
Biostatistics (2009), 10, 1, pp. 32–45
doi:10.1093/biostatistics/kxn011
Advance Access publication on May 22, 2008

Time-synchronized clustering of gene expression
trajectories

RONG TANG∗

Division of Biostatistics, Center for Devices and Radiological Health,
Food and Drug Administration, Rockville, MD 20850, USA

rong.tang@fda.hhs.gov

HANS-GEORG MÜLLER
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SUMMARY

Current clustering methods are routinely applied to gene expression time course data to find genes with
similar activation patterns and ultimately to understand the dynamics of biological processes. As the dy-
namic unfolding of a biological process often involves the activation of genes at different rates, successful
clustering in this context requires dealing with varying time and shape patterns simultaneously. This moti-
vates the combination of a novel pairwise warping with a suitable clustering method to discover expression
shape clusters. We develop a novel clustering method that combines an initial pairwise curve alignment
to adjust for time variation within likely clusters. The cluster-specific time synchronization method shows
excellent performance over standard clustering methods in terms of cluster quality measures in simula-
tions and for yeast and human fibroblast data sets. In the yeast example, the discovered clusters have high
concordance with the known biological processes.
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1. INTRODUCTION

DNA microarray data are collected through microscopic DNA probes attached to a solid surface, forming
an array for the purpose of expression profiling. In a temporal microarray experiment, the arrays are
collected over a period of time (Storey and others, 2005). These experiments expose thousands of genes
to an experimental condition simultaneously, and the dimensions of such studies pose great challenges.
Cluster analysis has become a popular dimension reduction tool in microarray studies, and recently there
has been interest in classification and clustering especially of gene expression time course data (Luan
and Li, 2003; Ma and others, 2006). Hierarchical clustering (Johnson, 1967) and K -means clustering
(Marriott, 1982) are widely used to identify functionally related gene groups. These nonmodel-based
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cluster algorithms have 2 important components: linkage and distance measures (Jain and others, 1999).
We use average linkage throughout this study and propose a new distance measure for situations where
expression trajectories exhibit patterns of time variation.

Time variation or warping is addressed in functional data analysis, an area of statistical research that
focuses on data in the form of continuous functions or curves. Even though gene expressions can only be
observed at discrete time points, they can be viewed as functional data because the underlying biological
process is usually thought to be continuous. Curve alignment or time warping (Sakoe and Chiba, 1978;
Gasser and Kneip, 1995; Ramsay and Li, 1998; Gervini and Gasser, 2004, 2005) is often used as a prelim-
inary step in functional data analysis to reduce time variation. Versions of time warping have been applied
to gene expression data (Leng and Müller, 2006). However, in the presence of multiple shape patterns,
time warping is often unidentifiable due to the confounding of time and shape variation. This motivates
the notion of “shape clusters” to represent groups of genes that share similar patterns, regardless of their
individual time dynamics. The dilemma is that we cannot identify the shape clusters without first remov-
ing time variation; on the other hand, we cannot remove time variation without causing some degree of
shape distortion if the cluster structure is unknown.

There are a number of methods that incorporate time delay into a similarity measure such as the
event method (Kwon and others, 2003) or the time-delayed correlation method (Li and others, 2006).
In these approaches, the continuous biological processes are discretized, which may lead to potential
loss of important information. The time delay is restricted to be a multiple of the time interval between
observed time points. Moreover, after adjusting for time variation, the distance between any 2 genes
decreases, regardless of whether they have similar shapes. This overall decrease of pairwise distance will
affect the ability of an algorithm to identify groups with different shapes. A mixed-effects model that
contains random parameters for scaling and translation in time was proposed by Chudova and others
(2003). Assumptions include a multivariate normal distribution and that there is no correlation between 2
different measurements taken from the same subject, which is unrealistic for the time course data. Possible
misalignment of time intervals is another problem.

The time-synchronized clustering method proposed here successfully combines the competing
goals of curve alignment and shape clustering, by identifying clusters that contain gene profiles with
similar shapes and a variety of time dynamic patterns within a cluster but not across clusters. This is
biologically sensible as we shall demonstrate with gene expression time courses from yeast and human
fibroblasts. The proposed approach treats the expression profiles as continuous functions of time, and
the individual time dynamics are modeled by a monotone increasing function, the time warping func-
tion. A cluster-specific warping procedure is proposed which implements time warping only within small
neighborhoods, where the neighborhood relation is determined by the L2 distance of trajectories after a
pairwise warping step. The performance of this method in both simulations and real time course gene
expression data indicates that it can successfully identify the true shape clusters and produce tighter
and better defined clusters than do K -means and hierarchical clustering, both of which use conventional
distance measures.

2. MODELS AND METHODS

In this section, we introduce a model that accommodates data sets with multiple shape patterns (clusters)
and allows for time heterogeneity among curves within the same cluster. Let Y1,. . . , Yn denote n contin-
uous random functions defined on a closed real interval T = [0, T ]. These curves are observed at time
points t j = j−1

m−1 T, j = 1, . . . , m, under additional random errors, with measurements

yi j = Yi (t j ) + εi j = Xi (h
−1
i (t j )) + εi j , i = 1, . . . , n, j = 1, . . . , m, (2.1)
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34 R. TANG AND H.-G. MÜLLER

where the random errors εi j are assumed to be independent and to satisfy Eε = 0 and Eε2 = σ 2 < ∞.
In this model, Xi are underlying random functions that define amplitude variation of the curves and hi

are random warping functions, that is, transformations of the time axis, where hi : T → T . The inverse
warping functions h−1

i are assumed to exist and define the actual timescale of Yi .
The amplitude variation functions Xi follow the model

Xi (t) = Vi (t) + δZi (t), i = 1, . . . , n, t ∈ T , (2.2)

where Vi = µl for any Yi in cluster l and µl are fixed twice continuously differentiable cluster-specific
shape functions that satisfy

∫
To

µ′
l(t)

2 dt > 0 for any nondegenerate interval To ⊆ T , and there exists

C � δ such that
∫
T (µl1(t) − µl2(t))

2 dt � C > 0 for clusters l1 	= l2. The coefficient δ is a small
positive constant, while Zi are twice continuously differentiable independent random processes that sat-
isfy E Zi (t) = 0, E Z2

i (t) < ∞, E Z ′
i (t)

2 < ∞ and E Z ′′
i (t)2 < ∞, for t ∈ T . We may normalize these

processes by requiring
∫
T E(Z2

i (t)) dt = 1, thus also providing a unique specification of δ. Processes Zi

are assumed to be independent of hi . Note that δZi plays the role of a small additional amplitude varia-
tion process. We refer to Section 5 for more discussion. For the practically important case where one has
discrete measurements as in (2.1), we include a presmoothing step (see, e.g. Leng and Müller, 2006).

Denoting the true cluster membership of Yi by Mi , we have E(Xi (t)|Mi = l) = µl(t). Additionally,
for identifiability, we assume

E(hi (t)|Mi = l) = t, 1 � i � n, 1 � l � L . (2.3)

The size of cluster l is given by

nl =
n∑

i=1

1{Mi =l}, l = 1, . . . , L , (2.4)

with 0 < nl < n and
∑L

l=1 nl = n. As mappings between timescales, the warping functions hi should
satisfy the common endpoints condition, that is, hi (0) = 0, hi (T ) = T , and the strict monotonicity
condition, that is, hi (t j1) < hi (t j2), for 0 � t j1 < t j2 � T . Illustrating these concepts, Figure 1 displays
simulated data with 4 different shape patterns, distorted by a considerable amount of time variation within
each cluster.

2.1 Pairwise warping

Pairwise warping is a curve synchronization method that utilizes relative time dynamics of every curve
pair to arrive at a global warping function (Tang and Müller, 2008). For any 2 curves Yi , Yk in the same
cluster, the underlying pairwise warping function gik is a composite of the 2 individual warping functions,
gik(t) = hi (h

−1
k (t)). Estimates of pairwise warping functions are obtained by minimizing a target function

C(Yi , Yk, g), subject to the monotonicity and endpoint constraints

g̃ik(t) = arg min
g

C(Yi , Yk, g), (2.5)

where g is required to satisfy gik(0) = 0, gik(T ) = T, and gik(t1) < gik(t2), 0 < t1 < t2 < T,
where entire trajectories Yi , i = 1, . . . , n, are assumed to be either directly observed or obtained after a
smoothing step, by applying a standard smoothing method. The target function to be minimized is

Cλ(Yi , Yk, g) = E

{∫
T

(Yi (g(t)) − Yk(t))
2 + λ(g(t) − t)2 dt |Yi , Yk

}
,

where λ � 0.
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Fig. 1. An example of simulated clustered random functions. Upper left: mean functions of 4 clusters; upper right: 40
generated time warping functions; lower left: 40 simulated clustered random functions without noise; lower right: 40
simulated clustered random functions with noise. Mean functions µ1 for cluster 1 (dashed–dotted line), µ2 for cluster
2 (bold dashed line), µ3 for cluster 3 (solid line), and µ4 for cluster 4 (bold solid line).

We note that Cλ(Yi , Yk, g) and therefore g̃ik are not symmetric in i and k, as g̃ik and g̃ki have different
reference trajectories. A measure of proximity between the 2 trajectories Yi and Yk is the L2 distance after
aligning Yi to the reference Yk ,

d̃pw(i, k) =
{∫
T

(Yi (g̃ik(t)) − Yk(t))
2 dt

} 1
2

. (2.6)

As long as the 2 curves being aligned are from the same cluster, their distances after aligning one to the
other are expected to be small because the main source of variation is time variation. However, if they
come from different clusters, the shape variation between them cannot be accounted for with monotone
transformations g̃ik , due to the fact that

∫
T

(
µl1(t) − µl2(t)

)2 dt � C > 0 for l1 	= l2. This results in
much larger distances d̃pw for pairs of curves that belong to different clusters after their alignment. While
d̃pw is not symmetric in i and j , a bona fide symmetric distance between time-synchronized trajectories
is defined in (2.10) and provides the basis for the actual clustering step of our algorithm.

2.2 Cluster-specific warping

Clusters in gene expression trajectories usually display multiple shape patterns, and directly applying
time warping may not succeed in synchronizing the curves (upper left panel of Figure 2) and may even
cause shape distortions. To address this problem, we propose a “cluster-specific warping” procedure.
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36 R. TANG AND H.-G. MÜLLER

Fig. 2. Results for simulations, using as input the simulated data from the lower right panel of Figure 1. Upper left:

application of pairwise warping to all data; upper right: K -means clustering with L2 distance; lower left: cluster-
specific warping with threshold do = 1; lower right: pairwise warping within true clusters—cluster 1 (dashed–dotted
lines), cluster 2 (solid dashed lines); cluster 3 (solid lines); cluster 4 (bold solid lines).

If cluster membership information is available, according to (2.3), E(gik(t)|hi , hk, Mi = Mk) = t be-
comes E(hi (h

−1
k (t))|hi , hk, Mi = Mk) = h−1

k (t) after replacing t with h−1
k (t). This motivates to estimate

the individual cluster-specific warping function for trajectory Yk through

h̃−1
k (t) = 1

nl

n∑
i=1

g̃ik(t)1{Mi =Mk=l}. (2.7)

After numerical inversion to obtain estimated cluster-specific warping functions h̃k , we achieve very
good synchronization and removal of time variation within clusters (lower right panel of Figure 2). Im-
plementing the estimates in (2.7) requires knowledge of true cluster membership, which is the objective
of the clustering procedure in the first place. The L2 distances after pairwise warping dpw(i, k) are ex-
pected to behave quite differently for pairs from the same cluster as compared to pairs from different
clusters. This motivates to estimate cluster-specific warping functions hk based exclusively on pairs for
which dpw(i, k) < do, for a preselected threshold do, leading to

ĥ−1
k (t) = 1∑n

i=1 1{dpw(i,k)<do}

n∑
i=1

g̃ik(t)1{dpw(i,k)<do}, (2.8)

where do serves as a cutoff point for distances after initial pairwise warping.
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2.3 Data synchronization and clustering

Once we obtain cluster-specific warping functions, trajectories are time synchronized via

Y ∗
k (t) = Yk (̃h

−1
k (t)), k = 1, . . . , n. (2.9)

In the simulated example (lower right panel of Figure 1), we find that amplitude variation, that is, the
variation caused by the presence of multiple shape patterns, is enhanced in the time-synchronized curves
(lower left panel of Figure 2). Time-synchronized L2 distances are defined as

dt (i, k) =
{∫
T

(Y ∗
i (t) − Y ∗

k (t))2 dt

} 1
2

, 1 � i, k � n. (2.10)

Because the threshold in (2.8) is usually chosen conservatively in order to prevent shape distortion, the
curves resulting from cluster-specific warping are not as tightly synchronized as those resulting from
warping within clusters under known cluster structure (lower panels in Figure 2).

We note that after the time-synchronizing transformation, one can apply any preferred clustering
method for the final determination of the clusters.

2.4 Choice of threshold

The selection of the threshold do is important as it determines which pairwise warping functions will
be included in (2.8). A large threshold may lead to shape distortion, while a small threshold may not
sufficiently adjust for time variability. In our experience, it is more important to prevent shape distortion,
and therefore we advocate choosing a relatively small threshold do.

Assuming there are L clusters, the following consideration provides a lower bound for the number
of pairs belonging to the same cluster. In the entire data set of n curves, there are n(n − 1) possible
combinations of curve pairs. Pairs (Yi , Yk) and (Yk, Yi ) count as different combinations because the
outcome of pairwise warping between a curve pair is dependent on which of the 2 curves is used as
reference. Among these n(n − 1) curve pairs, the total number of pairs belonging to the same cluster is∑L

l=1 nl(nl − 1) = ∑L
l=1 n2

l − n.
One can show that if the data are partitioned into L clusters, then the number of curve pairs belonging

to the same cluster is
L∑

l=1

n2
l − n � L L

√
n2

1n2
2, . . . , n2

L − n � n(n − L)

L
,

where the lower bound is achieved for n1 = n2 = · · · = nL = n
L .

As a consequence, regardless of cluster size distribution, one has at least n(n−L)
L pairs of curves that

belong to the same cluster. Let D be a 1 × n(n − 1) vector that contains the distances after pairwise
warping between all possible curve pairs and Dk = (dpw(1, k), . . . , dpw(n, k)) be vectors of distances
after pairwise warping of Yi , i = 1, . . . , n, against Yk . Denote the qth quantile of a data sample U =
(u1, . . . , un) in the sense of Hyndman and Fan (1996) by Q(U, q). The pairs (i, k) for which dpw(i, k) is
smaller than Q

(
D, (n−L)

(n−1)L

)
are likely members of the same cluster. This motivates the threshold value

do = Q

(
D,

(n − L)

(n − 1)L

)
,

which we implement in practice by

dko = max

(
Q

(
Dk,

3

n

)
, Q

(
D, ζ

n − L

(n − 1)L

))
, k = 1, . . . , n. (2.11)
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38 R. TANG AND H.-G. MÜLLER

Here, ζ is a parameter that controls the threshold and Q
(
Dk,

3
n

)
ensures that at least 3 pairwise warping

functions are included in the cluster-specific warping. The optimal choice of ζ can be obtained by

ζ ∗ = arg min
ζ

H/S, (2.12)

where H measures the homogeneity and S the separation of the resulting clusters (Tang and Vemuri,
2005). In the context of discovering similar but potentially time-warped clusters, homogeneity H and
separation S are computed for time-synchronized curves as follows:

H = 1

L

L∑
l=1

1

n̂l

{
n∑

i=1

1{M̂i =l}
∫
T

(Y ∗
i (t) − Ȳl

∗
(t))2 dt

}
(2.13)

and

S = 1∑L
l1 	=l2 n̂l1 n̂l2

L∑
l1 	=l2

n̂l1 n̂l2

∫
T

(Ȳl1
∗
(t) − Ȳl2

∗
(t))2 dt, (2.14)

where Ȳl
∗
(t) = 1

n

∑n
i=1 Y ∗

i (t)1{M̂i =l} are the average profiles of time-warped curves in cluster l, n̂l =∑n
i=1 1{M̂i =l} are the sizes of the estimated clusters, and M̂i are the estimated cluster memberships. A

small H/S suggests that the resulting clusters are homogeneous and well separated. To accelerate com-
putation, we usually search for the best ζ within the interval [0.5, 1]. In many cases, ζ = 1 leads to very
good results.

This time-synchronized clustering method is effective in identifying clusters of curves that share sim-
ilar shape patterns in the presence of time variation. It can be used to remove time variation from the data,
after which they can be entered into any clustering algorithm, which utilizes distances between data. We
compare the performance of various clustering methods in a simulation study as well as applications. The
code for the proposed time-synchronized clustering algorithm is available upon request.

3. SIMULATION STUDY

To compare the performance of the proposed time-synchronized warping method with conventional hier-
archical clustering and K -means clustering, we generated 100 samples, each with 40 curves falling in 4
different clusters. The mean functions of each cluster were constructed from linear combinations of cubic
B-spline basis functions with random coefficients, determining the underlying pattern of each cluster. In
the upper left panel of Figure 1 is an example of such mean functions for 4 clusters. For each sample,
new spline coefficients were generated to obtain 4 new mean functions. Thus, we were able to study a
wide range of shape patterns and evaluate the performance of the proposed method in a multitude of
situations.

The time transformations hi were generated using the area under a second set of random curves, which
were generated similarly to the mean functions. Because the B-spline basis is positive on the domain
spanned by the knots and zero elsewhere (Eilers and Marx, 1996), these random curves are positive and
the area under the curves is monotone increasing. The resulting warping functions induce substantial time
distortion (upper right panel of Figure 1). Each time transformation was randomly assigned to one of
the 4 mean functions with equal probability. To avoid sparse clusters, the minimum cluster size was set
to 6. An example of 40 curves generated from the described procedure is displayed in the lower right
panel of Figure 1. The lower left panel of Figure 1 shows the structure of the same data before noise was
added.
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After applying time-synchronized warping, the results were compared with those obtained from
K -means and hierarchical clustering based on the regular L2 distance

dL2(i, k) =
{∫
T

(Yi (t) − Yk(t))
2 dt

} 1
2

, (3.1)

which does not take into account time variation. To assess the quality of the discovered clusters, we used
the Rand index (Rand, 1971) and the Jaccard coefficient (Tan and others, 2005). The Rand index can
be viewed as the ratio of pairs for which there is an agreement, while the Jaccard coefficient reflects the
percentage of agreement between the estimated and the true clusters. When the Rand index is infinity or
the Jaccard coefficient is 1, the estimated cluster structure is in perfect agreement with the true cluster
structure.

The histograms of the Jaccard coefficients for the various clustering methods obtained from the simu-
lations are shown in Figure 3 (Rand indices were not plotted, as they are infinity for perfect agreement).
The parameter ζ that determines the threshold of cluster-specific warping in the proposed method was
chosen as in (2.12). The clusters obtained using time-synchronized L2 distance and optimal ζ were often
in perfect agreement with the true cluster structures, regardless of the clustering techniques used, and there
were only few incidences where K -means and hierarchical clustering with time-synchronized L2 distance
failed to reach more than 60% concordance with the true cluster structures. Overall, K -means with time-
synchronized L2 distance performed best and identified the true cluster structures 93 times among the 100
simulation samples. Hierarchical clustering based on time-synchronized L2 distance also performed very

Fig. 3. Histogram of Jaccard coefficients obtained by simulating different clustering methods. Upper left panel: hierar-

chical clustering with time-synchronized L2 distance (2.10), with ζ chosen by (2.12); upper right panel: hierarchical
clustering with L2 distance (3.1); lower left panel: K-means clustering method with time-synchronized L2 distance
(2.10), with ζ chosen by (2.12); lower right panel: K -means clustering with L2 distance (3.1).
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well and reached Jaccard = 1 in 63 cases. In contrast, K -means and hierarchical clustering with regular
L2 distance only successfully identified the true cluster structures 54 and 23 times, respectively.

4. APPLICATIONS TO TIME COURSE GENE EXPRESSION DATA

The 3 organizing principles of gene ontology are cellular component, biological process, and molecular
function (Ashburner and others, 2000). It is commonly believed that the relationship of biological pro-
cesses with gene expression is guided by the “guilt by association” principle, that is, genes that share
similar expression patterns also have similar functions (Brown and others, 2000; Lagreid and others,
2003). In the following examples, we first consider an application where biological annotation is not
available, assessing the quantitative performance of the proposed method for a human fibroblast gene
expression. In a second application, we use available information on biological function of genes for
one of the most studied organisms, Saccharomyces cerevisiae, where 6 known biological processes define
6 natural clusters.

4.1 Response of human fibroblasts to serum data

The human fibroblast gene expression data contain complementary DNA microarray measurements of
over 8000 genes at 12 different time points after the introduction of serum. For the purpose of clus-
tering, we rescale the domains of these curves to [0, 1] and select the 517 genes studied by Iyer and
others (1999). The full biological annotation is not yet available for these 517 genes. According to Khatri
and others (2004), only 71 of these genes have been associated so far with 14 biological pathways.

In the absence of further biological annotation, as is the case for these data, 2 particularly useful fea-
tures are the within-clusters homogeneity H (2.13) and the between-clusters separation S (2.14). Because
the goal of the proposed method is to identify classes of comparable genes which exhibit similar behav-
iors, subject to transformation of the time axes, the quantities H and S are calculated based on the aligned
curves (2.9). The values of H and S for alternative clustering methods without time adjustment are directly
calculated using the original gene profiles. Small H and large S indicate smaller within-cluster variation
and larger between-cluster variation, so that a low value of H/S indicates a desirable cluster structure.
We use this measure to evaluate the overall performance of clustering with and without time adjustment,
varying the number of clusters L . The threshold in the proposed method for cluster-specific warping was
determined according to (2.11).

As shown in Figure 4, using the time-synchronized L2 distance systematically produced tighter and
better separated clusters regardless of the clustering algorithm applied. We also performed this analysis on
other time course gene expression data that were measured during rat central nervous system development
(Wen and others, 1998). Similar improvements in H and S were observed in this second application. These
applications provide evidence that the clusters produced by the proposed method enjoy better properties
than standard methods of clustering for temporal gene expression data.

4.2 Reconstruction of yeast biological processes

Six yeast biological processes (Hong and others, 2006) for which corresponding genes showed time-
delayed co-expressed patterns in a cell cycle experiment (Spellman and others, 1998) are response to
stress, protein biosynthesis, mitotic sister chromatid segregation, protein amino acid phosphorylation, cell
wall organization and biogenesis, and conjugation with cellular fusion.

There are 51 genes involved in these 6 processes, and their gene expression values were taken from
a microarray experiment in which relative messenger RNA abundances were measured every 7 min for
119 min after the yeast strain was arrested in the G1 phase by alpha factor. It is evident that the gene
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Fig. 4. H/S (2.13, 2.14) for different clustering methods for fibroblast gene profiles when the number of clusters

ranges from 2 to 25: hierarchical clustering with time-synchronized L2 distance (dashed line); K -means clustering
with time-synchronized L2 distance (solid line); K -means clustering (line with squares); hierarchical clustering (line
with circles). Smaller H/S ratio indicates better clustering.

expression trajectories for the same biological process exhibit similar baseline patterns after sup-norm
normalization, that is, replacing f (x) by f (x)

supy | f (y)| . There is, however, substantial time variation within

each cluster (Figure 5). For this reason, genes in different biological processes may appear to have smaller
L2 distances (3.1) than those that belong to the same process, leading to inefficient clustering when using
the regular L2 distance.

Addressing the time variation, the proposed local cluster-specific time warping algorithm was applied
with threshold value 0.75, chosen via (2.12), followed by the hierarchical clustering method based on
the time-synchronized L2 distance (2.10), aiming at 6 clusters. The resulting clusters are homogeneous
(Figure 6). We also obtained alternative cluster estimates, using K -means and hierarchical clustering
without time synchronization.

Because the biological processes form 6 known natural clusters, we are able to calculate Rand indices
to compare different methods. This measure assesses the agreement between estimated and true clusters.
The proposed method achieved a Rand index of 42.35, about 6–7 times higher than the Rand indices
for the standard K -means and hierarchical clustering methods, which were only 7.85 and 6.11, respec-
tively. Another quality measure for method clustering, homogeneity H (2.13), was also compared for
time-synchronized and standard clustering. Small H indicates more homogeneous clusters, and it turned
out that the proposed method had the smallest homogeneity, 0.033, while the homogeneities of standard
K -means and hierarchical clustering were 0.042 and 0.041, respectively, even after time synchronizing
within the estimated clusters.

As do virtually all clustering algorithms, the proposed method requires a prespecified number of clus-
ters. It is therefore of interest to evaluate its robustness under misspecification of the number of clusters.
When the number of clusters varied between 2 and 8, time-synchronized clustering consistently produced
better results than K -means and hierarchical clustering with L2 distance, in terms of the Rand index, as
illustrated in Figure 7.
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Fig. 5. Expression patterns of 51 yeast genes that are involved in 6 biological processes: (1) response to stress,
(2) protein biosynthesis, (3) mitotic sister chromatid segregation, (4) protein amino acid phosphorylation, (5) cell
wall organization and biogenesis, and (6) conjugation with cellular fusion.

5. CONCLUDING REMARKS

We note that the small random amplitude perturbation function δZi in model (2.2) is not a target of
interest. This component plays no role in the clustering process and rather is a nuisance component that
is included to allow for amplitude variation in the data, thus more realistically reflecting many functional
data encountered in applications. Our theoretical arguments demonstrate that this component indeed can
be ignored as long as δ remains small.

For the case of discrete measurements as reflected in (2.1), we include a presmoothing step, which
requires to that a minimum number of repeated measurements per trajectory are available. How many
measurements are actually needed to obtain a sufficiently accurate estimate of the underlying trajectory
when implementing this smoothing step depends on several factors, including the design of the measure-
ments and the signal-to-noise ratio. For commonly observed data, 10 or more repeated measurements
per trajectory will often suffice. In the examples in Section 4, one has 12, respectively 17, measurements
available.

Our results clearly demonstrate that time synchronization must be considered at the cluster estima-
tion stage and not independent of it. The proposed time-synchronized clustering method produces more
accurate and homogeneous clusters by coupling time synchronization with a suitable clustering algo-
rithm by adopting this idea. We find that time variation adjustment in gene expression clustering can
substantially improve upon standard clustering techniques for such data. With the aid of the proposed
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Fig. 6. Clusters obtained by the hierarchical clustering, based on time-synchronized L2 distances, where the curves
within the same clusters are synchronized, for the yeast gene expression data of Figure 5. Rand index = 42.35 and
Jaccard coefficient = 0.8758.

Fig. 7. Rand index profiles when the number of clusters varies from 2 to 8: Rand indices for time-synchronized
clustering (solid line), hierarchical clustering (dotted line), and K -means clustering (dashed line).
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time-synchronized clustering method, one can discern expression trajectories with similar shapes even
under the interference of time variation, enabling a closer connection between the resulting clusters and
the functionally related gene groups.
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LENG, X. Y. AND MÜLLER, H. G. (2006). Classification using functional data analysis for temporal gene expression
data. Bioinformatics 22, 68–76.

LI, X., RAO, S. Q., JIANG, W., LI, C. X., XIAO, Y., GUO, Z., ZHANG, Q. P., WANG, L. H., DU, L., LI, J.
and others (2006). Discovery of time-delayed gene regulatory networks based on temporal gene expression pro-
filing. BMC Bioinformatics 7, 7–26.

LUAN, Y. AND LI, H. (2003). Clustering of time-course gene expression data using a mixed-effects model with
B-spline. Bioinformatics 19, 474–482.

MA, P., CASTILLO-DAVIS, C. I., ZHONG, W. AND LIU, J. S. (2006). A data-driven clustering method for time
course gene expression data. Nucleic Acids Research 34, 1261–1269.

MARRIOTT, F. H. C. (1982). Optimization method of cluster analysis. Biometrika 69, 417–421.

RAMSAY, J. O. AND LI, X. (1998). Curve registration. Journal of the Royal Statistical Society, Series B 60, 351–363.

RAND, W. M. (1971). Objective criterion for the evaluation of clustering methods. Journal of the American Statistical
Association 66, 846–850.

SAKOE, H. AND CHIBA, C. (1978). Dynamic programming algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech, and Signal Processing 26, 43–49.

SPELLMAN, P. T., SHERLOCK, G., ZHANG, M. Q., IYER, V. R., ANDERS, K., EISEN, M. B., BROWN, P. O.,
BOTSTEIN, D. AND FUTCHER, B. (1998). Comprehensive identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9, 3273–3297.

STOREY, J. D., XIAO, W. Z., LEEK, J. T., TOMPKINS, R. G. AND DAVIS, R.W. (2005). Significance analysis of
time course microarray experiments. Proceedings of the National Academy of Sciences of the United States of
America 102, 12837–12842.

TAN, P. N., STEINBACH, M. AND KUMAR, V. (2005). Introduction to Data Mining. Boston, MA: Addison Wesley.

TANG, N. AND VEMURI, V. R. (2005). An artificial immune system approach to document clustering. SAC ’05:
Proceedings of the 2005 ACM Symposium on Applied Computing. ACM, pp. 918–922.
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