in Ref. 17. These stem from the use of the state-averaged

formalism, which means that some accuracy in the representation of each state is lost for

a given bond dimension M . For example, the ground-state wavefunction in DDMRG for a

given M is less accurate than that obtained in the standard ground-state DMRG algorithm.

A related side-effect is that even after completing a ground-state DMRG calculation, it is

necessary to re-optimize the (worse) ground-state in DDMRG to accommodate the new

renormalized basis. For these reasons, we have modified the original dynamical DMRG

algorithm to avoid these problems; we term the modified algorithm, DDMRG++. Roughly

speaking, we allow each of the states appearing in the response equation to be an independent

MPS (and thus to generate its own renormalized basis at each site k). More precisely, to

avoid complex MPS tensors, we keep |Ψ0〉, a(†)i |Ψ0〉 as independent MPS, and the pair |X(ω)〉,

|Y (ω)〉 are represented within a common renormalized basis. This means that we can re-use

the solution of a ground-state DMRG sweep as |Ψ0〉 and there is no loss of accuracy in
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the ground-state representation during the DDMRG++ sweeps. The modified DDMRG++

scheme can be summarized as follows:

• A ground-state DMRG calculation is carried out to obtain E0 and the MPS |Ψ0〉.

• We compute a separate MPS, a
(†)
i |Ψ0〉.

• We carry out the DDMRG++ sweep where we minimize the functional in Eq. (12) at

each site k using the conjugate gradient algorithm. At site k, this gives the correction

vectors |X(ω)[k]〉, |Y (ω)[k]〉.

• |X(ω)[k]〉 and |Y (ω)[k]〉 are averaged in the density matrix, which is used to trans-

form all quantities to the next site in the sweep, and the sweeps are iterated until

convergence.

2.5 td-DMRG++

The time-dependent DMRG (td-DMRG) algorithm that we will discuss was introduced by

Feiguin and White and belongs to the family of adaptive time-dependent DMRG (td-DMRG)

methods. It is based on the 4th order Runge Kutta (RK4) algorithm described in Sec. 2.2.

The advantage of this td-DMRG algorithm is that it is quite simple to implement for Hamil-

tonians with non-local interactions (as relevant for quantum chemistry) within a standard

DMRG program. We first describe Feiguin and White’s td-DMRG algorithm and then de-

scribe an improvement to this algorithm that we will call td-DMRG++.

As discussed, we can adapt the formalism in Sec. 2.2 to a DMRG algorithm by carrying

out each step within the renormalized basis at each site. Again, the simplest procedure to

implement is to use a state-averaged formalism, where all MPS appearing in the equations

share the same renormalized basis {|m[k]α〉} at site k. Thus the four Runge-Kutta vectors

in Eq. (16) become vectors in the space of site k, |r1[k]〉 . . . |r4[k]〉, and the Hamiltonian

used to construct the vectors is Ĥ[k] = P [k]ĤP [k]. Note that higher powers of Ĥ are
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used in constructing the Runge-Kutta vectors. Similarly to as in DDMRG, we invoke the

approximation:

Ĥn[k] ≈ Ĥ[k]n (30)

which again, introduces an error which only vanishes in the limit of infinite bond dimension.

The final consideration is the decimation step to transform from one site to the next. In

td-DMRG, this is done by first computing wavefunctions at the intermediate times t+1/3τ

and t+ 2/3τ using linear combinations of the |r[k]〉 vectors:

|Ψ(t+
1

3
τ)[k]〉 ≈ |Ψ(t)[k]〉+ 1

162
[31|r1[k]〉+ 14|r2[k]〉+ 14|r3[k]〉 − 5|r4[k]〉]

|Ψ(t+
2

3
τ)[k]〉 ≈ |Ψ(t)[k]〉+ 1

81
[16|r1[k]〉+ 20|r2[k]〉+ 20|r3[k]〉 − 2|r4[k]〉]. (31)

The density matrix used for the renormalization is the weighted average of all the (site)

wavefunctions at different times:

Γ[k] = w1Γ(|Ψ(t)[k]〉)+w2Γ(|Ψ(t+
1

3
τ)[k]〉)+w3Γ(|Ψ(t+

2

3
τ [k]〉)+w4Γ(|Ψ(t+ τ)[k]〉). (32)

Feiguin and White23 found by experimentation that the choice of weights

w1 = w4 =
1

3
, w2 = w3 =

1

6
(33)

gave the best convergence with bond dimension during the time-propagation.

The accuracy of a td-DMRG simulation is controlled by the bond dimension M as well

as the time-step τ and total propagation time T . In general, it is found that as T increases,

the bond dimension needs to be increased to maintain accuracy in the wavefunction, due

to the generic growth of entanglement during time evolution. Decreasing the time-step

decreases the Runge-Kutta integration error, however, it also increases the number of DMRG
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sweeps and thus the number of compressions of the wavefunction which can also lead to an

accumulated error.23 Consequently, the time-step should be chosen to balance the intrinsic

time-integration error with the error due to DMRG compressions.

Similarly to DDMRG, the use of a state-averaged renormalized basis at each site intro-

duces some undesirable errors into the td-DMRG algorithm. For example, the MPS |Ψ(t)〉

at the beginning of a time-step, represented in the renormalized basis at time t, becomes

approximated by the renormalized basis at time t + τ at the end of the time-step, intro-

ducing an error in the representation of the initial state. Thus, we now consider a more

accurate method, where states at different times are represented by independent MPS. In

the most general extension, every state appearing in the Runge-Kutta scheme would be rep-

resented by its own independent MPS, i.e. |Ψ(t)〉, |Ψ(t+ τ)〉, and the Runge-Kutta vectors

|r1[k]〉 . . . |r4[k]〉. Operations that increase the bond dimension of the MPS (e.g. when ap-

plying the Hamiltonian to construct the Runge-Kutta vectors, or adding the Runge-Kutta

vectors to obtain |Ψ(t+ τ)〉) are then followed by variational MPS compression to the desired

bond dimension. We call this scheme, which corresponds to the most direct implementa-

tion of time evolution with MPS in the Runge-Kutta context, td-DMRG(G), to denote the

general extension. However, this scheme is significantly more expensive due to the many

compression steps. A practical compromise is to retain only independent renormalized bases

for |Ψ(t)〉 and |Ψ(t+ τ)〉, and to make use of approximations such as Eq. (30) to reduce the

cost. We call this method td-DMRG++. In this case, we construct the four Runge-Kutta

states as:

|r1[k]〉 = P [k](t+ τ)τ(Ĥ − E0)P [k](t)|Ψ(t)[k]〉

|r2[k]〉 = P [k](t+ τ)τ(Ĥ − E0)P [k](t+ τ)[|Ψ(t)[k]〉+ 1/2|r1[k]〉]

|r3[k]〉 = P [k](t+ τ)τ(Ĥ − E0)P [k](t+ τ)[|Ψ(t)[k]〉+ 1/2|r2[k]〉]

|r4[k]〉 = P [k](t+ τ)τ(Ĥ − E0)P [k](t+ τ)[|Ψ(t)[k]〉+ |r3[k]〉] (34)
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where P [k](t) projects onto the renormalized basis of |Ψ(t)〉 at site k, and P [k](t+τ) projects

onto the renormalized basis of |Ψ(t+ τ)〉 at site k. The two sets of renormalized bases

|m[k](t)〉 and |m[k](t + τ)〉 are transformed to site k + 1 using the density matrices of

|Ψ[k](t)〉 and |Ψ[k](t+ τ)〉 respectively. More precisely, we use the state average of the

density matrices from the real and imaginary parts of the wavefunctions, to ensure that

all tensors in the MPS are real. Note that if we carried out time-propagation using a first

order time-step scheme (involving only the first Runge-Kutta vector |r1[k]〉) then the above

procedure is the same as td-DMRG(G), as P [k](t)|Ψ(t)[k]〉 introduces no error, and P [k](t+τ)

can viewed as the variational MPS compression (up to the detail of averaging the real and

imaginary wavefunction contributions to the density matrix). At the RK4 level, additional

errors beyond td-DMRG(G) are introduced into the higher Runge-Kutta vectors. However,

additional compressions are avoided by reusing the projected Hamiltonian Ĥ[k](t + τ) to

construct the additional vectors. Importantly, the cost of the td-DMRG++ method is only

a factor of two higher than the standard td-DMRG procedure of Feiguin and White for

blocking and renormalization of the operators, but as we shall see in the following section,

it gives rise to significant improvements in accuracy for a fixed bond dimension, allowing for

time savings in practice.

In summary, the td-DMRG++ algorithm consists of:

• Carrying out ground-state DMRG to obtain E0 and |Ψ0〉.

• Computing the MPS for a
(†)
i |Ψ0〉.

• Propagating in real-time for a total time (T ) as required for the desired accuracy in

the spectrum. The propagation scheme consists of sweeps for each time-step. At

each site k, we compute the four Runge-Kutta vectors using the site Hamiltonians

P [k](t + τ)ĤP [k](t) and P [k](t + τ)ĤP [k](t + τ) as in Eqs. (34). We update the

renormalized basis for |Ψ(t + τ)〉 using the eigenvectors of the density matrix built

from |Ψ(t + τ)〉. Sweeps are carried out until convergence in |Ψ(t + τ)〉 (typically 2-4

16

Page 17 of 42

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



sweeps are sufficient).

• If desired, G(t − t′) is Fourier transformed using Eq. (15) to obtain the frequency-

dependent Green’s function.

3 Results and Discussion

3.1 Benchmarking DDMRG++ and td-DMRG++

The DDMRG++ and td-DMRG++ algorithms above have been implemented inside the

Block DMRG code.36,38,44,52 We now examine the performance of the DDMRG++ and

td-DMRG++ algorithms in the context of two simple systems where exact results can be

computed. The first is a 10 atom equally spaced hydrogen chain at the equilibrium bond

distance (r = 1.8 a0 (Bohr)) using a minimal STO-6G basis set.53 We shall return to the hy-

drogen chain problem in more detail in Section 3.3. The second is an 8 site 1D Hubbard model

with U = 0.1t. Except where otherwise stated, we will use spin-adapted implementations

of the algorithms. We found that, similarly to ground-state simulations, spin-adaptation

provides roughly a factor of two gain in the effective bond dimension (see Supplementary

Material).

Here we first analyze the performance of DDMRG++ and td-DMRG++ in the context of

the H10 hydrogen chain. Shown in Fig. 1 is the LDOS (Sii) (η = 0.005 a.u.) computed with

FCI compared against DDMRG++ and td-DMRG++ (τ = 0.1 a.u., T = 1000 a.u.). LDOS

have been calculated in this case at the central site of the chain starting from converged

DMRG calculations (M=500), and calculations are done in the Löwdin orthogonalized basis.

To simplify visual comparisons only the IP part of the LDOS is presented here. From

Fig. 1, we see that both DDMRG++ and td-DMRG++ approach the reference FCI result

as M is increased towards the maximum value (M=100). However, DDMRG++ converges

much more quickly than td-DMRG++ toward the exact result. In particular, DDMRG++
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time step). Based on this analysis, we can conclude that td-DMRG++ provides a good com-

promise between accuracy in the representation of the Runge-Kutta vectors, and efficiency

in practice, when carrying out real-time propagation. Note that the error due to finite T is

smaller than the other errors analyzed in this section and thus we have not discussed it in

detail. A more detailed analysis of the errors associated with the time-step τ is presented in

the supplementary material.

3.2 Core-ionization potential of H
2
O

As a chemical application of the methods developed here we now consider the calculation of

a core-ionization potential. Core spectra are generally challenging to simulate as they need

a flexible treatment of electron correlation as well as the inclusion of relativistic effects.55–58

Here, we use DDMRG++ to calculate the ionization potential (IP) for the deepest core

orbital (O 1s) of water examining the basis set effects and the effects of relativity. We

compare against coupled cluster calculations,55,56 as well as experimental reference values in

Table 1. We estimate the IP from a DDMRG++ calculation by fitting three points around

Table 1: H2O core ionization potentials (eV). Theoretical data have been calculated at the
geometry of Ref. 59.

CVS- EOM- EOM- ∆UGA-
Basis CCSDa CCSD CCSD(2)∗c SUMRCCb DDMRG++ Exp.d

cc-pVDZ 543.34 543.27b 541.97 542.13 539.78
cc-pVTZ 540.68 540.66b 539.02 539.62
cc-pVQZ 539.73
cc-pCVDZ 542.69c 541.17 541.30
cc-pCVTZ 541.15 541.13c 540.03 540.10
cc-pVDZ-DK✸ 542.53
cc-pVTZ-DK✸ 539.96
cc-pVQZ-DK✸ 540.16

✸ Scalar relativistic effects have been introduced using the sf-X2C method.60–62
a Data from Ref. 55,63
b Data from Ref. 59
c Data from Ref. 56
d Data from Ref. 64

the excitation peak with a parabola and extracting the position of the maximum. We used

an ω grid of 0.01 hartree and an η value of 0.05 hartree. We used a bond dimension large
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enough to converge the DMRG energy below the milliHartree (mEh) level (M=1000 for DZ

basis sets and M=2000 for TZ and QZ basis sets), while a bond dimension M=500 has been

used in DDMRG++ to represent the ai|ψ0〉 and |c(ω)〉 wave functions. Calculations using

smaller bond dimensions in the cc-pVQZ basis indicate that our IP results are converged to

better than 0.1 eV. Smaller errors are expected for the smaller basis sets.

Overall, our computed IP’s are in general agreement with previous theoretical results

and, if we use a basis set larger than double zeta (DZ), they are in good agreement with the

experimental value as well. As noted above, relativistic effects are important for this quantity.

Four component relativistic DMRG calculations have previously been reported in Ref. 65;

here we estimate scalar relativistic corrections through the sf-X2C Hamiltonian.60–62 The

inclusion of scalar relativistic effects increases the IP by 0.35-0.4 eV. The final result in the

largest cc-pVQZ basis including scalar relativistic effects is within 0.4 eV of the experimental

value. The core-valence basis sets shift the ionization potential by a similar amount but with

a different sign at the DZ and TZ level.

The DDMRG++ calculations allow for an assessment of correlation effects beyond those

treated in earlier methods. Comparing to the EOM-CCSD and CVS-CCSD results, we

find that the correlation effects beyond doubles amount to approximately 1 eV in the IP.

Interestingly, the EOM-CCSD(2)* method recently developed by Dutta et al56 performs very

well, with errors of roughly 0.1 eV. MRCC (∆UGA-SUMRCC) calculations, as performed

by Sen et al in Ref. 59 also improve on the EOM-CCSD results.

3.3 Hydrogen Chains

We now use the methods developed in this work to study longer hydrogen chains. 1D equally

spaced hydrogen chains were introduced in Ref. 66 as a simple model for strong correlation

in an ab initio system, with the tuning parameter being the spacing between the atoms (here

denoted r). They have since become a popular model system on which to benchmark strong

correlation methods,67–72 and have also spawned the study of analogous ring systems with
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heavier atoms.73,74 In the thermodynamic limit, the chains are thought to undergo a metal-

insulator transition with the metallic phase being found at short bond distances and a Mott

insulator found at long distances. 1D hydrogen chains also serve as a dimensionally reduced

setting to study the hydrogen phase diagram, which is of particular interest in understanding

the high pressure interiors of planets such as Jupiter and Saturn.

The metal-insulator transition in hydrogen chains can be identified in terms of different

observables. Direct evidence can be obtained by computing the bandgap in the thermody-

namic limit, which must vanish for a metal. Alternatively, ground-state correlation functions

can be computed. For a 1D system, the delocalization of the electrons associated with the

metallic phase can be established by the vanishing of the many-body complex polarization

function.67,75–77 Also, the algebraic decay of the off-diagonal elements of the single-particle

density matrix can also be used to establish the metallic phase.66 This latter criterion was

used in earlier DMRG studies to characterize the metallicity of hydrogen chains at different

bond lengths.66

Here we use the DDMRG++ and td-DMRG++ algorithms to calculate the LDOS and the

complex polarization function respectively as measures of metallicity, as a function of bond

length for three different hydrogen chains in the minimal STO-6G basis set53 with open

(OBC) and periodic boundary conditions (PBC). We also carry out ground-state DMRG

and restricted and unrestricted Hartree-Fock calculations to further support the results. All

DMRG calculations are carried out with localized Löwdin orthogonalized atomic orbitals, and

LDOS are presented at one of the (two) central atoms of the chain. The PBC Hamiltonian

is defined using a periodic Coulomb interaction only along the chain (1D periodicity).

In Fig. 5 we present the DDMRG++ LDOS at three bond distances, r = 1.4, 1.8, 3.6 a0

for 10, 30, and 50 atom hydrogen chains using open boundary conditions. For these systems

r = 1.8 a0 is close to the equilibrium bond distance.66,72 The PBC spectral functions for H50

at two different geometries (r = 1.4, 3.6 a0) are also shown. Additional OBC LDOS e.g. for

intermediate bond distance can be found in the Supplementary Material.
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DMRG gap is 530 mEh. The behaviour of the UHF gap with bond distance is qualitatively

correct, but UHF overestimates the gap at all distances (e.g. for H50 at r = 1.4 a0 it is

312 mEh while at r = 3.6 a0 it is 734 mEh). Note that at longer distances, the RHF gap is

not a simple finite size effect but arises from the dimerization of the RHF solution through a

bond-order wave, as can be clearly seen from the off-diagonal bond-order matrix elements of

the 1-particle density matrix (i.e. ρi,i+1, ρi+1,i+2) see Fig. 7. The DMRG gaps are bounded

by the RHF and UHF gaps for r > 1.8 a0.

2 3 4 5
r (a.u.)

0.2

0.4

0.6

0.8

1.0

ρ
ij
(r
)

(a
.u

.)

RHF (i=24, j=25)

RHF (i=25, j=26)

UHF (i=24, j=25)

UHF (i=25, j=26)

DMRG (i=24, j=25)

DMRG (i=25, j=26)

Figure 7: Comparison of DDMRG++ (dots), RHF (solid line) and UHF (dashed line) density
matrix off-diagonal elements ρij for the equally spaced H50 chain as a function of the bond
distance.

Another way to characterize the metallicity of the ground-state is from the complex

polarization function. This quantity, denoted z̃,67,76 is defined as:

z̃ = 〈Ψ0|ei(2π/N)
∑

i
rin |Ψ0〉 (35)

where rin is the component of the ith electron position vector along the chain axis (z in this

case) and N is the longitudinal dimension of the supercell. z̃ measures electron delocaliza-

tion in the ground-state and its modulus |z̃| → 0 for metallic behaviour, while |z̃| → 1 in
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an insulator. Although z̃ is a complicated many-body observable, it can be conveniently

computed by carrying out a time evolution for unit time using the fictitious Hamiltonian

Ĥ = 2π/N
∑

i rin, followed by evaluating the overlap with the ground-state. Here we com-

pute z̃ using the td-DMRG++ algorithm. Note that when PBC are imposed the direct

calculation of dipole integrals is not possible.76 Given the local character of the Gaussian

basis used, we define the dipole integrals as a multiplicative operator over the basis func-

tions of the reference cell, such that: 〈k|r|l〉 ≈ iδkl where i is the dimensionless number that

indexes the position of the site i on the chain. In the metallic limit, where the wavefunction

is a product state of Bloch functions built from a single atom unit cell, this approximation

yields z̃ = 0 as an exact evaluation would, and further the approximation becomes exact in

the limit of long bond distances.

0 1 2 3 4
r (a.u.)

0.0

0.2

0.4

0.6

0.8

1.0

|z|

H10

H30

H50

0 1 2 3 4
r (a.u.)

0.0

0.5

1.0

|z|

DMRG

RHF

UHF

H50

a) b)

Figure 8: DMRG and HF complex polarization functions. In panel a) complex polarization
functions for H10, H30 and H50 using DMRG are presented. In panel b) complex polarization
functions for H50 at the DMRG, RHF and UHF level of theory are presented. Periodic
Boundary Conditions (PBC) have been used each case.

In Fig. 8 we plot the DMRG complex polarization function for H10, H30, and H50 with

PBC; for the H50 chain we compare with the RHF and UHF values. The absolute value of the

complex polarization function is exponentially sensitive to localization length and decreases
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very rapidly, for H50 for instance, near r = 2.0 a0, and becomes close to zero for r < 1.0 a0.

A similar picture is presented by the RHF and UHF complex polarization functions. Unlike

the single-particle gap, the complex polarization function can vanish in a system even when

single-particle finite size effects are large so long as the electrons are completely delocalized.

The vanishing of the DMRG complex polarization function in this system at short distances,

as also reflected by the similarity in the size of the gaps, thus reflects the fact that the DMRG

wavefunction begins to resemble the RHF wavefunction which is a Slater determinant of

plane-wave like orbitals. However, the scaling of the complex polarization function with

system size, much like the gap, converges only slowly with system size. Thus, to definitively

establish a metal insulator transition will require studies of larger systems. These studies

will be discussed in a future publication.

4 Conclusions

In this work we studied two algorithms to obtain dynamical quantities from density ma-

trix renormalization group wavefunctions in the ab initio context: the dynamical DMRG

(DDMRG) algorithm, and the time-step targeting time-dependent DMRG (td-DMRG) al-

gorithm. In particular, we proposed and implemented two improved variants of these algo-

rithms, DDMRG++ and td-DMRG++, in the context of computing Green’s functions and the

density of states. DDMRG++ and td-DMRG++ yield improved dynamical quantities with

respect to their parent DDMRG and td-DMRG algorithms, at a nominal increase in cost,

and they are both simple to implement within existing ab initio DMRG codes. Our analysis

suggests that DDMRG++ and td-DMRG++ require a comparable amount of computation

time if we desire the density of states at a similar resolution over a large energy window.

However, if one is interested only in the density of states in a small energy window (e.g.

when computing the principal core ionization peak) then DDMRG++ is advantageous.

In our applications, we showed that in the water molecule, we could use DDMRG++ to

29

Page 30 of 42

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



compute a core excitation energy in a quadruple zeta basis at a benchmark level of quality

beyond that of existing correlation treatments. This suggests that DDMRG++ and td-

DMRG++ will provide benchmarking capabilities for ab initio dynamical quantities similar to

that provided by ground-state DMRG for ground-state properties. We also showed in larger

hydrogen chains that we could use DDMRG++ to compute the ab initio density of states

in a system large enough to consider the thermodynamic limit of the spectrum, and used

td-DMRG++ to compute a complicated measure of delocalization, the complex polarization

function. Both these capabilities will be useful in establishing the physics of the correlated

metal-insulator transition in hydrogen chains, and more broadly to approach the spectral

functions of other complex condensed phase problems in the future. Finally, the feasibility

of these calculations suggests that DDMRG++ and td-DMRG++ may be fruitfully used to

study the correlated density of states of more complex chemical systems, such as the multi-

centre transition metal complexes that have previously been studied with DMRG. These are

directions we will pursue in the future.
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Supporting Information Available

Supplementary materials: effects of spin-adaptation and time-step size on the accuracy of

td-DMRG/td-DMRG++, additional spectral functions of hydrogen chains.
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