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The information theoretically secure Kirchhoff-law-Johnson-noise (KLJN) key exchange scheme, 
similarly to quantum key distribution (QKD), is also potentially vulnerable against clock attacks, 
where Eve takes over the control of clock synchronization in the channel. This short note aims to 
introduce a time synchronization protocol scheme for Alice and Bob, which is resistant against 
arbitrary time delay attacks, both symmetric and asymmetric ones. We propose and explore various 
ways of clock synchronization for the KLJN system and propose an ultimate protocol that preserves 
time and hardware integrity under arbitrary attacks. 
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1. Introduction: the KLJN scheme 
 
 
1.1 Information-theoretic (unconditional) security and time 
synchronization 
 
On May 4, 2022, President Joe Biden signed a National Security 
Memorandum [1] that promotes (among others) the research and 
development of quantum-resistant cryptography. Such a crypto requires 
information-theoretic (that is, unconditional) security [2,3] of the secure 
key exchange protocol. That means that the privacy is not based on a 
mathematically hard problem, where the hardness of that problem is only 
an assumption - without a proof - such as in the case of all the 
conditionally secure schemes widely used nowadays. An unconditionally 
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secure scheme requires a hardware solution where the laws of physics 
guarantee the privacy against passive (listening) attacks of the 
eavesdropper (Eve). 
 
The Kirchhoff-law-Johnson-noise (KLJN) key exchange system [4-61] 
offers unconditional security by utilizing classical statistical physics (and 
the Second Law of Thermodynamics), while Quantum Key Distribution 
(QKD) [62-99] uses quantum physics (and the Quantum No-Cloning 
Theorem) to reach this goal.  
 
Unfortunately, both these protocols are potentially vulnerable to active 
attacks where Eve takes over the control of the clocks of the 
communicating parties, Alice and Bob (see [100-112] about QKD). In this 
paper we propose a general defense against arbitrary clock attacks in the 
KLJN system. First the KLJN protocol is outlined below. 
 
 
1.2 On the KLJN secure key exchange protocol 
 
The core of the KLJN scheme is shown in Figure 1. Alice and Bob have 
identical pairs of resistors, RL (low resistance) and RH (high resistance), 
respectively. The four resistors have their independent Johnson voltage 
noise generators   ULA(t) ,   UHA(t) ,   ULB(t) ,   UHB(t) , respectively, which are 
bandlimited Gaussian white noises with identical bandwidth B.  At the 
beginning of each bit exchange period (BEP), Alice and Bob randomly 
and independently chose one of the resistors and connect their chosen 
resistors to the cable (wire channel). The connected voltage generators 
yield the cable voltage   Uc(t)  and current   Ic(t) , and their respective power 
density spectra   Su ( f )  and   Si( f ) . To evaluate the bit situation, Alice, Bob 
and Eve are measuring the mean-square values of   Uc(t)  and   Ic(t) . 
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Figure 1. The core KLJN system with generic defense against active attacks. Alice and Bob have identical pairs 
of resistors. At the beginning of each bit exchange period (BEP), Alice and Bob randomly and independently 
choose one of the resistors RL (low resistance) or RH (high resistance) and connect their chosen resistors to the 
cable (wire channel). The four resistors have their independent Johnson voltage noise generators   ULA(t) , 

  UHA(t) ,   ULB(t) ,   UHB(t) , respectively, which are bandlimited white noises with identical bandwidth B. The 

connected voltage generators yield the cable voltage   Uc(t)  and current   Ic(t) , and their respective power 

density spectra   Su ( f )  and   Si( f ) , respectively. The measured current and voltage data are shared and 
compared/validated by Alice and Bob via authenticated communication. 
 
Secure bit exchange takes place when the choice of the resistors is mixed: 
LH or HL because then the mean-square voltage and current values in the 
cable are identical. These two alternatives provide the secure bit values. 
For example, Alice and Bob agree that LH means 0 key bit value while 
HL interpreted as bit value 1. The security guaranteed by the fact that, in 
the mixed resistor case, Eve cannot distinguish between LH or HL. On the 
other hand, Alice and Bob know their own connected resistor values, thus 
they can also determine the choice of the other party. 
 
Various attack types have been proposed against the KLJN scheme [4-10, 
41-61], and all these attacks have one or more corresponding defense 
methods. The general defense method against active (invasive) attacks, i.e. 
attacks that inject or extract energy from the line and/or change the line, is 
based on the authenticated exchange of the current and voltage 
measurement data of Alice and Bob. Then, in the simplest case, they 
compare these data and evaluate their integrity. In the most advanced 
method, they run their own cable simulators with the actual parameters of 
the cable, and then, for example, check if the simulated current results are 
identical to the measured current data while the measured voltages are the 
input data of the simulators.  
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The same defense method is enhanced for the synchronization of the 
clocks, that is, to defend against the clock attacks, see in Section 3.3. 
 

2. The problem of clock attacks 
 
If Eve takes over the control of clocks in physical key exchanges schemes 
that means she can control time - a situation, which is equivalent 
becoming a "demigod" over the physical process. Such a situation opens 
the possibility of attacks. Therefore, in quantum key distribution (QKD) 
schemes the issue of clock synchronization is one of the highest 
importance [99-111]. This is complicated by the fact that QKD needs time 
synchronization with high accuracy, in the picosecond range.  
 
No clock attack method has been published against the KLJN system yet. 
On the other hand, it is easy to see that synchronization is important. For 
example, if the clocks of Alice and Bob mismatched, the general defense 
method against active attacks mentioned above would almost continuously 
send alarm warnings even when there was no attack present. 
 
Luckily, for the KLJN scheme to preserve its integrity and security, the 
time synchronization needs a time resolution that is much less demanding 
than for QKD. That follows from the autocorrelation function 

 
R τ( )  of the 

white noise voltage U(t) limited in frequency bandwidth B, where τ  is the 
time shift variable: 
 

  
R τ( ) ≡ U (t)U (t +τ ) = BS0( f )

sin 2πBτ( )
2πBτ

 .     (1) 

 
Equation 1 is plotted in Figure 2. It is obvious that "virtually nothing" 
happens within a small fraction of the time interval of the inverse 
bandwidth 1/B thus the accuracy of the time synchronization must be in 
this range. That practically means a resolution in the order of the flying 
time of EM waves in the cable (information channel).  
 
For the Reader unfamiliar with the KLJN system here we mention that, in 
typical practical situations the following approximate relations are feasible 
[20,49]: 
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1000τf ≈

100
B

≈ BEP ,       (2) 

 
where  τf  is the flying time of EM waves between Alice and Bob through 

the cable, so 
  
τf ≈

0.1
B

. For example, in the case of a 2-kilometer range, the 

resolution of time synchronization needs to be in the order of 10 
microsecond, which is a convenient requirement and about a million times 
longer than it is required for QKD. The only open question is how to 
achieve that. 

 

 
 

Figure 2. The autocorrelation function of white noise with spectrum So which is bandlimited at the high-
frequency end with bandwidth B. The shifting time is τ . 

 
 
3. Defense against arbitrary clock attacks; Robust time 
synchronization with integrity check 
 
Assume a generic communication channel with fixed propagation time  τ0  
in both directions, see Figure 3. Suppose, Alice's absolute time is t and 
Bob's time is t*. Suppose Alice has the master clock to which Bob most 
synchronize. Bob's clock is off by t0 : 
 
  t* = t + t0 .        (3) 
 
Below we show three possible ways of time synchronization. For 
educational reasons, we start with the simplest one that does not offer any 
defense measures against Eve. 
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3.1 Undefended synchronization of absolute times 
 
The simplest possible synchronization signal for negligible distances is a 
short spike sent from Alice to Bob, while Bob terminates the cable with 
the wave resistance to avoid reflections. It would be suitable to 
synchronize oscillators at the zero-crossings of their sinusoidal outputs, 
and such tools are widely used in electronics. However that method alone 
would not be able to synchronize absolute times. So, the simplest scheme 
that we are discussing here is more involved, see Figure 3. The process is 
as follows: 
 
i) At time t1, Alice sends a time stamp message to Bob: "My time is t1 (at 
the beginning of this message)".  
 
ii) After the propagation delay τ , the message arrives at Bob at his time 
t1

*. Due to the propagation delay and Bob's time offset t0, the following 
relation holds: 
 

  t1* = t1 +τ + t0          (4) 
 
iii) Then Bob, at time   t2*  ( > t1* = t1 +τ + t0)  responds: 
 
"I received your time stamp at   t1*  and my time is now ". Note, the 
corresponding time at Alice is   t2*−t0  then. 
 
iv) Alice receives this message, after the propagation delay, at time t2 : 
 

 .        (5) 
 
v) Then Alice shares the t2 value with Bob. They can set up the following 
two equations: 
 
  t1*−t1 = +τ + t0    and     t2 − t2* = −t0 +τ  .     (6) 
 
The solutions of Equations 6 yield Bob's time offset and the propagation 
time: 
 

  t2*

  t2 = t2*−t0 +τ
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t0 =

t1*−t1 − t2 + t2*
2

       (7) 

 

  
τ =

t1*−t1 + t2 − t2*
2

 .       (8) 

 
vi) With Equations 7 and 8, Bob's clock can be corrected and the exact 
propagation time is determined for (partial) information about the cable 
integrity. 
 

 
 
Figure 3. A simple, non-authenticated synchronization scheme for synchronizing absolute times via a classical 
communication channel. Alice has the master clock to which the whole system is synchronized. The absolute 
times of Alice and Bob are t and t*. The propagation delay time in the line is  τ0 . Bob's clock is off by t0. The 
system allows exact synchronization of the absolute times but it is not secure. For example, Eve can remove the 
communicated data from the channel and she can substitute her own data to falsify the protocol. 
 
In conclusion, the above protocol provides a satisfactory synchronization 
in the case of a symmetric channel with steady parameters. However, the 
protocol can easily be attacked. For example, Eve can remove messages 
and substitute her data instead and/or modify the channel and its 
propagation time during or between the two communications.  
 
 
3.2 Authenticated synchronization of absolute times 
 
To prohibit Eve to substitute her own messages into the communication 
protocol, the process described in Section 3.1 can be run by authenticated 
communications, see Figure 4. For example, Alive and Bob can digitally 
sign their messages by attaching a hash fingerprint of the message and 
encrypt that fingerprint by using a few secure bits from the last key 
exchange, see a more detailed description in Section 3.3. (Instead of hash, 
they could simply encrypt these messages but that may use up too many 
secure bits).  
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Figure 4. The authenticated version of the simple synchronization scheme in Figure 3. This system offers much 
better security and Eve cannot covertly substitute data; however, it is still prone to attacks, see in the text.  
 
Thus, even though Eve can still substitute her own message, she does not 
know the key therefore she cannot create the encrypted hash fingerprint of 
that message. Thus, Alice and Bob will discover the discrepancy between 
the message and the encrypted hash fingerprint (either the hash of the 
original message or the hash of Eve's possibly substituted one). 
Consequently, they detect the attack. 
 
Therefore, this method is much more robust due to the authentication. 
However, it is still prone to attacks: for example, Eve can change the 
length of the line when Bob sends his response to Alice. 
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3.3 Robust and secure synchronization scheme utilizing system integrity 
check 
 
This synchronization takes place during the normal bit exchange operation 
of the KLJN system and it may involve a single BEP or multiple periods. 
The details of the process are shown below, including the steps of 
authentication (mentioned above), see Figures 5 and 6. The check of line 
and time integrity of the system is utilized for the process. 
  
(i) As it is already required for the general defense against active attacks, 
during the BEP, Alice and Bob measure and store the voltage and current 
data indexed with their local absolute time at their terminal. They write 
these data into a file F(k) where k is the index number of the kth BEP. 
 
(ii) They exchange F(k) via an authenticated file transfer, that is, they also 
attach the encrypted version of the hash signature H(k) of F(k). The 
authentication must be unconditionally secure, which is achieved via 
encrypting the H(k) hash into a CH(k) ciphertext by using a small fraction 
of the key bits of the former unconditionally secure key. Hashes are small 
strings; thus, the encryption uses up only a minor fraction of the formerly 
generated key. Eve cannot replace F(k) and H(k) because she does not 
know the secure key to encrypt her replacement of the hash H(k). 
However, the receiving party has the shared key, thus he/she can obtain 
H(k) by decrypting CH(k), and then check the authenticity of F(k). 
 

 
 
Figure 5. The robust and secure synchronization scheme integrating the classical communication channel with a 
KLJN line. It combines system integrity check and time synchronization of the KLJN system via the 
authenticated exchange of KLJN current, voltage and time data. Then Alice and Bob run simulations based on 
the data and selects the proper absolute time while checking the integrity of the system by comparing measured 
and simulated data, see also Figure 6. As an additional integrity check between subsequent simulations-based 
tests, short synchronization messages can also be sent by Alice and Bob, at random times, with the extra 
authentication protocol outlined in Figure 4. 
 
(iii) The integrity and synchronicity of these data is checked by plugging 
their voltage data and the received voltage data into a cable model 
(simulator) and comparing the resulting current data with the measured 
ones. Alternatively, they can use the current data as input for the 
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simulation and check the voltages. Both Alice and Bob are conducting 
these processes simultaneously. In the simplest cases (e.g., with short 
cable), such a cable model can be just the Ohm's law with the measured 
terminal voltages and the known wire resistance as input data to calculate 
the simulated wire current at the two ends and compare that with the 
shared measurement results.  
 
The example in Figure 6 uses the measured cable voltages,  and 

, by Alice and Bob, respectively, as inputs for their cable 
simulators. These measured voltages and the corresponding measured 
currents,  and , of Alice and Bob, respectively, are 
recorded. At this stage, the time offset of Bob is unknown yet thus t* is his 
non-synchronized absolute time and the time shift ∆t* is varied to test the 
simulated response versus the measured response. The corresponding, 
simulated cable currents,  and , of Alice and Bob are 
compared with the corresponding measured cable currents,  and 

, respectively. If the measured and simulated currents differ, there is 
either an ongoing active attack that modified the line or the times have 
asynchrony. The particular time shift ∆t*, where the measured and 
simulated currents match, gives Bob's exact time offset, 
 

  t0 = −Δt* ,        (9) 
 
see Equation 3. Learning the t0 value allows Bob to synchronize his clock 
to Alice's master clock, thus they have synchronized absolute times.   
 

 
 

Figure 6. The simulation and comparison part of the scheme shown in Figure 5. The   Δt*  value that provides 
the best fit between the measured and simulated currents yields Bob's t0 time offset, see Equation 9. 
  
iv) Interestingly, the method described above does not directly provide the 
propagation time constant τ . As an additional security measure, the 
simple, authenticated synchronization described in Section 3.2 can also be 
done at random times. That will provide the τ  and t0. The t0 offset should 
be idealistically zero after the integrity-based synchronization. If not, 
and/or τ  is different from the nominal value then there is an ongoing 
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attack. Idealistically, to approve the integrity of the channel and the time 
synchronization, the KLJN scheme should pass both checks. 
 
 

Conclusion 
Efficient data comparison defense methods against active attacks in the 

KLJN system require that the timing of the data and operations of Alice 
and Bob are synchronized. We introduced a robust clock synchronization 
protocol (Section 3.3, (i)-(iv)), based on the measurement data that Alice 
and Bob are sharing for defenses against arbitrary active attacks followed 
by authenticated synchronization communications (Section 3.2). The 
agreements of the simulated and measured data, and monitoring the 
propagation time τ , guarantee the synchronicity, system integrity and the 
detection of active attacks. 
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