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TIME TO REACH STATIONARITY IN THE BERNOULLI-LAPLACE
DIFFUSION MODEL*

PERSI DIACONIS? AND MEHRDAD SHAHSHAHANI:I:

Abstract. Consider two urns, the left containing n red balls, the right containing n black balls.
At each time a ball is chosen at random in each urn and the two balls are switched. We show it takes
3n log n + cn switches to mix up the urns. The argument involves lifting the urn model to a random walk
on the symmetric group and using the Fourier transform (which in turn involves the dual Hahn polyno-
mials). The methods apply to other "nearest neighbor" walks on two-point homogeneous spaces.
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1. Introduction. Daniel Bernoulli and Laplace introduced a simple model to
study diffusion. Consider two urns, the left containing n red balls, the fight containing
n black balls. A ball is chosen at random in each urn and the two balls are switched.
It is intuitively clear that after many such switches the urns will be well mixed, about
half red and half black. The process is completely determined by the number of red
balls in one of the urns. The stationary distribution may be described as the law of
the composition of n balls drawn without replacement from n red and n black balls

n- O<--J<-n"

The main question addressed here is the rate of convergence to the stationary
distribution. Let P. be the law of the process after k steps. Distance to stationarity
will be measured by variation distance

(1.2)
J

THEOREM 1. Let P. be the probability distribution ofthe number ofred balls in
one urn ofthe Bernoulli-Laplace diffusion model based on n ofeach color.

(1.3) Let k 1/4n log n + cn for c >-_ O. Then for a universal constant a,
IIPa-- r,,ll --< ae-2‘’.

(1.4) With k as above, and arbitrary negative c in [-1/4 log n, 0] there is a universal
positive b such that Ilea-- 11 --> be4c.

Remarks. Theorem gives a sharp sense in which 1/4n log n switches are needed:
for somewhat fewer switches, the variation distance is essentially at its maximum
value of 1. For somewhat more switches, the distance tends to zero exponentially fast.
There is a fairly sharp cut-off atn log n.

* Received by the editors August 26, 1985, and in revised form October 30, 1985.
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A somewhat stronger result, starting with r red balls and n- r black balls is
proved in {}{}3 and 4 ofthis paper. The argument uses Fourier analysis on the symmetric
groupS and the homogeneous space S,/Sr x S,_,. This last space is a "Gelfand pair"
so the Fourier analysis is essentially commutative, involving spherical functions that
turn out to be the dual Hahn polynomials. Section 2 develops the needed background
material. Section 5 describes how essentially the same argument applies to nearest
neighbor random walks on two-point homogeneous spaces. These include the Ehren-
fest’s model of diffusion (random walk on the "cube" Z) and random walk on the k
dimensional subspaces of a vector space over a finite field.

The Bernoulli-Laplace process is discussed by Feller (1968, p. 423) who gives
historical references. See also Johnson and Kotz (1977, pp. 205-207). We conclude
this section by listing several "real world" problems.where the model appears.

1) r sets of an n set. Let X be the set of r element subsets of {1, 2, ..., n} so
IXI (’/-). A random walk can be constructed on X as follows. Begin at {1, 2, ..., r}.
Each time, pick an element from the present set and an element from its complement,
and switch the two elements. This is a nearest neighbor walk using the metric:
d(x, y)= r- Ix Yl. The stationary distribution is the uniform distribution over X.
Professor Laurel Smith points out that when n r 2, this becomes nearest neighbor
random walk on the vertices ofan octahedron. The rate ofconvergence to stationarity
is the same as the rate for the Bernoulli-Laplace model with r red and n- r black
balls as shown in Lemma below.

Walks ofthis type are an essential ingredient ofthe currently fashionable approach
to combinatorial optimization called simulated annealing. Given a function
j X---, annealing algorithms perform a stochastic search for the minimum of f
based on the walk. Kirkpatrick et al. (1983) or Aragon et al. (1984) give further details.

2) Moran’s model in mathematical genetics. Moran (1958) introduced a simple
process to model the stochastic behavior ofgene frequencies in a finite population. In
one version, there is a population of n individuals each of whom is either of type A
or A2. At each time, an individual is chosen at random to reproduce. After reproduc-
tion, an individual is chosen at random to die. The model allows mutation of the
newborn (from Al to A2 at rate u, from A2 toA at rate v). If u 1, the transition
mechanism of Moran’s model becomes precisely the transition mechanism of the
Bernoulli-Laplace diffusion. A clear discussion of Moran’s model is in Ewens
(1979, {}3.3).

Ewens gives numerous references to eigenvalue-eigenvector analysis of this
Markov chain. We will use part of this literature as an ingredient of our analysis.

3) Piaget’s randomization board. In investigating children’s ability to compre-
hend randomness, Piaget and Inhelder (1975, pp. 1-25) worked extensively with the
physical device shown in Fig. 1. The left side of the box contains 8 red balls, the fight
side contains 8 white balls. When the box is tipped about an axis through its center
(like a child’s see-saw) the balls roll across to the other side. Usually one or two balls
"change sides"--a red moving into the blacks or vice versa.

Piaget asked children of varying ages questions such as "how long will we have
to wait until the balls are mixed up?" Answer: 5-10 switches for 8 reds. He also asked
"how long will we have to wait until the balls return to the way they started?" Piaget
offered an answer to the second problem for 10 reds and 10 blacks: about 185,000
moves are needed! Naturally, children (and most adults) do not guess it takes such a
long time.
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FG.

One natural reaction for a mathematician is "how on earth does he know?" We
began work on this paper by considering the Bernoulli-Laplace model (ignorant of
its origins). Theorem shows the random walk is "rapidly mixing," to use terminology
of Aldous (1983). That is, the time to reach stationarity is of the order of the log of
the number of states. Aldous (1983) shows that for rapidly mixing walks, the time to
return to the original state has approximately the same distribution as a random walk
with independent uniform steps.

If there are IXI states, and W is the first time to return, then for large IxI,

For 8 red and 8 black balls, IX] (86) 12,870, so the median return time is about
9,000. For 10 red and 10 black balls IXI 184,756; the median return time is about
128,000.

A referee points out that the associated Markov chain is doubly stochastic,
irreducible, and aperiodic. Standard Markov chain theory shows that the expected
number of steps to return to the starting state is IXI.

As explained in Diaconis and Shahshahani (1981), the analysis presented for this
problem yields all the eigenvalues and eigenvectors of the associated Markov chain.
Using these, it is straightforward to derive a closed form expression for the generating
function ofW as in Flatto, Odlyzko and Wales (1985). This can be used to get sharper
asymptotic estimates for Piaget’s problem.

2. Group theoretic preliminaries. One natural way to analyze the Bernoulli-
Laplace process is by lifting to a random walk on the symmetric group. For integers
r and b with r + b n, let S, be the symmetric group on n letters. Let Sr X Sb be the
subgroup of permutations that permute the first r elements among themselves and
the last b elements among themselves. Then X S,,/Sr x Sb may be identified with
the set of all (r") r-element subsets. The random walk on X moves from x to y by
choosing an element in the set x at random and an element of the complement ofx
at random and switching the two elements to form a new subset y. Choose a metric
d(x, y) r Ix Yl on X. The walk is thus a nearest neighbor random walk on X. It
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is easy to see that the Bernoulli-Laplace process corresponds to the distance process
of this walk on subsets.

It is useful to work in more generality: let G be a group and K a subgroup. Let
X G/K be the associated space of cosets. Choose Xo id, x, ..., Xm as fixed coset
representatives, so G xoK t3 x K... t3 Xmg. We will often identify X and {x;}. Let
Q be a K bi-invariant probability on G, so Q(kgk2) Q(g) for all k, k2 K,g G.
The probability Q induces a random walk (more precisely a Markov chain) on X by
the following recipe

(2.1) Q(x, y) a___ Q(x-’yK).
In (2.1), Q(x, y) is the probability of going from x to y in one step. The definition
comes from the following considerations: think of Xo as the origin. Each time choose
g G from Q and move from Xo to gxo. This motion is then translated to motion
around x via y xgxo. Thus, the chance of moving from x to y is Q(x-yK).

Note that Q(x, y) is well defined and satisfies

(2.2) Q(x, y) Q( gx, gy) for any g G G.

Philippe Bougerol has pointed out a converse. If Q(x, y) is a Markov chain on
X G/K satisfying (2.2), then Q is induced by a bi-invariant probability defined by

Q(A) Q(xo, Axo) for A C G.

Alternatively, write a genetic element of G as xk, then Q(xk)= Q(xo, x)/IKI. This
measure is K bi-invariant and Q(x-yK)= IKlQ(x-y)= Q(xo, x-y)= Q(x, y) as re-
quired. The following elementary lemma gives further connections between the
random walk and Markov chain.

LEUA 1. Let Q(x, y) Q(gx, gy). For any k >- 1, the k step transition matrix of
the Markov chain Q(x, y) is induced by the kth convolution of the associated bi-
invariant probability Q. The variation distance to the stationary distribution equals
the variation distance to the uniform distribution.

Because of Lemma 1, Fourier analysis on G can be used to approximate the
convolution powers. We briefly review what we need from representation theory.
Serre (1977) or Diaconis (1982) contain the details. Recall that a representation of G
is a homomorphism p: G --. GL(V) from G into invertible matrices on a vector space
V. The dimension do of o is defined as the dimension of V. A representation o is
irreducible if there are no nontrivial invariant subspaces of V. For Q a probability
and o a representation, the Fourier transform ofQ at o is defined by

(p) 4ffg)Q(g).
The Fourier transform takes convolution into products through P
The uniform distribution of G" U(g)= I/IGI, has (o)=0 for every nontrivial
irreducible representation t. For X G/K, the set of all complex functions on X is
denoted L(X). The group acts onX and so L(X) can be thought of as a representation
as well.

The variation distance can be approximated by the following
LEPTA 2. Let Q be a K bi-invariant probability on a finite group G

Q- UII --< 1/4*do Tr (O(o)O(o)*)
where the sum & over all nontrivial representations that occur in the decomposition of
L(X).
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Proof
[[Q- U[]={,[Q(g) U(g)[}z<-1/4[G[ 2;[Q(g)- U(g)[ z

1/42; o* do Tr (((o)((o*)).
Here, the Cauchy-Schwarz inequality was used and then the Plancherel theorem as
in Serre (1977, p. 49) applied to Q(g) U(g). Terms corresponding to representations
o that do not appear in the decomposition of L(X) have zero Fourier transform
because ofFrobenius reciprocity (Serre (1977, p. 56)): this implies that a representation
o occurs in L(X) with multiplicity corresponding to the dimension of the space ofK
fixed vectors of o. Thus if o does not occur, then the restriction of o to K does not
contain the trivial representation. Thus ((o)= Z,.Q(x)o(x),o(k). The inner sum is
zero because of the orthogonality of the matrix entries of the irreducible representa-
tions (Serre 1977, p. 14)).

The Fourier transform can simplify a great deal further. Indeed, for the cases
treated here the matrix ((o) has only one nonzero entry in a suitable basis. The
simplification in general is discussed in Volume 6 of Dieudonn6 (1978).

Dwymoy. The pair (G, K) is called a Gelfandpair if each irreducible represen-
tation of G appears in L(X) with multiplicity at most 1.

Remarks. Probability theory for bi-invariant probabilities on a Gelfand pair has
an extensive literature. Readable overviews appear in Letac (1981), Bougerol (1983),
or Dieudonn6 (1978). The Bernoulli-Laplace model can be treated directly in this
framework. However, the more general framework developed here is needed if one is
to attack more general problems such as the natural extension to three urns where
L(X) has multiplicity.

For a Gelfand pair, let

(2.3) L(X) Vo V (3... Vx
be the decomposition into distinct irreducibles. Frobenius reciprocity implies that
each Vj has a one-dimensional subspace of K invariant functions. Let s(x) be a K
invariant function in Vj normed so that s(xo)= 1. This is called the jth spherical
function. The spherical functions have been explicitly computed for many Gelfand
pairs.

LEMA 3. If(G, K) is a Gelfand pair and Q is a K bi-invariant probability, then

IIQ- U]l 2 --<.o[ ((J) 12’

where the sum is over the nontrivial irreducible representations occurring in (2.3) and

((j) ,gQ(g)s(g).

Proof Fix i, and consider the vector space V,. of (2.3) as a representation #,. of G.
Complete s to a basis for V,., taking s,- as the first basis vector. With respect to this
basis, the Fourier transform of any K bi-invariant function f on G becomes

(0) Z,gf(g)o(g) xf(X)O(x)Z,-o(k).

But the Schur orthogonality relations imply

Z,kpij(k)= {[oK[ ifi=j= 1,
otherwise.
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Thus

with a KI Zf(x)s,(x).

Since the trace norm is invariant under unitary changes ofbasis, the result follows
from Lemma 2. !-1

Remark. In the description above, the random walk associated to a bi-invariant
probability Q can be represented somewhat curiously as a right action of G on X.
Thus if the basic random elements chosen from Q on G are g, g, g3, .--, and the
walk starts at x, the successive steps have the representation x, xg,xgg,
xg gg3, ..., where xg denotes the coset containing xg. This is well defined for Q bi-
invariant.

There is another natural way to associate a Markov chain to a probability Q,
using the natural left action" x, g x, g2g x, g3g2g x, .... This process does not cor-
respond to a nearest neighbor walk. It yields a Markov chain with transition matrix
O_(x, y)= Q( yK-x-). Chains defined in this way satisfy (kx, ky) (x, y) but we
do not know a necessary and sufficient condition for a chain to lift to the left action
ofa bi-invariant Q. Of course, ifa lifting can be found, the Fourier analysis is precisely
as above, all the bounds and lemmas holding without essential change.

3. The upper bound. Let r and n- r be positive integers. The stationary distri-
bution for the Bernoulli-Laplace model based on two urns, one containing r red balls
initially, the second containing n- r black balls may be described as the distribution
of the number of red balls in a random sample of size r from the total population of
n

r 0<J<

Let P/ be the probability distribution of the number of red balls in the urn containing
r balls after k switches have been made.

THEOREM 2. If

then, for a universal constant a,

P- r ,". -< ae-’’/.

Proof Without loss, take r <= n/2. The decomposition of the space L(X) is a
standard result in the representation theory of the symmetric group. James (1978,
p. 52) proves that L(X)= Vo V ) Vr where V,. are distinct irreducible repre-
sentations of the symmetric group corresponding to the partition (n i, i). In partic-
ular, the pair S,,, S,. x S,,_,. is a Gelfand pair. Since this result holds for all r <-n/2,
induction gives dim (V,) (7) (;"-).

The spherical functions have essentially been determined by Karlin and
McGregor (1961). Stanton (1984) contains this result in modern language. The
spherical functions turn out to be classically studied orthogonal functions called the
dual Hahn polynomials. As a function on X, the function s(x) only depends on the
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distance d(x, Xo) and is a polynomial in d given by

(3.1) s(d) i (--i)m(i-- 1)m(-d)
m=0 (r-- n)m(--r)mm!

where (j),,,=j(j + 1) (j + rn 1). Thus

O<-i<-r,

r(n- r)

(n 1)(n- 2)d(d- 1)

so(d)= 1, s,(d)=1-
(3.2)

2d(n- 1)s2(d) 1- +
r(n- r) (n- r)(n- r- 1)r(r- 1)"

The basic probability Q for this problem may be regarded as the uniform
distribution on the r(n- r) sets of distance one from the set {1, ..., r}. Thus, the
Fourier transform of Q at the ith spherical function is

0(i)=s/(1) i(n-i+ 1)
0<i<r.=

r(n- r)

Using this information in the upper bound lemma (Lemma 3) yields

_1i{(7)_( n )}(1 i(n-i+l).)
2

(3.3) lIPs- rTllZ =<4 i=1 i-1 r(n r)

To bound the sum, consider first the term for

(n-1) 1-r(n_r)

2kn )exp
r(n- r------ + log n

This is smaller than

Thus k must be at least

1- [logn+cl

to drive this term to zero. With k of this form, the problem is reduced to bounding

i ea(i)+b(i)
i=

where

a(i)=ci(-1)_ 1), b(i)=i(i- 1)n lgn-lg (i!).

Calculus shows that a(i) <- a(1) -c for all [2, n/2]. Thus, to prove Theorem it
suffices to prove

n/2
Y, e)_-<B independently ofn.
i=1

Clearly, the sum of e;) over _-< _-< 21 is uniformly bounded. For the remaining
range, upper bound b(i) by i(logn/n)-ilogi+ i. It will be argued that
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i2(log n/n) log + < -i for 21 <- <- n/2, equivalently, log n/n < (log 2)/i.
Now if f(x) (log x 2)/x, f’(x) (3 log x)/x. This is negative for x> e3, so for
i>21>e3,

log i- 2 log (n/2)- 2
n/2

This last is greater than log n/n for n _-> e4+21g2. Thus,
n/2

Y ebi) <-- e-<B uniformly in n. if]
i=22 i=22

Remarks. Change n to 2n and take r n. The result becomes (n/4) log n + (c/2)n
which gives (1.3) of Theorem 1. If r o(n), the result becomes (r/2) log n + (c/2)r. As
usual with approximations, some precision has been lost to get a clean statement.
When r 1,.for example, there is only one term: (n- 1)(1/(n- 1))2. For k this
gives 1/2(1/x/n- 1) as an upper bound for the variation distance. Elementary consid-
erations show that for this case the correct answer is 1/n. Thus, the upper bound
lemma gives the fight answer for the number of steps required (namely, 1) but an
over estimate for the distance.

4. The lower bound. A lower bound for the variation distance will be found by
using the easily derived relation

(4.1) liP- QI[ sup [P(A) Q(A)[.
A

Any specific set A thus provides a lower bound. Intuitively, if the number of steps k
is too small, there will tend to be too many of the original color in the urn. The
argument below gives a sharp form of this. For ease of exposition, we only prove the
result for r n r (for example (1.4)) but the proof works in the general case.

The idea of the proof is to again use spherical functions, but this time-as random
variables, not transforms. Thus for any Gelfand pair (G, K) with X G/K, consider
s: X as a random variable. IfZ is a point chosen uniformly in X, the orthogonality
relations (as in Stanton (1984, eq. (2.9))) give

(4.2) E{s(Z)}=o, Var (s(Z))
dim (V)"

If Z. denotes an X valued random variable with distribution P* for P a bi-invariant
probability on X the basic convolution property of spherical functions becomes

(4.3) Els(Z)l EIs(Z)}.
On $2,/S, x S, the first three spherical functions, as functions of the distance d

are given (from (3.1)) as

2d
so(d)= 1, Sl(d) 1-

n

2(2n 1)d (2n- 1)(2n 2)d(d- 1)
s2(d) 1- +

n 2 [n(n 1)]2

Since these are polynomials in d, it follows that for some a, b, c, szl a + bSl q- CS2.
After a computation
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2n-2
(4.4) Sl-2n- +

2n- s2.

Remark. When working with general r, n- r values the term s appears in the
expression for s.

To lower bound the variation distance, consider the normalized spherical function
f(x) d__ x/n ls(x). Now (4.2) implies for Z uniform on x,

E{ f(Z)} 0, Var f(Z)] 1.

Under the convolution measure

(4.5) El f(Z.)} /n’l -n (n 1)(2n 2) 2(2n 1) (n 1)(4.6) Var{ f(Z.)}-
2n-

-t
(2n- 1) n

For k of the form -n log n cn, the mean becomes

+O

where c > 0, and all eor tes are unifo in both n and c. Thus, for c large, the
mean is large. Similarly

Varlf(Z.)l=+O +exp 4c+O
n
+O

-exp(4c+o(l2n)+O())
=+e"{o(l:n)+ O()}.

Thus, the variance is uniformly bounded for O c log n. Now use Chebyshev’s
inequality: ifA, {x: If(x)l a}, r,(A,) 1/a while P(A,) < B/(e2 a)2 where
B is uniformly bounded for c log n. Thus, for any fixed a and c, for all sufficiently
large n,

B
a z (e-This completes the proof of (1.4), choosing a e/2, for example.

Remark. From the definition of s, the set A, can be intereted as the event

# reds e a.

5. Other nearest neighbor walks. A class of problems that can be treated by
following the steps above involves a connected graph with vertex set X and an edge
set E. Define a metric on X as

d(x, y) length of shortest path from x to y.
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We want to analyze nearest neighbor walks on this graph. An automorphism of the
graph is a l-1 mapping from X toX which preserves the edge set. Let G be the group
of automorphisms of X. Call the graph 2-point homogeneous if d(x, y)= d(x’, y’)
implies there is a g G such that gx x’, gy y’. Taking x y, x’ y’ shows G
operates transitively on X, so X - G/K where K g G: gxo Xo} for some fixed
point x0. Stanton (1984) shows

THEOREM. For a 2-point homogeneous graph, (G, K)form a Gelfand pair and
the sphericalfunctions are orthogonal polynomials.

This means that in principle the analysis above can be carried out for such
examples. Here is a list of some of the examples in Stanton:

Example 1. 9( Z, d(x, y) number of coordinates where x and y differ. Here
the random walk becomes nearest neighbor walk on the n cube. This is a well studied
problem equivalent to the well-known model of diffusion known as the Ehrenfest urn
model. A wonderful discussion of this model is in Kac (1945). Further references are
in Letac and Takacs (1979). The straightforward random walk never converges
because of parityafter an even number of steps the walk is at a point at an even
distance from 0. One simple way to get convergence is to stay fixed with probability
1/(n + l) and move to a vertex away with probability 1/(n + 1). For this process,
the analysis can be carried out just as in3 and 4 to shown log n + cn steps suffice
and that this many steps are needed.

THEOREM 3. Let X= Z. Let P(00 0)= P(10 0) P(00 l)=
1/(n + 1). Let U be the uniform distribution on X. Suppose k (n + 1)log n +
c(n + for c > O. Then

-4cP* UII <-(e -1).

Conversely, for k -(n + l) log n c(n + 1), for c> O, the variation distance does not
tend to zero as n tends to infinity: lim lIP*- UII --> (1 8e-).

Remark. It is curious that the critical rate is precisely the same 1/4n log n, for the
cube and n sets of a 2n set.

Example 2. Let F, be a finite field with q elements. Let V be a vector space of
dimension n over F,. Let X be the set of k-dimensional subspaces of V, with metric
d(x, y) k dim (x O y). Here, G GL(q) operates transitively on X. Stanton (1984)
gives all the ingredients needed to carry out the analysis.

Example 3. LetX be the set of (n r) x r matrices overF with metric d(x, y)
rank (x y). Here, GL-r X GLr operates transitively on X. Again a complete analysis
seems in reach using results given by Stanton.

Example 4. For q odd, let X be the set of skew-symmetric matrices overF with
metric 1/2 rank (x- y). Here G GL acts on X by x ArxA. Again Stanton gives
enough information about spherical functions and dimensions to allow a complete
analysis.

Stanton also gives results for orthogonal, hermitian, and symplectic matrices over
finite fields. He also gives results for a variety of less familiar combinatorial objects.
Combinatofialists have also studied such objects: see Biggs (1974, Chaps. 20, 21).
Further surveys and examples of Gelfand pairs are given by Heyer (1983) and Sloane
(1982).

Finally, there are Gelfand pairs that do not arise from two point homogeneous
graphs. An example is the set X of all partitions of I1, 2, ..., 2hi into n two-element
subsets. In graph theoretic language this is the set of all "matchings" of a 2n set. The
symmetric group S, acts transitively on X and yields a Gelfand pair. A natural
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random walk involves picking two elements at random and switching them to form
a new partition. This gives an algorithm that converges to a random matching. The
spherical functions are "zonal polynomials." It can be shown that 1/2n log n switches
suffice.
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