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Abstract

Background: Serous ovarian cancer (SeOvCa) is an aggressive disease with differential and often inadequate therapeutic
outcome after standard treatment. The Cancer Genome Atlas (TCGA) has provided rich molecular and genetic profiles from
hundreds of primary surgical samples. These profiles confirm mutations of TP53 in,100% of patients and an extraordinarily
complex profile of DNA copy number changes with considerable patient-to-patient diversity. This raises the joint challenge
of exploiting all new available datasets and reducing their confounding complexity for the purpose of predicting clinical
outcomes and identifying disease relevant pathway alterations. We therefore set out to use multi-data type genomic
profiles (mRNA, DNA methylation, DNA copy-number alteration and microRNA) available from TCGA to identify prognostic
signatures for the prediction of progression-free survival (PFS) and overall survival (OS).

Methodology/Principal Findings: We implemented a multivariate Cox Lasso model and median time-to-event prediction
algorithm and applied it to two datasets integrated from the four genomic data types. We (1) selected features through
cross-validation; (2) generated a prognostic index for patient risk stratification; and (3) directly predicted continuous clinical
outcome measures, that is, the time to recurrence and survival time. We used Kaplan-Meier p-values, hazard ratios (HR), and
concordance probability estimates (CPE) to assess prediction performance, comparing separate and integrated datasets.
Data integration resulted in the best PFS signature (withheld data: p-value = 0.008; HR= 2.83; CPE = 0.72).

Conclusions/Significance: We provide a prediction tool that inputs genomic profiles of primary surgical samples and
generates patient-specific predictions for the time to recurrence and survival, along with outcome risk predictions. Using
integrated genomic profiles resulted in information gain for prediction of outcomes. Pathway analysis provided potential
insights into functional changes affecting disease progression. The prognostic signatures, if prospectively validated, may be
useful for interpreting therapeutic outcomes for clinical trials that aim to improve the therapy for SeOvCa patients.
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Introduction

Ovarian cancer is considered a ‘‘silent’’ disease, as 70% of

patients are diagnosed at an advanced stage with high grade serous

ovarian cancer (SeOvCa) [1]. The standard treatment requires

cytoreduction surgery followed by administration of platinum and

taxane-based chemotherapy. In a large number of patients with

advanced stage papillary SeOvCa (stages III/IV) that initially

respond to primary treatment with surgery and chemotherapy,

cancer recurs with a drug-resistant phenotype (25% cases within 6

months) and overall 5-year survival is 31% [1]. Consequently,

there is an urgent need for diagnostic molecular features or

biomarkers that can be associated with survival and disease

recurrence in SeOvCa.

Recently, mRNA expression signatures that predict platinum-

resistance [2], progression- free survival [3] or overall survival

[2,4,5] have been developed. Although these studies provided

valuable first clues to molecular changes in SeOvCa that might be

exploited in new treatment strategies, most of them suffered from

limited sample size, and the number of overlapping genes in the

identified profiles was minimal. It is well known that statistically

derived signatures are not necessarily unique, possibly because of

individual variation, heterogeneity [6] or collinearity [7]. Howev-

er, given the diversity and extent of copy number alterations in

SeOvCa genome, having a large sample size is a prerequisite for

accurately identifying alterations that could be most associated

with tumor recurrence and patient overall survival. A meta-

analysis using nine published gene sets [8] found, among others,

oxidative stress response mediated by NRF2, TP53 signaling and

TGFb signaling to be associated with platinum based therapy

resistance.

Since clinical decisions are usually binary, methods like support

vector machines [9,10] and univariate Cox regression are typically

utilized to stratify patients into binary categories such as bad-

prognosis and good-prognosis (or low- and high-risk). However, the

availability of clinical time data provides an opportunity to directly
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predict time-to-event and can hopefully lead to a more informative

signature that can be reduced to binary decisions with no loss of

information. Clinical time-to-event prediction is possible but is a

relatively unexplored field and a challenging task.

The Cancer Genome Atlas (TCGA) project was established to

profile large tumor sets at both the DNA and RNA level to create

an integrated atlas of the aberrations present in tumor cells.

Ovarian Cancer is the second tumor type analyzed by TCGA, and

the study focused on newly diagnosed untreated invasive high-

grade SeOvCa samples.

Using TCGA data, the aims of our study were to (1) develop

molecular signatures of individual data types (mRNA expression,

microRNA expression, DNA methylation and copy-number

alteration data from primary surgical samples) associated with

platinum-free interval, progression-free survival and overall

survival in advanced-stage SeOvCa; (2) integrate four different

data types and compare the performance of genomic integration

with the individual data types; (3) test the predictive power of our

signatures in withheld data, and, wherever possible, in other fully

independent and publicly available datasets of high-grade

SeOvCa; and (4) derive the network of interactions and associated

pathways and transcription factors.

To achieve these goals, we utilized the wealth of information

available from TCGA and implemented an L1-regularized Cox

proportional hazards model to do feature selection using the Cox

model with an L1 penalty as proposed by Park and Hastie [11].

Previously published mRNA expression datasets were used to test

our gene signatures created from TCGA mRNA expression data.

Further we investigated the network of interactions and associated

pathways resulting from our signatures and identified pathways

and processes that could possibly explain the biological behavior of

SeOvCa.

Results and Discussion

Clinical Characteristics of the TCGA Data
Outcome measures of interest for our analysis were overall

survival (OS), progression-free survival (PFS) and platinum-free

interval (PFI) (Table 1). OS was defined as the time between the

initial surgical resection to the date of last follow-up or death. PFS

was defined as the interval from the date of initial surgical

resection to the date of progression, date of recurrence, or date of

last known contact, if the patient was alive and has not recurred.

PFI was defined as the interval from the date of last primary

platinum treatment to the date of progression, date of recurrence,

or date of last known contact if the patient is alive and had not

recurred. Tumor recurrence was defined using criteria customary

to the contributing institution. Platinum status was defined as

resistant if the PFI was less than six months and the tumor had

progressed or recurred. Platinum status was defined as sensitive if

the platinum free interval was six months or greater, there was no

evidence of progression or recurrence, and the follow-up interval

was at least six months from the date of last primary platinum

treatment [1].

PFS and PFI data were only available for a subset of patients

(Table 1) and were last updated on September 13, 2010. The PFI

and PFS outcome measures were directly correlated with each

other (Figure 1A), and PFS and OS outcome measures were not

(Figure 1B). Therefore, our approach was to identify different

signatures to predict PFS and OS, respectively. We chose to

predict PFS rather than PFI for two reasons: 1) there were ,100

more cases available with PFS information than PFI (potential for

improving the statistical performance of molecular signatures

identified), and 2) PFS is the outcome measure that is generally

reported in the literature.

Molecular Signature from Individual Data types
To achieve our first goal of deriving molecular signatures from

individual data types (mRNA expression, microRNA expression,

DNA methylation and copy-number alteration data) most

associated with tumor recurrence and survival, we implemented

a multivariate Cox Lasso model. This model is a path following

algorithm for L1-regularized Cox proportional hazards model [11]

and reports the markers of outcome through a cross-validation

procedure and maximization of concordance probability esti-

mates.

A potential issue in developing predictive signatures is over-

fitting to the training dataset, resulting in a signature that reflects

the characteristics of the training set but cannot accurately predict

outcome in the test set. Consequently, a fairly rigorous cross-

validation procedure of the regression model was followed and the

models were parameterized during the training procedure and

fixed before moving to the test data analysis. For creating the

training set, 316/395 cases with PFS data and 384/481 cases with

OS data were randomly chosen, and the rest were used as a blind

test set of the resulting molecular signatures. Three measures of

performance of the signatures for the test data were selected: p-

value (the measure of how well the signature stratifies patients into

broadly defined health-risk categories), Hazard ratios (HR, the

ratio of rate at which patients in two groups are experiencing

events), and concordance probability estimates (CPE, a measure of

how well our signatures predict the correct order of median time-to-

event). The cross-validation CPE (cv.CPE) and the CPE of the test

data (CPE.test) are provided for each data type. The total number

of features resulting from the four individual data types and the

respective integrated versions for the two outcome measures are

summarized in Table 2.

Copy-number Alteration Data. Given the extent of copy

number alterations (CNA) and the relatively low number of

significantly mutated genes observed in SeOvCa, it is considered a

copy-number driven disease. Consequently, we tried to identify

Table 1. Clinical characteristics of the TCGA data.

Cohort OS PFS/TTP PFI

Number of patients 481 395 287

Median Age 59.1 58.7 58.7

Serous 481 395 287

Platinum status

Sensitive 195 195 195

Resistant 92 92 92

Recurrent disease

No 113 113 40

Yes 282 282 247

Vital status

Alive 213 194 116

Dead 268 200 170

Median time, months 43.6 16.8 10.4

The total number of TCGA patients available (and associated clinical
characteristics) within each clinical outcome measure category are reported. All
outcome measures are depicted in the units of months.
doi:10.1371/journal.pone.0024709.t001

Predicting Outcome in Serous Ovarian Tumors
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copy-number features most associated with the different outcome

measures.

Using our methodology, 167 copy-number features (genes) were

found to be most associated with PFS and 278 features most

associated with OS. All analysis details are provided in File S4.

The CPE.test for recurrence analysis was 0.67 and CPE.test for

survival analysis was 0.75 (Figures 4SA, 4SB in File S4). The

patient-risk stratification (tertile stratification using c-scores) for the

test set was not statistically significant for recurrence and survival

data (Table 2).

mRNA Expression, microRNA Expression and DNA

Methylation Data. The mRNA expression analysis for PFS

data identified 181 features that stratified TCGA test data with p-

value = 0.05 (t-score) and 0.17 (c-score) and resulted in

CPE.test = 0.77 (Figures 1SA, 1SB in File S1). For OS, 219

features were identified resulting in stratification p-value = 0.09 (t-

score) and 0.70 (c-score) and CPE.test = 0.80 (Figures 1SC, 1SD

in File S1). The DNA methylation analysis for PFS identified

140 features with p-value = 0.03 (c-score, test data) and

CPE.test = 0.72. For survival, DNA methylation identified 171

features with p-value = 0.52 (c-score, test data) and CPE.test = 0.74

(Figures 2SA, 2SB in File S2). The microRNA analysis for PFS

identified 81 features with p-value = 0.09 (c-score, test data) and

CPE.test = 0.63. For survival, microRNA analysis identified 87

features with p-value = 0.09 (c-score, test data) and CPE.test = 0.69

(Figures 3SA, 3SB in File S3).

Figure 1. Correlation of TCGA clinical outcome measures. (A) PFS and PFI are strongly correlated and do not need to be predicted separately.
(B) PFS and OS are not well correlated, so we derived separate predictive signatures for each (data only for un-censored patients).
doi:10.1371/journal.pone.0024709.g001

Table 2. Results from individual data types and the integrated versions.

Progression Free Survival (PFS)

Data type features CPE.test

c-score

p-val

t-score

p-val HR 95% CI

mRNA 181 0.77 0.17 0.05 1.97 (0.94, 4.11)

microRNA 81 0.63 0.09 NA 1.48 (0.75, 2.91)

DNA Methylation 140 0.72 0.03 NA 1.96 (1.05, 3.63)

Copy Number Alteration 167 0.67 0.61 NA 1.36 (0.71, 2.59)

Integrated data 156 0.72 0.008 0.004 2.83 (1.40, 5.74)

Overall Survival (OS)

Data type features CPE.test

c-score

p-val

t-score

p-val HR 95% CI

mRNA 219 0.80 0.70 0.09 1.26 (0.62, 2.55)

microRNA 87 0.69 0.09 NA 1.22 (0.63, 2.35)

DNA Methylation 171 0.74 0.52 NA 1.45 (0.77, 2.75)

Copy Number Alteration 278 0.75 0.18 NA 0.77 (0.39, 1.53)

Integrated data 182 0.73 0.59 0.81 1.10 (0.54, 2.22)

The number of features and four measures of performance are provided for the PFS (top) and OS (bottom) signatures. Hazard Ratio (HR) and 95% confidence interval
(CI) are reported for low- and high-risk groups based on Cox score (c-score) stratification.
doi:10.1371/journal.pone.0024709.t002

Predicting Outcome in Serous Ovarian Tumors
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The details of the data processing, the methodology and results

from the three data types (mRNA expression, microRNA

expression and DNA methylation) are provided in Files S1, S2

and S3, respectively.

Based on the c-scores performance of the individual data types,

the DNA methylation signature is the most statistically significant,

the microRNA signature is borderline significant among PFS

signatures, and microRNA is borderline significant among OS

signatures (Table 2). The molecular signatures based on the

TCGA data were also tested in some external datasets (Table 3;

Figures 1SA, 1SB, 1SC, 1SD in File S1). This indicated the

robustness of the mRNA signatures and their broad applicability.

Molecular Signatures from Integrated Data
Causality is not necessarily established by a correlation between

a set of genes and clinical endpoints. Various mechanisms that

regulate gene expression include DNA methylation, histone

deacetylation, copy-number changes and targeting by micro-

RNAs. Therefore, an integration procedure that incorporates this

biologically useful knowledge and is computationally efficient was

highly desirable. We created a vector space integration method,

which is described in the Methods and Materials sections

(Figure 2). This methodology allowed us to directly compare the

performance of the integrated method with the performance of the

individual data types.
Progression-Free Survival. The result of the multivariate

Cox Lasso model using the integrated data was 156 features,

comprising 85 mRNA features, 47 DNA methylation features, 18

copy-number features, and 6 microRNA features that emerged as

being most associated with tumor recurrence. Tertile stratification

was performed on the training data. The resulting thresholds for

stratifying patients into low-, intermediate- and high-risk groups

resulted in a p-value of 8.0e-03 (c-score) and 4.0e-03 (t-score) for

the test data (Table 2, Figure 3). The concordance probability of

the test data (CPE.test) was 0.72 and HR between low- and high-

risk groups was 2.83. These results suggest an excellent predictive

power of the features for patient-risk stratification and median

time-to-event predictions for tumor recurrence.
Overall Survival. The multivariate Cox Lasso model using

integrated data resulted in 182 features that were most associated

with overall survival. This signature was comprised of 102 mRNA

features, 40 DNA methylation features, 30 copy-number features,

and 10 microRNA features. Tertile stratification was performed

on the training data. The resulting thresholds for stratifying

patients into low-, intermediate- and high-risk groups led to a p-value

of 0.59 (c-score) and 0.81 (t-score) for the test data. The CPE.test

was 0.73 (Figure 3). These results show inferior performance of the

integrated survival signature compared to the integrated PFS

signature. The median time-to-event prediction for the follow-up

times (PFS and OS) from the integrated datasets is provided in File

S5 (Figure 5SA).

Since the PFS signature identified from genomic integration had

the overall best performance (p = 0.008; HR=2.83; CPE=0.72),

we limit the subsequent gene-set analysis and subsequent network

and pathway analysis to the PFS integrated signature.

Pathway Analysis of the PFS Signature Identified from
Genomic Integration
To identify common biological pathways and known interac-

tions of the 156 features in the integrated PFS signature, we

applied two different approaches: A) General over-representation

analysis to identify over-represented pathways and gene ontology

categories, and B) Network analysis to identify genes with evidence

for physical or functional interactions (connected in protein-

protein interaction or transcriptional networks).
A. Over-representation Analysis of the 156-feature Gene

Signature. Firstly, functional categories from IPA pathways

(Ingenuity, Inc.) [12] were used to identify pathways (more

precisely, gene sets grouped in pathways) over-represented in the

integrated PFS gene signature. Significant pathways (15 pathways

with p,0.05 and 23 pathways with p,0.1) containing more than

Table 3. Results for the mRNA prognostic signature applied
to external datasets.

Data type features CPE.test

c-score

p-val

t-score

p-val HR 95% CI

Tothill (OS) 219 0.80 0.047 0.014 2.06 (1.11, 3.30)

Dressman (OS) 219 0.78 0.008 0.033 1.33 (0.61, 2.88)

Bonome (OS) 219 0.75 0.049 0.180 1.77 (1.09, 2.88)

Tothill (PFS) 181 0.77 0.035 0.012 1.73 (1.10, 2.71)

Bonome (PFS) 181 0.77 0.870 0.880 1.06 (0.68, 1.66)

The number of features and four measures of performance are provided for the
PFS and OS mRNA signatures. Hazard Ratio (HR) and 95% confidence interval
(CI) are reported for low- and high-risk groups based on Cox scores (c-score)
stratification.
doi:10.1371/journal.pone.0024709.t003

Figure 2. Integration Procedure and CoxPath Methodology.
Integration combines multiple data types for the multivariate Cox
Proportional hazards model.
doi:10.1371/journal.pone.0024709.g002

Predicting Outcome in Serous Ovarian Tumors
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two genes in the signature included phospholipase C signaling,

FccRIIB signaling in B lymphocytes, anti-proliferative role of

somatostatin receptor 2, G beta gamma signaling, oxidative

phosphorylation, breast cancer regulation by stathmin1,

pancreatic adenocarcinoma signaling, a-adrenergic signaling and

others (Figure 4). Interestingly, several genes are common to

several of the IPA gene sets, such as RRAS2, BTK, CD79A and

GNG12.

Secondly, IPA was also used to investigate the biological

functions and/or disease association of genes in the PFS signature

(31 categories with p,0.05 and genes $3 genes). These over-

represented categories included cell death & cell cycle; cancer;

DNA replication, recombination & repair; cell-to-cell signaling

and interaction; metabolic disease; drug & lipid metabolism;

inflammatory response; molecular transport, reproductive system

development & function; immune system trafficking, tumor

morphology; and cellular growth & proliferation and others

(Table S1).

In addition, to determine which Gene Ontology (GO) categories

are statistically overrepresented in the gene signature, we use the

Bingo software [13], which is available as a plugin in Cytoscape [14].

Eight GO categories (biological processes and molecular function)

were enriched among the 156 features. They were calmodulin-

dependent protein kinase activity and transferase activity, polysac-

charide metabolic process, protein amino acid ADP-ribosylation and

group transfer coenzyme metabolic process (corrected p-value,0.1;

Figure 5). We have not further investigated the details of these

functions potentially associated with tumor biology, but they

represent a guide to further analysis and, possibly, experiments.

B. Network Analysis of the 156-feature Gene Signature. In

order to investigate functional (sub)networks involving genes in the

PFS signature we applied Ingenuity Pathways Analysis [12] and the

network analysis algorithm Netbox [15].

Firstly, an IPA ‘‘Core Analysis’’ was used (graphical

representation) revealing four functional networks: cellular

growth and proliferation; hematological system development

Figure 3. Quality of outcome prediction for survival time (A, B) and discrete risk categories (C, D). (A) Prediction of time-to-event (PFS;
un-censored data); (B) prediction of time-to-event (OS; un-censored data); (C) statistically significant stratification into low-, intermediate- and high-risk
patients using the prediction method for TCGA test data based on c-score (Integrated PFS signature); and (D) stratification for the TCGA test data
based on t-score (Integrated PFS signature).
doi:10.1371/journal.pone.0024709.g003

Predicting Outcome in Serous Ovarian Tumors
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and function, humoral immune response (network-1); cell-to-

cell signaling and interaction, tissue development, cellular

movement (network-2); cell cycle, cell death and cancer

(network-3); and, cancer, gastrointestinal disease, genetic

disorder (network-4). Given the overlap between the networks

(TP53, FOXO3, NCF2, SIN3A, CCNB1), we merged the four

networks into a single network using the IPA ‘‘Merge

Networks’’ tool (Figure 6).

We next tried to identify the genes in this network that are most

discriminative between short and long-recurrence times. We

observed that BRCA2 (Breast Cancer 2 susceptibility protein;

mRNA) is expressed at higher levels in patients with shorter

recurrence time. Consistent with this observation, up-regulation of

BRCA2 (and BRCA1) has been observed in rapidly proliferating

and differentiating cells [16], and following exposure to cisplatin,

the DNA repair genes BRCA2 and FANCA have been observed

Figure 4. Canonical pathway analysis of 156 genes from the integrated PFS gene signature. IPA [12] identified 23 statistically significant
canonical pathways (p,0.1 and $3 genes).
doi:10.1371/journal.pone.0024709.g004

Figure 5. Overrepresented GO categories for genes in the integrated PFS signature. Six biological processes categories and two molecular
function categories were indentified by Bingo [13] containing (3,n,100) genes in the signature, a corrected p-value of ,0.1.
doi:10.1371/journal.pone.0024709.g005

Predicting Outcome in Serous Ovarian Tumors
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to be up-regulated [17]. Many genes in our signature are, directly

or in-directly, connected with TP53 (tumor protein p53). GPS2 (G

protein pathway suppressor 2) and BRCA2 have the largest

expression differences between patients with long and short

recurrence times. Interestingly, both of these genes are mutated

in SeOvCa, TP53 in 96.5% and BRCA2 in 9.2% of patients [1].

Secondly, Netbox (Figure 7) identified eight modules of

connected genes, ranging in size from three to 54 genes. Some

of the interactions identified by Netbox were common with those

identified by IPA (e.g., the module containing RALA, RRAS2,

RALBP1, ARHGEF2). To annotate the biological function of

these modules, we assessed over-representation of genes in each

module using IPA (Table S2). Module 1 was enriched in genes

involved in PI3K signaling in B lymphocytes, FccRIIB signaling in

B lymphocytes and p70S6K/mTOR signaling; module 2 was

enriched in genes involved in the protein ubiquitination pathway,

protein kinase A signaling, and DNA double-strand repair by

homologous recombination; and, module 3 was enriched among

others, for genes involved in phosphoslipase C signaling,

pancreatic adenocarcinoma signaling, and tight-junction signaling.

The genes below have been reported as implicated in cancer

and were identified by one or both of the pathway analysis tools.

PGRMC1 (Progesterone Receptor Membrane Component 1;

Xq24; mRNA) was down-regulated in patients with short

recurrence time. Interestingly, depleting PGRMC1 in ovarian

tumors makes these tumors more resistant to cisplatin treatment

(consistent with our observation) [18], and this gene is down-

regulated in breast cancer specimens compared to control tissues

[19]. CITED2 (Cbp/p300-interacting transactivator with

Glu/Asp-rich carboxy-terminal domain 2; 6q24.1; mRNA) up-

regulation is associated with shorter recurrence times. Knockdown

of CITED2 in cell lines results in increased sensitivity to cisplatin,

Figure 6. Network derived from the integrated PFS signature using IPA. The top four networks identified were merged using IPA analysis.
The features most discriminative between short and long-recurrence times are shown on larger scale. The nearest neighbor interactions of these
nodes are highlighted in different colors. Nodes are colored based on the mRNA expression profile of different genes (green: down-regulated in short
recurrence patients (PFS,6mo) compared to long recurrence (PFS.40mo), and red: up-regulated).
doi:10.1371/journal.pone.0024709.g006

Predicting Outcome in Serous Ovarian Tumors
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which makes it a candidate for targeted therapy for SeOvCa [20].

TFRC (Transferrin receptor; 3q29; mRNA) is up-regulated in

patients with shorter recurrence times, which is consistent with its

behavior in esophageal squamous cell carcinoma, where TFRC

up-regulation is associated with worse prognosis [21]. RALBP1

(ralA binding protein 1; 18p11.22; mRNA) acts as a transporter of

glutathione conjugates and chemotherapeutic drugs and serves as

a link between G-protein and tyrosine kinase signaling and drug

resistance [22]. In SeOvCa, RALA (ral-A; 7p14.1; mRNA) and

RALBP1 are down-regulated in patients with short recurrence

time compared to long-recurrence time. ALOX12 (arachidonate

12-lipoxygenase; 17p13.1; METH) acts as a methylation marker

(hypermethylation) in pancreatic cancer genome [23] and

hypermethylation of ALOX12 is predictive of overall survival

(poor prognosis) in patients with acute myeloid leukemia [24]. In

the TCGA SeOvCa data set, ALOX12 is hypermethylated in

patients with longer recurrence intervals. ARHGEF2 (rho/rac

guanine nucleotide exchange factor 2; 1q22; METH) is a member

of the Dbl family of Rho activators and it has Rho-specific GDP/

GTP exchange activity for RhoA [25]. Activated RhoA contrib-

utes to cancer progression by transducing various signals into

downstream signaling cascades, such as cytoskeleton reorganiza-

tion, cellular invasion, and cell proliferation [25]. Increased

ARHGEF2 expression contributes to the tumor progression

phenotype associated with p53 mutation [26]. ID4 (inhibitor of

DNA binding 4; 6p22.3; METH) belongs to the ID family of

transcription factors, and its methylation status acts as a prognostic

biomarker in some cancers [27]. In TCGA data, lower

methylation beta values and higher expression are associated with

shorter recurrence times. ID4 has been identified as a transcrip-

tional target of the protein complex mutant p53/E2F1/p300 in

breast cancer [28]. Some of these genes are candidates for targeted

experiments.

C. Potential Biomarkers and Therapeutic Targets for

Ovarian Cancer. Identifying biomarkers and therapeutic

targets for SeOvCa patients is a challenge given the complexity

and heterogeneity of genomic alterations in this cancer. In order to

suggest possible biomarkers and therapeutic targets, we ranked the

156 features in the PFS signature based on their individual power

(Table S3). Based on the probability distribution of each of

features, we stratified all SeOvCa patients into three categories:

low (bottom 15% values), intermediate, and high (top 15% values).

Out of the 12 most discriminant features in the integrated PFS

signature, ID4, CA2, and C1ORF114 are up-regulated in tumors

with short recurrence times, and RNF10, SLAMF7, HOXA4,

CD79A, RALA, ALOX12, PSRC1, CAMKK2, and CHIT1 are

down-regulated in tumors with short recurrence times (Figure 8).

In addition to ID4 and ALOX12, which are discussed above,

several of these genes are known to be implicated in cancer:

RNF10 (ring finger protein 10; 12q24.31) has been implicated

in cellular processes such as signal transduction, transcriptional

regulation, ubiquitination and apoptosis [29,30]. RNF10 expres-

Figure 7. Netbox modules identified using the integrated PFS signature. Different modules are spatially separated for visualization. The
genes present in our signature are shaped as octagons (mRNA features), diamonds (methylation features) and rectangles (copy number feature). The
linker nodes are represented as small circles. Nodes are colored based on the mRNA expression profile of different genes (green: down-regulated in
short recurrence patients (PFS,6mo) compared to long recurrence (PFS.40mo), and red: up-regulated).
doi:10.1371/journal.pone.0024709.g007
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sion (mRNA) is correlated with DNA copy-number, and in a

global analysis with all microRNAs, we found that RNF10

expression was most strongly anti-correlated with miR-92A

(cc =20.14). RNF10 is a predicted target of miR-92a, (Targetscan

pct score = 0.75). SLAMF7 (SLAM family member 7; 1q23.3)

down-regulation is associated with decreased phosphorylation of

ERK1/2, STAT3 and AKT, as well as altered phosphorylation of

multiple kinases, inducing signaling cascade in multiple myeloma

[31]. In TCGA data, SLAMF7 is down-regulated in patients with

faster recurrence and its expression is not clearly associated with

either CNA data or DNA methylation. TCGA data is suggestive of

possible targeting by miR-129-5p (cc =20.18; pct = 0.33).

HOXA4 (homeobox A4; 7p15.2) is highly expressed in invasive

ovarian carcinomas compared to benign or borderline (non-

invasive) carcinoma [32]. In acute myeloid leukemia, low

expression of HOXA4 is a favorable outcome predictor [33]. In

TCGA data HOXA4 is methylated, and down-regulation is

associated with samples that show faster tumor recurrence.

CAMKK2 (calcium/calmodulin dependent protein kinase kinase

2; 12q24.31) is down-regulated in tumors with short-recurrence

time in TCGA data. Activating CAMKK2 in cervical cancer

inhibits human cancer cell growth in both LKB1-expressing and

LKB1-deficient cervical cancer cells [34]. This suggests that

CAMKK2 activation could indicate improved prognosis of

ovarian cancer patients. We suggest that these genes are

reasonable candidates for biomarker studies in SeOvCa.

Conclusions

We have made substantial progress in outcome prediction by

using data integration, rather than just a single genomic data type,

and by analyzing as many as 500 cases, more than the ,150 or so

available to earlier studies [3,5]. In part, the advance was made

possible by the Cancer Genome Atlas (TCGA) project, which

profiled more than 500 primary surgical samples from serous

ovarian carcinoma patients for copy number, microRNA and

mRNA expression, and DNA methylation, and provided clinical

information about disease recurrence and survival. We used this

dataset to perform both discrete stratification analysis and

continuous clinical time predictions.

Figure 8. Features from the integrated PFS signature ranked based on their stratification performance. Top ranked features
(categorized based on their values from the respective data type as low [bottom 15%], intermediate and high [top 15%]) could potentially act as
biomarkers and therapeutic targets.
doi:10.1371/journal.pone.0024709.g008
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To avoid over-fitting and to facilitate interpretation, we reduced

50,000 molecular features to fewer than 200, which are most

associated with tumor recurrence and patient survival. The

integrated PFS signature provided better prediction than signa-

tures based on individual data types. The predictive performance

of the integrated PFS signature was independent of the method of

stratification into discrete risk categories.

Our results demonstrate that signatures based on multiple data

types can be more powerfully predictive than those based on a single

data type and this may be true for other tumor types as well. For

serous ovarian cancer, we provide a new prediction tool for patient-

specific time to recurrence and survival that can be used by physicians

to predict likely disease progression following surgery and molecular

profiling. In addition, the gene signatures identified and pathways

differentially affected in patients more resistant to standard therapy,

may prove useful for the discovery of therapeutic targets in the

context of efforts to improve therapy for high-grade SeOvCa patients.

In particular, our feature ranking method identified RNF10, ID4,

SLAMF7, HOXA4, ALOX12 and CAMKK2 (among others) as the

potentially most interesting biomarkers and therapeutic targets.

Materials and Methods

Traditionally, a univariate Cox proportional hazards regression

model is used to relate expression to outcome. In this method,

significant genes are selected based on arbitrary p-value cut-offs

and thresholding of the associated Wald z-statistic. A training

cohort is used to compute risk scores followed by strata creation

based on thresholding of these scores. The limitations of this

approach include not just the arbitrariness of the imposed

stratification, but also the arbitrarily chosen p-value cut-offs.

An alternative approach is to use penalized proportional hazards

(PH) regression, including the L1 (Lasso) and L2 penalized

estimation (Ridge regression). Including all genes in the predictive

model introduces noise and can lead to a poor predictive model.

The L1-based PH regression performs feature selection and

shrinkage simultaneously, and appears to outperform the univariate

Cox approach [35,36]. Here, we implemented an L1-regularized

Cox proportional hazards model to do feature selection using the

Coxmodel with an L1 penalty, as proposed by Park and Hastie [11].

Given the availability of clinical times, in addition to predicting

discrete patient risk stratification, we implemented an algorithm to

directly compute the continuous variables, the clinical times-to-event

(PFS and OS) based on an algorithm discussed in Heller and

Simonoff [37]. In an earlier study [38], an accelerated failure time

model was used to predict median survival times for patients with

progressive metastatic disease using clinicopathological factors.

The estimated concordance index for the validation data was

reported to be 0.67, with substantial variability in the actual

survival among patients with similar predicted median times. In

another study [39], a nomogram based on a Cox model was

constructed for finding patient-specific probabilities of metastasis-

free survival in patients with recurrent prostrate cancer following

surgery and/or radiation therapy resulting in prostate-specific

antigen level as a prognostic marker. A bootstrap concordance

index was computed to assess the performance of the prognostic

marker and was reported to be 0.69.

All data in TCGA including the data used in this study [1] have

the appropriate IRB consent. Details of the methods used in this

study are as follows:

Multivariate Cox Regression model
The CoxPath model [11] is a path following algorithm for the

L1-regularized Cox proportional hazards model. Here, the

coefficients (b) for the predictors (x9) are estimated by solving a

set of non-linear equations that satisfy the maximum likelihood

criterion

b̂b~argmax
b

L(y; b)f g

The partial likelihood function (L) with respect to the given data

{(xi, yi):i = 1, …., n} is:

{log L(y; b)f g~{

X

n

i~1

dib’xiz
X

n

i~1

dilog
X

j[Ri

exp(b’xj)

8

<

:

9

=

;

where Ri is the risk set at time yi and di is a binary variable for

censored data. Analogous to Lasso [40], which adds a complexity

penalty term to the squared error loss criterion, the CoxPath is

modified with regularization as:

b̂b(l)~argmin
b

{log L y; bð Þf gzl bk k1
� �

where l.0 is the regularization parameter.

A predictor-corrector algorithm is used to determine the entire

path of the coefficient estimates as l varies, i.e., find b(l) starting
from l= lmax to l=0; where lmax is the largest l that makes b(l)
non-zero. The algorithm computes a series of solution sets, each

time estimating the coefficients with a smaller l based on the

previous estimate. The solution paths are calculated that satisfy

b̂b l1ð Þ~argmin
b

{log L y; bð Þf gzl1 bk k1z
l2

2
bk k22

� �

where l1 e (0, ‘). l2 is a fixed, small, positive constant as referred

to in the original Park and Hastie reference [11] which removes

degeneracy and instability due to strong correlations between

covariates. When the correlations are not strong, the effect of the

quadratic penalty with a small l2 is negligible.

We employ the concordance probability estimate (CPE) for

parameter tuning in the CoxPath model. Two-fold cross-

validation, repeated 10 times, is performed to obtain concordance

probability estimates (CPE) at different values of the regularization

parameter. The optimal parameter is chosen that maximizes the

CPE in the cross-validation procedure.

The concordance probability estimate (CPE)
The predictive strength of the CoxPath algorithm was assessed

using the concordance probability estimate (CPE). Gönen and

Heller [41] derived an analytic expression for the concordance

probability in the Cox proportional hazards model calculated as:

kn(b̂b)~
2

n(n{1)

X

ivj

X W({b̂bTxji=h)

1zexp b̂bTxji

n oz
W({b̂bTxij=h)

1zexp b̂bTxji

n o

8

<

:

9

=

;

where xij represents the pairwise difference xi - xj; h is a scaling

parameter that is used to smooth the CPE and W is a local

distribution function. The concordance probability is used to

evaluate the discriminatory power and the predictive accuracy of

the Cox proportional hazards model. A concordance probability

of 1.0 represents a model that has perfect discrimination, and a

value of 0.5 indicates a random prediction. A strong concordance

signifies that the baseline factors in the Cox model are highly

Predicting Outcome in Serous Ovarian Tumors

PLoS ONE | www.plosone.org 10 November 2011 | Volume 6 | Issue 11 | e24709



informative in understanding the relative risk of disease-recurrence

between any two patients at time t.

We used two methods for evaluating the predictive performance

of the derived prognostic signatures. One approach predicts the

patient-risk stratification utilizing the features estimated by Lasso-

Cox approach (along with the calculation of hazard ratios and p-

values). A second approach predicts the clinical time-to-event using

an algorithm discussed by Heller and Simonoff [37].

The Prognostic Scores
c-score. A prognostic index based on the linear predictor

(cox-score) for each patient is calculated as:

Score~
X

N

i~1

bi|xi

where xi is the value of each gene (or microRNA) in the signature and

bi is the estimated regression coefficient of that gene obtained from the

CoxPath model. Patients were stratified into three groups (low-,

intermediate- and high-risk groups) using tertile stratification based on the

training data. The c-scores and the cut-offs derived from the training

cohort were applied directly to test cohorts and were not re-estimated.
t-score. The prognostic index based on t-score was calculated

as the difference in the average of the poor prognosis genes with

the average of the good prognosis genes for each tumor profile

based on the genes obtained from the CoxPath model [11].

Time to Recurrence Prediction
Fitting a regularized multivariate regression model using Lasso-

Cox allows us to compute the predicted median time-to-event. For

this purpose, we utilized the median failure time model developed

by Heller and coworkers [37]. The median time-to-event for a given

X is where

ŜS0(t)~ ŜS(t,X )~:5
� �exp({x0b̂b)

For a given covariate profile, the predicted median time refers to the

time point that one would predict 50% of the cohort to survive beyond.

Data Integration
Genomic data integration, the process of statistically combining

diverse sources of information from multiple data types to make

large-scale predictions, is becoming increasingly prevalent. In

performing integration, it is advisable to assess the degree to which

predictive power increases with the addition of more features and

to investigate the biological interpretation of the resulting features.

Various integration methods are available that include kernel

space integration [42] for machine learning analysis, sparse

canonical correlation analysis [43], and iCluster [44]. We are

interested in a method that works with as few features as possible,

is amenable to biological interpretation of the resulting discrim-

inant features and optimizes association with outcome measures.

There are various mechanisms that regulate gene expression.

These include DNA methylation, histone modification, DNA

copy-number gain/loss, and targeting by transcription factors and

microRNAs. Using features derived from integration of various

data types may lead to richer biologically relevant information

than the analysis of a single data type.

In summary, to overcome possible limitations of other

integration methods, we have created an integration method that

reduces the dimensionality of the feature space with the intent that

the resulting features are biologically significant. The vector space

integration used here (Figure 2 and Supplementary File S5) is

similar to integration approaches in support vector machine

analysis [45]. We began by computing Spearman rank correlations

among different data types: mRNA and copy-number; mRNA and

DNA methylation; and mRNA and microRNA, respectively, as

these data types are not completely independent of each other.

Next we used three separate cut-offs respectively for each

potentially correlated data pair to filter the features for input into

Cox Lasso cross-validation analysis. Our aim was to identify

potential targets for therapy in the context of multiple genomic

characteristics and to provide more accurate prognostic and

predictive assessment than is possible without data integration.
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