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Abstract—Edge deep learning accelerators are optimised hard-
ware to enable efficient inference on the edge. The models
deployed on these accelerators are often proprietary and thus
sensitive for commercial and privacy reasons. In this paper, we
demonstrate practical vulnerability of deployed deep learning
models to timing side-channel attacks. By measuring the exe-
cution time of the inference, the adversary can determine and
reconstruct the model from a known family of well known deep
learning model and then use available techniques to recover
remaining hyperparameters. The vulnerability is validated on
Intel Compute Stick 2 for VGG and ResNet family of models.
Moreover, the presented attack is quite devastating as it can
be performed in a cross-device setting, where adversary profiles
constructed on a legally own device can be used to exploit the
victim device with a single query and still can achieve near perfect
success rate.

Keywords—Timing analysis, High performance edge machine
learning processing unit, Intel Compute Stick 2.

I. INTRODUCTION

The field of Machine Learning (ML) and Deep Learn-

ing (DL) have been growing rapidly, and have been widely

adopted for different applications across different disciplines.

With the growing trends, more and more design strategies

have been developed. This leads to the development of more

advanced architectures as well as the increase of resources

allocated for the training. Eventually, this trend leads to the

increase in intellectual property (IP) models strategies, where

different companies and research institutes keep their training

data and model details undisclosed and make it available

commercially on pay per use basis. Alternatively, pre-trained

model might leak some information regarding the training

data, which might be private and confidential, for example

medical data. As such, this could also lead to potential privacy

and security issue.

A. Security and Privacy in Machine Learning

The protection of deployed models from adversarial attacks

as well as the protection from the extraction of model parame-

ters is an increasing concern in the deep learning field. It has

been shown that neural network weights can store information

regarding the training dataset and a motivated attacker can

retrieve it [1]. Furthermore, getting access to the architecture

and weights of a trained network can aid attackers who might

not have the same training dataset or the compute power to

train a network. This is concerning since many organizations

are now deploying models trained on sensitive or private data.

However, these attacks are usually software based and multiple

techniques to defend against such attacks have been proposed

[2].

On the other hand, many different attacks compromising

the security and privacy of deep learning models have been

investigated. An overview on such attacks is provided in [3].

[4] surveys security of ML on edge devices. One of the main

attack is the model stealing or model extraction attack. In

this attack, the attacker or adversary will try to steal a copy

of a remotely deployed machine learning model. In [5], the

author proposed taxonomy of the model extraction attacks on

machine learning.

• Exact Extraction: when the extracted model have same

architecture and weights as the original network,

• Functionally Equivalent Extraction: a slightly weaker

assumption, in which output of both models only have

to agree to be the same for all the elements from the

domain,

• Fidelity Extraction: In this case, the extracted model be

the one that maximise the similarity function with the

original model for a target distribution. For the case of

functionally equivalent extraction, it achieves a fidelity of

1 on all distributions and all distance functions, and

• Task Accuracy Extraction: This goal is for the extracted

model to match (or exceed) the accuracy of the target

model.
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B. Related works

The first model extraction attack was proposed by Tramer

et al. [6] where the authors assume black box model, with

no prior knowledge of the model parameter and training

data. The aim is to duplicate the functionality of the target

model. Hua et al. [7] proposed to exploit information leakage

through timing (and memory) side-channels targeting DNN

accelerators running in a secure enclave like SGX. Batina et al.
[8] proposed a generic model recovery by side-channels. Their

primary side-channel was electromagnetic leakage but they

recovered activation functions using timing leakage. Later,

Duddu et al. [9] show use of timing leakage to recover the

model architecture. Another timing based reverse engineering

attack is reported in [10]. The proposed method is to measure

the timing information from the power consumption trace,

during the execution of floating point multiplication operation.

In [11], the authors introduced DeepRecon, a method based

cache side-channel attack. It can recover the target archi-

tecture by observing function invocations that map directly

to architecture attributes of the victim network. The attack

is performed on two networks (VGG19 and ResNet50). In

[12], the authors performed model extraction attacks by first

recovering the architecture of the network through electromag-

netic emanation (EM) leakage, followed by estimation of the

parameters, using active adversarial learning.

All the previous work target general purpose hardware like

CPU, FPGA or microcontroller. Recently, accelerators to speed

up deep learning inferences on the edge have been introduced

[13] [14] [15]. In this work, we investigate the vulnerability

of model extraction attack on a high performance edge deep

learning processing unit using timing side channels. We have

performed our experiments on Intel Compute Stick 2 (a.k.a

Movidius) [13] running OpenVINO toolkit [16]. Our attack

allows us to recover the model architecture with a single

query to victim device with near perfect success. The attacks

are conducted in cross-device setting [17], [18], considering

a real-attack scenario. Once the architecture is recovered,

hyperparameters can be easily recovered following techniques

as proposed in [9]. In summary, our model extraction attack

can be considered as task accuracy extraction, based on the

taxonomy.

C. Our Contributions

The main contributions of this work are as follows:

• By characterizing the execution time on known net-

works, we successfully build the kernel density estimator

(KDE [19]) for high performance edge machine learning

processing unit (a.k.a. Movodius) [13].

• From the KDE, we investigate the cross-device sce-

nario [17], [18] and successfully perform architecture

recovery.

• Finally, we show that for well-known network architec-

ture, the success rate of recovery is almost 100%.

The rest of the paper is organised as follows. Section 2

presents the considered adversary model and describes the

methodology for the proposed attacks. Section 3 presents

practical experiments for Intel Compute Stick 2 with VGG

and ResNet like network. Finally, conclusions and counter-

measures are discussed in Section 4.

II. THREAT MODEL AND ATTACK METHODOLOGY

In this paper, we consider a victim neural network

Fv with domain input X ⊆ R
n and output Y ⊆ R

m.

The main goal of an adversary is to accurately reverse

engineer the large-scale network architecture through

timing information. We only consider common architectures

such as VGG [20] and ResNet [21]. That is, Fv =
{ResNet18,ResNet34,ResNet50,ResNet101,ResNet152,
VGG11,VGG13,VGG16,VGG19}.

A. Adversary Assumption

The victim has deployed a trained model for inference on

the target accelerator. The adversary, acting as a client with

user-level privilege, has only access to the device through

conventional channels such as USB-type hardware accelerator

[13] or cloud-based services such as Amazon, Google, Mi-

crosoft, BigML, and others. In [4], this is called to the API-

access assumption. Moreover, software side-channels assume

that an adversary also has some ability to measure side-

channels through the device’s legitimate outputs, e.g., measure

the latency of network/USB responses or the amount of traffic

the device is sending to the cloud. In this paper, an adversary

requests an inference on a edge device. Then, the adversary

measures the timing information about the difference between

input sent to the accelerator and output received from the

accelerator, and has no access rights to pre-trained (and secret)

model running on the accelerator.

The main goal of the adversary is that utilizing the queries

to USB-type hardware accelerator [13] for inference with the

secret model, we can recover the model parameters. It is

assumed that the victim uses one from a list of popular models

while internal hyperparameters are proprietary. We show our

experiments by assuming that the model belong to widely

popular VGG or ResNet family. Other models can be like

included in the study.

B. Evaluation Metric

Given the timing information tv while a victim neural

network Fv is operated, the kernel density estimator (KDE)

PrKDE over the n train set (t1s, ..., t
n
s ) from substitute neural

network Fs can be calculated by:

KDEs(tv) := PrKDE(tv|ts) (1)

For several substitute neural networks, we calculate the

KDEs(tv). The highest KDEs(tv) can be considered as

correct neural network.

For multiple m observations (t1v, ..., t
m
v ) from a victim

device, we can extend the Equation 1 as below:

KDEs(tv) :=
m∏

i=1

PrKDE(t
i
v|ts) (2)
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The experiments are repeated 100 times to compute the

KDE.

III. TIMING SIDE-CHANNEL ANALYSIS AGAINST EDGE

MACHINE LEARNING ACCELERATOR

In this section, we explain how to measure the execution

time for the main target and demonstrate the common used

machine learning architecture can be recovered.

Device 1

Device 2

Device 3

Execution
Time

Fig. 1: Experimental Setup for the measurement of execution

time on 3 different Intel Compute Stick 2.

A. Experimental Setup

To measure the execution time when the target ML infer-

ence is processed, an USB-type hardware accelerator [13] is

plugged into the main processor such as laptop, desktop, or

IoT device. Moreover, in order to demonstrate the consistency

for execution time, we employ the cross-device attack [17],

[18] as well, as shown in Figure 1.

B. Evaluation Results

Based on the setup, we measure the execution time for

various VGG and ResNet architectures in three devices. We

can estimate that the difference of execution time for each

device is negligible if hardware accelerator is stable.

On three device, the inference time of each architecture is

very similar in Figures 2 and 3 when we repeat 100 times for

same architecture. Due to the I/O interrupt, we can observe

that some operations get too far off the center line such as

average. But, this observation is rarely observed.
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Fig. 2: Timing Side-Channel Analysis for Various ResNet

Architectures.

For ResNet, we can see that the execution time scale nicely

with model depth. Moreover, we observe a higher difference in

time for models bigger than ResNet50. This can be attributed

to the depth of conv4 x [21] which is increased from 50-layer

to 101-layer.
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Fig. 3: Timing Side-Channel Analysis for Various VGG Ar-

chitectures.

With VGG architectures, as show in Figure 3, the execution

time is more or less directly proportional to the network

depth. The execution time increases about 0.04-0.05 secs, with

increasing length.

Overall, The execution timing of the studied architecture are

unique and can be easily distinguished from one another. This

is even valid on a cross-device setting, making the attack more

critical. In cross-device setting, an adversary can measure the

time on one device here he is the legal owner and has all access

rights. later, on victim device, just by measuring the delay, the

exact architecture can be determined when it belongs to a given

a family of architecture.

TABLE I: Success for Various Machine Learning Architecture.

Architecture Device 2 Device 3
ResNet18 100% 100%
ResNet34 100% 100%
ResNet50 98% 100%
ResNet101 97% 100%
ResNet152 100% 98%

VGG11 100% 100%
VGG13 99% 98%
VGG16 100% 100%
VGG19 100% 100%

Based on Section II-B, we compute the KDE value of

execution time from Device 2 and 3 (victim device) after

building the execution time for each architecture of Device 1

(adversary’s device). We use 100 measurements per architec-

ture from Device 1. The KDE for observations on Device 2 and

3 are made with only single observation per architecture. The

experiments are repeated 100 times to compute the success

rate. As shown in Table I, the success rate is close to 100%,

only with a single observation from the victim device. It is

well known that an adversary can easily perform reinforcement

learning to recover the hyperparameter of architecture with

distillation [9].
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IV. CONCLUSION AND FURTHER WORK

We have investigated the timing based vulnerability to re-

cover architecture of commonly used machine learning models

on high performance edge machine learning processing unit

like Intel Compute Stick 2. The attacks are reported with

close to 100% success rate with only a single observation

from the victim device running the victim model. The attacks

performs well in cross-device setting as well. Future work will

investigate if internal details of the network architecture like

number of layers, activation function, etc can also be recovered

using timing information.

In terms of countermeasure, the standard countermeasure

from side-channel field could be deployed, such as introducing

random delay, inserting dummy operations during the exe-

cution of inference, such that there is no direct dependence

between network architecture and execution delay. In [22], the

authors proposed several countermeasures, by running extra

operations as decoy process as well as obfuscated architec-

tures. However, as this is only constructed for specific family

of networks and deployed against cache timing vulnerability,

whether this could prevent attacks across different network

families and different side-channels might need further inves-

tigation.
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