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Time-stepping Methods for Constructing Periodic Solutions in
Maximally Monotone Set-valued Dynamical Systems

W. P. M. H. Heemels®, V. Sessab, F. Vasca’ and M. K. Camlibel®

Abstract—In this paper we study a class of set-valued dy-
namical systems that satisfy maximal monotonicity properties.
This class includes linear relay systems, linear complementarity
systems, and linear mechanical systems with dry friction under
certain conditions. We discuss two numerical time-stepping
schemes for the computation of periodic solutions of these
systems when being periodically excited. For these two schemes
we will provide formal mathematical justifications and compare
them in terms of approximation accuracy and computation time
using a numerical example.

I. INTRODUCTION

Set-valued dynamical systems and differential inclusions
play an important role in many branches of science and
engineering [1]. An important concept in this context is
maximal monotonicity of the involved set-valued mappings,
see, e.g., [2]-[4]. There is a large body of literature on the
use of maximal monotonicity in mathematics [2]-[4], and in
recent years this property was also exploited in the context
of non-smooth dynamical and hybrid systems such as linear
complementarity systems [5]-[10], linear relay systems [11],
piecewise linear systems, projected dynamical systems [12],
etcetera, and applications including electrical networks with
switching elements as in power converters [7], [10], [13],
[14], constrained mechanical systems [15], [16], and systems
with dry friction. In particular, the perspective of non-smooth
systems as the interconnection of a linear time-invariant (LTT)
system and a static relationships described by set-valued
mappings fits naturally to the mentioned applications. This
perspective finds its origin in Lur’e systems, see, e.g., [17].

This paper focusses on the class of non-smooth dynamical
systems that are formed as the interconnection of LTI sys-
tems and static set-valued mappings, although we will embed
these systems in a general class of differential inclusions
(DIs) that satisfy maximal monotonicity properties. The latter
embedding has been used also in, e.g., in [8], [18], [19] in
which an essential assumption was the (strict) passivity of
the LTI systems and the maximal monotonicity of the set-
valued mapping, which imply that the DIs have maximally
monotone right-hand sides. In this paper we are particularly
interested in the numerical construction of periodic solutions
of these systems when being periodically excited. One class
of numerical methods, which we consider in this paper, uses
time-discretization (time-stepping) [20]-[22] in combination
with extensive simulation. This method requires that the

¢ Control Systems Technology group, Department of Mechanical Engi-
neering, Eindhoven Univeristy of Technology, the Netherlands.

b Department of Engineering, University of Sannio, Benevento, Italy.

A Johan Bernoulli Institute for Mathematics and Computing Science,
University of Groningen, the Netherlands.

978-1-4673-6088-3/14/$31.00 ©2014 IEEE

searched periodic solution is asymptotically stable to war-
rant that sufficiently long numerical simulation recovers the
solution accurately. In fact, properties as convergence [23],
[24] or incremental stability [25] (using quadratic Lyapunov
functions) are extremely useful in this context, and in some
situations they can even be seen as a kind of maximal
monotonicity properties (cf. Remark 1 below). Another class
of numerical methods combines time-stepping with two-
point boundary value problems (to enforce periodicity), as
used in, e.g., [26]. Both these classes of methods seem to
work well in practice, but they often lack formal justification
in the sense of comsistency meaning that the exact periodic
solution is recovered when the discretization parameters (and
simulation window) tend to specific values. Once the theoret-
ical justification in the form of consistency is given, we also
provide a numerical example to illustrate the efficiency of the
two methods and compare them in terms of approximation
accuracy and required computation time.

The following notation will be used in the sequel. Closures
and interiors of sets are denoted by cl and int. For a set-
valued mapping P : R™ = R" we denote the domain of P,
ie. {x € R" | P(x) # 0}, by domP. The graph gr(P) of
P is given by {(z,z*) € R" x R | 2* € P(x)}. For the
standard inner product in R™ and the corresponding norm,
we write (- | -) and | - |, respectively. A set-valued mapping
P :R™ = R" is called monotone, if (z* —y* |z —y) >0
for all * € P(z) and all y* € P(y). We call P maximally
monotone, if P is monotone and there is no other monotone
map P’ : R” = R" such that gr(P) C gr(P’) and gr(P) #
gr(P’). See [2]-[4] for more details.

II. PROBLEM FORMULATION

Given matrices A € R"*", B € R"™™ (C e R™*",
D € R™*™ and a set-valued map M : R™ =% R™, we are
interested in the (possibly non-smooth) dynamical system

&(t) = Ax(t) + Bz(t) + u(t) (la)
w(t) = Cx(t) + Dz(t) (1b)
w(t) € M(—z(t)). (1c)

In this description z(t) € R™ denotes the state variable and
u(t) € R™ is the control input at time ¢ € R>o. We are
particulary interested in systems of the form (1) with certain
maximal monotonicity properties as will be detailed in the
next section. Note that (1) can be perceived as Lur’e-type
systems [17] with a set-valued map in the feedback path.
The problem we will address for this class of systems is to
present numerical schemes to construct periodic steady-state
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solutions (provided they exist) corresponding to a periodic
input function v : R>¢ — R" including formal guarantees of
the numerical approximations converging to the true solution
(in an appropriate sense) when the discretization parameters
converge to specific values. The latter property is referred to
as consistency of the numerical scheme.

ITI. BASIC PROPERTIES UNDER MAXIMAL
MONOTONICITY

In this section, we transform the system (1) into a more
classical differential inclusion (DI) formulation, discuss the
existence and uniqueness of solutions given an initial state
and the existence and uniqueness of (periodic) steady-state
solutions when the system is periodically excited.

A. Transformation into classical differential inclusions

To transform (1) into a standard DI formulation, note that
w(t) € M(—z(t)) can be rewritten as Cxz(t) + Dz(t) €
M(—z(t)) and thus Cz(t) € (M + D)(—z(t)), which leads
to 2(t) € —(M + D)~}(Cz(t)). Substituting this in (la),
we obtain

i(t) € (A=BM+D) 'C)x(t)+u(t) =: —7>(gc(zt))+u((t2)j

We assume that P : R” = R"™ is maximal monotone and
strongly monotone in the sense that there exists a ¢ > 0 with

eyt e —y) 2oyl 3)
for all z* € P(z) and all y* € P(y). Without loss of
generality we can assume that 0 € P(x) for some x. Indeed,
if this would not be the case, we can take a v € P(z) for
some v, & and replace P(z) by P(z) — v for all z € dom P
and u(t) by u(t) — v for all ¢t.

Interestingly, in [19], inspired by the work in [8], it is
proven that if (A, B,C, D) in (1) is a passive system with
a positive definite storage function (see [19] for the exact
definitions) and M is maximal monotone (next to a minor
technical assumption), then P is maximal monotone as well
(possibly after applying a similarity transformation), see [19,
Thm. 3] and its proof. If (A, B, C, D) is strictly passive (in
the sense of [7]) and M is maximal monotone, then P is,
in addition, strongly monotone. Based on this observation it
follows that well-known classes of linear complementarity
systems [5]-[10], linear mechanical systems with friction
and linear relay systems [11], and many others, fit the
presented framework under strict passivity assumptions on
the underlying linear dynamics. Figure 1 gives a collection
of static maximal monotone mappings, thereby showing the
range of applications of the framework.

(x

B. Solutions and well-posedness

A solution to (2) for a given locally integrable input
function u is a locally absolutely continuous (AC) function x
that satisfies (2) almost everywhere. Based on the maximal
monotonicity of P we can prove using the seminal work
[3] that for any locally integrable input function u there
exists a unique locally AC solution x to (2) for any z(0) €
cl(domP) on [0,7]. This can be proven by combining

Theorem 3.4 and Proposition 3.8 in [3] together with a
reduction argument used in Theorem 1 in [19] (to satisfy
int dom P # () as required in Proposition 3.8 in [3]).

C. Contractions and steady-state solutions

The existence and uniqueness discussed in the previous
subsection show that for a fixed « we can consider the map-
ping x(0) — x(T) which we denote by T : cl(domP) —
R™ (assuming u is clear from the context). Interestingly, for
T > 0 the map 7 is a contraction in the sense that there is
a 0 < p < 1 such that

T () =T ()| < plz -yl
Indeed, note that the strong monotonicity of P gives for two
different solutions x and y to (2)

Slet) —y P = 2alt) —y(0) | 500 — (1)

< —2dfa(t) —y (1)

almost everywhere. Hence, using Gronwall’s lemma, we
obtain

|z(t) = y(®)* < e*x(0) — y(0)[? 4

thereby establishing the contractivity of 7~ with p = e =7

Remark 1: Strong links exist between maximal/strong
monotonicity and incremental stability [25] (using quadratic
Lyapunov functions) and quadratic convergence [24]. For
instance, for a system & = f(z,u) the latter requires the
existence of a positive definite matrix P and an € > 0 such
that 2[z(t) — y(t) = 2(x(t) — y(0) T PLF((t), u(t)) -
Flyt),u(t))] < —elz(t) — y(t)|%. This is a strong mono-
tonicity requirement on the function —f using the inner
product (- | -)p given by (v | w)p = v'Pw for
v,w € R™ (or on the usual inner product after a similarity
transformation of the form z = Pzz). As a mapping from
time O to time 7' this leads to a contraction. Note also that
maximal monotonicity of DIs was connected to (quadratic)
convergence properties in, e.g., [27] and [28].

Interestingly, the fact that 7 is a contraction and
cl(domP) is invariant under 7, ie. T (cl(domP)) C
cl(dom P), immediately gives via the Banach fixed point
theorem that there is a unique T € cl(dom”P) such that
T(z) = z. Hence, if u is a locally integrable function that is
periodic with period T' exactly one periodic solution exists
with period T, denoted by z%". Note that due to (4) any
other trajectory of the system is converging to this periodic
solution when time goes to infinity. Hence, the T-periodic
solution is globally exponentially stable, and there are no
other steady-state responses of (1) corresponding to the 7-

periodic input u than z¥".

IV. TWO NUMERICAL SCHEMES

The observations made at the end of the previous section
and, in particular, the global exponential stability of the 7'-
periodic solution hint upon one way of numerically approxi-
mating the periodic solution by “just” simulating the system
sufficiently long to approximate the steady-state solution
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Fig. 1: Typical scalar maximally monotone mappings M:
(a) current—voltage diode characteristic, (b) complementarity
variables, (c) relay, (d) quantizer.

sufficiently well. However, an integration routine is needed
to solve the DIs. Here we use time-stepping methods [21],
[22], [26], [29]. In particular, we will use the backward Euler
discretization scheme to get numerical approximations, al-
though extensions to other schemes such as the (6, y)-method
[29] could be envisioned. After providing this discretization
scheme, we discuss two time-stepping schemes. The first one
is based on “asymptotic simulation”, while the second one
uses two-point boundary value (2PBV) conditions.

A. Discretization scheme

Let T be the period of the periodic input u : R>g — R"
and z§" the corresponding periodic solution to (2). We
assume u to be globally Lipschitz continuous with global
Lipschitz constant L > 0. We only use this assumption
here for notational simplicity, as from the proof it follows
that weaker conditions apply as well. We select h = Nlh
for some N, € N and choose (uf,uf,..

., uly ,q) such
that u? = u((i — 1)h), for i = 1,2,..., N),. We consider

the corresponding piecewise constant T-periodic function "
given on [0, 7] by
ul(t) = ul when t € [(i — 1)h,ih) 6))

forv=1,2,..., Np. Clearly, when h | O (in the sense that
N}, — 00) it holds that |u/ —u| = SUPe(o,7] |ul () —u(t)]
converges to zero. Below when considering values of h, we
only consider values of i equal to Nlh for some N;, € N,
without explicitly mentioning this.
We now apply the backward Euler integration scheme to
(2), which gives
$Z+1 —

h € —P(w}11) + Ui (6)

and

SCZH € (I+hP)" (ap + th-ﬁ-l) =: Jn(ap + th-ﬁ-l) )

in which 7, := (I + hP)~! is the so-called resolvent.
Interestingly, strong monotonicity of P leads for all » > 0
to the known fact that the resolvent Jj, := (I + hP)~! is
a contraction. For reasons of being self-contained, we recall
here the proof, see, e.g., [4], [30], which goes as follows:
Consider z* € P(x) and y* € P(y)

[z —y+h(a" —y ) =
2 =y +2(z —y [ M(z" —y")) + B?|(z" —y")|?
> (14 2ch)|z — y|?.

This gives that

1 -
|z —yl < mlw gl (8)
where © € J3,(Z) andy € J5, (), which completes the proof.
Note that this implies that 7}, is single-valued on its domain,
and thus we can replace x € J,(%) by x = J,(%), with
some slight abuse of notation. The connection between the
strong monotonicity of P in (2) and the contractivity of 7},
in the corresponding discretization (7) will be instrumental
in the sequel. Since P is maximally monotone, we have that
dom J, = R™ (see Theorem 1.2 in [4]). This gives that (7)
produces for each h and each function «” and initial state
xg a unique solution (in discrete-time).

We just derived that the resolvent J;, is a contraction
and, in fact, this immediately gives that z — Jp(z + p)
is a contraction for any p € R™ as well. Since, for
fixed (uf,uf,...,uly ) related to the continuous-time
signal u, the map xg — x?vh (denoted by 7y, assuming
(uf,ub, ... ,uf ) is clear from the context) is a finite
composition of contractions, it is a contraction itself. Hence,
there is a unique fixed point Z;, by (again) applying Banach’s
fixed point theorem, i.e. there is exactly one z,, satisfying

Tn(Th) = Th. 9

In a similar way as in the previous section, this shows that
the difference inclusion (7) has for each h a unique periodic
solution, denoted by z, : N — R™ for each sequence
(uff,uf, ..., uk, ), which is repeated periodically. In ad-
dition, this Nj-periodic solution 2%, is the unique steady-
state response to (7) and is GES. Hence, this is an impor-
tant observation as the existence, uniqueness and stability
properties of the periodic solution to the difference inclusion
(7) (based on contractivity of resolvent ;) are inherited
from the differential inclusions (2) (with maximally/strongly
monotone set-valued map P).

Based on the above observations we are now ready to
present the two numerical schemes.

B. Asymptotic simulation (AS) method

The first numerical scheme using asymptotic simulation is
given as follows.
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o Select h > 0 sufficiently small with hN, = T for
some N € N.

o Pick any x{; and choose (uf,u},... uf ) such
that u? = w((i — 1)h), fori = 1,2,..., Ny, and
consider the corresponding piecewise constant T'-
periodic function u" as in (5).

o Start iterating (7) until |:c{lNh’ — x?l_l)Nh| is smaller
than a desired tolerance for some sufficiently large
l € N denoted by [*.

o The approximated T -periodic solution is now given
by the Lipschitz continuous function 2" obtained by
piecewise linear interpolation of the points jZ =
:c?l*_l)Nthk, k=0,1,...,N, — 1 on[0,T] as in
(10). This approximation is denoted by ,TZSI .

The T'-periodic approximations :CZ’SZ* in the algorithm are
equal to " given for t € [kh, (k+1)h), k =0,1,..., Np—1,
by

- t—kh, . -
() = & + T@ZH —&).
C. Two-point boundary value (2PBV) method

As an alternative method, we can also directly try to
find the Nj,-periodic solution 2z, to (7) instead of using
asymptotic simulation, as in the following scheme.

(10)

o Select h > 0 sufficiently small with hN, = T for
some Nj, € N.

o Choose (ul',ub, ... 7u}]7§[h,+1) such that ul* = u((i —
1)h), fori = 1,2,..., N}, and consider the corre-

sponding piecewise constant T-periodic function u"
as in (5).
o Find the solution x}) given by (g, 2, ... 2l )

to the set of equations (7), k = 0,1,2,...,N;, — 1
with 2} = :C’Jﬁ,h

o The approximated T-periodic solution is now given
by the Lipschitz continuous function 2" obtained by
piecewise linear interpolation of the points jZ =
zh, k = 0,1,...,Np, on [0,7] as in (10). This
approximation is denoted by %y,

Hence, note that x?PBV is the piecewise linear interpolation
of 2P, as in (10).

D. Discussion on the two schemes

The AS scheme can be seen as computing zj; (and
2P ) via the limit limy_,  7;!(x%). This corresponds to the
basic iterations used in Banach’s fixed point theorem. The
corresponding approximation ,TZSl of the periodic solution
xhopy and thus also of %" are obtained by piecewise linear
interpolation of the discretization points as in (10). The
2PBV scheme directly aims at constructing Z; (and thus
b)) by solving the fixed point relation Z), = Ty, (Zn). Also
here piecewise linear interpolation of the discretization points
as in (10) is used to find the approximation x%,5, of the

periodic solution z¥". A comparison in the application of

Z1A+ ZaA+
R; L o v

1

X1 — —
> ——
x2——— C,
u

w3 A+ w2 A+ -

%Xzs %ng

Fig. 2: Power converter diode bridge.

gRo

the two numerical schemes will be provided in Section VI
in which they are applied for the computation of the periodic
solution of a practical electronic circuit.

V. THEORETICAL GUARANTEES

The main formal guarantees on the numerical schemes
derived in this paper are summarized in the next theorem.

Theorem 1: Consider system (2) with P maximally
monotone and strongly monotone. Let u be a globally
Lipschitz T-periodic solution with T" > 0, and 2% the corre-
sponding T'-periodic solution. Let IZSI denote the Lipschitz
continuous approximation using the AS scheme for [* € N,
h > 0, and some (fixed) initial state 2}, and x%gy the
Lipschitz continuous approximation using the 2PBV scheme
for h > 0. The AS and the 2PBV schemes are consistent in
the sense that

*

o i converges uniformly to 25" when / | 0 and I* —
00

o alpy converges uniformly to 2" when h | 0.

Note that, for notational simplicity, in the formulation of
the theorem we did not explicitly write that i is such that
Nyh =T for some Nj,, although these are the only values
of h we consider throughout the paper. The proof of this
theorem is given in the report [31].

VI. NUMERICAL EXAMPLE

Consider the diode bridge circuit shown in Fig. 2, where
x1 is the current through the inductor L;, x5 is the voltage
across the capacitor C,, u is a sinusoidal voltage source.
Let us assume that (z1,w;) and (z4,ws) are the current—
voltage pairs of the diodes in the upper part of the bridge
and (22, ws) and (z3, w3) are the voltage—current pairs of the
other diodes. By applying the Kirchhoff laws to the circuit,
one obtains a model in the form (1) with

R; 1 1
_m g 0 L -1
A=|"T B= { L L (11a)
0 _—Rfco] z 0 0 Z
0 1 0 0 -1 0
1 0 0 0 0 1
C=1. o D=1/ 0 0o o (11b)
0 1 0 -1 0 0

and M being the map that represents the voltage—current
characteristic of diodes. Indeed, at a certain level of ab-
straction the diode characteristic can be modelled as the
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Fig. 3: Steady-state inductor current and output voltage.
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Fig. 4: Computation time necessary to find the periodic
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with different values of tolerance and the 2PBV method.
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Fig. 5: Maximum error of the steady-state output voltage
with respect the ‘exact’ steady-state solution versus the
computation time necessary for the AS method with different
values of tolerance and the 2PBV method to find the periodic
steady-state solution by varying h.

maximally monotone mapping in Fig. 1(b). This means that
at each time instant ¢, w(t) € M(—z(t)) is replaced by

0 <w(t) L z(t) >0, (12)
where the inequalities hold componentwise. Then the system
(1) assumes the form of a linear complementarity system,
[6]. The linear system given by (A, B,C, D) can be proved
to be strictly passive. Since M is maximally monotone, P
is strongly monotone and there exists a unique locally AC
periodic solution when periodically excited.

The following parameters are considered: L; = 0.1 mH
R =1mQ, R, =100 Q, C, = 0.8 mF and u is a sinusoidal
input with frequency f = 1/T = 50 Hz and amplitude
220 V (rms). We show some results in terms of computa-
tion time and accuracy of the numerical schemes presented
in Section IV. Both methods have been implemented and
executed in MATLAB and complementarity problems are
solved by using the PATH solver. When the AS method is
used at each time step k a linear complementarity problem is
formulated, that is the discretized version of (12) and (la)—
(1b), and is solved by calling the PATH solver [32]. More
details can be found in [13], [29]. In Fig. 3 the steady-state
inductor current and output voltage are shown when the AS
method is used with » = 0.002 ms and a tolerance 10714
(computation time 122 s). In order to use the AS method
it is necessary to choose a desired tolerance that defines
the accuracy of the periodic steady-state solution, while the
2PBV method is solved by considering the exact periodicity
constraint. In particular, by considering N; samples in a
period T, it is possible to write simultaneously (6) for
k=0,...,Np (h = Nlh) and use the condition zy = zy;, .
Then the N, equations can be solved at once by using
the PATH solver and a solution for all samples of z; with
k = 1,...,Np can be found. For more details, see [13],
[33]. In Fig. 4 the computation time needed for computing
the steady-state periodic solution on an Intel Core i7 clocked
at 2.40 GHz is shown. The computation time has been com-
puted by increasing the number of samples, Ny, per period,
i.e., by decreasing the size of h. Figure 4 shows that from a
computation time point of view, the 2PBV method is more
effective than the AS method also when a high numerical
accuracy, i.e., h = 0.02 ms (N}, = 103 samples per period)
is required.

Now let us consider as the ‘exact’ solution the one
computed by using the AS method with A = 0.002 ms
and a tolerance 10~ !4, Then we can compute the maximum
error (in terms of |-|. norm) between this exact solution
and the ones obtained by varying h in the AS method with
different Valges of the tolerance and in the 2PBV method,
that are :vff‘é and 28,5, respectively, and compare these
maximum errors with the required computation times, see
Fig. 5. This figure shows that the 2PBV method permits
to reach the same accuracy of the AS method, in terms of
maximum error, in a smaller computation time. Note also
that when h is decreased, the maximum error is decreasing
to zero thereby confirming the result of Theorem 1.
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VII. CONCLUSIONS

In the context of Lur’e systems with maximally/strongly
monotone mappings in the feedback path, or more general
differential inclusions with maximally/strongly monotone
maps, we discussed the problem of how to construct periodic
solutions when these set-valued systems are periodically
excited. We discussed two numerical schemes based on
time-stepping methods. The first method uses asymptotic
simulation and the second method is based on solving a 2-
point boundary value (2PBV) problem. We have shown the
feasibility of the methods in the sense that both methods
provide feasible subproblems, i.e., the discretization inherits
the existence and uniqueness of periodic solutions from the
original system and we have shown their consistency in the
sense that in the limit (for the step size converging to zero)
the proposed methods recover the exact periodic solution
of the original (continuous-time) differential inclusion. Al-
though the results may be expected, we believe it is appropri-
ate and important to formally establish the consistency of the
two schemes, since the proofs provide valuable information
on the numerical schemes. We compared the two methods on
an example of an electrical circuit with ideal diodes showing
that the 2PBV method is more effective in the sense that
a better approximation accuracy is obtained in a shorter
computation time than the asymptotic simulation method.
We can conclude that the provided analysis also showed the
value of the branch of mathematical analysis that studies
maximally monotone operators when used in the context of
dynamical systems. Several connections between system the-
oretical properties such as passivity, incremental stability and
(quadratic) convergence on the one hand and maximal/strong
monotonicity of operators on the other hand were shortly
discussed (see,e.g., Remark 1). Exploring this connection
further can be a fruitful avenue for future research.
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