
Data Min Knowl Disc (2010) 20:388–415
DOI 10.1007/s10618-009-0156-z

Time to CARE: a collaborative engine
for practical disease prediction

Darcy A. Davis · Nitesh V. Chawla ·
Nicholas A. Christakis · Albert-László Barabási

Received: 22 January 2009 / Accepted: 8 October 2009 / Published online: 25 November 2009
The Author(s) 2009

Abstract The monumental cost of health care, especially for chronic disease
treatment, is quickly becoming unmanageable. This crisis has motivated the drive
towards preventative medicine, where the primary concern is recognizing disease risk
and taking action at the earliest signs. However, universal testing is neither time nor
cost efficient. We propose CARE, a Collaborative Assessment and Recommendation
Engine, which relies only on patient’s medical history using ICD-9-CM codes in order
to predict future disease risks. CARE uses collaborative filtering methods to predict
each patient’s greatest disease risks based on their own medical history and that of
similar patients. We also describe an Iterative version, ICARE, which incorporates
ensemble concepts for improved performance. Also, we apply time-sensitive modifi-
cations which make the CARE framework practical for realistic long-term use. These
novel systems require no specialized information and provide predictions for medical
conditions of all kinds in a single run. We present experimental results on a large
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Medicare dataset, demonstrating that CARE and ICARE perform well at capturing
future disease risks.

Keywords Collaborative filtering · Prospective medicine · Disease prediction ·
Electronic healthcare record

1 Introduction

Medical care and research are literally the most vital part of science for humans, as
none of us are immune to physical ailments and biological deterioration. Annual health
care expenditure in the U.S. alone is an overwhelming sum, with a strong majority
of this money used for chronic disease treatment. Experts expect the burden on the
system to continually increase in coming years. A Center for Disease Control and
Prevention (CDC) study estimates that 880.5 million visits were made to physician
offices, about 3.1 visits per patient, in 2001 (Cherry et al. 2001). Since 1992, the aver-
age age increased to 45 years, and the visit rate for persons 45 years of age and over
increased by 17% from 407.3 to 478.2 visits per 100 persons.

Research has shown many conditions to have recognizable indicators before onset
or preventable risk factors. From these discoveries comes the idea of prospective
medicine, aimed at determining and minimizing individual risk, as well as actively
addressing conditions at the earliest indication. In theory, these practices reduce the
number of conditions needing treatment and improve the effectiveness of necessary
interventions. However, the combinatorial problem generated by the different disease
factors and the previous medical history of a patient is so complex that no single health
care professional can fully comprehend it all. Currently, physicians can use family and
health history and physical examination to approximate the risk of a patient, guiding
laboratory tests to further assess the patient’s stage of health. However, these sporadic
and qualitative ‘risk assessments’ generally focus on only a few diseases and are lim-
ited by a particular doctor’s experience, memory, and time. Therefore, current medical
care is reactive, stepping in once the symptoms of a disease have emerged, rather than
proactive, treating or eliminating a disease at the earliest signs.

Today the prevailing model of prospective heath care is firmly based on the genome
revolution. Indeed, technologies ranging from linkage equilibrium and candidate gene
association studies to genome wide associations have provided an extensive list of dis-
ease–gene associations, offering us detailed information on mutations, SNPs, and the
associated likelihood of developing specific disease phenotypes (Consortium 2007).
The underlying hypothesis behind this line of research is that once we catalogue all
disease-related mutations, we will be able to predict the susceptibility of each indi-
vidual to future diseases using various molecular biomarkers, ushering us into an era
of predictive medicine. Yet, these rapid advances have also unraveled the limitations
of the genome based approaches (Loscalzo 2007). Given the weak signals that most
disease associated SNPs or mutations offer, it is increasingly clear that the promise of
the genome based approaches may not be realized soon.

Does this mean that prospective approaches to health care will have to wait until the
genomic approaches sufficiently mature? Our aim here is to show that phenotype and
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disease history based approaches offer the promise of rapid advances towards disease
prediction.

1.1 Contribution

This research seeks to aid the development of a predictive system by examining the
use of medical history to examine information about disease correlations and inexpen-
sively assess risk. An effective proactive approach requires an understanding of disease
interdependencies and how they translate into a patient’s future. Due to the common
genetic, molecular, environmental, and lifestyle-based individual risk factors, most
diseases do not occur in isolation (Barabasi 2007; Consortium 2007; Loscalzo et al.
2007). Shared risk and environmental factors have similar consequences, prompting
the co-occurrence of related diseases in the same patient. Therefore, a patient diag-
nosed for a combination of diseases and exposed to specific environmental, lifestyle
and genetic risk factors may be at a considerable risk of developing several other
genetically and environmentally related diseases.

How can we exploit such interconnections and generate predictions about the future
diseases a patient may develop? The underlying thesis of our work is to generate a
patient’s prognosis based on the experiences of other similar patients. Our goal is to
provide every patient with a personalized answer to the question: What are my disease
risks?

We approach this problem using collaborative filtering methodology. Collaborative
filtering is designed to predict the preferences of one person (active user) based on
the preferences of other similar persons (users). The technique is based on the intui-
tive assumption that people will enjoy the same items as their similar peers, or more
specifically, having some common preferences is a strong predictor of additional com-
mon preferences. Predictions are based on datasets consisting of many user profiles,
each containing information about the individual user’s preferences. This has made a
significant impact on marketing strategies. We draw an analogy between marketing
and medical prediction. Each user is a patient whose profile is a vector of diagnosed
diseases. Using collaborative filtering, we can generate predictions on other diseases
based on a set of other similar patients. However, the ratings in our case are binary; a
patient either has a disease (1) or does not have a disease (0). There is no ordinal set
of ratings as is typically observed in movie or music data. Another difference is that
the users choose to rate movies and music, while the diseases are not a patient choice.

Key contributions in this work are listed below. Earlier work on the first two con-
tributions can also be found in (Davis et al. 2008a,b).

1. A novel application of collaborative filtering in the medical domain for advancing
the field of prospective medicine. To our knowledge, collaborative filtering has
not been used for disease prediction. Unlike other disease prediction software, we
present a general system which makes predictions on all types of diseases and
medical conditions. Our system uses only ICD-9-CM (International classification
of Diseases) codes (NC for Health Statistics 2007) to make predictions, which are
a common standard for insurance and medical databases. We do not require any
other information such as lab tests, etc., which can be expensive.
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2. The collaborative filtering method employed, while building upon prior work,
incorporates new elements of significance testing and ensemble methods within
the CARE framework.

3. A time-sensitive system which uses a best sub-vector matching concept to exploit
the known ordering of disease diagnosis. The time-sensitive improvements to our
framework make it applicable to long-term, diverse data such as public health
records. They also help to automatically differentiate and correctly deal with
chronic versus non-chronic diseases.

4. Analysis of performance trends dependent on the amount of data known and the
length of time between diagnoses. This information provides guidelines for effi-
cient use in a practical setting.

5. Case studies are provided as a real-world example of the potential benefits of
CARE.

2 Related work

Our related work includes the larger body of research on collaborative filtering, studies
from the medical community which further support the need for preventative med-
icine, and various interdisciplinary efforts which previously led to computer-aided
medical prediction systems. While most of these systems are only loosely comparable
to CARE, they are representative of the same goals. We are not aware of any work
which is directly comparable to CARE.

As mentioned in the introduction, collaborative filtering is a data mining technique
that makes predictions about an active user based on information about other similar
users. The usual method is to find the other users that are most similar to the active user,
and generate predictions based on their preferences. The first automated collaborative
filtering systems were GroupLens (Konstan et al. 1997; Resnick et al. 1994) and Ringo
(Shardanand and Maes 1995), which recommended internet news articles and music,
respectively. These systems are part of the larger class of memory-based algorithms,
which make predictions using the entire user database. This is typically accomplished
by calculating a weight of similarity between the active user and all others, and the
active user’s opinion is determined by the weighted average of the others’ opinions.
In many cases, only a limited number of ‘nearest neighbors’ are included in the cal-
culation. The most common similarity metrics are the Pearson correlation coefficient
(Resnick et al. 1994) and vector similarity (Salton and McGill 1983; Breese et al. 1998).
Memory-based algorithms are simple, easily updated, and generally produce good
results. These advantages come at the cost of high resource consumption, since the
entire database must be retained and used. While correlation is usually cited as the supe-
rior method, other results have shown vector similarity to perform equally well or better
(Grcar et al. 2005). The second widely-used class of collaborative filtering algorithms
are model-based, where predictions are generated by a model of user preferences which
was preconstructed on the user database. The model-based algorithms are faster and
more scalable, in general. However, model building tends to be expensive, leading
to inflexibility for introducing new data. The quality of predictions for model-based
methods widely vary (Si and Jin 2003). Well known model-based methods include
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Bayesian clustering or models (Breese et al. 1998), Personality Diagnosis (Pennock
and Horvitz 1999), Singular Value Decomposition (Goldberg et al. 2000; Paterek
2007), and the Aspect model (Hofmann 2004; Hofmann and Puzicha 1999). There
are also many content-based recommender systems. There is not an appropriate and
available source of disease ‘content’, so these are of little relevance to our problem.

Early treatment (Coyle and Hartung 2002), screening (Institute 2007), lifestyle
change (Hunt et al. 1995), and other interventions (Edelman 2006; Koertge et al.
2003) are common themes in modern medical research, where early intervention is
shown repeatedly to improve disease outcome and quality of life. Nonetheless, these
proactive treatments are far from the norm in our largely reactive health care system.
In Snyderman and Williams (2003) provide an outstanding overview of the flaws of
the current system and potential benefits of a prospective health care system. They
suggest that data mining is a “central feature” of prospective health care. Glasgow
(2001) support the feasibility of the preventive approach. They state that much of the
chronic disease burden can be prevented, and further posit that existing management
strategies can also be used to advance prevention.

Many proponents of prospective medicine emphasize genomic studies and other
breakthrough research in human biology. It is undeniable that genomic research is
rapidly advancing (Consortium 2007) and holds great promise for medicine. Unfor-
tunately, applicability to the general public is still very limited (Loscalzo 2007). Sim-
ilarly, in Weston and Hood (2004) express excitement with advancements in systems
biology and proteomics, but acknowledge that we still need to learn how to realisti-
cally translate discoveries into health benefits. Also, they recognize that there are still
“enormous challenges” to overcome. Though low-tech in comparison, CARE demon-
strates that existing data and technology can provide immediate advancement toward
prospective medicine.

Beyond the basic analogy in 1.1, collaborative filtering seems well suited to disease
prediction due to the known collaborative nature of diseases. A wide variety of stud-
ies on disease comorbidity, i.e., the simultaneous occurrence of two or more distinct
diseases, have shown that multiple risk factors cannot reliably be considered in isola-
tion (Starfield et al. 2003). Co-occurring factors can have a synergystic effect, leading
to unexpectedly high risk (Loscalzo 2007; Kannel et al. 1961). In van den Akker et
al. (1998), mention that the incidence of comorbid diseases is increasing. They state
that statistical clustering of comorbid diseases was surprisingly strong, even among
young subjects. This results implies likely interaction between many of the coinciding
diseases.

Many different computer-aided methods have been developed for medical predic-
tion. Most of these systems are designed to make predictions about a single disease
or class of diseases. Usually, the predictions are generated from some combination of
basic data such as demographic information and physical description with addition
condition-specific test results or family history. One well-known system is Apache III
(Wong and Knaus 1991), a prognostic scoring system for predicting inpatient mortal-
ity. Apache uses a combination of acute physiological measurements, age, and chronic
health status. A wide variety of systems have been developed for predicting risk of
individual diseases or complications, such as specific heart conditions (Cordn et al.
2002), Alzheimer’s disease (Liu et al. 2007), and cancer (Mould 2003). While data
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mining has been widely used to explore medical problem, collaborative filtering has
not been used. An exception is Kahn (2005), which discusses the use of collabo-
rative filtering into the CHORUS system for efficiently locating relevant radiology
information. CHORUS is essentially a text-classification program and is not compa-
rable to our work.

3 Data

Our database comprises the Medicare records of 13,039,018 elderly patients in the
United States with a total of 32,341,348 hospital visits. The data was originally com-
piled from raw claims data for beneficiaries who were at least 65 years old as of January
1993 (Christakis and Allison 2006). Such Medicare records are highly complete and
accurate, and they are frequently used for epidemiological and demographic research
(Lauderdale et al. 1993; Mitchell et al. 1994).

The input for our methods consists of each patient’s diagnosis history, provided per
inpatient visit. Each data record consists of a hospital visit, represented by a patient
ID and a list of up to ten diagnosis codes per visit, as defined by the International
Classification of Diseases, Ninth Revision,Clinical Modification. The International
Statistical Classification of Diseases and Related Health Problems (ICD) provides
codes to classify diseases and a wide variety of signs, symptoms, abnormal findings,
social circumstances, and external causes of injury or disease. It is published by the
World Health Organization. Each disease or health condition is given a unique code,
and can be up to 5 character long. ICD-9 codes are hierarchical in nature, so the 5
characters codes can be collapsed to fewer characters identifying a small family of
related medical conditions. For instance, code 40201 is a specific code for malignant
hypertensive heart disease with heart failure. This code can be collapsed to 4020, non-
specific malignant malignant hypertensive heart disease, or further to 402, the family
of all hypertensive heart disease (non-specific).

A sample patient medical history is shown in Table 1; each line represents one
hospital visit. The first code for any visit is the principal diagnosis, followed by any
secondary diagnoses made during the same visit. Demographic data was available,
but our experiments showed little effect on predictive power (Davis et al. 2008b). The
length of time between patient visits was also included, which we harnessed to develop
a time-sensitive version of our system.

In our Medicare database, the number of visits per patient ranges from 1 to 155,
with a median of 2. Also, though up to ten diagnosis codes are permitted, the average

Table 1 A sample patient
medical history

Patient ID Vector of ICD-9-CM disease codes

9142409 40291 57420 5301 5533 2780

9142409 29624 4019 2768 2780

9142409 2967

9142409 25090 7906 E9331 20300

9142409 25090 E9331 20300 4019

9142409 3101 20300 25001
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Table 2 The 20 most prevalent
diseases

Disease Prevalence (%)

Unspecified essential hypertension 33.64

Coronary atherosclerosis 21.16

Congestive heart failure 18.16

Urinary tract infection 16.67

Chronic airway obstruction 14.69

Atrial fibrillation 14.03

Volume depletion 11.90

Hypopotassemia 11.34

Diabetes uncomplicated type II 10.47

Pneumonia, organism unspecified 9.35

Angina, unstable 8.72

Hyposmolality and/or hyponatremia 8.47

Unspecified anemia 8.38

Acute posthemorrhagic anemia 8.14

Unspecified angina pectoris 7.90

Hyperplasia of prostate 6.54

Other specified cardiac dysrhythmias 5.61

Osteoarthrosis unspec gen/loc unspec site 5.20

Unspecified hypothyroidism 5.14

Unspecified chronic ischemic heart disease 5.13

is only 4.32 per visit, making this dataset very sparse. There are a total of 18,207
unique disease codes expressed in the database. However, only 169 diseases occur at
1% or more in the population (across visits for patients). Table 2 shows the 20 most
prevalent diseases in our database.

4 The CARE methodology

4.1 System overview

Before detailing the individual components, a high-level preview of the entire CARE
framework is provided in Fig. 1. The dotted lines represent optional methods. The
testing patient (denoted as a) is the individual for whom we are making predictions
based on the histories of the training patients (denoted as I , with each individual
denoted as i ∈ I ). Thus, the individual medical history in Fig. 1 is the testing patient
while other patients’ medical histories is the set of training patients. All patients are
represented by their medical history in the format shown in Table 1. The training set is
constrained to patients with at least two diseases in common with the testing patient,
prior to the application of collaborative filtering. This results in a group of patients
similar to the individual testing set patient a. Collaborative filtering is performed on
the resulting group, generating predictions for the future visits of the testing patient.
In the case of ICARE, this process is performed multiple times for each patient, with
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Fig. 1 A high-level overview of the CARE system

each iteration creating a different training patient group based on an individual disease.
These multiple resulting predictions are combined to form an ensemble. The output
after CARE and ICARE is a ranked list of diseases for the subsequent visits of the
testing patient, ranked in order from the highest risk score to the lowest. If desired,
these lists can be collapsed into a shorter, less specific version by grouping medical
conditions according to the hierarchical nature of the disease codes. Each component
is further defined in the subsequent sections.

4.2 Vector similarity

Our collaborative filtering technique is derived from the vector similarity algorithm
presented by Breese et al. (1998). Traditionally, collaborative filtering is used to make
a prediction p(a, j) on user a, the active user (testing), for item j based on the simi-
larity between user a and every other user i who has previously given a vote vi, j for
that item. The entire training set of users is defined as I , and I j is the subset of users
who have voted on j . The similarity w(a, i) between users a and i is calculated by
vector similarity; that is,

w(a, i) =
∑

j

va, j√∑
k∈Ja

v2
a,k

vi, j√∑
k∈Ji

v2
i,k

. (1)

Ji is the set of items rated by user i . The prediction score takes into account the average
vote vi of each user to account for personal differences. A normalizing constant κ is
added so that the sum of weights is equal to 1, constraining the prediction within the
range of possible votes. Thus, the general collaborative filtering equation is:

123



396 D. A. Davis et al.

p(a, j) = va + κ
∑

i∈I j

w(a, i)(vi, j − vi ). (2)

However, this equation will not suffice for the proposed application in the medical
domain. The user in this case is a patient and the items are diseases. Each patient i
either has (vi, j = 1) or does not have (no vote) disease j . Since every vote is 1, it is
easy to see that every v term will be 1, and the algorithm then predicts that every user
has every disease with a score of 1, an obvious error. Our proposed changes modify the
general equation to incorporate binary diagnoses and remove the effect of the range of
ratings. The modified general equation is also dependent on the random expectation
of each disease, referred to as v j . Specifically,

v j = |I j |
|I | (3)

Thus, the prediction score for the active patient a on disease j is now expressed as
follows:

p(a, j) = v j + κa(1 − v j )
∑

i∈I j

w(a, i) (4)

with the normalizing constant

κa = 1∑
i∈I w(a, i)

(5)

Intuitively, the equation treats the random expectation v j as the baseline expectation
of each patient having disease j and adds additional risk based on similarity to other
patients with disease j .

4.3 Inverse frequency

We further extended Eq. 1 to include inverse frequency (IF), which gives lower weights
to very common diseases in the training set, based on the intuition that sharing a rare
disease has more impact on similarity than sharing a common disease. For instance,
individuals sharing a rare genetic disease are assumed to be more similar than two
patients with general hypertension. Furthermore, two patients with the same disease
are considered more similar if they share a specific type of complication. This is par-
ticularly influential in our medical database. There can be many medical diagnoses
shared between patients but the most important contributions arise from uncommon
connections. The inverse frequency of disease j is defined as

f j = log
n

n j
(6)
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where n is the number of patients in the training set, and n j is the number of patients
who have j . This is incorporated into the similarity weighting equation by multiplying
each disease vote by the corresponding IF factor. The resulting equation for w(a, i) is

w(a, i) =
∑

j

f jva, j√∑
k∈Ja

f 2
k v2

a,k

f jvi, j√∑
k∈Ji

f 2
k v2

i,k

. (7)

No changes to the general equation are needed. All of the experimental results dis-
cussed were found using this method, which we call inverse frequency vector similarity
(IFVS).

4.4 Grouping of training patients

Before each application of collaborative filtering, a group of relevant training patients
is determined based on the number of diagnoses in common with the testing patient.
This serves to remove the influence of patients who have little or no similarity with
the patient for whom predictions are being made. Training patients with no diseases
in common with the active patient have a similarity weight of 0 and do not contrib-
ute to the prediction scores. Thus, removing these patients does not result in loss of
information, but effectively reduces the runtime of the algorithm.

In practice for CARE, we include all patients with two or more diseases in common
with the active patient. This constraint enforces stronger similarities for all patients
influencing the predictions. In theory, this helps to avoid the noise resulting from sim-
ilarity on a single common disease, which can introduce a very high number of weak
influences. Restricting the training set provides an additional benefit by reducing the
number of diseases predicted on, which both simplifies and improves the collaborative
filtering results. This effect will be further discussed in the next section.

It is important to note that the random expectation of diseases is different within the
group than the overall occurrence in the entire dataset. We defined the global expec-
tation as v j and similarly, we refer to the expectation with a group c as v j,c. In all
experiments, the random expectation within the relevant group is used in Eq. 4.

4.5 ICARE with ensembles

Even with the restricted training set combined with IFVS, we still observed that com-
mon diseases can overwhelm less common diagnoses since they account for the major-
ity of the patients in the cluster. Ideally, we want to capture the effect of each individual
disease with minimal noise from other diseases, but without the loss of information due
to removing them. To meet this goal, we developed an iterative version of CARE using
ensembles (Dietterich 2000) of CARE runs on individual-disease training groups.

Specifically, for each disease j developed by the test patient a, collaborative fil-
tering is applied separately to the group of training patients with disease j . Since
each group is specific to a disease, we do not enforce the two-in-common constraint
described in Sect. 4.4. As before, the collaborative filtering uses the within-group
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random expectation v j,c. Thus, each member of the ensemble is a round of collabora-
tive filtering on an individual disease group, and it follows that the number of members
is equal to the number of unique diseases developed by patient a prior to the visit for
which the predictions are being generated. While a single visit is used to define the
ensemble member, the collaborative filtering still uses the entire past disease vector
of patient a. Thus, each disease has a chance at making a strong impact individually,
but all disease interactions are preserved. The ensembles are combined by taking the
maximum prediction score for each disease, that is

max
c∈G

⎛

⎝v j,c + κ(1 − v j,c)
∑

i∈I j,c

w(a, i)

⎞

⎠ (8)

where G is set of ensemble members or disease groups, conditioned on the individual
diseases of each testing patient. We choose the maximum since diseases are gener-
ally not protective against each other, with few exceptions. In other words, having
additional diseases does not lessen the probability of developing a disease.

In order to reduce the number of predictions and the runtime of the ensembles, we
only predict on diseases for which the v j,c is significantly higher than v j . That is, if a
disease’s prevalence is higher in the entire population than the focused group, we do
not generate a prediction on that disease since the group does not show a strong influ-
ence on its occurrence. We determine the significance of a disease using a difference
of proportions test. This statistical test determines whether the difference between two
sample proportions taken from different populations is significant. The null hypothe-
sis is always that the two proportions are equivalent, and the alternative hypothesis is
that they are not equivalent. A z score is then found using the equation

z = p1 − p2

Sp1−p2

. (9)

Here, p1 − p2 is the difference between the sample proportions and S is the associated
standard error determined by the equation

Sp1−p2 =
√

p(1 − p)

n1
+ p(1 − p)

n2
(10)

where p is the weighted average of p1 and p2, while n1 and n2 are the respective sizes
of the samples. In our formulation, p1 = v j,c, p2 = v j , n1 = |c|, and n2 = |I |. We
use a 95% confidence interval.

4.6 ICD-9-CM code collapse

In some cases, it is desirable for all 4 or 5-digit ICD-9-CM codes to be collapsed into
more general 3-digit codes, which represent small groups of related or similar diseases.
In general, these groups are not based on comorbidity; they are often comprised of
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specific forms or complications of the same disease or injury. The grouping is based
entirely on the structure of the ICD-9 coding scheme. For example, the ICD-9 code of
426 corresponds to Conduction disorders. The specific version of 426.0 corresponds
to Atrioventricular block, third degree; this can be further specified as (426.11) Atrio-
ventricular block, first degree; (426.12) Atrioventricular block, Mobitz II and (426.13)
Atrioventricular block, Wenckebach’s.

Such 4 or 5 digit codes can be truncated to 3 digits either before (pre-collapse) or
after (post-collapse) applying collaborative filtering. In the first case (pre-collapsing),
collaborative filtering is applied to vectors of already shortened codes. This signif-
icantly reduces the number of diseases being predicted, consequently reducing the
runtime. However, pre-collapsing results in loss of all information provided by the
more detailed codes, since only one composite prediction is made for each 3-digit
disease group. When post-collapsing, the collaborative filtering is run normally on the
original codes, and the results are merged after completion. The 3-digit code group
adopts the highest prediction score given to one of the members. That is, the likelihood
of having a general disease is equal to the highest likelihood of having some specific
instance of the disease.

Post-collapsing can be done in a hierarchical manner, so that the detailed results
provided by specific ICD-9 codes are preserved. Collapsing the ICD-9 codes is bene-
ficial in multiple ways. In the case of pre-collapsing, algorithm efficiency is improved.
In both cases, the reduced number of diseases predictions makes the results simpler to
evaluate and interpret. Also, collapsing reduces the negative effects of assuming that
all undiagnosed diseases are not present. For example, a high score for diabetes will
be evaluated as a successful prediction of diabetes with a specific complication. With-
out collapsing, the relationship between the two diabetes codes could not be directly
considered, and the rareness of the complication could cause the diabetes diagnosis
to be overlooked or highly underrated. This is particularly relevant since Medicare
data does not reliably capture complications (Mitchell et al. 1994). It is important to
note that post-collapsing the codes does not change the performance of collaborative
filtering; this method primarily serves to make evaluation of the performance more
accurate, giving the medical practitioner the choice to conduct further tests to identify
the specific nature of the disease.

5 Time-sensitive CARE

CARE and ICARE do not take the order of or length between disease diagnoses into
account when generating vector similarity among patients. However, a patient should
be considered more similar to another if their shared diseases follow a similar temporal
pattern, as well. Similarly, matching with two diseases which occurred many years
apart may not be relevant. For this reason, we modify our methods to incorporate
the length of time between medical events (in our case, hospital visits). In addition to
more realistic similarity weights, using temporal information allows our framework to
extend to broad, general datasets with more complete medical history. A limitation of
our dataset is that the disease onset can only be identified with the hospital admission,
which might not accurately reflect the time the disease was developed. Our dataset
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is also limited to a scope of 4 years, another disadvantage. Nevertheless, the goal of
our system is to have the capability to incorporate temporality, which has distinct
advantages.

As explained in 4.2, CARE determines the similarity of the active patient a and a
training patient i as the vector similarity between the disease vector of a and the entire
disease vector of i . The prediction score p(a, j) for every disease j in the training
vector will be weighted by this similarity. This implementation is blind to the order
of disease occurrence in the training patient; a common disease between the active
patient and training visit 5 will increase prediction scores for diseases which occurred
in training visit 1. This captures correlation, but it misses any causality effects or nat-
ural ordering of disease occurrence. We are only interested in predicting the future,
so an overlapping disease should ideally only increase prediction scores for diseases
occurring in later training visits. However, this is too simplistic. In most cases, a and
i will have multiple overlaps in different visits, and considering them individually
would lose complex or synergistic effects.

Algorithm 1 Pseudocode for finding the best match subset of training visits
Algorithm best_match(a,visi ts)

1: maxsofar = 0
2: maxstart = 0
3: maxend = 0
4: currentmax = 0
5: currentstart = 0
6: for all m in visi ts do
7: if w(a, subm,m ) ≥ w(a, subcurrentstart,m ) then
8: currentmax = w(a, subm,m )

9: currentstart = m
10: else
11: currentmax = w(a, subcurrentstart,m )

12: end if
13: if currentmax ≥ maxsofar then
14: maxsofar = currentmax
15: maxstart = currentstart
16: maxend = m
17: end if
18: end for
19: Return maxsofar, maxstart, maxend

Our method is a compromise. First, we find the subset of consecutive training visits
of i with the best vector match to the active patient a. We define subs,z to be the
consecutive set of visits from visit s to visit z. For training patient i with n visits, the
best match best (a, i) to active patient a is subs,z such that

max(w(a, subs,z)), 1 ≤ s ≤ z ≤ n (11)

Similar to other maximum subsequence problems, we can find best (a, i) in linear
time. Our pseudocode is shown in Algorithm 1. While our algorithm is heuristic, it
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will be accurate for nearly all sequences that would realistically occur. As the algorithm
scans, it tests whether the current visit yields a higher vector similarity in conjunction
with the preceding best sequence or standing alone. If the current visit v performs
better without the preceding set of visits, then those visits will not be beneficial to
any sequence containing v. Conversely, if similarity is higher when v is combined
with earlier visits, then those earlier visits will continue to be beneficial in any subset
containing v. The concept is similar, though not identical, to fraction multiplication;
note that for any two vectors, 0 < w(a, i) < 1. Starting with the largest fraction will
always be better, regardless of future values.

Intuitively, best (a, i) is the time period when training patient i was having the
most similar medical experience to the active patient a, and the visits immediately
following should have the most relevant information to the prognosis of a. Thus, we
modify the general equation so the “best match” vector similarity only adds prediction
weight for diseases which occur in visits after the “best match” time frame. Assuming
that best (a, i) = subs,z and i has n visits, then Z j is the set of patients i such that
j ∈ subz+1,n . The time-sensitive general equation is then

p(a, j) = v j,c + κ(1 − v j,c)

∑
i∈Z j

w(a, best (a, i))
∑

i∈I w(a, best (a, i))
(12)

If the “best match” includes the last visit for i , we assume that i provides no knowledge
about the future of a.

Finding a best match subset of visits incorporates the ordering of diseases and
resolves the problem of “predicting the past”, while still preserving multiple-dis-
ease interactions. Additionally, this strategy makes the CARE framework feasible for
long-term, diverse data, such as public health records. Over a lifetime, people may go
through many different medical experiences and phases, and very few people will have
the same experience over a period of many years. However, similarity within a short
window may be very strong. The best match is able to isolate the most relevant time
periods without all of the noise generated by the rest of the medical record. A simple
cutoff mechanism could easily be used to limit the breadth of the training patients’
‘future’ influencing the predictions, as well.

6 Evaluation

CARE and ICARE generate predictions only on ‘future’ visits of a patient based on the
medical history provided; that is, we only want to evaluate performance on diseases
which happen on a later date than those that the collaborative filtering algorithm was
given. For this reason, the collaborative filtering algorithm is given information about
the active user one visit at a time, and performance is measured only in terms of those
diseases which occur in the following visits. For each round of collaborative filtering,
each disease j is assigned an actual value A(a, j) which describes when the active
patient a is diagnosed with j .

It is difficult to determine whether an individual prediction is successful or not,
since setting a threshold on the prediction score is unreasonable in this domain. The
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highest risk scores for one patient might be relatively low for another patient with more
obvious concerns. We determine performance based on the overall list of predictions,
ranked in order from the most likely to the least likely. Specifically, the diseases are
given a rank k in order from highest prediction score p to the lowest, with the highest
score having k = 1.

We compare all the methods against the following baseline method. A baseline rank-
ing for each testing patient a is determined by ordering the diseases by their random
expectation v j,c within the group c of relevant training patients formed around a. The
performance measures on the baseline ranking serve as a benchmark for experiments.
This baseline ranking determines the patient-specific risk based only on the training
patients with whom they share diagnoses, but without the benefits of collaborative
filtering. Since our data is from a targeted group (senior citizens), the likelihoods of
diseases are more meaningful than in a general database.

We use three metrics to assess the baseline ranking and the prediction lists gener-
ated by CARE and ICARE. The first performance metric is list coverage. A method’s
coverage is defined as the percentage of diseases for which a prediction is made and
ranked. This is necessary since test patients occasionally express diseases which never
occur in the training set, and significance testing can cause some diseases to be dropped
from consideration. Obviously we wish to capture as many future diseases as possible,
so high coverage is preferred. The average rank of future diseases is also used as an
evaluation metric, since it is desirable for future diseases to have low rank positions.
Ideally, the diseases which a patient actually develops should be near the top of the
list, where they are most likely to be noticed and used.

The last metric is also based on this concept. Referred to as half-life accuracy
(Herlocker et al. 2004), this metric is intended to measure the expected utility of the
ranked list (Heckerman et al. 2001). Based on the rank k, p(k) is defined as the prob-
ability that a user reading the list would consider the disease in position k before
stopping. The scenario is, given a long list, a user would start with the highest risk
diseases, but will not read the entire list due to lack of time or further interest. Thus,
p(k) is an exponentially decaying function defined

p(k) = 2−k/a (13)

where a is a user-defined constant that determines the speed of decay. For our experi-
ments, we use a = 5. The utility of the list is then

Utility =
∑

k

p(k)δk (14)

where δk = 1 for future diseases, and δk = 0 otherwise. Intuitively, this means that
utility is entirely based on how highly future diseases are ranked. The accuracy is then
defined as the average over all test patients i of the expected utility of the ranked list
of predictions for i divided by the utility of a perfect ranking for i , where all future
diagnoses are in the highest possible rank positions. That is,
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Accuracy = 100

N

N∑

i=1

∑Ri −1
k=0 δik p(k)

∑Mi −1
k=0 p(k)

(15)

where N is the number of test users, Ri is the number of items that are predicted on for
user i , and Mi is the number of diseases in Ri such that δik = 1. The denominator of
the accuracy measure is a per-user normalization, which takes into account the varying
number of patient diagnoses.

As implied above, a doctor may not have time or interest for looking at the entire
list of predictions, which can contain thousands of prediction scores in the worst case.
A more attainable goal would be to consider only the top 20 or top 100 predictions.
In addition to overall performance, we also consider the coverage, average rank, and
accuracy of within those ranges. The performance on the top 20 or top 100 ranks is
a much stronger measure of realistic usefulness than the overall results. Coverage is
particularly important in these limited ranges. A doctor could conceivably consider all
diseases on a list of 20, making actual rank less meaningful. However, each additional
‘correct’ prediction on the list could have a substantial impact. There is some trade-
off between average rank and coverage, since higher coverage captures less obvious
diseases with lower rank.

7 Experiments

In this section, we evaluate the predictive performance of CARE and ICARE. We also
show results after applying the time-sensitive modifications described in 5 as well as
the pre- and post-collapsing methods described in 4.6. The predictions were generated
on the future visits of a patient. Since the order of disease occurrence is necessary for
making meaningful predictions, the testing set was left in the original format, with
each visit as a separate record. Both CARE and ICARE make one round of predictions
for each visit, adding the diagnoses of the next visit in each successive round while
retaining all diagnoses from previous visits. The idea is that on round i , the algorithm
‘knows’ all diagnoses up through visit i , and is evaluated on ability to predict diagno-
ses which occur in visits i + 1 and on. Figure 2 provides a pictorial explanation of this
process. All testing patients were required to have at least five visits. We used a 2-fold
cross-validation scheme for the experiments. For all methods, individual predictions
are independent, making it easy to run experiments in a distributed fashion. Also, static
calculations such as determining individual disease groups, random expectations, and
inverse frequencies are preprocessed to avoid repetition.

Table 3 displays the experimental results. The metrics are also applied to the base-
line ranking, which is a list of the diseases ranked in order from highest baseline

Fig. 2 An example of how patient visits are processed by the IFVS algorithm. ID refers to a patient ID
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Table 3 Evaluation of
performance of CARE, ICARE,
and time-sensitive ICARE
compared with the baseline
ranking

Comparison of methods

Baseline CARE ICARE Time ICARE

Top 20

Coverage .321 .344 .412 .385

Average rank 7.326 7.819 5.755 6.806

Half-life accuracy 30.574 30.255 49.274 41.238

Top 100

Coverage .585 .606 .605 .594

Average rank 27.766 26.734 20.299 22.024

Half-life accuracy 31.115 30.759 49.645 41.683

All

Coverage .986 .940 .773 .770

Average rank 229.572 177.495 81.191 90.317

Half-life accuracy 31.115 30.759 49.645 41.683

prevalence to lowest. As mentioned earlier, results on the top 100 and top 20 ranks
are more meaningful, since a medical practitioner or other user is unlikely to consider
a very large portion of the list. CARE shows better performance than baseline across
the board overall and in the top 100 ranks. In the top 20 ranks, CARE covers 2% more
diseases than the baseline method with minimal impact on the average rank.

ICARE shows very substantial improvement over both the baseline and CARE in
all cases. This method captures about 9% more of the future diseases than the baseline
method in the top 20 rankings alone, while the average rank of 5.755 suggests that
most of these captured diseases are in the first few positions on the list. It is partic-
ularly powerful that both average rank and coverage improve simultaneously, since
there is some tradeoff between the two metrics. The most impressive result is that
ICARE predicts more than 41% of all future diseases in the top 20 ranks, a list of a
manageable size for use by a doctor or other medical professional.

We show the effect of the time-sensitive modifications only as applied to ICARE,
the clearly superior method. Time-sensitive ICARE shows a small loss of performance,
but still outperforms CARE and the baseline significantly. This loss is easily explain-
able, since ICARE has a stronger bias for ranking chronic diseases, which are very
prevalent among senior citizens. Since the ensemble method looks at each diagnosis
individually, any repeat diseases will create a group around themselves with v j,c = 1.
This leads to a perfect ranking of chronic diseases. The time-sensitive method does not
carry that bias, since only visits occurring after the “best match” affect v j,c, which may
or may not contain a repeat code. The time-sensitive version will predict chronic dis-
eases based on their likelihood of repeat visits rather than assuming 100% likelihood.
In the Medicare data, the dominance of chronic diseases causes ICARE’s assumption
to be beneficial, but would likely be less influential in a more general setting. In fact,
we find that the time-sensitive version performs slightly better when considering non-
repeat (not previously diagnosed to the active patient) diseases. Specifically, we see
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19.9% coverage in the top 20 ranks versus 16.9% with unmodified ICARE. Finally, it
is worth noting that the time-sensitive methods are necessary for computational effi-
ciency and noise control when applied to a long-term general database. We posit that
a minor drop in performance is acceptable in light of these more practical concerns.

It merits explanation that the accuracy overall and in the top 100 are the same,
although actually not identical at higher precision. This happens because of the way
half-life accuracy is defined, where the utility decreases as a future disease moves down
the list. The exponential decay is such that information beyond the top 100 ranks has
minimal impact on the accuracy. By modifying the α value defined in Sect. 6 to slow
the decay, these accuracies could be forced to diverge. Regardless, it seems unreason-
able that a medical professional would seriously consider the list beyond 100 diseases,
making the equal utility realistic.

We post-collapsed the full code results as described in Sect. 4. The performance of
ICARE on resulting the 3-digit ICD-9 codes are shown in the “Postcollapse” column of
Table 4. The same trend is seen when applied to CARE or time-sensitive experiments.
Post-collapsing results in an improvement in ranking and coverage across the board.
There is a slight dip in the accuracy measure. We believe this arises because of multiple
high-ranking diseases collapsing to a common code, eliminating the dominance in the
top ranks. These results from collapsing of ICD-9 codes are very encouraging, with
more than 51% of future disease ‘families’ among the top 20 predictions. Still, it is
an important distinction that the collapsed results are not necessarily better than the
original 5-digit results. They are a more condensed but less detailed version of exactly
the same results. However, this list could conceivably be used to present a medical
practitioner with a greater breadth of predictions in the same concise format. The
details could then be selectively considered, based on the hierarchy preserved by the
post-collapsing method.

Table 4 Effect of
post-collapsing and
pre-collapsing on ICARE

Comparison of ICD-9 collapsing methods

ICARE Postcollapse Precollapse

Top 20

Coverage .412 .513 .547

Average rank 5.755 5.668 5.820

Half-life accuracy 49.274 58.731 59.472

Top 100

Coverage .605 .722 .785

Average rank 20.299 18.101 18.612

Half-life accuracy 49.6455 58.731 59.924

All

Coverage .773 .779 .833

Average rank 81.191 29.742 26.471

Half-life accuracy 49.6455 58.731 59.924
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We also run ICARE experiments on pre-collapsed data. The results here are par-
ticularly impressive, with a coverage of nearly 55% of future disease groups in the
top 20 ranks. The performance measures achieved here are substantially higher than
the post-collapsed method. Still, the utility of pre-collapsing depends on the situation
and the goals of the doctor. Unlike the post-collapsed results, detailed information is
permanently lost. Depending on the family of conditions, the difference between the
5-digit members ranges may be minimal or very crucial, requiring different paths of
response. In general, we believe that post-collapsing is more amenable to the even-
tual use of the system; it still provides a medical practitioner a choice to retrieve the
complete resolution of ICD-9 codes.

8 Performance trends

We also are interested in how performance changes with respect to the amount of data
known about the testing patient. This analysis provides insight into optimal deployment
of such a system in a practical setting. It provides guidelines for the minimum amount
of information needed for meaningful (better than baseline) results and a threshold
for good results without overcomplicated computation. Specifically, we look at the
number of visits known by CARE about the testing patient (Fig. 3a), the total number
of unique diseases known about the patient (Fig. 3b), and the length of time in days
between the patient’s last known visit and the following unknown, and thus predict-
able, visit (Fig. 3c). We look at the coverage within the top 20 ranks, which we believe
is our most practical measure of performance.

The visit and diseases trends show that performance continually increases as more
information is known about the patient. The results suggest that ICARE on a single
visit is sufficient to outperform the baseline, though 3b shows that the visit should
have at least 3 diseases. The benefit of additional diseases flattens around 25 unique
diagnoses. The data for patients with more than 35 diseases is too sparse for further
conclusions, but can be expected to continue in a flat line near 57% coverage.

Unsurprisingly, as the length of time since the last visit increases, a modest drop
in performance can be observed. The intuition here is that older diagnoses are less
relevant to immediate concerns, on average. Despite the downward trend, ICARE still
outperforms the baseline after gaps of more than 2–3 years. A more long-term study
of this effect would be interesting, but we are limited by the scope of our data.

Since we have mentioned multiple times the dominance of common diseases, we
examine our method’s ability to control this effect. To do this, we look at the distri-
bution of disease prevalence of the patients’ actual future diseases compared to the
predictions from the baseline and ICARE. This analysis is shown in Table 5. The
first column is the percent prevalence of a disease in the patient population, which is
equivalent to the random expectation v j . The second column shows what percentage
of the actual diagnoses fall within each prevalence range. We see that while there are
a few diseases which are very common, there are many different uncommon diseases
which account for most of the actual diagnoses. In fact, 53% of actual diagnoses are
diseases which are less than 5% prevalent in the whole patient population. The final
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Fig. 3 Coverage trends with
respect to known testing patient
data
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two columns shows the percentage of the top 20 predictions which fall within each
prevalence range; the third column uses the baseline ranking and the fourth column
uses ICARE. The baseline results clearly show that extra controls are needed to avoid
skew toward common diseases. Also, the results show that ICARE does well at limiting
very common diseases to a realistic percentage of the strongest predictions. Finally,
we note that most of the top predictions by ICARE are low-prevalence diseases, which
is also the case in reality.
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Table 5 Comparison of distribution of diseases prevalence between the actual patient diagnoses, the top
20 ranked diseases of the baseline method, and the top 20 ranked diseases of ICARE

Disease prevalence trends in actual diagnoses vs. top 20 rankings

% Disease prevalence Actual diagnoses (%) Baseline top 20 (%) ICARE top 20 (%)

0–5 53 1 24

5–10 20 6 22

10–15 5 29 10

15–20 3 13 8

20–25 4 18 10

25–30 4 13 8

30–35 2 4 5

35–40 0 0 0

40–45 4 8 8

45–50 2 4 2

50–55 2 4 3

9 Case studies

To further demonstrate our work, we present case studies which place the algorithm
results in the context of real patients. First, we look at the ranked list of disease pre-
dictions generated for a cancer patient after each subsequent hospital visit. This is a
demonstration of the intended usage of the process. The case study shows the evo-
lution of the prediction lists as new information is added. Also, a real example of
actual versus predicted diseases facilitates an intuitive understanding of the method’s
strengths and limitations. Next, we look at patients with an unusually high prediction
score for a disease. These case studies provide interesting insight into the important
factors and correlations which influence disease risk and how they translate to a risk
score. All of the case studies are done using ICARE, which is demonstrated to be our
best method.

9.1 Case study of ranked list

We applied ICARE to a patient with three hospital visits. The patient’s actual diag-
noses and top 10 predictions after each visit are provided in Fig. 4. These results are
based on post-collapsed disease codes to avoid unnecessary complication.

We would like to point the reader to the list of most prevalent diseases in Table 2.
These are relevant to the case study since they pose the greatest challenge for other
future diseases to overcome. It is worth noting that many of these diseases have been
linked with one another in other medical studies. In fact, 4 out of the 10 are forms of
heart disease, which has known links with hypertension and diabetes. This only serves
to increase their influence.
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(a)

(b) (c)

(d)

Fig. 4 Case study: ranked prediction of cancer patient. a Patient diagnoses, b ICARE prediction after visit
1, c ICARE prediction after visit 2, d ICARE prediction after visit 3

Figure 4a shows the actual diseases developed by the patient. It is evident that we
are dealing with a cancer patient. The first visit has the initial diagnosis of esophagal
cancer, which spreads into secondary malignancies in the following visits. Since can-
cer is not a quickly treated disease, the original diagnoses reoccur in later visits. Since
predicting these diseases is not interesting, we don’t include them in the top 10 lists.
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In the final visit, the diagnoses diversify to include hypertension, regional enteritis,
and a mineral deficiency.

Figure 4b shows the results after applying ICARE to the first visit. Even from the
first visit, we are able to predict the two locations of cancer spread with rank 3 and
4. Figure 4c shows the prediction after the second visit is observed. Upon adding an
additional form of cancer in the second visit, we see little change except for a slight
reordering of the list. The space left after removing liver cancer was filled by urinary
tract infection. This is a good example of prevalent diseases overtaking others once
they make it through the significance test. Despite the fact that hypertension is the
most prevalent disease in the database, we are not able to predict the occurrence in
visit 3. This does not necessarily imply a mistake. Hypertension did not appear any-
where on the prediction list for visits 1 and 2. Considering the significance testing, this
implies that it is not strongly connected to the cancers and thus should not be predict-
able. A similar argument applies for the enteritis. The disorder of mineral metabolism
does appear in the rankings after the first two visits, at 71 and 83, respectively. This
acknowledges a significant link to the disease,placing it still within the top 100 but
not among the strongest concerns.

The predictions in Fig. 4d cannot be validated, since we only have ground truth up
to visit 3. Nevertheless, these predictions are interesting because they exemplify list
reaction when a patient has more than one type of condition. Two of the predictions
are still cancers. The list now has a digestive condition, attributable to the enteritis.
However, the strong links associated with hypertension are by far the dominant effect
in this final list; that is, the heart conditions become the strongly predicted diseases
after this visit.

From this case study, we can see that ICARE is able to make reasonable and intu-
itive predictions. When multiple unrelated conditions are introduced simultaneously,
the list is able to diversify. In the case of this conflict, the more common or heavily
linked condition is dominant, securing a higher percentage of the ideal rank positions.

9.2 Case study of highest score

In this section, we provide examples of disease-specific case studies where we are
interested in the highest ‘scoring’ patients for a single condition. For this kind of case
study, it is interesting to explore the statistical relationship between each disease in
a patient’s medical history and the disease that is being predicted. This provides an
intuition as to how much effect each expressed disease had on the resulting predic-
tion. We define two metrics describing the relationship between the expressed disease
(E) and the target disease (T) being predicted. E → T is the percentage of patients
with the expressed disease who also have the target disease. Conversely, T → E is
the percentage of patients with the target disease who also have the expressed dis-
ease. The first metric, E → T, is the stronger explanatory factor, since ICARE forms a
training patient group for each expressed disease. The second metric has a less direct
impact.

We will look at two patients who have an unusually strong prediction for diabe-
tes, our target disease. Patient 1 is diagnosed with diabetes in the sixth hospital visit.
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Table 6 Case study: patient
1—does develop diabetes

T → E E → T

Patient 1—visit 1–9/1990

Syncope and collapse 0.049 0.175

Toxic diffuse goiter no crisis 0.001 0.154

Cellulitis and abscess leg except foot 0.035 0.288

Unspec peripheral vascular disease 0.071 0.340

Urinary tract infection 0.221 0.236

Patient 1—visit 2–7/1992

Contusion of thigh 0 0

Multiple involv of mitral and aortic valves 0.002 0.125

Cerebral atherosclerosis 0.0162 0.308

Awaiting admission to adeq facilities ELS 0.003 0.444

Patient 1—visit 3–7/1992

Unspec nonpsycht mntl disorder, brain damage 0.012 0.207

Patient 1—visit 4–2/1993

Urinary tract infection 0.221 0.236

Hyperosmolality and/or hypernatremia 0.013 0.292

Hyperpotassemia 0.033 0.296

Pneumonia, organism unspecified 0.103 0.194

Unspecified pleural effusion 0.0528 0.211

Hypopotassemia 0.093 0.176

Unspecified anemia 0.087 0.181

Patient 1—visit 5–3/1993

Gastrostomy status 0.002 0.3

Patient 2 is never diagnosed with diabetes. We analyze the expressed diseases and the
corresponding T → E and E → T measurements for the first 5 visits for each patient.
The month and year of each hospital visit are also included. The case study for patient
1 is in Table 6 and patient 2 is shown in Table 7.

From the beginning, patient 1 expresses diseases which are highly co-occurrent with
diabetes. This trend continues through several years and the patient is diagnosed with
uncomplicated diabetes mellitus in 4/1993. Amazingly, all diagnoses for this patient
have E → T≥ 0.125. This means that at least 12.5% of similar patients had diabetes,
regardless of which diagnosis the training group was based on. Referring back to the
Table 2, we see that the population baseline is only 10.47%. Even from the first visit,
2.5 years before diabetes is officially listed as a diagnosis, we expect a minimum 34%
risk. Also, the fact that all expressed diseases co-occur rather strongly with diabetes
results in an unusually low amount of noise from unrelated medical conditions. Over-
all, it is unsurprising that this patient was easily recognized as at high-risk for diabetes.
Another interesting observation is that, with the exception of urinary tract infections,
most of the E → T are fairly low. This means that while these conditions are strong
predictors of diabetes, diabetes is not a very strong predictor of them.
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Table 7 Case study: patient
2—does not develop diabetes

T → E E → T

Patient 2—visit 1–6/1992

Unspecified cerebral artery occlusion 0.058 0.25

Acute bronchiolitis 0.001 0.5

Patient 2—visit 2–7/1992

Care involving other spec rehab process 0.009 0.165

Cerebral thrombosis 0.012 0.3

Unspecified cardiovascular disease 0.056 0.241

Bronchitis, not spec. if acute/chronic 0.007 0.159

Urinary tract infection 0.221 0.236

Spondylof uns site w/o myelpath 0.006 0.170

Osteoarthros unspec gen/loc low leg 0.017 0.122

Patient 2—visit 3–5/1993

Congestive heart failure 0.300 0.266

Hypopotassemia 0.093 0.176

Unspecified asthma 0.028 0.201

Other and unspecified angina pectoris 0.133 0.239

Coronary atherosclerosis 0.283 0.237

Unspecified essential hypertension 0.412 0.225

Spondylof uns site without myelopathy 0.006 0.170

Osteoarthros unspec gen/loc low leg 0.017 0.122

Patient 2—visit 4–7/1993

Congestive heart failure 0.300 0.266

Generalized osteoarthrosis unspec site 0 0

Patient 2—visit 5–7/1993

Congestive heart failure 0.300 0.266

Similar to the first patient, patient 2 has many strongly diabetes-linked diseases and
a limited amount of noise. There is one completely unconnected general osteoarthro-
sis diagnosis. However, this code is only expressed by 10 patients in the dataset, so
the effect is minimal. From the first visit, this patient had an expected 50% risk of
developing the disease. This patient obviously suffered from advanced heart disease,
which is known to link with type 2 diabetes. In contrast to patient 1, this table shows
multiple conditions for which both E → T and T → E are exceptionally high. Again,
a high prediction score for diabetes is unsurprising. We contend that monitoring, such
as routine blood tests or educational intervention, for such a patient would be justified.

10 Conclusions

The goal of our work was to come up with a system that can assist a medical prac-
titioner in decision making. If a sampling of future diagnoses can be provided to a
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practitioner, appropriate medical tests can be ordered sooner and lifestyle adjustments
can be adopted by the patient proactively. This will not only result in improving the
quality of life for the patient, but also in reducing the health care costs. The result
of our effort was CARE, a collaborative recommendation engine for prospective and
proactive healthcare. CARE relied solely on ICD-9 disease codes, which are a standard
across insurance and medicare databases. This exploitation of ICD codes by CARE
allows for a seamless integration with a variety of electronic healthcare systems that
use or will embrace the standard of ICD. Also, as the medical community moves
toward comprehensive electronic records, CARE becomes increasingly relevant.

ICARE’s use of ensembles clearly demonstrated that isolating significant relation-
ships and controlling high-prevalence diseases is essential for making better predic-
tions. The impressive future disease coverage of ICARE represents more accurate
early warnings for thousands of diseases, some even years in advance. By making our
framework more time sensitive, we reap multiple practical benefits. The time-sensitive
approach is able to differentiate between chronic disease and lone occurrence. Also, it
makes the CARE framework feasible for large, diverse datasets spanning many years,
such as the comprehensive records mentioned above. In its most conservative use,
the rank lists can provide reminders that busy doctors may have overlooked. Applied
to full potential, the CARE framework can be used explore a broader disease histo-
ries, suggest previously unconsidered concerns, and facilitating discussion about early
testing and prevention.

11 Future work

Our development and evaluation of CARE has shown that collaborative filtering is
a strong and viable approach to disease prediction. However, there are still many
interesting avenues for future work.

In this paper, CARE is limited to ICD-9 data and temporal data, but the underly-
ing collaborative framework has no such limitation. While it is an advantage that our
system doesn’t require test results or special information, it would be naive to ignore
these advanced results when they are available. CARE could exploit this information
through similarity metrics which are appropriately modified for more complex rep-
resentations of medical history. Such generalizations will allow CARE to advance in
parallel with the field of medicine. Also, due to limited availability, we only explore
one dataset. Further experiments should be done on datasets with varying degrees of
diversity to determine the best uses for the system. Additional collaborative filtering
methods can also be explored.

Using the temporal data exploited by our time sensitive approach, CARE could be
extended to predict the time of expected disease diagnosis in addition to the likelihood
of occurrence. Such a mechanism is not well suited to our data, since inpatient visits
are fairly sporadic and may include diagnoses which do not relate to the timing of
the hospitalization. However, in a database providing a more complete medical pic-
ture, this functionality could be an additional guide for scheduling of future checkups,
screening, and tests.
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Finally, the real utility of CARE cannot be determined without clinical testing.
Doctors are the best judge of the utility of this system. Use by medical experts can
also provide better insight into needed improvements. A long term study with explicit
testing (where reasonable) and monitoring for predicted conditions would be the gold
standard.
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