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Time to reality check the promises of machine learning-
powered precision medicine
Jack Wilkinson, Kellyn F Arnold, Eleanor J Murray, Maarten van Smeden, Kareem Carr, Rachel Sippy, Marc de Kamps, Andrew Beam, 
Stefan Konigorski, Christoph Lippert, Mark S Gilthorpe, Peter W G Tennant

Machine learning methods, combined with large electronic health databases, could enable a personalised approach to 
medicine through improved diagnosis and prediction of individual responses to therapies. If successful, this strategy 
would represent a revolution in clinical research and practice. However, although the vision of individually tailored 
medicine is alluring, there is a need to distinguish genuine potential from hype. We argue that the goal of personalised 
medical care faces serious challenges, many of which cannot be addressed through algorithmic complexity, and call 
for collaboration between traditional methodologists and experts in medical machine learning to avoid extensive 
research waste.

Introduction
Proponents of precision medicine make a compelling 
pitch: traditional approaches to health science have 
focused too much on comparing effectiveness in the 
average person and too little on the needs of actual 
individuals.1,2 The blame could lie with outdated statis
tical and epidemiological tools, which might offer dec
reasing relevance to the needs of contemporary clinical 
decision making.3 The proposed solution speaks to the 
zeitgeist: our newfound abundance of detailed and 
acces  sible longitudinal data on individuals combined 
with the practical realisation of various flexible machine 
learning approaches offer an exciting chance for rev
olution.2 At the apex sits the dream of precision medicine 
crafted by machine learning, a new framework that 
promises to revolutionise how we identify the best 
therapy for each person as an individual, while auto
mating everyday tasks like diagnosis and prognosti
cation with unprecedented accuracy.4

But how realistic are these claims? And when, if ever, 
can we expect them to be routinely realised? We consider 
the evidence underlying two of the most common claims 
about the potential of machine learningpowered precision 
medicine and call for a reality check of expectations.

Claim 1: machine learning will enable automated 
diagnoses with unprecedented accuracy
Machine learning is often heralded by health and med
ical commentators as a powerful prediction tool that 
will revolutionise disease screening and diagnosis. The 
inherent flexibility and scope for automation makes 
machine learning well suited to examining complex 
highdimensional data (ie, with many variables or 
features) that would be challenging to model using 
conventional approaches. Such strategies have enabled 
the development of several innovative diagnostic algor
ithms—for example, to identify patients most in need 
of intervention from knee MRI,5 to detect cardiac 
arrhythmias from electrocardiograms,6 and to diagnose 
pneumonia from chest xrays.7

Given such innovation, it is hard to dispute the revolu
tionary potential of machine learning for improving 

clinical diagnostics. However, acknowledging potential 
is a poor substitute for robust scientific evidence of 
actual benefit, and here research is lacking.8 Although 
news media is filled with enthusiastic stories about 
novel mac hine learning applications,9–12 a systematic 
review com paring the performance of deep learning 
versus health professional assessment in diagnosis of 
various diseases from medical images makes for 
sobering reading.13 Only 20 (24%) of the 82 studies 
identified evaluated the performance of their algorithm 
in an external cohort, and only 14 (17%) studies compared 
this outofsample perfor mance with that of health 
profes sionals. This number is alarmingly small, 
especially given that many of the studies were flawed. 
The authors found that reporting standards were 
typically poor, internal validation was weak and, perhaps 
most worryingly, model performance was often evaluated 
under unrealistic conditions that had little relevance to 
routine clinical practice.13 For example, there is little use 
comparing the performance of a machine learning 
algorithm with health professional judgment for making 
diagnoses from medical images without providing 
further contextual information about the patient, as this 
would never happen in practice.14 A more recent 
systematic review of studies comparing deep learning 
with clinical judgement corroborated the wide spread 
issues with poor study design and reporting, but 
identified some well designed randomised clinical trials 
that evaluated the technology.15

Emphasis on predictive performance over clinical utility 
is not unusual. The ability of machine learning to process 
highdimensional data, for example, appears to be dis
tracting from the often greater benefits of simple clinical 
variables. Volkmann and colleagues16 showed how predic
tions based on large dimensional omics data can easily be 
improved by including more common clinical infor
mation. Indeed, the added value of omics data for clinical 
prediction can be marginal once all relevant clinical 
variables are included. There is also an increasing focus 
on classifying patients into simple cate gories (eg, with 
and without the disease) rather than predicting a 
continuum of risk. This trend is an unfortunate departure 
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from the supposed aim of increasing individual relevance 
and is particularly puzzling because it is not a requirement 
of most machine learning methods.

In terms of using machine learning to automate 
diagnoses, this remains more of a potential promise than 
a proven product, although notable exceptions exist, 
such as an automated system for detection of diabetic 
retinopathy.17 At present, the benefits of most proposals 
to automate clinical diagnoses with machine learning are 
unknown because they have not been meaningfully ass
essed. Novel machine learning studies are not unusual in 
this regard. Clinical journals are flooded with traditional 
prognostic models that were neither developed nor 
evaluated using appropriate methods.18 However, since 
few of these models ever end up being used, they are 
arguably benign. By contrast, there is tangible concern 
that the scale of enthusiasm around machine learning 
means substandard models might get unduly adopted by 
a clinical audience that is not equipped to assess them.

Regardless, the performance and utility of a machine 
learning algorithm is highly dependent on the quality 
and relevance of the data on which it is trained. Training 
in image recognition requires large numbers of images 
to be scrutinised and annotated by human experts, a 
burdensome task that itself carries a risk of error, high
lighting the need for methods to enable medical experts 
to create highquality annotations at scale. Furthermore, 
algorithms often perform badly and require retraining 
when introduced into environments that were not 
represented in their training data, as highlighted by the 
poor performance of a Google algorithm for detecting 
diabetic retinopathy from retinal images when deployed 
in poorlylit eye clinics in Thailand.19

Claim 2: machine learning-powered precision 
medicine will enable identification of the best 
therapies for individuals rather than groups
The potential to revolutionise the individual tailoring 
of medical treatments is one of the most widely discussed 
and appealing promises of machine learningpowered 
precision medicine.20 Unfortunately, this promise is 
probably also the least likely to ever be fully achieved, for 
two fundamental epistemological reasons.

First, machine learning approaches are not (currently) 
able to identify cause and effect, because causal inference 
is fundamentally impossible to achieve without making 
assumptions.21,22 Causal inference requires the following 
three central assumptions: a clearly specified causal 
question, that the causal effect of interest can be identified, 
and that all treatment options of interest can be observed 
among all groups of interest. Several of these assumptions 
can be satisfied through study design or external 
contextual knowledge (ie, human input or true artificial 
intelligence), but none can be discovered solely from 
observational data. Since causal inference is necessary to 
find out what works and by how much, this issue poses a 
considerable barrier to the promise of ever being able to 

identify the best treatment for an individual person by 
machine learning.

This problem does not simply reflect the adage that 
correlation does not imply causation, nor the widely held 
belief that causal inference can only be achieved in 
experimental data. A suite of methodological approaches 
are available to aid estimation of causal effects in non
experimental data,23,24 such as electronic health records, 
which potentially offer more diverse and relevant sam
ples than clinical trials (although representative samples 
might not be necessary to achieve representative 
results25). The limitation arises because almost all 
machine learning algorithms have been designed to 
make predictions (eg, to most accurately predict or 
classify those with a particular trait or prognosis) and 
this is fundamentally distinct from causal explanation 
and causal effect estimation.26,27

To estimate a causal effect, we instead need to estimate 
not just what is most likely to happen (ie, prediction) but 
what would most likely have happened if things had been 
different (ie, counterfactual prediction27). Accordingly, the 
prospect of automated causal inference in obser vational 
data remains beyond reach. Instead, causal inference 
requires external contextual information about the 
meaning of and relationships between the relevant 
variables in a given context.28 Machine learning cannot 
learn these things from a dataset because they are not 
necessarily there to learn—the data only include what has 
happened, not what might have happened if things had 
been different. Hence, datadriven prediction models 
cannot help us to determine the effect of different 
exposures and treatments on different outcomes, and in 
turn cannot deliver the promise of identifying the best 
treat ment approach for specific individuals.28 Simply 
increasing the sample size (ie, collecting big data) or 
increasing algorithmic complexity does not help to resolve 
this fundamental epistemological mismatch of aims. 
Further tensions arise between adopting a datadriven 
approach and the preference towards prespecification of 
analyses before data collection in clinical trials.

However, that machine learning cannot yet—if ever—
conduct causal inference is arguably less of a barrier to 
achieving individuallevel predictions than the second 
more fundamental problem that the majority of health 
states and events are so complex that we can only 
understand them probabilistically, and chance can never 
be predicted at the individual level. Indeed, although 
statistics—and hence machine learning—is excellent at 
helping us to understand and compare probabilities 
between groups, it is fundamentally unable to tell us 
what will happen to an individual. The power of statistics 
is precisely that it can describe and predict partly random 
events over large numbers of people. But no matter how 
accurately statistics can do this, it can never tell us with 
certainty what the next event will be.

For example, consider rolling two (fair) dice and 
counting the total score. Although we know what is most 
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likely (seven), and we know with 100% certainty the 
probability of all other scores (eg, 1 in 32 for a double six), 
we are still no closer to knowing what the next roll will 
actually be. Likewise, even the most sophisticated causal 
inference methods cannot determine with certainty the 
effect of an individual variable in an individual person 
(eg, the effect of systolic blood pressure on the risk of 
stroke). This issue is not resolvable by simply collecting 
more data or building increasingly complex models, 
because it stems from limitations of our understanding 
of physical and biological processes. Since most health 
processes are effectively probabilistic, we must accept 
that individual outcomes will always be subject to chance, 
no matter how precisely we can describe these for groups 
of similar patients.

Pragmatic routes to personalisation
The scale and substance of these barriers leads to a larger 
question: is precision medicine itself an epis temological 
dead end? To answer, we must step back from the 
headline promises and revisit the core principles. The 
first requirement for precision medicine is that treat
ments have different effects in different people and the 
second is that this variation can, at least partly, be 
characterised and predicted.29 Where the cause of such 
variation can be easily identified and targeted, such as 
with a disease that has a dominant genetic component, 
this is potentially realistic; indeed this is exactly where 
precision medicine has found its success.30 However, in 
most cases, characterising and predicting treatment 
responses is undermined for the very reasons we seek to 
use precision medicine—health is complex—and under
standing the determinants of variation in response is a 
formidable challenge. Indeed, for most health states and 
events, we remain unable to achieve the ostensibly much 
easier task of improving the average response in a group.

One of the biggest obstacles to precision medicine 
comes from our poor collective understanding of the 
nature of variation and the types of study needed to reveal 
it. Disease symptoms and the apparent treatment 
response can vary substantially within the same indi
vidual over time.29 Traditional clinical studies are woe
fully illequipped to identify who will respond consistently 
well, or indeed whether anyone will respond consistently 
at all. Even with more intensive study designs, such as 
repeated crossover studies or Nof1 trials, it might not be 
possible to differentiate withinindividual and between
individual variation without strong assumptions that are 
only plausible in specific circum stances (eg, where the 
symptoms and participant circumstances are stable over 
time and the treatments have no longterm effects).29,31

A more pragmatic route towards greater person
alisation might be to shift the aim towards stratified 
medicine (ie, identifying and predicting subgroups with 
a better and worse response). Although somewhat more 
modest in ambition, this strategy would be compatible 
with our existing statistical epistemology and could still 

provide a genuine revolution. However, this route 
remains much more complex than simply applying ma
chine learning approaches to experimental or obser
vational datasets, because of the fundamental challenge 
of differentiating true signal from noise. For example, 
response variation is typically explored by simple 
subgroup analyses of specific predefined vari ables (eg, 
sex, age, race, or ethnicity). These analyses are usually 
exploratory, because even if there are sound expectations 
of treatment variation, experiments tend to be restricted 
to focus on the responsive group. However, doing 
multiple statistical tests for modest effects in relatively 
small samples is a recipe for disaster, including mis
taking noise for signal, exaggerating trivial effects, and 
(ironically) overlooking true effects.32–34 Anything that is 
identified of course needs validation in subsequent 
experiments,35 which are rare and seldom confirm the 
initial suspicions.33,36

Conclusion
Both machine learning and precision medicine are 
genuine innovations and will undoubtedly lead to 
some great scientific successes. However, these benefits 
currently fall short of the hype and expectation that has 
grown around them. Such a disconnect is not benign and 
risks overlooking rigour for rhetoric and inflating a 
bubble of hope that could irretrievably damage public 
trust when it bursts. Such mistakes and harm are 
inevitable if machine learning is mistakenly thought to 
bypass the need for genuine scientific expertise and 
scrutiny. There is no question that the appearance of big 
data and machine learning offer an exciting chance for 
revolution, but revolutions demand greater scrutiny, not 
less. This scrutiny should involve a reality check on the 
promises of machine learningpowered precision 
medicine and an enhanced focus on the core principles 
of good data science—trained experts in study design, 
data system design, and causal inference asking clear 
and important questions using highquality data.
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