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Time to Line Crossing for Lane Departure Avoidance: a Theoretical

Study and an Experimental Setting

Saı̈d Mammar, Member, IEEE, Sébastien Glaser and Mariana Netto

Abstract— The main goal of this paper is to develop a distance
to line crossing (DLC) based computation of time to line
crossing (TLC). Different computation methods with increasing
complexity are provided. A discussion develops the influence of
assumptions generally assumed for approximation. A sensitivity
analysis with respect to the vehicle parameters and positioning
is performed. For TLC computation, both straight and curved
vehicle paths are considered. The road curvature being another
important variable considered in the proposed computations, an
observer for its estimation is then proposed. An evaluation over
a digitalized test track is first performed. Real data is then
collected through an experiment carried out in test tracks with
our equipped prototype vehicle. Based on these real data, the
TLC is then computed with the theoretical proposed methods.
Obtained results outlined the necessity to take into consideration
vehicle dynamics in order to use the TLC as a lane departure
indicator.

Index Terms— Time-to-line-crossing, Lane departure avoid-
ance, Driver assistance, Observer.

NOMENCLATURE

CG Vehicle center of gravity

m Vehicle mass (1470 kg)

lf Distance from CG to front axle (1.00 m)

lr Distance from CG to rear axle (1.46 m)

lv Vehicle base length (lf + lr =2.46 m)

a Track width (1.40 m)

cf Front cornering stiffness (41.6 kN/rad)

cr Rear cornering stiffness (47.13 kN/rad)

β Vehicle sideslip angle (rad)

r Yaw rate (rad/s)

δf Steering angle (rad)

yG Distance from lane centerline to CG (m)

yGl, (yGr) Distance from left (right) boundary of

the lane to vehicle CG (m)

yll, (ylr) Distance from left (right) boundary of

the lane to front left tire (m)

yrl, (yrr) Distance from left (right) boundary of

the lane to front right tire (m)

ψ Vehicle relative yaw angle (rad)

ψL = ψ + δf Front tire relative yaw angle (rad)
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Rr Road radius of curvature (m)

Rv Vehicle path radius of curvature (m)

Rvl, (Rvr) Path radius of the front left (right) tire (m)

Rvliml
Maximal vehicle path radius for left

boundary line crossing avoidance (m)

Rvlimr
Maximal vehicle path radius for right

boundary line crossing avoidance (m)

DLC Distance to line crossing (m)

tLC Time to line crossing (sec)

L Lane width (3.5m)

vl lateral speed (m/s)

γl lateral acceleration (m/s2)

I. INTRODUCTION

Time to line crossing (TLC) is defined as the time duration

available for the driver before any lane boundary crossing.

Several research studies outlined the importance of this indi-

cator for both driver performance evaluation and lane departure

characterization [5], [9]. Among usual observations concerning

TLC time evolution, are small TLC values periods prior to

lane departure. This happens especially in case of driver

drowsiness which generally leads to slow rate TLC decreases

with possible presence of one or several TLC local minima

corresponding to driver corrections. On the contrary, in the

case of vehicle loss control the decreasing of TLC towards

zero is generally faster [5], [13]. Unfortunately, real-time

computation of TLC is not easy due to several limitations con-

cerning availability of vehicle state variables, vehicle trajectory

prediction and lane geometry [16],[17]. Computation time is

also a limiting factor. Thus approximate formulas are used, and

the usual one is the ratio of lateral distance to lateral speed.

This approximation has been successfully used in several

works for lane departure systems evaluation [18]. While lateral

speed can be not easy to observe, this formula is also not

valid when lateral speed varies [22]. A possible way to obtain

TLC, which is developed in this paper, is first to compute the

distance to line crossing (DLC) along the vehicle path and then

to divide it by the vehicle forward speed [13]. This approach,

on one hand, presents the advantage not to use the lateral speed

which has to be estimated, but on the other hand requires a

long preview of the vehicle path and road geometry. DLC

based computation method has been used in [21] assuming

straight road geometry. However, vehicle path and road profile

are both rarely straight and are a succession of curves to the

right and to the left. The purpose of this paper is to cover

all aspects of TLC including human factors, theoretical as

well as real-data computation, highlighting at the same time

parameters sensitivity. First, in section II TLC is positioned

among other measures also used to study driver performance.
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In section III, some useful geometric formula of TLC are

reviewed, first assuming the vehicle in stationary conditions

without slipping, and after by taking into account the under-

steering characteristic of the vehicle through a dynamic model

in section IV. Both straight and curved sections are considered

and several approximations are provided which can be easily

computed in real-time. Finally, a linear dynamic model is used

to predict future vehicle positions. An unknown input observer

scheme is also proposed in this section in order to estimate

the vehicle state and the road curvature which are needed in

the prediction phase.

In section V, an evaluation of the TLC is performed on

straight and curved road sections. This evaluation is carried

out on the basis of the established trigonometric formulas

by considering several parameter variations. In section VI, an

experimental setting is proposed to collect real data for TLC

computation. The evaluation is carried out on a digitalized test

track of 3.5Km long which combines both straight and curved

sections. It is shown that the observer is able to estimate the

track curvature. We wrap up the paper in section VII with the

conclusions.

II. DRIVER COMMON MEASURES

In [11], where human-machine interactions aspects are

discussed, different sensory information useful for vehicle

trajectory control while taking a bend are described. Two antic-

ipation levels concerning these variables can be distinguished.

The first level, long-term anticipation, begins as soon as the

bend is visible. The second level, short-term anticipation and

on-line control, begins just before and during bend taking.

As long-term anticipation visual variables one can cite the

visual angle. This variable corresponds to the visual curvature

of the road perceived by the driver and is available as soon as

the bend is visible.

Concerning short-term anticipation, one can cite for exam-

ple the optical flow. Changes in the optical flow directly spec-

ify interactions between the individual and the environment

[4]. Some variables can be derived from the optical flow. A

specific point in the optical flow, the tangent point is one

of them [10]. It is observed that, during bend taking, the

driver tends to fix his view in this point. Another variable

derived from the optical flow is the egocentric direction which

corresponds to the combination of the extra-retinal information

concerning the direction of the gaze (with respect to the axis

of the body) and retinal location. Some studies indicate the

utilization of the visual egocentric direction in order to guide

the displacements (see for example [12]).

Still talking about short-term anticipation, the Time to Line

Crossing seems to play an important role as an indicator

of steering performance as well as a regulating variable for

the driver action (that is, it seems to help the driver’s mind

to perform the task of driving). With respect to the second

case, research about TLC [14], [15] indicates that drivers can

compensate for some errors of steering by decreasing their

speed in order to maintain the TLC constant. In addition, the

TLC seems to be a good indicator of the point at which the

driver begins to use a strategy of open-loop visual steering

(when he stops to look at the road momentarily to perform

another task inside the vehicle) depending on the speed.

In addition to visual information, steering most certainly

involves sensory information from various other organs, like

vestibular, tactile or proprioceptive organs.

Finally, in [11], it is highlighted the fact that, it is certainly

not the same type of information used, depending on the

temporality of the task. The question “assistance for what

type?” is then raised. The temporal relation of the TLC with

the other variables is shown in figure 1 (see [11]). Based on

this temporal frame we can distinguish two main classes of

assistances : preventive or foresighted driving and short-term

decision assistances. This division suggests that the first one

would concern mainly informative or warning tasks to help

the driver, while the second one could be based on warning as

well as on active systems like trajectory correction. The task

of driving in this case is mostly performed by the driver and

the controller acts for lane departure avoidance. The TLC fits

this frame, being fundamental to help to determine in which

moment the assistance has to be turned on to avoid the lane

departure. In addition, its importance appears also in HMI

studies, for drivers trajectory evaluation.

Long-term anticipation Short-term anticipation 

and on-line control

1.5 – several seconds 200 ms – 1.5 s

Vision of the

remote bend

Start of

the bend

End of 

the bend

Visual angle

1. Optical flow

• tangent point

• egocentric 

direction

2. Time to Line 

Crossing
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Fig. 1. Temporal representation of visual variables during a bend taking.

III. GEOMETRIC EQUATIONS

In this section, expressions of distance to line crossing and

time to line crossing are derived using a kinematic model of

the car and trigonometric formulas. Straight road and curved

road sections are successively examined. In both cases, zero

steering angle and constant non-zero steering angle are treated.

Approximate solutions are provided in order to clarify the

contribution to TLC of non-zero values of steering angle or

road curvature.

A. Vehicle positioning

We derive first the positioning of the vehicle front tires

relative to the left and right lane boundaries according to actual

vehicle CG lateral displacement, vehicle geometry and relative

yaw angle. Figure 2 summarizes all used conventions.

1) Positioning relative to left lane boundary: Assume that

the vehicle CG is at a distance yl from the left line of the lane

of a straight road section, with a relative yaw angle ψ. Let

yll (resp. yrl) be the lateral distance of front left (resp. right)
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Fig. 2. Common convention used for vehicle positioning.

tire to the line that would be crossed, the following equations

hold for each front tire
{

yll = yl − lf sinψ − a
2 cos ψ

yrl = yl − lf sin ψ + a
2 cos ψ

(1)

All angles including relative yaw angle and steering angle are

counted positive to the left (anti-clockwise). These formula

are still valid for curved road section considering that the road

radius Rr is much larger than yl.

2) Positioning relative to right lane boundary: Similar

formula are obtained for right lane boundary

{
ylr = yr + lf sin ψ + a

2 cos ψ
yrr = yr + lf sin ψ − a

2 cos ψ
(2)

Notice in addition that yr = L−yl, where L is the lane width.

Also, when the front wheels steering angle δf is non-zero, the

front tires relative yaw angle is ψL = ψ + δf .

B. Straight road section

r1

Fig. 3. DLC on straight road section using straight and circular vehicle path.

1) Zero steering angle: Assuming that the steering angle is

zero, the vehicle goes straight (figure 3). In the case the line

crossing occurs on the left side of the lane, the distance to line

crossing DLC is simply computed from

DLC =
yll

sin ψ
=

yl − lf sin ψ − a
2 cos ψ

sin ψ
(3)

This formula is valid if ψ is positive. When ψ is negative, one

has to use instead the vehicle front right tire distance from the

right boundary of the lane (yrr).

Time to line crossing is obtained by dividing DLC by

vehicle speed v. For a vehicle leaving to the left side of the

lane, it is given by

tLC =
yll

v sin ψ
(4)

Since v sinψ = vl is the lateral velocity, we have that tLC =
yll

vl
which is the common formula used in the literature [18].

We provide here another formula for TLC assuming that the

lateral displacement is subject to a small constant acceleration

γl which appears during driver corrective maneuvers

tLC =
1

γl

(
−v sin ψ +

√(
v2 sin2 ψ + 2γlyll

))
(5)

The series expansion around γl = 0 gives

tLC =
yll

v sin ψ

(
1 −

1

2

yll

v2 sin2 ψ
γl

)
(6)

that reduces to the former expression when γl = 0.

Let us consider now a vehicle circular path which corre-

sponds to constant non-zero steering angle.

2) Constant steering angle: The vehicle steering angle is

now constant and positive non-zero and is equal to δf0. In

steady state, the front left tire path is a circle arc of radius

Rvl
such that

Rvl
=

lv
tan δf0

−
a

2
=

v

ψ̇
−

a

2
(7)

where lv is the vehicle base length and ψ̇ is the yaw rate.

Notice that, as indicated above, the front left tire presents a

relative yaw angle of (ψL = ψ + δf0
)

The distance to line crossing is obtained from the following

process

1) Compute r1 = yll

cos ψL
and r2 = Rvl

− r1 (figure 3)

2) Compute the distance d from

d = r2 sin ψL +
√

R2
vl
− r2

2 cos2 ψL (8)

3) Compute the angle ξll as

ξll = cos−1

(
r2
2 + R2

vl
− d2

2Rvl
r2

)
(9)

Finally the distance to line crossing is obtained as

DLC = ξllRvl
(10)

When ψL = 0, the previous equations reduce to r1 = yll, r2 =

Rvl
− yll, d =

√
R2

vl
− r2

2 and ξll = cos−1
(

r2

Rvl

)

The previous equations are established using distance for-

mulas. It is however possible to obtain more simple equa-

tions. According to figure 3, sin ψL = z
d

, cos ψL = x
d

,

cos ξll = r2+z
Rvl

and sin ξll = x
Rvl

. Combining the four previous

equations leads to

ξll = cos−1

(
cos ψL −

yll

Rvl

)
− ψL (11)

If ψL and δf are both negative, the lane departure should

occur on the right side of the lane. The formulas in this case
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are similar, but lateral displacement has to be taken relative to

the right lane at the point of contact of the front right wheel.

Suppose now that ψL and δf are of opposite sign, as when

the driver performs a recovering maneuver. In such a case, the

vehicle may first leave the line on one side and then come

back to the lane and finally cross the line on the other side.

However, there exists a relation between Rvl
, yll, ψL and the

lane width L which determines if the first lane departure will

occur on one side or on the other. When ψL < 0 and δf

> 0, the vehicle path radius has to be under a limit value

Rvlimr
> 0 so that the lane departure occurs on the left side.

Similarly when ψL > 0 and δf < 0, the vehicle path radius

has to be also under a limit value Rvliml
< 0 so that the lane

departure still occurs on the left side.

Table I summarizes the cases of TLC calculation when lane

departure is expected on the left border.

TABLE I

SUMMARY OF TLC FOR LEFT LINE ON STRAIGHT ROAD SECTION

Case

δf= 0,
ψ > 0

δf > 0,
ψL> 0

δf > 0,
ψL< 0

δf < 0,
ψL> 0

Rvl
∞ lv

tan δf0
−a

2
< Rvlimr

< Rvliml

TLC
yll

v sin ψ

Rvl
v

ξll
Rvl

v
ξll −Rvl

v
ξlr

where Rvliml
= −yll+a cos ψ

1−cos ψL
< 0, Rvlimr

=
L−(yll+a cos ψ)

1−cos ψL
and ξlr = cos−1

(
cos ψL − yll

Rvl

)
+ ψL.

A similar table can be drawn up for the lane departure

expected on the right side.

C. Constant radius curved road section

1) Zero steering angle: Suppose now that the vehicle is on

a curved road section of radius Rr, the steering is zero such

that the vehicle continues its trajectory in the direction of its

longitudinal axis.

Dlc1

Dlc2

ψL

yll

Or

Ov

Rr

Rvl

r2

ξ ll

ζ

Fig. 4. Vehicle on curved road section with zero and non zero steering angle.

Assuming that the lane departure occurs on the left side of

the lane (Figure 4), the computation of DLC is straightforward.

One may obtain

DLC = (Rr + yll) sin ψ −
√

R2
r − (Rr + yll)

2
cos2 ψ (12)

This solution exists if and only if cos ψ ≤ Rr

Rr+yll
. Otherwise,

the lane departure occurs on the right side of the lane and

DLC is given in this case by

DLC = (Rr + yll + a cos ψ) sin ψ+√
(Rr + L)

2 − (Rr + yll + a cos ψ)
2
cos2 ψ

(13)

It is important to notice that on straight road section, when

δf = 0, the sign of ψ determines the side of the lane where

the lane departure occurs. On curved road section, right side

lane departure may occur even if ψ is positive.

Useful approximate formulas that highlight the effect of the

road radius of curvature on the distance to line crossing, when

the radius of curvature goes to infinity can be derived

• Lane departure on the left side assuming ψ > 0

DLC ≈
yll

sin ψ
+

1

2

(
cot2 ψ

sin ψ

)
y2

ll

1

Rr

(14)

• Lane departure on the right side assuming ψ ≤ 0

DLC ≈
yrr

sin ψ
−

1

2

(
cot2 ψ

sinψ

)
y2

rr

1

Rr

(15)

Suppose that ψ = 0, then the lane departure will occur on

the right side of the lane if the road goes to the left. Distance

to line crossing is DLC =
√

(L − yll) (yll + L + 2Rr) and

time to line crossing is tLC =

√
(L−yll)(yll+L+2Rr)

v
. On the

other hand, at the initial time, the vehicle lateral acceleration

is γl = v2

Rr+yll
= v2

Rr

1
1+

yll
Rr

≈ v2

Rr
. This leads to the equality

tLC =

√
Rr

v

√

(L − yll)

(
2 +

yll + L

Rr

)
(16)

or assuming Rr >> (yll + L)

tLC ≈

√
2 (L − yll)

γl

(17)

This formula is similar to that for time to collision tc with

an obstacle located at a distance d when the vehicle has a

constant braking deceleration of γb : tc =
√

2d
γb

.

Tables II and III summarize all formulas for lane departure

on left and right sides. All cases of positive and negative road

radius of curvature and vehicle yaw angle errors are covered.

TABLE II

SUMMARY OF TLC FOR LEFT LINE ON CURVED ROAD SECTION ASSUMING

STRAIGHT VEHICLE PATH

Case

Rr > 0,
ψL > ψtl

Rr > 0,
ψL = ψtl

Rr < 0,
ψL ≥ ψtr

TLC
D1

v

√
2yllc1

v
D2

v

In these tables, D1=c1 sin ψ −
√

R2
r − c2

1 cos2 ψ, D2 =
c2 sin ψ+

√
R2

r − c2
2 cos2 ψ, D3 = c2 sin ψ−

√
c2
3 − c2

2 cos2 ψ
and D4 = c4 sin ψ +

√
c2
3 − c2

4 cos2 ψ. c1 = Rr + yll,
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TABLE III

SUMMARY OF TLC FOR RIGHT LINE ON CURVED ROAD SECTION

ASSUMING STRAIGHT VEHICLE PATH

Case

Rr < 0,
ψL < ψtr

Rr < 0,
ψL = ψtr

Rr > 0,
ψL ≤ ψtl

TLC
D3

v

√
−2yrrc2

v
D4

v

c2 = Rr +L+yrr, c3 = Rr +L and c4 = Rr +yrl. The angles

ψtr and ψtl are computed as ψtr = − cos−1
(

Rr+L
Rr+L−yrr

)
and

ψtl = cos−1
(

Rr

Rr+yll

)
.

2) Constant steering angle: According to figure 4, the arc

length is given by DLC = Rvl
ξll. Computation of ξll is

however different in this case. It is achieved by the following

process (see figure 4)

• The distance r2 between the center point of the road curve

and the center point of the vehicle path is given by

r2 =

√
(Rr + yll)

2
+ R2

vl
− 2 (Rr + yll)Rvl

cos ψ
(18)

• The angle ζ is then computed as

ζ = cos−1

(
R2

vl
+ r2

2 − R2
r

2r2Rvl

)
(19)

• Finally, the angle ξll is given by

ξll = −ζ + cos−1

(
r2
2 + R2

vl
− (Rr + yll)

2

2r2Rvl

)
(20)

In the previous computation, it has been assumed that both

ψL and δf are positive and that the lane departure occurs on

the left side. However this lane departure may not occur on

left side even in this case. The limit situation is when the path

of the vehicle is tangent to the left border of the lane (figure

5). In such a case, the angle ζ is equal to zero and the two

circle centers Ov and Or are aligned and the distance between

them is r2 = Rvl
− Rr ≥ 0. The corresponding limit value

Rvliml
of Rvl

is given by

Rvliml
=

1

2

(
2 + yll

Rr

)
yll

−1 +
(
1 + yll

Rr

)
cos ψL

(21)

Note that this is only possible for ψL < cos−1
(

Rr

Rr+yll

)
.

In this case the steering angle has to be less than

tan−1

(
lv

Rvliml

)
, in order to avoid a lane departure on the

left.

Assume now that ψL and δf are of opposite signs. Without

loss of generality, we consider the case ψL < 0 and δf > 0,

and we determine the condition to avoid lane departure on the

right side. Limit value Rvlimr
of Rv is

Rvlimr
=

1

2

L
(
2 + L

Rr

)
− yrl

(
2 + yrl

Rr

)

(
1 + L

Rr

)
−

(
1 + yrl

Rr

)
cos ψL

(22)

Rvl

Rr

Or

Ov

yll
ψL

Fig. 5. Limit trajectory for curved road section.

When the vehicle path radius verifies Rvliml
< Rv <

Rvlimr
, TLC is infinite since the vehicle trajectory always

remains within lane boundaries.

Table IV summarizes the cases of TLC calculation when

lane departure is expected on the left border. The road cur-

vature is assumed positive which means that the bend is also

oriented to the left.

TABLE IV

SUMMARY OF TLC FOR LEFT LINE ON CURVED ROAD SECTION

Case

δf =0,

cos ψL<
Rr

Rr+yll
ψL>0

δf =δf0>0,

cos ψL<
Rr

Rr+yll

δf =δf0>0,

cos ψL>
Rr

Rr+yll

Rvl
∞

Rvl
= lv

tan δf0
− a

2

<Rvliml

Rvliml
<Rv

Rv<Rvlimr

TLC 1
v

` (Rr+yll) sin ψ−√
R2

r−(Rr+yll)
2 cos2 ψ

´

Use equation (20) ∞

Similarly table V corresponds to the right side when the

bend is still oriented to the left.

TABLE V

SUMMARY OF TLC FOR RIGHT LINE ON CURVED ROAD SECTION

Case

δf =0 ,
ψL≥0

cos ψL>
Rr

Rr+yll

δf =δf0>0,

cos ψL>
Rr

Rr+yll

δf > 0

Rvr ∞
Rvr = lv

tan δf0
− a

2

Rvr >Rvlimr

Rvr >Rvliml
Rvr <Rvlimr

TLC A similar to (20) ∞

In table V, A = 1
v

( (Rr+yll+a cos ψL) sin ψL+√
(Rr+L)2−(Rr+yll+a cos ψL)2 cos2 ψL

)
. In

tables IV and V, only non negative values of δf are given,

however similar results may be obtained for negative steering

angles by providing some substitutions. Analogous results may

also be obtained for curved road sections to the right (Rr < 0).

D. Kinematic prediction of vehicle trajectory

Suppose that the road curvature is made available by the

use of an observer for example. Using the lateral positioning

and relative yaw angle obtained by the video sensor together

with the yaw rate sensor, the steering angle and the speed,

it is possible to apply the formula established in section III.

The process has to pass through the tables listed above in

order to determine in which particular case the vehicle is. It
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is also possible to perform vehicle future positions prediction

assuming circular paths. An associated kinematic model which

neglects vehicle slip motion can be used. It is given by (ẋv =
v cos θ, ẏv = v sin θ, θ̇ = v

lf +lr
tan δf ), where θ is the vehicle

heading angle, lf and lr are respectively the distance from

vehicle CG to front and rear axles, and (xv, yv) are the vehicle

global coordinates. The relative yaw angle dynamics is ψ̇ =
θ̇ − v

Rr cos ψ
.

Practically, from CG lateral deviation and relative yaw

angle, we determine the front tires path radius and relative

yaw angle. As the first concern is to know if TLC is higher

than a threshold S or not, one first generates for each of the

front tires a circular arc of length Si
N

v (i = 1, ..., N) where N
is the number of desired samples. The two lateral deviations

are computed for each sample. If, until the N th sample, they

are with in the lane limits, thus TLC is higher than S and the

procedure stops. Otherwise, if at time sample k, the lateral

deviation is found beyond the lane limits, this means that the

lane boundary has been crossed between (k − 1) and k, the

minimal TLC is thus
(

S(k−1)
N

)
. A refinement is possible in

order to obtain a better approximation by using resampling

within the time interval
[

S(k−1)
N

, Sk
N

]
.

Notice that the procedure may be accelerated if a straight

vehicle path is assumed. An initial line segment of length Sv
N

can then be directly generated, and lateral deviations are first

computed for the last points of the arcs. Thus iteration may

be done backward if one is found beyond the boundaries of

the lane. Otherwise, we can conclude that TLC is higher than

S sec with only two lane positioning.

In the following, the effect of vehicle dynamics on TLC

computation is examined. An unknown input proportional

multiple integral observer is proposed for vehicle state and

road curvature estimation.

IV. PREDICTION USING DYNAMIC MODELS

A. Vehicle models

Several models can be used for numerical TLC estimation

on various road types. For high longitudinal speeds assuming

small angles, a dynamic bicycle linear model can be used. It is

formulated in terms of lateral displacement and lateral speed

[1]. This model is well fitted for motorway driving conditions.

First of all, lateral acceleration written in the road frame is

given by

ÿG = γl − v
1

Rr

= v̇l − v2ρr (23)

where ρr = R−1
r is the road curvature.

The vehicle path radius Rvd
of this dynamic model is thus

Rvd
=

(lf + lr)

δf0

(
Kv2 + 1

)
(24)

where K =
(lrcr−lf cf )m

cf cr(lr+lf )2
is a stabilizing factor, m is the

vehicle mass, cf , cr are respectively the front and rear tire

cornering stiffness. The factor K is positive for an understeer

vehicle, negative for an oversteer and zero for a neutral

vehicle. Path radius
(
Rvl

=
lf+lr
tan δf0

≈ lf+lr
δf0

)
obtained with

the kinematic model has thus to be corrected.

The temporal relation between the lateral acceleration γl,

the lateral speed vl, the yaw rate r and the steering angle δf

is

γl = −
(cf + cr)

mv
vl +

1

v

(crlr − cf lf )

m
r +

cf

m
δf (25)

Under the assumption, vl ≈ vβ, which holds for lateral

acceleration under 0.3g, one can notice that the contribution

of the yaw rate to lateral acceleration decreases when speed

increases in favor to sideslip angle. This means that the vehicle

tends to slip rather than to revolve. Thus the computational

method of TLC has to be changed.

In addition to the previous established trigonometric for-

mulas, the following formulas can be used for computation of

TLC. Only left lane departure cases are provided.

• If lateral speed and lateral acceleration are available for

measurement, the first approximate formula which can be

used on straight road sections is

tLC =
−vl +

√
v2

l + 2γlyll

γl

(26)

This formula is simply derived from the lateral motion of

the vehicle assumed to be at a constant lateral acceleration

γl with initial lateral speed vl.

• On straight road section approximation, taking into ac-

count non zero steering angle

tLC =
lv

(
Kv2 + 1

)
cos−1

(
cos ψ − yll

lv(Kv2+1)δf0

)
− ψ

vδf0

(27)

This equation is simply derived from the previously

trigonometric equation (10) obtained for non-zero steer-

ing angle on straight road section, where the vehicle path

is replaced in this case by the dynamic one (see table III).

• On curved section, with non zero steering angle, possible

equation is

tLC =

−v sin (ψ + δf0
) +

√
v2 sin2(ψ+δf0)+

2v2

„

1

Rvd
−

a
2

−
1

Rr

«

yll

v2
(

1
Rvd

−
a
2

− 1
Rr

) (28)

This equation is similar to equation (26), in

which v sin (ψ + δf0
) is the lateral speed, and

v2
(

1
Rvd

−
a
2

− 1
Rr

)
is the lateral acceleration relative to

the road.

B. Lateral speed and curvature estimation

The bicycle model presents a state vector x with 4 state

variables. The state variables are the lateral speed, the lateral

displacement, the relative yaw angle and the yaw rate. Only the

three last variables are available for measurement. In addition,

the road curvature affects the system as an unknown input [1].
{

ẋ = Ax + Bδf + Eρr

y = Cx
(29)

An observer can be designed in order to achieve both

state and unknown input estimation. In [8] a second-order
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polynomial model of the road is assumed in the vehicle

coordinates. A discrete time Kalman filter observer is then

synthesized for both lateral velocity estimation and polynomial

model coefficients estimation. Another Kalman filter which

considers road bank angle but ignores the road geometry in

terms of curvature variation is also presented in [20]. Here

it is assumed that the road curvature is almost constant or

affine varying and we choose a proportional two-Integral

(P2I) observer which is able to estimate the curvature and its

derivative. The road curvature is considered as an unknown

input ρr [7].The P2I observer has the following form





.

x̂ = Ax̂ + Bδf + Lp(y − ŷ) + Eρ̂r2.

ρ̂r2
= ρ̂r1

+ Li2 (y − ŷ)
.

ρ̂r1
= Li1 (y − ŷ)

(30)

The second equation describes the integral loop gain added to

the proportional one in the first equation. The matrix gains

Lp, Li1 and Li2 are determined in such a way to enable

asymptotic convergence to zero of the state estimation error,

the unknown input estimation errors and the estimation error

of the derivative of the unknown input, respectively defined

by e = x − x̂, eρ2
= ρr − ρ̂r2

and eρ1
= ρ̇r − ρ̂r1

. This is

achieved by making Hurwitz the matrix



A E 0
0 0 1
0 0 0



 −




Lp

Li2

Li1



 [
C 0 0

]
(31)

Thus any eigenvalue assignment method can be applied to

obtain the matrix gain
[

Lp Li2 Li1

]
.

C. Prediction of vehicle future positions

For vehicle future positions dynamic prediction, the model

(29) has to be transformed into a discrete-time model using the

Tustin method. Prediction is performed during the time range

in the frame attached to the road. This frame is obtained by the

orthogonal projection of the vehicle CG on the lane centerline.

This discrete model is of the form xk+1 = Φxk + Γvk,

where xk = [yG, ẏ G, ψ, ψ̇]T and vk = [δf , ρ]T . This model

is initialized using the observer estimation values for both the

state and the road curvature [8]. This prediction is generally

high computational and time consuming, it is only necessary

in the cases where vehicle dynamics are far from steady

state values and positioning values are critical. Prediction

is performed until one of the vehicle front wheels reaches

the lane edge or the fixed limit of time prediction has been

completed [3], [2].

In the following, the established trigonometric formula are

investigated in order to highlight effects of variables appearing

in the different formula on the achieved TLC. Particularly,

limits on acceptable relative yaw angle and lateral acceleration

for minimum TLC values are outlined.

V. SIMULATION ANALYSIS

A. Analysis with zero steering angle on straight road section

It is generally assumed that driver accuracy during lane

keeping maneuvers is about 20cm around the lane centreline at

the vehicle center of gravity. On the other hand lane departures

occur with a relative yaw angle under 6 deg. Let us define

dm = ±20cm. Suppose that ψ is positive, the lane departure

will occur on the left side, and the point of interest is front

left tire contact with the road. Vehicle geometry influences

the lateral displacement of this point. This displacement is

half the wheel-base at zero relative yaw angle and it increases

about 17cm when relative yaw angle is 10 deg. The point is

located at a distance
(
dm + lf sin ψ + a

2 cos ψ
)

from the lane

centreline, with lf = 1m and a = 1.4m. In order to maintain

a time to line crossing of tmin = 2 sec for a given speed v,

from equation (3), the relative yaw angle has to be under ψmax

given by

ψmax = −φ + sin−1




L
2 − dm√

(vtmin + lf )
2

+ a2

4



 (32)

where the angle φ is such that sin φ =
a
2

q

(vtmin+lf )2+ a2

4

.

The relative yaw angle has to be under 2 deg for speeds

greater than 45Km/h, and only 1 deg is acceptable at 90Km/h.

The decrease of time to line crossing according to relative

yaw angle is now examined for a fixed speed v = 90Km/h

(figure 6). The solid line corresponds to vehicle located on

the lane centerline while dashed line corresponds to vehicle

center of gravity at 20cm from centerline to the left. When

the vehicle is on the centerline, a TLC of 2.4 sec is obtained

when relative yaw angle is 1 deg.
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Fig. 6. TLC versus relative yaw angle for a fixed speed of 90Km/h on
straight road section and zero steering angle.

One can notice that the TLC decreases quickly and is less

than 1 sec beyond 2 deg of relative yaw angle. Furthermore,

effect of lateral displacement is more important for small

values of ψL. For fixed speed and relative yaw angle, TLC

is proportional to yGl. As an example, a lateral displacement

of 0.5m leads to a TLC of only 2.25 sec for v = 90Km/h and

ψL = 1deg.

B. Analysis with non-zero steering angle on straight road

section

From the kinematic model, the steady state value of the

lateral acceleration is related to longitudinal speed and steering

angle by

γl =
v2

lf + lr
tan δf (33)
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Fig. 7. (a)- Limit values of ψL as a function of the lateral displacement for
different road radius of curvature. (b)- TLC values obtained with the maximum
value of ψL as a function of the lateral displacement for different road radius
of curvature.

where lr = 1.4m.

In the following, the steering angle is chosen according to

speed value such that γl = 3m/s2. The radius of curvature

of vehicle path is computed from the stationary equality(
R−1

vl
= γl

v2

)
.

We first assume that the relative yaw angle is zero. In

this case, TLC is obtained from tLC =
Rvl

v
cos−1

(
Rvl

−yll

Rvl

)
.

Results obtained when varying the speed show that TLC

is almost constant if the lateral acceleration is maintained

constant. This suggests that lateral acceleration can be locally

used as an indicator of the TLC. On the other hand, one can

also deduce from the previous equation which is the maximal

lateral acceleration achieving a TLC of 2 sec. Assuming a

20cm lateral displacement of CG, the obtained lateral accel-

eration is γl = 4.2m/s2.

Finally, simulations show that a non zero relative yaw angle

leads to a linear decreasing of TLC as the speed increases. The

slope is almost proportional to the relative yaw angle.

C. Analysis on curved road sections

It has been shown previously (table III), that lane departure

on the left side is avoided provided that ψL < ψtl =

cos−1
(

Rr

Rr+yll

)
. Figure 7-a gives the limit values for ψL as

a function of yll for different values of curve radius Rr.

The corresponding TLC limit is shown in figure 7-b for

a speed of 90Km/h. It is obtained on curved road section

assuming straight vehicle trajectory with initial relative yaw

angle ψtl. One can notice that for highway curvatures, the

relative yaw angle has to be under 5deg in order to ensure a

TLC of more than 2sec.
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Fig. 8. (a)- Digitalized map of the LIVIC test track. (b)- Real and estimated
track curvature.

D. Simulation based evaluation on test track profile

In 1999, INRETS established a test track in Satory, 20Km

western Paris. The site is 3.5Km long with various road pro-

files including straight lane, tight bend and squabble (figure 8-

a). Lanes markers absolute positions were digitalized each 5cm

using differential GPS (DGPS). In addition, an experimental

vehicle is equipped with video cameras on each side which

can detect lane markers at vehicle CG with high accuracy [6].

Figure 8-b shows in solid line the curvature of the track.

The P2I observer developed above is able to estimate this

curvature using only video sensor (lateral displacement and

relative yaw angle measurement) and the gyro as shown

in figure 8-b. Figure 9-a give a zoom of the estimation

between time 110sec and 190sec. For better precision with the

lateral positioning, the lateral displacement is measured with 2

vertical cameras at vehicle center of gravity. Figure 9-b shows

that the observer is able to estimate the curvature derivative.

The results obtained with the observer permit to trust that the

DLC based computation of the TLC can be implemented in

near future without use of DGPS and digitalized maps if the

lane edge are of sufficient quality in order to be detected by

video sensors.

Figure 10-a characterizes the test track in terms of distance

to line crossing, when it is assumed that the vehicle is

positioned on the centerline with zero relative yaw angle. This

distance is greater than 300m and reaches 900m on the straight

sections of the track (see figure 8-b for the corresponding

curvature). However, DLC is several times under 100m which

means that small TLC values may be expected for high speeds

or when lateral positioning or relative yaw angle errors are

taken into account.
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Fig. 9. (a)- Zoom on the real and estimated track curvature. (b)- Real and
estimated curvature derivative.

Speed is intentionally limited to 144Km/h (40m/s) on

straight sections, while on curved section the forward speed

is chosen in order to obtain a constant lateral acceleration of

0.3g. The obtained speed profile is used in various forms in

all TLC computations. Evaluation will be performed on the

section from arc length 1500m until the end of the track (figure

10-b).

First, the vehicle is considered at the center of the lane with

zero relative yaw angle. TLC values are shown in figure 11-a.

The steering angle is now chosen at a nominal value

according to equation (7), in order to obtain a vehicle radius

path equal to track curvature at vehicle location. TLC results

are shown in figure 11-b. TLC is particularly enhanced on

curved sections.

Vehicle relative lateral displacement is introduced of the

form of a sinusoidal wave with 20cm magnitude. Results are

provided in figure 11-c. The effect on TLC is only visible in

the region between the two vertical bars.

A supplementary Gaussian random relative yaw angle error

is also introduced. Variance is chosen at 1deg and the obtained

TLC is shown in figure 11-d. One can notice high degradation

of TLC values especially on straight section.

VI. EXPERIMENTAL VALIDATION

In the previous parts, we have discussed about the theoret-

ical computation of approximations of TLC. In practice, two

classes of hypothesis could be used in the computation of the

TLC.

The first class is about road consideration. It depends on the

road sensor available in the vehicle. With only a short range

sensor, the road is considered as a straight line as we can

only measure the lateral displacement and the road relative

yaw angle. Long range sensors give us the knowledge of the
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Fig. 10. (a)- Distance to line crossing along the track, when it is assumed
that the vehicle is positioned on the centerline with zero relative yaw angle.
(b)- Section of track on which TLC is computed.
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Fig. 11. (a)- TLC values for vehicle on centerline with zero relative yaw angle
and zero steering angle. The lateral acceleration is 0.3g. (b)- TLC values for
vehicle on centerline with zero relative yaw angle and nominal steering angle.
The lateral acceleration is 0.3g. (c)-Vehicle within 20cm from the centerline
of the lane, zero relative yaw angle and nominal steering angle. The lateral
acceleration is 0.3g. (d)-Vehicle within 20cm from the centerline, Gaussian
noise relative yaw angle and nominal steering angle. The lateral acceleration
is 0.3g.
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Fig. 12. Different TLC approaches on a curve. (a)- Straight road and vehicle
trajectory approximations. (b)- Straight road approximation and curved vehicle
trajectory. (c)- Real road profile and straight vehicle trajectory approximation.
(d)- Real road profile and curved vehicle trajectory.

road position, and we can fully take into account the road

description.

The second class is relative to the vehicle knowledge.

Without any sensor, we can make no assumption on the vehicle

future path, so we consider it as a straight line. With sensors,

such as yaw rate sensor, speedometer and steering angle, it is

possible to predict the vehicle path for TLC computation. As

mentioned before, advanced dynamic model prediction can be

performed by observer based state and curvature estimation.

Figure 12 shows these different modes of TLC computa-

tions:

• In (a), the TLC is computed considering straight road

approximation and straight vehicle trajectory (denoted

LD/LD in future plots),

• In (b), the TLC is computed considering straight road

approximation and curved vehicle trajectory (denoted

LD/Ce),

• In (c), the TLC is computed considering real road profile

and straight vehicle trajectory (denoted RR/LD),

• In (d), the TLC is computed considering real road profile

and curved vehicle trajectory (denoted RR/Ce),

This set of figures shows the applied TLC computation on a

curve. Consideration of the road in this case is very significant

and leads to large variations in the TLC values.

The following parts will develop experimental validation

of TLC computation. The main problem is to know which

computation is the most efficient according to driving behavior.

This part is devoted to the definition of the experimental

test to validate and compare the different TLC. We present in

the first subsection the sensors used for the TLC computation.

We explain then the basic scenarios used for the validation of

the TLC.

A. Sensors and Scenarios

In order to ensure a high accuracy on the vehicle position

and road description, we use a digital map and a centimeter

TABLE VI

GPS ACCURACY VALIDATION

distance (cm) lateral displacement (cm) absolute
left right measured rounded GPS difference (cm)

83 63 -10 -9 1
70 76 3 3 0
78 68 -5 -5 0
79 67 -6 -6 0
50 96 23 24 1
64 82 9 9 0
67 79 6 6 0
89 57 -16 -16 0
81 65 -8 -9 1
64 82 9 10 1

RTK-GPS. These components are described below:

1) Digital Map: The maps, used for the experimental part,

contain the position of the road edges and the center of the

road. Positions are given with a longitudinal step of fifty

centimeter and the accuracy is about one centimeter.

2) GPS: In order to localize the vehicle on the map, a

RTK GPS is used. The acquisition sampling frequency of the

vehicle position is 20Hz and the accuracy is one centimeter

due to the short distance to the base station. Accuracy of

the vehicle localization on the map using the RTK GPS has

been validated. This GPS was installed in a vehicle driving at

about 50km/h. The RTK GPS and the map have been used

to compute lateral displacement of the vehicle with respect

to the center of the road. In order to validate this measure,

the lateral displacement was also computed using an external

measure. This one was obtained by an experimental process

that consisted of covering a part of the lane with sand and

observing the marks that the vehicle left on this sand. Table

VI summarizes ten measures of lateral displacement using both

methods. All measures are given in centimeters, the difference

between the two methods being rather small, with a mean of

0.4 centimeters. The centimeter accuracy of the GPS and map

system is then validated.

The GPS centimeter mode is available on a large part of

the test track, presented previously. Data used to assess the

centimetric precision on the test track have been recorded

during a one week test. Measures have been taken from 9:00

in the morning to 19:00 under various conditions, with the

vehicle speed reaching 20m/s. More than 200 turns have been

done. This long period ensures us to collect data from various

GPS satellite constellations. Data used in the next parts are

taken on sections with centimetric positioning.

3) Scenario: The tested scenarios represent common driv-

ing situations, with respect to lane departure problems. To

validate the TLC approach, in the first scenario, the driver

is asked to drive normally, following the center of the road.

In this scenario, the TLC is expected to have normal values,

with small variations. Two driver styles were chosen for this

scenario: low and high speeds.

In the second scenario, we wanted to test the reaction of

the TLC, with respect to a driver correction during a slowly

lane departure situation. So, the vehicle goes slowly near the

road mark, and the driver has to correct this situation.

Finally, in the last scenario, the driver must cross the lane.
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Fig. 13. TLC variation during a normal driving scenario. (a)- Drive on a
straight line. (b)- Drive on a curve.

B. Results

1) Normal driving condition: Driver is asked to follow the

center of the road, with an average speed of 50Km/h.

Two relevant situations are plotted in figure 13. A long

straight line, ending with a curve is shown on figure 13-a.

Figure 13-b represents the values of the TLC on a curve. A

first remark is that the values of the TLC are not small, as

the driver, in this test, does not take risk. On these two plots,

the TLC computed using the approximation of straight road

may lead to large values and large variations of TLC. Since in

this case, the driver follows the center of the road, his relative

yaw angle is small. As these approximations of the TLC are

strongly dependent on this angle, a small variation of this

variable has a large impact. On the other hand, information

given using real road profile is reliable. On the straight line,

the vehicle speed is approximatively constant. So, his distance

to line crossing decreases with a constant speed. In the time

versus time representation of figure 13.(a), the slope of the

TLC for these two approximations is near 1.

2) Slow road departure and driver correction: In this

scenario, the driver goes near the lane marks but never crosses

them. Figures 14 and 15 show the vehicle trajectory and

the related TLC. In both figures, the driver has performed

a correction after a slow lane departure, which is the greater

cause of lane departures.

With respect to the figure 14, all TLC computations show

good response to this problem. Values of different compu-

tations are similar: in this case, both road profile and vehicle

trajectory are about a straight line before the driver correction.

Moreover, the DLC is small. So, the different approximations

on the vehicle trajectory and on the road profile lead to

similar results. By using the curvature of the trajectory, the

reaction in the TLC increase as a consequence of the driver

correction is faster of 0.3 sec than with the straight trajectory

approximation.

In figure 15, excepting the TLC computed with straight road

and straight trajectory approximation, all computations show a

risky situation, with small TLC values (below 2 sec and even

1 sec). If we do not take into account the curvature of the

trajectory in the TLC computation, we can see that the TLC

does not reflect quite well the vehicle movement approaching

the road marks. Moreover, the computation using real road

profile and straight driver trajectory, shows false variations:

just before T = 56 sec, the driver corrects his trajectory and

moves away from the road mark, but the TLC value does not

stop decreasing.

3) Road departure: In this last scenario, the driver runs

off the road. This road departure case simulates the loss of

control, for instance on icy road.

Figure 16 shows the vehicle trajectory and the TLC values.

All TLC computations drop to zero when the vehicle crosses

the road mark. Since the vehicle speed is constant, the slope

of the TLC is near 1. The computation, using the vehicle

trajectory curvature and the real road, shows a step of one

second in TLC, two seconds before the lane departure. This

step results of a driver correction. The TLC computation using

both straight line approximations, show bad results as the TLC

values, 2 sec before the lane crossing are very high and not

representative of the emergency of the situation.

Developing a lane departure unit is a big challenge for

accident and death reduction. The lane departure prevention

unit has to provide an information or an alarm to the driver

that takes into account several constraints

• Excessive speed even on straight road section

• Vehicle positioning: excessive lateral displacement and

excessive relative yaw angle

• Excessive lateral acceleration

• Small TLC values.

Decision making strategies for lane departure systems have

been investigated by several authors [19],[22]. A lane depar-

ture warning unit which takes into account the fourth items is

under validation [23].

VII. CONCLUSION

In this paper, TLC computation is presented on the ba-

sis of geometric kinematic formula and dynamic trajectory

prediction. It is pointed out that all necessary data can be

easily measured by a video sensor or DGPS, or estimated

by using a model based observer. Parameter effects analysis

show that the choice of one computation approximation for

TLC is conditioned by the driving situation type and road

characteristics. High accuracy measure of vehicle positioning

is also needed particularly in terms of relative yaw angle.

Experimental validation has not clearly highlighted one TLC

computation as the best, but has allowed us to draw aside the

straight road approximation. In fact, this approximation brings

a too large variation in the TLC values and gives us TLC which

are not representative of the situation. This approximation has

been considered to take into account sensors capacity: as a

matter of fact, it is easier to obtain the road profile at the

location of the vehicle rather than in front of the vehicle. Using

the real road profile, the approximation on vehicle trajectory

leads to different results. With a straight vehicle trajectory,

the TLC plot is smooth and presents good characteristics,

but, compared to the curved trajectory, the reaction to driver

correction is delayed. This study represents a first step in

the use of TLC as a driver risk indicator. We have carried

it out using a RTK GPS and an accurate map. In order to

be largely used, the TLC implementation must require more

common sensors, such as camera-based lane detection as well

as cooperative systems or the use of observer based methods.
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Fig. 14. Slow road departure and driver correction scenario. (a)- Vehicle trajectory. (b)- Related TLC variation.
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Fig. 15. Slow road departure and driver correction scenario. (a)- Vehicle trajectory. (b)- Related TLC variation.
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Fig. 16. Road departure driving scenario. (a)- Vehicle trajectory. (b)- Related TLC variation.
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