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Abstract
In this study, we investigate a firm’s optimal investment timing and capacity decisions in
the presence of uncertain time-to-build. The firm raises revenue from the investment after
an uncertain amount of time elapses, while the time-to-build of the follow-up investment is
expectedly shorter than that of the initial investment due to learning by doing. We derive
the optimal investment strategies and examine the impact of time-to-build on the investment
dynamics. We show that both the initial and follow-up investment can be made earlier in the
presence of time-to-build than they would in the absence of the lags, especially in a volatile
market. This is in contrast to the case of a single investment, whose timing is always delayed
by the time-to-build. Furthermore, the capacity of the follow-up project dominates that of
the initial project in the presence of time-to-build, whereas the latter dominates the former
in the absence of lags. The capacity choice of each project, however, is nonmonotone with
respect to the size of the lags. We also show that uncertainty delays investment even when
the investment involves lags but the negative impact softens in the presence of time-to-build
and learning effects.

Keywords Time-to-build · Investment lags · Learning by doing · Capacity expansion · Real
options

JEL Classification D24 · D25 · G31

1 Introduction

Ramping up production usually takes longer than initial expectations. During the COVID-19
pandemic and the accompanying global supply chain disruption, this was more true than
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ever before. The Global COVID-19 Vaccine Supply Chain and Manufacturing Summit1

reported that 837 million doses of vaccines were projected to be produced in 2020 but only
31 million were produced, which is less than 4% of the original projection. The production
speed increased throughout 2021 as vaccine makers expanded their capacities, but there have
been occasional hiccups in the manufacturing process due to the shutdown of factories and
the shortage of raw materials. Furthermore, developing and manufacturing vaccines for a
new variant still make their time-to-build highly uncertain.

Time-to-build and its inherent uncertainty are not limited to manufacturing new vaccines.
As global demand for semiconductors surged, chipmakers strove to expand their capacities.
The Taiwan Semiconductor Manufacturing Company (TSMC), the chip-making industry
leader, is investing more than $100 billion over the next three years, and Samsung plans
to invest $150 billion by the end of the decade. However, the chipmakers cannot expand
their capacities instantly despite their desire to do so.2 In an interview with the Financial
Times, the chief executive of Intel, which is planning to invest up to e80 billion and $40
billion in Europe and the U.S., respectively, acknowledged that the shortage of chip-making
equipment will delay their capacity-expansion plans. He noted that it would take two years to
build the shell of the chip factory and start to fill it with equipment in year three or four. The
chief executive of ASML, the largest supplier of lithography machines for manufacturing
semiconductors,3 warned that the shortage of chip-making equipment could last for the next
two years (Hollinger andWaters 2022). The delay of capacity expansion in the semiconductor
industry has caused production lags in other industries as well.4

Recent trends show that time-to-build is a universal phenomenon, especially in mass pro-
duction based on state-of-the-art technology, andmany studies have investigated the impact of
time-to-build on a firm’s optimal investment strategy. In most studies, however, the modeling
was not comprehensive enough to reflect the features of real-world investment projects and
the dimensions of investment decisions. For instance, many of them considered the impact
of time-to-build only on investment timing, leaving the impact on its size unanswered [e.g.,
Majd and Pindyck (1987), Bar-Ilan and Strange (1996, 1998), Jeon (2021a)]. Some studies
have not considered the inherent uncertainty in time-to-build [e.g., Majd and Pindyck (1987),
Bar-Ilan and Strange (1996, 1998), Boonman and Siddiqui (2017)]; others have not allowed
a follow-up investment [e.g., Majd and Pindyck (1987), Bar-Ilan and Strange (1996), Boon-
man and Siddiqui (2017), Jeon (2021a)]. Even when the follow-up investment is considered,
learning by doing, which is a distinct feature in a sequential investment, has often been
overlooked [e.g., Bar-Ilan and Strange (1998), Pacheco-de-Almeida and Zemsky (2003)].

A conventional result from these studies is that time-to-build delays investment unless
there is an abandonment option that truncates the downside risk of investment. Another
conventional result from the real options literature is that uncertainty delays investment yet
increases its size. In this study, we investigate if these results still hold when investment

1 The summit was convened in March 2021 by Chatham House, also known as the Royal Institute of Interna-
tional Affairs, in collaboration with top-notch institutes such as COVID-19Vaccines Global Access (COVAX),
a worldwide initiative directed by the World Health Organization (WHO), and the International Federation of
Pharmaceutical Manufacturers and Associations (IFPMA).
2 According to Gallagher (2021), the lead time of semiconductors rather soared to an average of nearly 22
weeks in the third quarter of 2021 compared with 13 weeks a year before.
3 As of 2022, the Dutch company is the sole supplier of extreme ultraviolet lithography machines, which is
equipment essential to fabricating microchips based on a nanometer process.
4 Volkswagen and Stellantis, the two largest European carmakers, reported that the production of new vehicles
plunged by 35% and 30%, respectively, in the three months to September 2021, which is mainly attributed to
chip shortage (Boston and Kostov 2021).
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projects involve uncertain time-to-build and there is a learning effect between the initial and
follow-up investment. In particular, we take both investment timing and its size into account
in the discussion regarding investment strategy. To be more specific, we suppose it takes
an uncertain amount of time until a firm begins raising revenue from its initial investment.
After the capacity is in operation, the firm can expand its capacity further, and the time-to-
build of the subsequent project is expected to be shorter than that of the initial one because
of learning by doing. With this setup, we derive the optimal investment timing and capacity
choice for each investment project and discuss how investment lags—combinedwith learning
by doing—affect the firm’s investment dynamics and how they change the impact of volatility
on investment decisions. To the best of our knowledge, this is the first study to examine the
impacts of uncertain time-to-build and learning by doing on investment dynamics from the
perspective of timing and size.

First, we show that the follow-up investment can be made earlier in the presence of
uncertain time-to-build than it would in the absence of the lags. Due to time-to-build, the
firm does not make any instant profits after the initial investment. As demand grows further
without generating any revenue, the opportunity for the follow-up investment becomes more
valuable than the case in which the initial project yields revenue instantly. That is, time-to-
buildmakes the firm favor the capacity expansion optionmore. This is in contrast to the case of
a firm holding a single investment opportunity with uncertain lags. Jeon (2021a) showed that
the one-shot investment is always delayed in the presence of uncertain time-to-build because
the lags reduce the expected profits of the project and thereby increase the value of waiting.
Given the expansion option, however, the initial project’s time-to-build undermines the value
of waiting to invest in the follow-up project, and this effect can dominate the decrease in the
expected profits by the lags, advancing the timing of the capacity expansion.

Given substantial learning effects, not only the follow-up investment but also the initial
investment is made earlier in the presence of time-to-build than it would in the absence of
lags. This implies that the earlier investment in the initial project is not because the firmwants
to make revenue from it sooner but because the firm wants to learn from it earlier, expecting
shorter lags in the follow-up investment. In other words, the initial project becomes more of a
source of learning than that of revenue. Bar-Ilan and Strange (1996) showed that the presence
of time-to-build can hasten investment. They analyzed the optimal timing decision regarding
a single investment with fixed lags, but they assumed that the firm could abandon the project
later on. The lags increase uncertainty, and thus, the value of waiting, but the abandonment
option truncates the downside risks. For this reason, longer lags increase the expected value
of investment, inducing earlier investment. In our model, the firm faces uncertain time-to-
build without the option to truncate the downside risks. Nevertheless, time-to-build induces
earlier follow-up investment while learning effects result in earlier initial investment.

We also find that the capacity of the follow-up investment can be greater than that of the
initial investment in the presence of time-to-build. This is in sharp contrast to the case of
no lags in which the initial capacity exceeds the subsequent capacity. The follow-up project,
which can benefit from learning by doing, becomes more valuable when the initial lags are
longer and the firm places more weight on the follow-up investment than on the initial one.
Combined with the timing decision, this implies that the firm invests earlier inmore capacity
in the follow-up project in the presence of time-to-build than it would without the lags. The
capacity size, however, is not monotone with respect to the lags; after the lags exceed a
certain level, the capacity of the initial and follow-up investment increases and decreases
with the lags, respectively. This is because the initial time-to-build becomes so lengthy that
the revenue from the expansion is expected to be generated in the distant future, even after
taking learning effects into account. Boonman and Siddiqui (2017) investigated the effects of
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operational flexibility with fixed lags and showed that longer lags lead to a greater capacity.
In their model, a suspension option that does not involve lags truncates the downside risk of
the investment, while revenues are expected to increase during the resumption’s lags. For this
reason, the optimal capacity size increases with the lags. In contrast, our model shows that
the capacity of the follow-up investment can increase with time-to-build even when the lags
are uncertain and the downside risk cannot be truncated, mainly because of learning effects
from the initial investment.

Lastly, we show that uncertainty delays investment as many studies have shown [e.g.,
McDonald and Siegel (1986), Pindyck (1988, 1993)], but the negative impact of uncertainty
softens in the presence of time-to-build and learning by doing. That is, the investment thresh-
olds increase with volatility but at a slower rate in the presence of the lags. This is in sharp
contrast with the case of a single investment in which time-to-build amplifies the negative
impact of uncertainty on investment timing. We also observe that uncertainty increases the
capacity size, which is also in line with the conventional finding [e.g., Dangl (1999), Bar-Ilan
and Strange (1999), Seta et al. (2012)], but the size of impact on the initial and follow-
up capacities is altered. Without the lags, the initial capacity increases with volatility at a
much faster rate than the subsequent capacity, and thus, the former dominates the latter. In
the presence of time-to-build, however, both capacities increase at a similar rate, and the
latter is dominant over the former. Bar-Ilan and Strange (1996) found that uncertainty can
hasten investment in the prsence of time-to-build, but this is mainly because of the abandon-
ment option that truncates the downside risk of the investment. Bar-Ilan et al. (2002) found
that when lags are significant, uncertainty accelerates investment but reduces its size. This
is because they assumed that excess capacity incurs costs, which naturally induces earlier
investment with a smaller capacity. Unlike these studies, our model supports the conventional
result regarding the effects of uncertainty on investment, but the size of the impact is altered
due to time-to-build and learning effects.

The remainder of this paper is organized as follows. Section2 presents a literature review.
Section3.1 introduces the setup of the model, and in Sect. 3.2 the case without time-to-
build is examined as the benchmark model. In Sect. 3.3, we investigate the main model,
which incorporates uncertain time-to-build into investment decisions. Section4 presents the
comparative statics results and related discussion; Sect. 4.1 discusses the impact of the size of
time-to-build on the optimal investment strategies, and in Sect. 4.2, we investigate how time-
to-build affects the impact of the volatility on the investment strategies. Section5 summarizes
themain results and discusses futurework. All the proofs are provided inAppendixA, and the
results of the benchmark case with a single investment opportunity are given in Appendix B.
Appendix C presents the decomposition of option values into their intrinsic values and time
values. In the Online Appendix, we extend the model by incorporating the case in which
the firm can make the follow-up investment even before the completion of the initial project
and discuss the results from comparative statics. It also provides a table that summarizes
important notations that appear throughout the manuscript.

2 Literature review

The seminal work of Majd and Pindyck (1987) pioneered the research of time-to-build in
a firm’s investment decision, demonstrating that the investment is delayed as the maximum
rate at which it can be made decreases. Bar-Ilan and Strange (1996) directly modeled the lags
by assuming that a certain amount of time has to elapse until the project yields revenue and
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showed that the presence of time-to-build can hasten the investment. Bar-Ilan and Strange
(1998) extended their previous research to a project requiring a two-stage investment to make
profits and showed that the investment can be made sequentially if the firm has the option
to suspend the second investment. However, a series of their works only considered a timing
decision of the investment without uncertainty in the lags. By contrast, the current study
examines both the timing and size decisions of capacity expansion and clarifies the impact
of uncertain time-to-build on the investment dynamics. Pacheco-de-Almeida and Zemsky
(2003) studied the effect of time-to-build in a duopolymarket based on a three-period discrete
model and showed that when time-to-build is significant, both firms can make an incremental
investment, whereas insignificant lags lead to lumpy investments. Jeon (2021b) also studied
the impact of time-to-build on duopoly competition, but the study incorporated asymmetry
in firms’ time-to-build and showed that the disadvantaged firm with longer time-to-build can
become a leader in the market. Boonman and Siddiqui (2017) studied a firm’s investment
decision in the presence of operational flexibility and lags, and found that longer time lags
result in a larger capacity but that the impact of the lags on the timing decision depends on
the volatility.

Most studies of time-to-build implicitly assume that after the investment is made, nothing
happens until the project’s completion; however, there are a few exceptions. Gauthier and
Morellec (2000) incorporated the option of abandonment into the discussion of implemen-
tation delay. They investigated the European abandonment option, which requires the price
to be above a certain level after the delay has passed, and the Parisian abandonment option,
which requires the price to remain above a certain level throughout the period of delay. Coste-
niuc et al. (2008) extended the discussion of the latter and derived an analytic solution to the
problem. Agliardi and Koussis (2013) incorporated debt financing into two-stage investment
decisions and considered the firm’s default between the two investments, but the investment
timing was exogenously given in their model. By contrast, Jeon (2021a) also considered the
default decision during time-to-build but the investment, financing, and default decisions
were endogenously derived. The study showed that the default probability in the presence of
time-to-build can be lower than that in the absence of the lags. Our study does not address
the option of abandonment or default after the investment. Instead, we focus on what can
occur between the initial and the follow-up investments and how it affects the firm’s optimal
investment strategies.

Time-to-build has been extensively studied in the literature on real business cycles (RBC).
The seminal article of Kydland and Prescott (1982) showed that time-to-build contributes
to the persistence of the business cycle, paving the way for numerous RBC-based models.
For instance, Asea and Zak (1999) and Bambi (2008) suggested exogenous and endogenous
growth models with time-to-build, respectively. Zhou (2000) showed that the introduction of
time-to-build leads to the positive autocorrelation of investment, which has been empirically
observed in several studies. Gomme et al. (2001) focused on the household sector, and
showed that time-to-build can yield a positive correlation between business and household
investment and household investment’s leading business investment over the business cycle,
which has been considered anomalous in the literature. Edge (2007) considered not only
time-to-build but also time-to-plan, and showed that the investment lags and habit-persistence
in consumption allow the sticky-price monetary business cycle model to generate liquidity
effects. Although our study is based on a partial equilibrium approach, notably, time-to-build,
the key component in our model, also plays a pivotal role in general equilibrium models.

Numerous studies have been devoted to a firm’s capacity decision. Manne (1961) pio-
neered the decision of the capacity expansion with stochastic growth and showed that the
optimal size of investment increases with the volatility. Bean et al. (1992) extended this study
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to allow more general demand processes and cost structures. Bar-Ilan and Strange (1999)
studied the decisions of both investment timing and capacity, and found that an increase
in volatility delays the investment but increases its size. Dangl (1999) examined a firm’s
investment timing and capacity decisions with flexible capacity adjustment and also showed
that higher uncertainty leads to an increase in capacity. Hagspiel et al. (2016) found that
a firm’s flexibility in output choice leads to greater capacity. Our study does not consider
the firm’s flexibility in the output choice after capacity installation. That is, we implicitly
assume that the firm produces up to its capacity after the capacity is in place. Bar-Ilan et
al. (2002) incorporated capacity decisions into the discussion on the interaction of time-to-
build and volatility based on the impulse control approach. They showed that when the lags
are short, an increase in volatility delays investment and increases its size, whereas, given
significant lags, volatility speeds up investment and reduces its size. Goyal and Netessine
(2007) studied duopoly firms’ technology, capacity, and production decisions and showed
that flexibility in the choice of technology is not always the optimal response to competition.
Kort et al. (2010) studied a firm’s choice between a lumpy investment with cost efficiency
and a stepwise investment with timing flexibility, and found that the former is preferred when
demand is more uncertain. However, the size of capacity is exogenously given in their model.
Bensoussan and Chevalier-Roignant (2019) presented a mathematical framework for studies
on capacity expansion based on the impulse control approach, adopting an affine structure
of investment costs.

The seminal study of Arrow (1962) embraced a learning curve as a novel factor in macroe-
conomic growth models. Spence (1981) studied the impact of the learning curve on market
competition and found that the learning curve creates entry barriers in the market, protecting
incumbents from competition, but the entry timingwas exogenously given. Lieberman (1984)
empirically analyzed the determinants of the learning curve and showed that learning is a
function of cumulative output and investment rather than calendar time. Cohen and Levinthal
(1989) claimed that R&D investments not only generate new information but also enhance
the firm’s ability to exploit existing information, referred to as learning or absorptive capac-
ity. Rob (1991) investigated a competitive market with firms learning about the market size
in a Bayesian manner and found that the equilibrium rate of entry monotonically decreases
over time. Majd and Pindyck (1989) studied the impact of the learning curve on a firm’s
production decision, assuming that marginal production costs decrease with cumulative out-
put. They found that the learning curve becomes a less important factor for the production
decision when uncertainty inmarket demand is significant, but their study assumed no adjust-
ment costs and did not consider the capacity choice. Seta et al. (2012) extended this study by
incorporating the capacity decision. They showed that greater learning makes the investment
earlier yet at a smaller scale, but the possibility of capacity expansion was not considered in
their study. Our study incorporates a learning curve via the channel of time-to-build, which
is in contrast with previous studies that describe the learning effect through the reduction of
investment costs in subsequent projects. Using this novel setup, we examine the impact of
learning by doing on amonopolistic firm’s investment dynamics.Martzoukos (2000) adopted
a controlled diffusion process to describe a firm’s costly action of learning. The study found
that the impact of learning is more significant for a less profitable project, but the investment
timing was pre-specified. Chang et al. (2002) incorporated learning by doing into the RBC
model. They showed that learning by doing provides a significant propagation mechanism
and that it generates a positive correlation in output growth even when the exogenous tech-
nology follows a randomwalk. Koussis et al. (2007) extended this study to incorporate timing
flexibility and path dependency, and Martzoukos and Zacharias (2013) followed a similar
setup and further considered learning spillovers between firms.
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3 Models and solutions

3.1 Setup

Suppose a risk-neutral firm with the option to invest. The firmmakes the investment decision
in terms of its timing and capacity. The price of the product at time t is given by

P(t) = X(t)(1 − ηQ(t)), (1)

where Q(t) is a total market output, η > 0 is a constant, and X(t) is a demand shock. The
demand shock follows a geometric Brownian motion:

dX(t) = μX(t)dt + σ X(t)dW (t), (2)

whereμ and σ are positive constants and (Wt )t≥0 is a standard Brownian motion on a filtered
probability space (�,F,F := (Ft )t≥0,P) satisfying the usual conditions. The production
incurs marginal costs c per unit, and the discount rate is given by a constant r(> μ) to ensure
the finiteness of value functions. The firm chooses the investment timing and capacity size to
maximize its value. The investment timing is a stopping time with respect to the Brownian
filtration, and the firm’s choice of capacity is measurable with respect to the σ -algebra at the
time of investment.

The exercise of the option to invest, however, does not imply that the firmgenerates revenue
instantly. That is, the investment involves an uncertain amount of time-to-build. We assume
that it takes an exponential time with an intensity parameter λ to succeed in manufacturing
products and generate revenue from the investment. The lags are assumed to be independent
of the demand shock.

Having the option exercised, the firm has another option to invest: the option to expand
its capacity further. In other words, the firm’s option to invest can be read as a compound
option, and each investment incurs lump-sum costs δ per unit. We assume that the option of
capacity expansion can only be exercised after the initial capacity starts to operate, which is
relaxed in Online Appendix.

It is reasonable to assume that there is learning by doing in mass production. That is, we
suppose that the expected time-to-build for the follow-up investment can be shorter than that
of the initial investment, which will be discussed in detail in Sect. 3.3. Salomon and Martin
(2008) conducted a comprehensive analysis to investigate the determinants of time-to-build
in the global semiconductor industry. They found empirical evidence to strongly support the
hypothesis that time-to-build decreases as learning from experience increases. Specifically,
they gathered 265 time-to-build data sets from 571 semiconductor plants between 1982 and
2001, finding that an experienced chip manufacturer completes work more than one month
earlier, on average, than an inexperienced firm building the same plant.

The modeling of time-to-build by exponential distribution is not only tractable but also
appropriate for describing the inherent uncertainty, especially the lags from mass production
based on state-of-the-art technologies. For instance, the first flight of the C919, a narrow-
body airliner developed by the Commercial Aircraft Corporation of China (COMAC), was
initially scheduled in 2014; however, it was repeatedly delayed untilMay 2017.5 The delivery

5 COMAC is a Chinese state-owned aircraft manufacturer established in 2008, and since then, it has developed
the C919 which would be a direct competitor to Boeing 737 and Airbus A320. Its first delivery has also been
pushed back several times to December 2022.
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of LNG-powered vessels built by the China State Shipbuilding Corporation (CSSC) was
delayed twice.6

3.2 Benchmarkmodel: without time-to-build

For comparative purposes, we examine a benchmark model that does not incorporate the
investment lags. By backward induction, we first investigate the firm’s optimal investment
strategy for the follow-up investment.

In the absence of time-to-build, the firm generates revenue instantly after the initial invest-
ment in Q1. With Q1 in place, the firm holds the option to expand the capacity further: the
option to invest in Q2. Thus, the firm value after the investment in Q1 can be described as
follows:

V̄2(X , Q1) = max
T2≥0,Q2≥0

E

[ ∫ T2

0
e−rt Q1{X(t)(1 − ηQ1) − c}dt

+
∫ ∞

T2
e−rt (Q1 + Q2){X(t)(1 − η(Q1 + Q2)) − c}dt − e−rT2δQ2

∣∣∣∣X(0) = X

]
. (3)

The bar on top of each value indicates that it is from the benchmark model. The investment
timing can be characterized by the level of demand shock at which the firm invests. That is,
it can be described as T2 := inf{t ≥ T1|X(t) ≥ X2}, where T1 denotes the initial investment
timing, which will be described shortly. Following the standard arguments from real options
literature, we can easily derive the optimal timing and capacity for the follow-up investment
as follows:

Proposition 1 (Optimal capacity expansion without time-to-build) Given the demand shock
X, the value function after the investment in the initial capacity Q1 in the absence of time-
to-build is

V̄2(X , Q1) =
{

�̄1(X , Q1) − �̄(Q1) + Ā2(Q1)
( X
X̄∗
2 (Q1)

)β
if X < X̄∗

2(Q1),

�̄1(X , Q1) − �̄(Q1) + Ā2(X , Q1) if X ≥ X̄∗
2(Q1),

(4)

where Ā2(Q1) := Ā2(X̄∗
2(Q1), Q1) and

Ā2(X , Q1) = �̄2(X , Q1, Q̄
∗
2(Q1)) − �̄(Q2) − δ Q̄∗

2(Q1), (5)

with

�̄1(X , Q1) = Q1(1 − ηQ1)X

r − μ
, (6)

�̄2(X , Q1, Q2) = Q2(1 − ηQ2 − 2ηQ1)X

r − μ
, (7)

�̄(Q) = cQ

r
for Q ∈ {Q1, Q2}, (8)

and

β = 1

2
− μ

σ 2 +
√(1

2
− μ

σ 2

)2 + 2r

σ 2 (> 1). (9)

6 Specifically, CMA CGM, a French shipping company, ordered nine LNG-fueled containers from Hudong-
Zhonghua Shipbuilding, a subsidiary of CSSC. However, numerous problems emerged from the early stage
of construction, and the shipyard was subsequently changed to Jiangnan Shipyard, another subsidiary of the
CSSC. The vessels were delivered after seven months of delay in total.
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The optimal investment threshold and capacity are

X̄∗
2(Q1) = (β + 1)(c/r + δ)(r − μ)

(β − 1)(1 − 2ηQ1)
, (10)

Q̄∗
2(Q1) = 1 − 2ηQ1

η(β + 1)
. (11)

Proof See Appendix A.1. ��

�̄1(X , Q1)−�̄(Q1) in (4) denotes the expected profits from the initial capacity Q1, while
�̄2(X , Q1, Q2) − �̄(Q2) in (5) refers to those from the additional capacity Q2, given the
initial capacity Q1.7

Now, suppose that the firm has not yet made the initial investment. The firm value with
the initial option, which yields another option described in (4), can be expressed as follows:

V̄1(X) = max
T1≥0,Q1≥0

E

[
e−rT1

{
V̄2(X(T1), Q1) − δQ1

}∣∣∣X(0) = X
]
. (12)

The initial investment timing can be illustrated as T1 := inf{t > 0|X(t) ≥ X1}, and the same
arguments lead to the following optimal investment strategy:

Proposition 2 (Optimal initial investment without time-to-build) Given the demand shock X,
the initial value function in the absence of time-to-build is

V̄1(X) =
{
Ā1(X̄∗

1)
( X
X̄∗
1

)β
if X < X̄∗

1,

Ā1(X) if X ≥ X̄∗
1,

(13)

where

Ā1(X) = �̄1(X , Q̄∗
1) − �̄(Q̄∗

1) + Ā2(Q̄
∗
1)

( X

X̄∗
2(Q̄

∗
1)

)β − δ Q̄∗
1. (14)

The optimal investment threshold is X̄∗
1 := X̄∗

1(Q̄
∗
1) with

X̄∗
1(Q1) = β(c/r + δ)(r − μ)

(β − 1)(1 − ηQ1)
, (15)

and the optimal capacity Q̄∗
1 is implicitly derived from

(1 − 2ηQ1)X̄∗
1(Q1)

r − μ
− c

r
− δ = 2(c/r + δ)

β − 1

( (β − 1)(1 − 2ηQ1)X̄∗
1(Q1)

(β + 1)(c/r + δ)(r − μ)

)β

. (16)

Proof See Appendix A.2. ��

Note that Ā1(X) in (14) can be rewritten as Ā1(X) = V̄2(X , Q̄∗
1) − δ Q̄∗

1 with V̄2(X , Q1)

corresponding to the first row of (4), and this is in line with the description as a compound
option in (12).

7 We do not consider a firm’s flexibility in output choice; thus, the expected profit is a linear function of
demand shocks and r > μ is sufficient to ensure the finiteness of value functions. If a firm can optimally
adjust the amount of production after its capacity is chosen, the expected profit becomes nonlinear and a
stronger condition (e.g., r > 2μ + σ 2) is necessary to ensure finiteness [e.g., Dangl (1999), Hagspiel et al.
(2016)].
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3.3 Mainmodel: with time-to-build

Now, we proceed to the main model that incorporates time-to-build with uncertainty. Unlike
the benchmark model, there are two phases after the initial investment: before and after the
initial capacity commences operations. For evaluating the value functions of each phase, we
denote their associated values using 20 and 21 as subscripts, respectively. Even though we
assume in this section that the firm can only make after the initial capacity is in operation, we
will use the subscript 21 for the values associated with capacity expansion instead of just 2 to
ensure the notations’ consistency when we extend the model in Online Appendix to the case
in which a firm can make the follow-up investment either before or after the initial project is
finished.

After initial project is finished

By backward induction, we analyze the firm’s capacity expansion decision first. Suppose
that the initial investment project in the capacity Q1 is finished, and the firm is generating
revenue from it. Given the initial capacity Q1 in operation, the firm value with the option to
make the follow-up investment can be expressed as follows:

V21(X , Q1) = max
T21≥0,Q21≥0

E

[ ∫ T̂21

0
e−rt Q1{X(t)(1 − ηQ1) − c}dt

+
∫ ∞

T̂21
(Q1 + Q21){X(t)(1 − η(Q1 + Q21)) − c}dt − e−rT21δQ21

∣∣∣∣X(0) = X

]
(17)

where T̂21 := T21 + τ21 denotes the manufacturing timing of the capacity Q21 and τ21
follows an exponential distribution with an intensity parameter λ21. The investment timing
can be described as T21 := inf{t ≥ T̂1|X(t) ≥ X21}, where T̂1 := T1 + τ1 denotes the
manufacturing timing of the capacity Q1 and τ1 follows an exponential distribution with an
intensity parameter λ1. Given learning by doing, we suppose that the expected time-to-build
of the follow-up investment can be shorter than that of the initial investment project (i.e.,
λ21 ≥ λ1).

Following the standard arguments from real options literature, we can derive the optimal
investment strategy for the capacity expansion with the initial capacity in operation in the
presence of time-to-build as follows:

Proposition 3 (Optimal capacity expansion) Given the demand shock X and the capacity
Q1 in operation, the value function in the presence of time-to-build is

V21(X , Q1) =
{

�̄1(X , Q1) − �̄(Q1) + A21(Q1)
( X
X∗
21(Q1)

)β
if X < X∗

21(Q1),

�̄1(X , Q1) − �̄(Q1) + A21(X , Q1) if X ≥ X∗
21(Q1),

(18)

where A21(Q1) := A21(X∗
21(Q1), Q1) and

A21(X , Q1) = �21(X , Q1, Q
∗
21(Q1)) − �21(Q

∗
21(Q1)) − δQ∗

21(Q1), (19)

with

�21(X , Q1, Q21) = λ21Q21(1 − ηQ21 − 2ηQ1)X

(r − μ)(r + λ21 − μ)
, (20)

�21(Q21) = λ21cQ21

r(r + λ21)
. (21)
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The optimal investment threshold and capacity are

X∗
21(Q1) = (β + 1)( λ21c

r(r+λ21)
+ δ)(r − μ)(r + λ21 − μ)

(β − 1)λ21(1 − 2ηQ1)
, (22)

Q∗
21(Q1) = 1 − 2ηQ1

η(β + 1)
. (23)

Proof See Appendix A.3. ��
�̄1(X , Q1) and �̄(Q1) in (18) follow (6) and (8), respectively, and �21(X , Q1, Q21) −

�21(Q21) in (19) denotes the expected profits from the follow-up capacity Q21, taking time-
to-build into account, given the initial capacity Q1 in operation. Note that (23) is independent
of λ2, This, however, does not imply that the capacity choice is irrelevant to time-to-build; it
comes into play via the channel of Q1, the choice of which we will discuss later.

Possible scenarios of capital expansion

Recall that we assumed the follow-up investment can only be made after the initial capacity
is in operation. Thus, the capacity expansion can be triggered not only by the demand shock
hitting the threshold (i.e., T̂1 < T21) but also by the completion of the initial project (i.e.,
T̂1 = T21). To be more specific, for X ≥ X21, the follow-up investment in Q21 will be made
as soon as Q1 starts operation.

Figures 1 and 2 illustrate the timeline of capacity expansion and their possible scenarios,
respectively. If the initial project is completed when X < X21, the investment in Q21 is
triggered by hitting the threshold X21 (i.e., T̂1 < T21), which corresponds to Case 1 in Fig. 1.
More specifically, it can be either the very first time the demand shock hits the threshold
(Fig. 2a) or not the first time ever but the first time since the initial project’s completion
(Fig. 2b). The former and latter canbe characterized by T̄21 = T21 and T̄21 < T21, respectively,
where T̄21 := inf{t > 0|X(t) ≥ X21} denotes the very first time the demand shock hits the
threshold X21, which does not necessarily coincide with T21 = inf{t ≥ T̂1|X(t) ≥ X21}.

If the initial project is completed when X ≥ X21, the follow-up investment in Q21 is
triggered instantly (i.e., T̂1 = T21), which corresponds to Case 2 in Fig. 1. Similarly, it can
be either the very first time the demand shock remains in the region [X21,∞) (Fig. 2c) or
not the first time ever but after repeatedly going in and out of the region (Fig. 2d). The
former and latter can be characterized by T21 < T 21 and T 21 ≤ T21, respectively, where
T 21 := inf{t ≥ T̄21|X(t) < X21} denotes the very first time the demand shock exits the
region of [X21,∞) because of the decrease in the demand shock. The value function before
the completion of the initial project must consider these possible scenarios.

Fig. 1 Timeline of capacity expansion
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Fig. 2 Possible scenarios of capacity expansion

Before initial project is finished

The firm value after the initial investment but before the initial capacity starts operating can
be expressed as follows:

V20(X , Q1)=E

[
1{T̂1<T21}e

−rT21V21(X
∗
21(Q1), Q1)+1{T̂1=T21}e

−r T̂1V21(X(T̂1), Q1)

∣∣∣X(0)= X
]
.

(24)
Following similar arguments, we can evaluate the firm value before the initial capacity is

in operation as follows:

Proposition 4 (Value function before capacity expansion) Given the demand shock X and
the capacity Q1 not in operation, the value function in the presence of time-to-build is

V20(X , Q1)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�1(X , Q1) − �1(Q1) + A21(Q1)
( X
X∗
21(Q1)

)β

−
[
A21(Q1) − Â21(X∗

21(Q1), Q1) − {B21(Q1) − B̂21(Q1)}
](

X
X∗
21(Q1)

)β1
if X < X∗

21(Q1),

�1(X , Q1) − �1(Q1) + Â21(X , Q1) + {B21(Q1) − B̂21(Q1)}
(

X
X∗
21(Q1)

)γ1
if X ≥ X∗

21(Q1),

(25)
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where

Â21(X , Q1)=�̂21(X , Q1, Q
∗
21(X , Q1))−�̂21(Q

∗
21(X , Q1))− λ1

r+λ1
δQ∗

21(X , Q1), (26)

B21(Q1) = β1 − β

β1 − γ1

{
�21(X

∗
21(Q1), Q1, Q

∗
21(Q1)) − �21(Q

∗
21(Q1)) − δQ∗

21(Q1)
}
, (27)

B̂21(Q1) = β1 − 1

β1 − γ1
�̂21(X

∗
21(Q1), Q1, Q

∗
21(Q1)) − β1

β1 − γ1
�̂21(Q

∗
21(Q1))

− β1λ1

(β1 − γ1)(r + λ1)
δQ∗

21(Q1), (28)

with

�1(X , Q1) = λ1Q1(1 − ηQ1)X

(r − μ)(r + λ1 − μ)
, (29)

�1(Q1) = λ1cQ1

r(r + λ1)
, (30)

�̂21(X , Q1, Q21) = λ1λ21Q21(1 − ηQ21 − 2ηQ1)X

(r − μ)(r + λ1 − μ)(r + λ21 − μ)
, (31)

�̂21(Q21) = λ1λ21cQ21

r(r + λ1)(r + λ21)
, (32)

and

β1 = 1

2
− μ

σ 2 +
√(1

2
− μ

σ 2

)2 + 2(r + λ1)

σ 2 (> 1), (33)

γ1 = 1

2
− μ

σ 2 −
√(1

2
− μ

σ 2

)2 + 2(r + λ1)

σ 2 (< 0). (34)

The optimal capacity choice of Q∗
21(X , Q1) in (26) is given by (A.18).

Proof See Appendix A.4. ��

�1(X , Q1) − �1(Q1) in (25) denotes the expected profits from the capacity Q1, which
has not yet operated. By comparing the first rows of (18) and (25), we can see that they
have the same term associated with A21, which implies that the firm has the option to invest
in Q21 by hitting the threshold X21 after the initial project’s completion. Before the initial
capacity starts operating, however, the follow-up investment can be triggered instantly by
the initial project’s completion (Fig. 2c and 2d), and thus, the option value needs to be
adjusted, which is represented by the terms in the bracket in the second row of (25). Note
that �̂21(X , Q1, Q21) − �̂21(Q21) in (26) represents the expected profits from the follow-
up investment in Q21 triggered by the initial project’s completion (i.e., T̂1 = T21), whereas
�21(X , Q1, Q21)−�21(Q21) in (19) represents those from Q21 invested at the hitting timing
of the threshold X21 (i.e., T̂1 < T21). Note also that (X/X21)

β represents the probability of
hitting the threshold X21, while (X/X21)

β1 represents the probability of hitting X21 before
the initial project is finished.
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To comprehend the economic implications of the option values described in Proposition 4,
we rewrite the first case of (25) (i.e., X < X21) as follows:

�1(X , Q1) − �1(Q1) + A21(Q1)
{( X

X∗
21(Q1)

)β −
( X

X∗
21(Q1)

)β1
}

+ B21(Q1)
( X

X∗
21(Q1)

)β1

+ { Â21(X
∗
21(Q1), Q1) − B̂21(Q1)}

( X

X∗
21(Q1)

)β1
. (35)

The first row of (35) represents the option value of capacity expansion triggered by hitting
the threshold X21 (i.e., T̂1 < T21). It might be the very first time the demand shock hits X21

(i.e., T̄21 = T21), and in this case the initial project should be finished before reaching the
threshold. In other words, we must exclude the probability of hitting X21 before Q1 is in
operation, and this is reflected in the term A21{(X/X21)

β −(X/X21)
β1}. Meanwhile, it might

be not the first time ever to reach the threshold but the first time since the initial project’s
completion (i.e., T̄21 < T21). Specifically, the demand shock can exceed the level of X21

but it must decline to below X21 before Q1 starts operation. This is reflected in the term
B21(X/X21)

β1 .
The second row of (35) is the option value of the investment in Q21 triggered by the

completion of the initial project (i.e., T̂1 = T21). It might be the very first time the demand
shock remains in the region of [X21,∞) (i.e., T21 < T 21) or not the first time ever but after
repeatedly going in and out of the region (i.e., T 21 ≤ T21). In either case, the demand shock
must exceed X21 before Q1 starts operation, but we need to exclude the case of going out of
the region and not making it back before the initial project’s completion. This is reflected in
the term ( Â21 − B̂21)(X/X21)

β1 .

Before initial investment

Lastly, we proceed to the firm’s initial investment decision. For t < T1, the firm value with
the compound option can be described as follows:

V1(X) = max
T1≥0,Q1≥0

E

[
e−rT1

{
V20(X(T1), Q1) − δQ1

}∣∣∣X(0) = X
]

(36)

The investment timing can be described as T1 := inf{t > 0|X(t) ≥ X1}, and similar
arguments yield the following results:

Proposition 5 (Optimal initial investment) Given the demand shock X, the initial value in
the presence of time-to-build is

V1(X) =
{
A1(X∗

1, Q
∗
1)

( X
X∗
1

)β
if X < X∗

1,

A1(X , Q∗
1) if X ≥ X∗

1,
(37)

where

A1(X , Q1) = �1(X , Q1) − �1(Q1) + A21(Q1)
( X

X∗
21(Q1)

)β

−
[
A21(Q1) − Â21(X

∗
21(Q1), Q1) − {B21(Q1) − B̂21(Q1)}

]( X

X∗
21(Q1)

)β1 − δQ1.

(38)

The optimal investment capacity is Q∗
1 := Q∗

1(X
∗
1) with

Q∗
1(X) := argmax

Q1≥0
A1(X , Q1), (39)
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and the optimal investment threshold is X∗
1 := X∗

1(Q
∗
1) where X∗

1(Q1) is derived from

(β − 1)�1(X1, Q1) − β�1(Q1) − (β − β1)
[
A21(Q1) − Â21(X

∗
21(Q1), Q1)

− {B21(Q1) − B̂21(Q1)}
]( X1

X∗
21(Q1)

)β1 − βδQ1 = 0. (40)

Proof See Appendix A.5. ��

We can see from (38) that the exercise of the initial investment option yields the option
of the follow-up investment without generating any revenue instantly.

In summary, the firm chooses the investment thresholds and capacity size for the initial
and follow-up investments described in Proposition 3 and 5 (i.e., X∗

1 , Q
∗
1, X

∗
21 := X∗

21(Q
∗
1),

Q∗
21 := Q∗

21(Q
∗
1)). If the initial project is finished while the demand shock is below the

expansion threshold (i.e., X(T̂1) < X∗
21), capacity expansion is triggered by hitting the

threshold, which corresponds to Case 1 in Fig. 1. If the initial project is finished while the
demand shock is above the expansion threshold (i.e., X(T̂1) ≥ X∗

21), it immediately triggers
capacity expansion, which corresponds to Case 2 in Fig. 1.

The progress of investment can be illustrated by a tuple (i, j, k), where i, j, k ∈ {0, 1, 2}
denotes the state of investment in Q1, Q21 at t > T̂1, and Q21 at t = T̂1. Stages 0, 1, and 2
correspond to the state in which the investment has not been made, the investment has been
made but not in operation yet, and the capacity is in operation, respectively. Figure3 presents
the state diagram (i, j, k); the solid and dashed lines represent the progression of the state
by the investment and operation, respectively.

Given the optimal investment strategies, we can evaluate the state prices of capacity
expansion in each scenario as follows:

Corollary 1 (State prices of capacity expansion) Given the optimal investment strategy, the
state prices of the follow-up investment triggered by hitting the threshold (i.e., T̂1 < T21) and
the completion of the initial project (i.e., T̂1 = T21) are

ψ21 := E

[
1{T̂1<T21}e

−rT21
∣∣∣X(0) = X∗

1

]
=

( X∗
1

X∗
21

)β − β − γ1

β1 − γ1

( X∗
1

X∗
21

)β1
, (41)

and

ψ̂21 := E

[
1{T̂1=T21}e

−rT21
∣∣∣X(0) = X∗

1

]
= − λ1γ1

(r + λ1)(β1 − γ1)

( X∗
1

X∗
21

)β1
, (42)

respectively.

Fig. 3 A state diagram of investment dynamics
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Note that the last term on the right-hand side of (41) is negative while the right-hand side
of (42) is positive due to γ1 < 0. The state prices in Corollary 1 can be used to analyze which
scenario is more likely to occur between Cases 1 and 2 from Fig. 1, and we will discuss this
in the following section.

Meanwhile, we can decompose the firm’s option values of the investment based on the
capacity fromwhich the revenue is generated. For the benchmarkmodel, the decomposition is
straightforward because at each investment timing, the additional expected profits only come
from the newly invested capacity. That is, ̄1(X) := {�̄1(X̄∗

1, Q̄
∗
1)−�̄(Q̄∗

1)−δ Q̄∗
1}(X/X̄∗

1)
β

and ̄2(X) := Ā2(Q̄∗
1)

(
X/X̄∗

2

)β denote the values of the initial and follow-up investment,
respectively, given the demand shock X(< X̄∗

1). Note that V̄1(X) in the first row of (13) can
be expressed as ̄1(X) + ̄2(X).

In the main model, the capacity expansion can be triggered by either hitting the threshold
or the the initial project’s completion, and the option value can be decomposed as follows:

Corollary 2 (Decomposition of option values) Given the initial demand shock of X and the
optimal investment strategy, the value of the initial investment is

1(X) :=
[
�1(X

∗
1, Q

∗
1) − �1(Q

∗
1) − δQ∗

1

]( X

X∗
1

)β

. (43)

Likewise, the option values of the follow-up investment made at T21 > T̂1 and T21 = T̂1 are

21(X) :=
[
A21(Q

∗
1)

{( X∗
1

X∗
21

)β −
( X∗

1

X∗
21

)β1
}

+ B21(Q
∗
1)

( X∗
1

X∗
21

)β1
]( X

X∗
1

)β

, (44)

and

̂21(X) :=
[
Â21(X

∗
21, Q

∗
1) − B̂21(Q

∗
1)

]( X∗
1

X∗
21

)β1
( X

X∗
1

)β

, (45)

respectively. V1(X) in the first row of (37) can be expressed as 1(X) + 2(X) where
2(X) := 21(X) + ̂21(X) represents the value of capacity expansion.

4 Comparative statics and discussion

In this section, we present the comparative statics results and discuss their economic impli-
cations. The comparative statics for the size of time-to-build and the volatility of demand
shocks are given in Sects. 4.1 and 4.2, respectively. To describe the relationship between the
time-to-build of the initial and follow-up investment, we introduce the following equation:

1

λ21
= φ

1

λ1
, (46)

where φ ∈ [0, 1] denotes the degree of learning by doing in the manufacturing process with
φ = 1 corresponding to no learning by doing.

For the numerical calculation, we adopt the parameters in Table 1 as a benchmark case.
The seminal work ofKydland and Prescott (1982) noted that an average construction period is
nearly two years for plants, while consumer durables have much shorter average construction
periods. Having one type of capital in the model, they assumed that one year is required for
the construction of new productive capital, and Zhou (2000) and Gomme et al. (2001) also
adopted the same parameter for their estimation. Thus, we presume that the expected time-
to-build of the initial investment is one year (i.e., 1/λ1 = 1 as a baseline case). Other
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Table 1 Benchmark parameters for numerical calculation

Notation Value Description

r 0.06 Risk-free rate

μ 0.02 Expected growth rate of demand shock

σ 0.25 Volatility of demand shock

1/λ1 1 Expected time-to-build of investment in Q1

φ 0.5 Degree of learning by doing

c 0.05 Marginal production costs per unit

δ 3 Lump-sum investment costs per unit

η 0.1 Coefficient of inverse demand function

X 0.1 Initial demand shock

parameters such as the expected growth rate and volatility of demand shock are chosen from
a modest range that can be easily found from standard real options literature [e.g., Leland
(1994), Hackbarth and Mauer (2012), Sundaresan et al. (2015)]. Note that we need to have
a sufficiently low η to ensure that the price of the product given by (1) is positive.

4.1 The size of time-to-build

To emphasize the effects of time-to-build on investment dynamics, we first present the results
for the case in which a firm only has a single investment opportunity. This is discussed as the
benchmark model in Jeon (2021b), which studied the effects of time-to-build in a duopoly
market. It is straightforward to derive the optimal investment strategy, which is provided in
Appendix B. We denote the optimal investment threshold and capacity in the presence of
time-to-build by X∗

0 and Q∗
0, respectively, and those without time-to-build are denoted by

X̄∗
0 and Q̄∗

0, respectively.
Figure 4a shows that when a firm holds a single investment option, the investment is

delayed as the investment lags lengthen (i.e., X̄∗
0 < X∗

0). This is because the presence of
uncertain time-to-build reduces the expected profits from the investment and thereby increases
the value of waiting. In terms of financial options, the time value of the option increases with
the size of the investment lags. The decomposition of the option value into the intrinsic value
(i.e., the payoff for immediately exercising the option) and the time value (i.e., the difference
between the option value and intrinsic value) is also presented in Appendix B. We denote
them by V0, V int

0 , and V tim
0 , respectively, for the case with time-to-build. Each value with

an overhead bar corresponds to the case without time-to-build. Figure 4c shows that both
the option value and its intrinsic value strictly decrease with the size of the lags, which is
a natural result considering that time-to-build negatively impacts the expected profits of the
investment. However, the difference between them—namely, the time value of the option—
strictly increases with the size of the time-to-build. Thus, the option’s time value is always
higher in the presence of time-to-build than in the absence of the lags. This clarifies that the
presence of time-to-build increases the value of waiting.

Figure 4b shows that the capacity choice is irrelevant to the presence of time-to-build
(i.e., Q̄∗

0 = Q∗
0). Jeon (2021b) claimed that this is because the price elasticity of demand,

which determines the capacity choice upon the investment, is irrelevant to exogenous demand
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Fig. 4 Comparative statics regarding the expected time-to-build for a single investment

shocks given the inverse demand function in (1).8 That is, the impact of time-to-build is
fully absorbed by the adjustment of the investment timing when the firm has only a single
investment.

The presence of the capacity expansion significantly alters the impact of time-to-build
on the investment decisions. Figure5a shows that the follow-up investment threshold in the
presence of time-to-build is U-shaped and it can be lower than that in the absence of the
lags (i.e., X∗

21 < X̄∗
2 for 1/λ1 < 13.9). Due to time-to-build, the firm does not make any

instant profits after the initial investment. As demand grows further without generating any
revenue, the option to invest in the follow-up project becomes more valuable than the case in
which the investment yields instant revenue. In other words, the time-to-build of the initial
investment undermines the value of waiting to invest in the follow-up project, advancing
the timing of the capacity expansion. Intuitively, an asset becomes more valuable when it is
more necessary, and the time-to-build of the initial project makes the firm favor the option of
the capacity expansion more. This novel finding is in line with the observation of aggressive
capacity expansion in the vaccine and semiconductor industries addressed in the introduction.

8 The isoelastic demand function (i.e., P(t) = X(t)Q(t)α−1 with 0 < α < 1) allows the capacity choice to
depend on the size of the investment lags, but it implicitly assumes that demand can grow indefinitely. It can
be shown that the main results are robust for the isoelastic demand function, but we omit them here for brevity.
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Fig. 5 Comparative statics regarding expected time-to-build of the initial investment

The firms in those industries must have anticipated that it would take much time until they
raise revenue from the investment, which would make them advance the timing of capacity
expansion more than they otherwise would in the absence of the lags.

This argument can be verified by examining the time value of the capacity expansion.
Appendix C presents the decomposition of the option value of the capacity expansion into
its intrinsic value and time value. Note that the option value and its decomposition depend
on whether it is before or after the initial capacity commences operations (i.e., t < T̂1 or

123



1480 Annals of Operations Research (2023) 328:1461–1494

t ≥ T̂1). The values from the former are denoted by V20, V int
20 , and V tim

20 , respectively, whereas
those from the latter are denoted by V21, V int

21 , and V tim
21 , respectively. For comparison, those

without time-to-build are denoted by V̄2, V̄ int
2 , and V̄ tim

2 , respectively. Figures5d and 5e
show the decomposition of the capacity expansion option (i.e., X̂ ∈ (X∗

1, X
∗
21)) before and

after the initial capacity is in operation, respectively. Before the initial project is finished,
the time value is higher in the presence of time-to-build, but it is not monotone with respect
to the size of the lags (Fig. 5d). Recall that the firm can make the follow-up investment only
after the initial project is finished. Note also that the investment threshold X∗

21 described in
Fig. 5a is associated with the investment decision for t ≥ T̂1. Thus, the time value of capacity
expansion can be more accurately evaluated for t ≥ T̂1, from which the firm can make the
investment immediately if it is willing to.

After the initial capacity is in operation, the time value of capacity expansion begins
decreasing as the initial project’s lags lengthen (Fig. 5e). This is because the impact of the
appreciation of the expansion option dominates that of the decrease in the expected profits.
This results in a decrease in the investment triggers for the capacity expansion (Fig. 5a). After
the lags become significant (i.e., for 1/λ1 > 6.9), however, the impact of the decrease in
the expected profits dominates that of the appreciation of the follow-up investment project,
and the time value of the capacity expansion starts to increase with the size of the lags.
This makes the investment triggers of the capacity expansion increase after the lags become
significant (Fig. 5a). Note that the size of lags at which the time value of capacity expansion
is minimized coincides with that at which the corresponding investment trigger is the lowest
(i.e., 1/λ1 = 6.9), which clarifies that the value of waiting is a key determinant in this
discussion. This argument becomes much clearer when the firm can make the follow-up
investment before the initial project’s completion, which is discussed in detail in the Online
Appendix.

It might seem implausible that the option value and intrinsic value begin increasing after
the initial time-to-build exceeds a certain level in Fig. 5e, but recall that it represents the option
value and its decomposition for t ≥ T̂1. After the initial capacity is in place, the increase
in time-to-build delays only the follow-up investment project, not the initial one. Thus, the
negative impact of the delayed revenue from the follow-up project can be dominated by
the positive impact of the increase in the initial capacity (Fig. 5b), which is in operation for
t ≥ T̂1.

We can also see from Fig. 5a that when investment lags are not substantial, not only the
follow-up investment but also the initial investment can be made earlier in the presence of
time-to-build than it would in the absence of the lags (i.e., X∗

1 < X̄∗
1 for 1/λ1 < 8.9). Since

capacity expansion is conditional on the initial project’s completion, the firm accelerates
the initial investment to allow the follow-up investments within a reasonable time. However,
extremely long investment lags significantly decrease the value of investment projects, urging
the firm to advance the timing for initial investment, only with a significant degree of learning
by doing. This is discussed shortly.

The presence of capacity expansion also has a significant impact on capacity choice.
Figure5b shows that as time-to-build lengthens, the capacity of the follow-up investment
dominates that of the initial project in most cases (i.e., Q∗

1 < Q∗
21). This is in sharp contrast

to the case of no time-to-build, in which the capacity of the initial investment dominates
that of the follow-up project (i.e., Q̄∗

2 < Q̄∗
1). This is because the follow-up project, which

benefits from learning by doing, becomes more valuable as the initial project’s time-to-build
lengthens and the firm places less weight on the initial investment.The capacity of the follow-
up project, which can be greater in the presence of time-to-build (i.e., Q̄∗

2 < Q∗
21), should
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be read along with its investment timing, which can be advanced due to time-to-build (i.e.,
X∗
21 < X̄∗

2). These results imply that the firm can invest earlier in more capacity in the
follow-up project in the presence of time-to-build than it would in its absence. The fact that
the firm invests earlier not because it invests less but despite it invests more sheds light on
the significance of the impact of time-to-build on the investment dynamics.

The capacity choice, however, is not monotone with respect to the size of the investment
lags. After the lags become significant, the firm starts to raise its weight on the initial invest-
ment. That is, the capacity of the initial and follow-up projects starts to increase and decrease,
respectively, after the lags exceed a certain level (i.e., for 1/λ1 > 7.7). This is because the
initial time-to-build becomes so lengthy that the revenue from capacity expansion is expected
to be generated in the distant future, even after considering learning by doing. Boonman and
Siddiqui (2017) showed that longer lags lead to an increase in capacity, but there is a differ-
ence in both the modeling and the mechanism behind the result. They assumed operational
flexibility with fixed lags after a one-shot investment; there are lags to resume the suspended
operation but not in the suspension process. Because the suspension option truncates the
downside risk of the investment without lags while revenues are expected to increase dur-
ing the resumption’s lags, the capacity size increases with the lags. In contrast, our model
shows that the capacity of the follow-up investment can increase with lags even when the lags
are uncertain and the downside risk cannot be truncated by an abandonment option, mainly
because of learning effects from the initial investment.

As Corollary 2 shows, we can decompose the firm’s option value into the value of each
investment. Figure 5f shows that the value of the follow-up investment is inverted U-shaped,
which is associated with the aforementioned findings. While the initial time-to-build is
insignificant, the firm favors the expansion option and invests in more capacity as the lags
lengthen. After the lags become significant, however, the effect of the decrease in the expected
profits dominates that of the appreciation of the capacity expansion, and the firm’s capac-
ity choice in the follow-up project decreases with the size of the lags. This amounts to the
inverted U-shaped option value of capacity expansion. More specifically, we can see that
the value of the capacity expansion triggered by hitting the threshold (i.e., 21(X)) starts
decreasing much earlier than that triggered by the initial project’s completion (i.e., ̂21(X)).
This is a natural result considering that the former is less likely to occur as the initial project’s
lags lengthen; this argument can be verified by the state prices of each scenario described in
Fig. 5c.

Figure 6 presents the results of the comparative statics regarding the degree of learning by
doing. Recall that φ = 0 and φ = 1 correspond to full and no learning by doing, respectively.
Figure 6a shows that given a sufficient amount of learning by doing, both the initial and
follow-up investment are made earlier in the presence of time-to-build than they would in
the absence of the investment lags (i.e., X∗

1 < X̄∗
1 and X∗

21 < X̄∗
2 for φ < 0.56). This is in

sharp contrast to the case of a single investment opportunity described in Fig. 4a, in which
X̄∗
0 < X∗

0 always holds. As the degree of learning by doing increases, the initial project
becomes more valuable as a source of learning. That is, the initial investment is made earlier
not because the firm wants to generate revenue from it sooner but because the firm wants to
learn from it earlier. This argument can be verified by the capacity choice described in Fig. 6b.
When there is little learning from the previous investment, the initial capacity dominates the
capacity of the follow-up project (i.e., Q∗

21 < Q∗
1 for φ > 0.67), as in the case of no lags

(i.e., Q̄∗
2 < Q̄∗

1). However, this is reversed as learning by doing improves (i.e., Q∗
21 > Q∗

1
for φ < 0.67). Combined with the findings shown in Fig. 6a, we can assert that when there
is a significant amount of learning from the previous investment, the firm invests earlier not
because it invests less but even if it invests more in the follow-up project.
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Fig. 6 Comparative statics regarding the degree of learning by doing

These results are not only robust but also reinforced when we allow more flexibility in the
timing of capital expansion. In the Online Appendix, we show that if the firm can expand its
capacity either before or after the initial project is finished, the follow-up investment is made
earlier in the presence of time-to-build than it would without the lags, even when there are
no learning effects such that the expected time-to-build of the initial project and that of the
subsequent one coincide.9

The seminal work of Bar-Ilan and Strange (1996) studied the impact of time-to-build on
a firm’s investment decision and showed that the presence of time-to-build can hasten the
investment. However, there is a difference in both the modeling and the mechanism that
derives the result. They assumed fixed lags in a one-shot investment and allowed the option
to abandon the project after it was completed. The lags increase uncertainty, and thus, the
value of waiting, but the abandonment option truncates its downside risks. For this reason,
longer lags increase the expected value of investment, and thus, result in earlier investment. In
contrast, we assume that the firm faces uncertain time-to-build without the option to truncate
the downside risks. Nevertheless, the time-to-build of the initial investment induces earlier
follow-up investment while learning effects result in earlier initial investment.

4.2 Volatility of demand shocks

In this subsection, we discuss the comparative statics results of the volatility of demand
shocks. Figures7 and 8 present the benchmark case of a single investment and the main case
of capacity expansion, respectively.

We can see from Fig. 7a that when a firm holds a single investment option, an increase in
volatility delays the investment timing and that it is delayed further if the investment project
involves time-to-build (i.e., X̄∗

0 < X∗
0). That is, the presence of uncertain lags amplifies the

negative impact of uncertainty on investment timing. However, this is not the case when the
firm holds the option to expand its capacity after the initial investment. Figure 8a shows that
the investment thresholds for the initial and follow-up investment increase with the degree of

9 With more flexibility in capacity expansion timing, the firm prefers to invest before the initial capacity is
in place when time-to-build is relatively short. When the investment lags are long enough, however, the firm
chooses to invest after the initial project is finished to exploit the shorter time-to-build in the follow-up project.
Refer to the Online Appendix for the details.
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Fig. 7 Comparative statics regarding the volatility of demand shocks for a single investment

Fig. 8 Comparative statics regarding volatility of demand shocks
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volatility, which is in line with the conventional result from the real options literature [e.g.,
McDonald and Siegel (1986), Pindyck (1988, 1993)], but they increase at a slower rate in the
presence of time-to-build. As a result, given substantial volatility, both investments are made
earlier in the presence of time-to-build than theywould bewithout the lags (i.e., X∗

1 < X̄∗
1 and

X∗
21 < X̄∗

2). This implies that time-to-build and learning effects soften the negative impact
of uncertainty on investment timing, and it can be interpreted as follows. We discussed in
Sect. 4.1 that when the revenue is delayed due to time-to-build, the firm favors the expansion
optionmore than it would in the absence of the lags, and volatile demand augments this effect.
Given substantial volatility, market demand is likely to surge rapidly in a short period of time,
which makes the firm further favor the option of capacity expansion. As the appreciation of
capacity expansion increases, the firm also hastens the initial investment to exploit learning
by doing from the follow-up investment. For this reason, investment is delayed as uncertainty
increases, but the negative impact abates in the presence of time-to-build and learning by
doing.

Recall that we have already seen from Fig. 6a that not only the follow-up investment but
also the initial investment can be made earlier in the presence of time-to-build than in its
absence (i.e., X∗

1 < X̄∗
1 and X∗

21 < X̄∗
2 for φ < 0.56). More specifically, the firm is willing

to make the initial investment earlier when it can learn more from the initial project to ensure
that the lags of the subsequent project are significantly reduced. Combining the findings
shown in Figs. 6a and 8a, we can assert that the firm makes the initial investment earlier in
the presence of time-to-build than it would without the lags when the degree of learning by
doing and the volatility of market demand are substantial.

Figure 8b shows that the optimal capacities increase with the degree of volatility whether
the investment involves time-to-build or not, and this is consistent with the conventional
finding from the real options literature [e.g., Dangl (1999), Bar-Ilan and Strange (1999),
and Seta et al. (2012)]. However, the presence of time-to-build has an influence on how
much uncertainty affects the capacity size for each investment project. When the investment
does not involve lags, the initial capacity increases with volatility at a much faster rate
than the subsequent capacity. As a result, the latter dominates the former when volatility is
insignificant (i.e., Q̄∗

1 < Q̄∗
2 for σ < 0.14) but this relation is reversed as uncertainty becomes

more substantial (i.e., Q̄∗
2 < Q̄∗

1 for σ > 0.14). This is natural because market demand can
surge rapidly with higher volatility, which makes the firm want to install a sufficient amount
of capacity in the initial project. When the investment involves time-to-build, however, the
capacities of both projects increase with volatility at a similar rate, and the follow-up capacity
dominates the initial capacity regardless of the degree of volatility (i.e., Q∗

1 < Q∗
21). This

implies that the firm wants to exploit the benefit of learning by doing more than it wants to
meet rapidly surging demand.

There are a few studies that show that the conventional results may not hold in the presence
of time-to-build. For instance, Bar-Ilan andStrange (1996) showed that uncertainty can hasten
investment in the presence of time-to-build. This is mainly because the downside risks of
investment are truncated by the abandonment option, and they left the impact on investment
size unanswered. Bar-Ilan et al. (2002) took both investment timing and its size into account
in their discussion of the impact of volatility on investment in the presence of time-to-build,
and they found mixed results; when the lags are short, uncertainty delays the investment
yet increases its size, whereas, given significant lags, uncertainty hastens the investment and
reduces its size. The unconventional finding in the latter case arises mainly because they
assumed that excess capacity incurs costs, which naturally induces earlier investment in a
smaller capacity. In contrast, our model shows that the conventional results from real options
literature hold even in the presence of uncertain time-to-build and learning effects. However,
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we show that time-to-build and learning effects abate the impact of uncertainty on investment
timing and the asymmetry between the size of uncertainty’s impact on the initial capacity
and that on the follow-up capacity.

In a more volatile market, demand is more likely to reach the follow-up investment thresh-
old and stay above it before the initial project’s completion. This can be clearly seen from
Fig. 8c which describes the state prices for each scenario of capacity expansion. The state
price of capacity expansion triggered by the initial project’s completion (i.e., ψ̂21) increases
at a steeper rate as the volatility increases, whereas that triggered by hitting the threshold
(i.e., ψ21) starts decreasing after the volatility exceeds a certain level. As a result, we can see
from Fig. 8d that the value of follow-up capacity in the former case (i.e., ̂21(X)) increases
faster than that in the latter case (i.e., 21(X)).

5 Conclusion

We investigated the impact of time-to-build on a firm’s investment dynamics from various
perspectives. We assumed that the firm has the option of capacity expansion in addition to
initial investment and that both projects involve uncertain time-to-build. Considering learning
effects, we presumed that the lags of the follow-up project can be shorter than those of the
initial project. First, we showed that the follow-up investment could be made earlier in the
presence of time-to-build than it would in the absence of the lags. This is in sharp contrast to
the case of a single investment, whose timing is always delayed by the lags. This is because
the time-to-build of the initial project undermines the value of waiting to invest in the follow-
up project. When learning effects are substantial, not only the follow-up investment but also
the initial investment can be made earlier in the presence of time-to-build than it would in the
absence of lags. This implies that the initial investment mainly serves as a source of learning
rather than that of revenue if the size of the learning effects is substantial. We also found
that the capacity in the subsequent project dominates that of the initial one in the presence
of time-to-build, whereas the latter dominates the former in the absence of lags. Combining
these findings, we can argue that the firm invests earlier in more capacity in the follow-up
project in the presence of time-to-build than it would in the absence of lags. Lastly, we
found that uncertainty delays investment yet increases its size, supporting the conventional
result from the real options literature. However, time-to-build and learning effects soften the
negative impact of uncertainty on investment timing and the asymmetry between the impact
of uncertainty on the initial capacity and that on the subsequent capacity.

Several problems remain unsolved for future research. We described the learning effects
by the decrease in time-to-build in the follow-up investment project. In general, marginal
costs also decrease as the firm’s production experience accumulates, and the addition of this
aspect of learning effects could enrich the discussion significantly. Seta et al. (2012) incor-
porated the learning effects by assuming the marginal costs to follow c(t) = ce−ρZ(t) where
Z(t) = ∫ t

0 Q(s)ds denotes the cumulative output, and this setup can be easily incorporated
for a single investment opportunity with time-to-build.With the option of capacity expansion,
however, it harms the tractability of the model significantly because the follow-up investment
decision depends on the amount of time that has elapsed since the initial capacity’s operation.
That is, the investment decision of the follow-up project becomes time-dependent, and the
solution, which should be described as a pair of (t, X(t)), can be found only by numerically
solving a partial differential equation. The derivation and discussion of the initial investment
strategy, which depends on the follow-up investment decision, become even more compli-
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cated andmuchharder to interpret. For this reason, Seta et al. (2012)made a strong assumption
when extending the model to the case of the expansion option; they presumed a lower bound
of learning effects and supposed that the follow-up investment is made when the marginal
costs reach the lower boundary, thereby ruling out the timing decision of capacity expansion.
Similar difficulties—and assumptions to circumvent them—can also be found in Grenadier
and Weiss (1997). They investigated the investment strategy with technological innovation
that arrives at a random time and assumed that the investment in the new technology can be
made only at the arrival time of the new technology, whereas the investment in the existing
technology can be optimally timed. This implicit assumption essentially eliminates the endo-
geneity of the investment timing in the new technology. With time-to-build as a key element,
the timing decision is at the heart of our study’s discussion, and thus, exogenous investment
timing harms the virtue of our framework significantly. Considering the technical difficulties
and the volume of illustration necessary for the derivation of a solution, we believe that this
extension deserves to be discussed in a separate study.

For an elaborate illustration of time-to-build, one can suppose that expected time-to-build
decreases as time elapses after the investment is made. Hagspiel et al. (2021) examined a
decision for green investment under time-dependent subsidy retraction risk and assumed that
the timing of subsidy retraction follows an exponential distribution with intensity λ(t) := λt ,
which increases with time. Evidently, the investment decision before the subsidy retraction
becomes time-dependent, and thus, the solution—a pair of time and a state variable—can
only be derived by numerically solving a partial differential equation as well. Their work
clearly shows that the time-dependent intensity of exponential time can harm the tractability
significantly, even when the firm holds only a single investment option. Undeniably, capacity
expansion with time-dependent intensity of time-to-build would be very demanding from a
technical perspective, but it deserves to be discussed with some assumptions that alleviate
technical difficulties.

Moreover, we limited our analysis to a monopoly market for the sake of simplicity, but
it is possible to introduce market competition and suppose a positive spillover of time-to-
build. Specifically, future studies could suppose that a firm expects a shorter time-to-build
if it invests after its competitor’s investment. This is directly associated with the empirical
analysis by Salomon and Martin (2008), who found evidence from the global semiconductor
industry that time-to-build decreases with not only the firm’s own experience but also with
the industry’s experience. We hope that this study serves as a platform to investigate these
problems in the future.
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A Proofs

A.1 Proof of Proposition 1

Suppose the firm invests in additional capacity Q2 when the demand shock is X and the
initial capacity Q1 is operating. The firm value at the timing of investment, denoted by
V̄2(X , Q1, Q2), can be evaluated as follows:

V̄2(X , Q1, Q2) = E

[ ∫ ∞

0
e−r t (Q1 + Q2) {X(t) (1 − η(Q1 + Q2)) − c} dt − δQ2

∣∣∣X(0) = X
]

= (Q1 + Q2) (1 − η(Q1 + Q2)) X

r − μ
− c(Q1 + Q2)

r
− δQ2. (A.1)

Maximizing (A.1) with respect to Q2 yields the following optimal capacity rule:

Q̄∗
2(X , Q1) = 1

2η

(
1 − (c/r + δ)(r − μ)

X

)
− Q1. (A.2)

Meanwhile, the firm value with the capacity Q1 in operation and the option of capacity
expansion, denoted by F̄2(X , Q1), should satisfy

r F̄2(X , Q1) = LF̄2(X , Q1) + Q1(1 − ηQ1)X − cQ1, (A.3)

subject to

F̄2(X̄
∗
2, Q1) = V̄2(X̄

∗
2, Q1, Q2), (A.4)

∂ F̄2(X , Q1)

∂X

∣∣∣
X=X̄∗

2

= ∂ V̄2(X , Q1, Q2)

∂X

∣∣∣
X=X̄∗

2

, (A.5)

F̄2(0, Q1) = 0, (A.6)

where the second-order partial differential operator is defined by

LF(X , ·) = μX
∂F(X , ·)

∂X
+ 1

2
σ 2X2 ∂2F(X , ·)

∂X2 . (A.7)

A general solution of (A.3) with the boundary condition (A.6) is

F̄2(X , Q1) = Q1(1 − ηQ1)

r − μ
− cQ1

r
+ Ā2X

β, (A.8)

where β is given by (9). Substituting (A.1) and (A.8) into (A.4) and (A.5) yields

X̄∗
2(Q1, Q2) = β(c/r + δ)(r − μ)

(β − 1)(1 − ηQ2 − 2ηQ1)
. (A.9)

From (A.2) and (A.9), we can obtain the results in Proposition 1.
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A.2 Proof of proposition 2

Suppose the firm makes the initial investment in capacity Q1 when the demand shock is X .
The firm value at the timing of the investment, denoted by V̄1(X , Q1), is

V̄1(X , Q1)

= E

[ ∫ T2

0
e−r t Q1{X(t)(1 − ηQ1) − c}dt − δQ1

+
∫ ∞

T2
e−r t (Q1 + Q̄∗

2(Q1)){X(t)(1 − η(Q1 + Q̄∗
2(Q1))) − c}dt − e−rT2δ Q̄∗

2(Q1)

∣∣∣X(0) = X
]

= Q1(1 − ηQ1)X

r − μ
− cQ1

r
− δQ1

+
[ Q̄∗

2(Q1)(1 − ηQ̄∗
2(Q1) − 2ηQ1)X̄∗

2(Q1)

r − μ
− cQ̄∗

2(Q1)

r
− δ Q̄∗

2(Q1)
]( X

X̄∗
2(Q1)

)β

. (A.10)

Substituting (10) and (11) into (A.10), we have

Q1(1 − ηQ1)X

r − μ
−

(c
r

+ δ
)
Q1 + (c/r + δ)(1 − 2ηQ1)

η(β + 1)(β − 1)

( (β − 1)(1 − 2ηQ1)X

(β + 1)(c/r + δ)(r − μ)

)β

.

(A.11)
By maximizing (A.11) with respect to Q1, we obtain (16) from which we can implicitly
derive the optimal capacity Q̄∗

1(X) for a demand shock X .
Meanwhile, the value of the initial investment option, denoted by F̄1(X), should satisfy

r F̄1(X) = LF̄1(X), (A.12)

subject to

F̄1(X̄
∗
1) = V̄1(X̄

∗
1, Q1), (A.13)

∂ F̄1(X)

∂X

∣∣∣
X=X̄∗

1

= ∂ V̄1(X , Q1)

∂X

∣∣∣
X=X̄∗

1

, (A.14)

F̄1(0) = 0. (A.15)

A general solution of (A.12) with the boundary condition (A.15) is

F̄1(X) = Ā1X
β. (A.16)

Substituting (A.10) and (A.16) into (A.13) and (A.14) yields the results in Proposition 2.

A.3 Proof of proposition 3

Suppose the firm invests in capacity Q21 which takes time-to-build when the demand shock
is X and the initial capacity Q1 is in operation. The firm value at the timing of investment,
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denoted by V21(X , Q1, Q21), can be written as follows:

V21(X , Q1, Q21)

= E

[ ∫ τ21

0
e−r t Q1{X(t)(1 − ηQ1) − c}dt

+
∫ ∞

τ21

e−r t (Q1 + Q21){X(t)(1 − η(Q1 + Q21)) − c}dt − δQ21

∣∣∣X(0) = X
]

= Q1(1 − ηQ1)X

r + λ21 − μ
+ λ21(Q1 + Q21)(1 − η(Q1 + Q21))X

(r − μ)(r + λ21 − μ)

−
( cQ1

r + λ21
+ λ21c(Q1 + Q21)

r(r + λ21)

)
− δQ21. (A.17)

Maximizing (A.17) with respect to Q21 yields the following optimal capacity rule:

Q∗
21(X , Q1) = 1

2η

(
1 −

(
λ21c

r(r+λ21)
+ δ

)
(r − μ)(r + λ21 − μ)

λ21X

)
− Q1. (A.18)

Meanwhile, the firm value with Q1 in operation and the option of capacity expansion,
denoted by F21(X , Q1), should satisfy

r F21(X , Q1) = LF21(X , Q1) + Q1(1 − ηQ1)X − cQ1, (A.19)

subject to

F21(X
∗
21, Q1) = V21(X

∗
21, Q1, Q21), (A.20)

∂F21(X , Q1)

∂X

∣∣∣
X=X∗

21

= ∂V21(X , Q1, Q21)

∂X

∣∣∣
X=X∗

21

, (A.21)

F21(0, Q1) = 0. (A.22)

A general solution of (A.19) with the boundary condition of (A.22) is

F21(X) = Q1(1 − ηQ1)X

r − μ
− cQ1

r
+ A21X

β . (A.23)

Substituting (A.17), (A.18), and (A.23) into (A.20) and (A.21) yields the results in Proposi-
tion 3.

A.4 Proof of proposition 4

Suppose X ≥ X21 and t ∈ [T21, T̂21). That is, the follow-up investment has been made but
only the initial capacity is in operation at the moment. It is straightforward to calculate the
firm value in this region, denote by F̄21(X , Q1, Q21), as follows:

F̄21(X , Q1, Q21) = Q1(1 − ηQ1)X

r + λ21 − μ
+ λ21(Q1 + Q21){1 − η(Q1 + Q21)}X

(r − μ)(r + λ21 − μ)

−
( cQ1

r + λ21
+ λ21c(Q1 + Q21)

r(r + λ21)

)
. (A.24)

Now let us suppose X < X21 and t ≥ T̂1. Namely, the initial project has been finished but
the demand shock has not increased enough to trigger the capacity expansion of Q21. The firm
value with Q1 in operation and the option of capacity expansion, denoted by F21(X , Q1),
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needs to satisfy (A.19) with boundary conditions (A.20) through (A.22), and the solution is
given by the first row of (18).

In the region of X < X21 and t < T̂1, the initial capacity Q1 is not in operation and the firm
has an option of capacity expansion. The firm value in this region, denoted by F20(X , Q1),
switches to F21(X , Q1) as soon as the initial capacity Q1 starts operation. Thus, the firm
value should satisfy

r F20(X , Q1) = LF20(X , Q1) + λ1{F21(X , Q1) − F20(X , Q1)}, (A.25)

subject to
F20(0, Q1) = 0, (A.26)

and other boundary conditions to be illustrated shortly. Given the solution of F21(X , Q) in
(18), a general solution of (A.25) with the boundary condition (A.26) is

F20(X , Q1) = �1(X , Q1) − �1(Q1) + A20X
β1 + A21(Q1)

( X

X∗
21(Q1)

)β

, (A.27)

where �1(X , Q1), �1(Q1), and β1 are given by (29), (30), and (33), respectively.
Now let us suppose X ≥ X21 and t < T̂1. In this region, the firm will make the follow-up

investment in Q21 as soon as the initial capacity starts operation. Thus, the firm value with
Q1 not in operation yet and the option of capacity expansion, denoted by F̄20(X , Q1), should
satisfy

r F̄20(X , Q1) = LF̄20(X , Q1)+λ1{F̄21(X , Q1, Q
∗
21(X , Q1))−δQ∗

21(X , Q1)−F̄20(X , Q1)},
(A.28)

subject to some boundary conditions to be illustrated shortly. Note that because the initial
project is finished at a random time, the choice of capacity expansionwill be Q∗

21(X(T̂1), Q1)

with Q∗
21(X , Q1) in (A.18), not Q∗

21(X
∗
21(Q1), Q1) as in Proposition 3. A general solution

of (A.28) is

F̄20(X , Q1) = �1(X , Q1) − �1(Q1) + Â21(X , Q1) + B̄20X
γ1 (A.29)

where Â21(X , Q1) and γ1 are given by (26) and (34), respectively. The equations (A.27) and
(A.29) are subject to the following boundary conditions:

F̄20(X
∗
21, Q1) = F20(X

∗
21, Q1), (A.30)

∂ F̄20(X , Q1)

∂X

∣∣∣
X=X∗

21

= ∂F20(X , Q1)

∂X

∣∣∣
X=X∗

21

. (A.31)

From these conditions, we can derive the following results:

A20 = −
[
A21(Q1) − Â21(Q1) − {B21(Q1) − B̂21(Q1)}

]( 1

X∗
21(Q1)

)β1
, (A.32)

B̄20 = {
B21(Q1) − B̂21(Q1)

}( 1

X∗
21(Q1)

)γ1
, (A.33)

where B21(Q1) and B̂21(Q1) are given by (27) and (28), respectively. Substituting (A.32)
into (A.27), we have

F20(X , Q1) = �1(X , Q1) − �1(Q1) + A21(Q1)
( X

X∗
21(Q1)

)β

−
[
A21(Q1) − Â21(Q1) − {B21(Q1) − B̂21(Q1)}

]( X

X∗
21(Q1)

)β1
. (A.34)
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Likewise, substituting (A.33) into (A.29), we have

F̄20(X , Q1) = �1(X , Q1)−�1(Q1)+ Â21(X , Q1)+
{
B21(Q1)− B̂21(Q1)

}( X

X∗
21(Q1)

)γ1
.

(A.35)

A.5 Proof of proposition 5

At the timing of initial investment in Q1, the firm value is

V1(X , Q1) = V20(X , Q1) − δQ1, (A.36)

where V20(X , Q1) is described in the first row of (25). Before making the investment, the
initial option value, denoted by F1(X), needs to satisfy

r F1(X) = LF1(X), (A.37)

subject to

F1(X
∗
1) = V1(X

∗
1, Q1), (A.38)

∂F1(X)

∂X

∣∣∣
X=X∗

1

= ∂V1(X , Q1)

∂X

∣∣∣
X=X∗

1

, (A.39)

F1(0) = 0. (A.40)

A general solution of (A.37) with the boundary condition of (A.40) is

F1(X) = A1X
β, (A.41)

and substituting (A.36) and (A.41) into (A.38) and (A.39) yields the results in Proposition 5.

B Single investment option

It is straightforward to derive the value function in the absence of time-to-build as follows:

V̄0(X) =
{(

�̄1(X̄∗
0, Q̄

∗
0) − �̄(Q̄∗

0) − δ Q̄∗
0

)( X
X̄∗
0

)β
, if X < X̄∗

0,

�̄1(X , Q̄∗
0) − �̄(Q̄∗

0) − δ Q̄∗
0, if X ≥ X̄∗

0,
(B.1)

where the optimal investment threshold and capacity are

X̄∗
0 = (β + 1)(c/r + δ)(r − μ)

β − 1
, (B.2)

Q̄∗
0 = 1

(β + 1)η
. (B.3)

Although the firm optimally chooses its investment timing as T̄0 := inf{t > 0|X(t) ≥ X̄∗
0},

it can invest at any time before T̄0. The firm value with this immediate investment yields the
intrinsic value as follows:

V̄ int
0 (X) = �̄1(X , Q̄∗

0(X)) − �̄(Q̄∗
0(X)) − δ Q̄∗

0(X), (B.4)

where

Q̄∗
0(X) = 1

2η

(
1 − (c/r + δ)(r − μ)

X

)
, (B.5)
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and the time value of the option can be evaluated as V̄ tim
0 (X) := V̄0(X) − V̄ int

0 (X) for
X < X̄∗

0 .
Following the same argument, the value function in the presence of time-to-build is eval-

uated as

V0(X) =
{(

�1(X∗
0, Q

∗
0) − �1(Q∗

0) − δQ∗
0

)( X
X∗
0

)β
, if X < X∗

0,

�1(X , Q∗
0) − �1(Q∗

0) − δQ∗
0, if X ≥ X∗

0,
(B.6)

where the optimal investment threshold and capacity are

X∗
0 = (β + 1)( λ1c

r(r+λ1)
+ δ)(r − μ)(r + λ1 − μ)

(β − 1)λ1
, (B.7)

Q∗
0 = 1

(β + 1)η
. (B.8)

The intrinsic value of the option with immediate investment is

V int
0 (X) = �1(X , Q∗

0(X)) − �1(Q
∗
0(X)) − δQ∗

0(X), (B.9)

where

Q∗
0(X) = 1

2η

(
1 − ( λ1c

r(r+λ1)
+ δ)(r − μ)(r + λ1 − μ)

λ1X

)
, (B.10)

and the time value of the option can be obtained as V tim
0 (X) := V0(X) − V int

0 (X) for
X < X∗

0 .

C Time value of capacity expansion

C.1Without time-to-build

Given the optimal investment in the initial project, the option value before the follow-up
project is V̄2(X) := V̄2(X , Q̄∗

1) with V̄2(X , Q1) in (4). Although it is optimal for the firm
to invest at X̄∗

2 as derived in Proposition 1, it can choose to invest at any time. The intrinsic
value of capacity option with the immediate investment for X̂ ∈ (X̄∗

1, X̄
∗
2) is

V̄ int
2 (X̂) = �̄1(X̂ , Q̄∗

1) + �̄2(X̂ , Q̄∗
1, Q̄

∗
2(X̂ , Q̄∗

1)) − �̄(Q̄∗
1 + Q̄∗

2(X̂ , Q̄∗
1)) − δ Q̄∗

2(X̂ , Q̄∗
1),

(C.1)
with Q̄∗

2(X , Q1) in (A.2). Thus, the time value of capacity expansion in the absence of
time-to-build for X̂ ∈ (X̄∗

1, X̄
∗
2) is V̄

tim
2 (X̂) := V̄2(X̂) − V̄ int

2 (X̂).

C.2With time-to-build

Given the optimal investment in the initial project, the option value of capacity expansion
before the initial capacity starts operating is V20(X) := V20(X , Q∗

1) in (25); it is optimal to
invest at X∗

21 after the initial project is finished. However, the firm can choose to invest as
soon as the initial project is finished regardless of the level of demand shock, and thus, the
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intrinsic value of capacity option for t < T̂1 and X̂ ∈ (X∗
1, X

∗
21) is

V int
20 (X̂) = �1(X̂ , Q∗

1) − �1(Q
∗
1) + �̂21(X̂ , Q∗

1, Q
∗
21(X̂ , Q∗

1))

− �̂21(Q
∗
21(X̂ , Q∗

1)) − λ1

r + λ1
δQ∗

21(X̂ , Q∗
1), (C.2)

with Q∗
21(X , Q1) in (A.18). Thus, the time value of capacity expansion for t < T̂1 and

X̂ ∈ (X∗
1, X

∗
21) is V

tim
20 (X̂) := V20(X̂) − V int

20 (X̂).
Meanwhile, after the initial capacity is in operation, the option value of capacity expansion

is V21(X) := V21(X , Q∗
1) in the first row of (18), and the intrinsic value of capacity option

with the immediate investment for X̂ ∈ (X∗
1, X

∗
21) is

V int
21 (X̂) = �̄1(X̂ , Q∗

1) − �̄(Q∗
1) + �21(X̂ , Q∗

1, Q
∗
21(X̂ , Q∗

1))

−�21(Q
∗
21(X̂ , Q∗

1)) − δQ∗
21(X̂ , Q∗

1), (C.3)

and thus, the time value of capacity expansion for t ≥ T̂1 and X̂ ∈ (X∗
1, X

∗
21) is V

tim
21 (X̂) :=

V21(X̂) − V int
21 (X̂).
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