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Abstract
Machine learning pipelines have become the defacto
paradigm for productionizing machine learning applications
as they clearly abstract the processing steps involved in trans-
forming raw data into engineered features that are then used
to train models. In this paper, we use a bottom-up method for
capturing provenance information regarding the processing
steps and artifacts produced in ML pipelines. Our approach
is based on replacing traditional intrusive hooks in applica-
tion code (to capture ML pipeline events) with standardized
change-data-capture support in the systems involved in ML
pipelines: the distributed file system, feature store, resource
manager, and applications themselves. In particular, we lever-
age data versioning and time-travel capabilities in our feature
store to show how provenance can enable model reproducibil-
ity and debugging.

1 From Data Parallel to Stateful ML Pipelines
Bulk synchronous parallel processing frameworks, such as
Apache Spark [4], are used to build data processing pipelines
that use idempotence to enable transparently handling of fail-
ures by re-executing failed tasks. As data pipelines are typi-
cally stateless, they need lineage support to identify those
stages that need to be recomputed when a failure occurs.
Caching temporary results at stages means recovery can
be optimized to only re-run pipelines from the most recent
cached stage. In contrast, database technology uses stateful
protocols (like 2-phase commit and agreement protocols like
Paxos [10]) to provide ACID properties to build reliable data
processing systems. Recently, new data parallel processing
frameworks have been extended with the ability to make
atomic updates to tabular data stored in columnar file formats
(like Parquet [3]) while providing isolation guarantees for
concurrent clients. Examples of such frameworks are Delta
Lake [8], Apache Hudi [1], and Apache Iceberg [2]. These
ACID data lake platforms are important for ML pipelines as
they provide the ability to query the value of rows at specific
points in time in the past (time-travel queries).

The Hopsworks Feature Store is built on the Hudi frame-
work, where data files are stored in HopsFS [11] as parquet
files and available as external tables in a modified version
of Apache Hive [6] that shares the same metadata layer as
HopsFS. HopsFS and Hive have a unified metadata layer,
where Hive tables and feature store metadata are extended
metadata for HopsFS directories. Foreign keys and transac-
tions in our metadata layer ensure the consistency of extended
metadata through Change-Data-Capture(CDC) events.

Just like data pipelines, ML pipelines should be able to
handle partial failures, but they should also be able to repro-
ducibly train a model even if there are updates to the data
lake. The Hopsworks feature store with Hudi enables this, by
storing both the features used to train a model and the Hudi
commits (updates) for the feature data, see figure 1.

In contrast to data pipelines, ML pipelines are stateful. This
state is maintained in the metadata store through a series of
CDC events as can be seen in figure 1. For example, after a
model has been trained and validated, we need state (from the
metadata store) to check if the new model has better perfor-
mance than an existing model running in production. Other
systems like TFX [5] and MLFlow [14] also provide a meta-
data store to enable ML pipelines to make stateful decisions.
However, they do so in an obtrusive way - they make de-
velopers re-write the code at each of the stages with their
specific component models. In Hopsworks [9], however, we
provide an unobtrusive metadata model based on implicit
provenance [12], where change capture APIs in the platform
enable metadata about artifacts and executions to be implicitly
saved in a metadata store with minimal changes needed to
user code that makes up the ML pipeline stages.

2 Versioning Code, Data, and Infrastructure
The defacto approach for versioning code is git, and many so-
lutions are trying to apply the same process to the versioning
of data. Tools, such as DVC [7] and Pachyderm [13] version
data with git-like semantics and track immutable files, instead
of changes to files. An alternative to git-like versioning that
we chose is to use an ACID Data-Lake with time-travel query



Figure 1: Hopsworks ML Pipelines with Implicit Metadata.
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Figure 2: Implicit vs Explicit
Provenance.

capabilities. Recent platforms such as Delta-Lake, Apache
Hudi, Apache Iceberg extend data lakes with ACID guar-
antees using Apache Spark to perform updates and queries.
These platforms store version and temporal information about
updates to tables in a commit log (containing the row-level
changes to tables). As such, you can issue time-travel queries
such as "what was the value of this feature on this date-time",
or "select this feature data for the time range 2017-2018".
These type of queries are traditionally not possible in data
warehouses that typically only store the latest values for rows
in tables. Efficient time travel queries are enabled by temporal
indexes (bloom filters in Hudi) over the parquet files that store
the commits (updates to tables). Aside from code and data
versioning, we also consider the versioning of infrastructure.
With much of the ML work being done in Python, it is crucial
to know the Python libraries and their versions when you ran
a pipeline to facilitate importing/exporting and re-executing
the pipeline, reproducibly.

3 Provenance in Hopsworks
TFX and MLFLow track provenance, by asking the user to
explicitly mark the operation on a ML artifact that should be
saved in their separate metadata store. We call this approach
explicit, as the user has to explicitly say what would be tracked
though calls to dedicated APIs. In Hopsworks, we instrument
our distributed file systems - HopsFS, our resource manager
- HopsYarn and our feature store to implicitly track the file
operations, including the tagging of files with additional in-
formation. Our metadata store is also tightly coupled with
the file system and thus we can capture metadata store oper-
ations in the same style. As we can see in figure 2, implicit
provenance [12] relies on bottom-up propagation of Change-
Data-Capture(CDC) events, while explicit provenance relies
on user invocation of specific API and has a up-down propaga-
tion. With implicit provenance we can track which application
used or created a specific file and who is the owner of the
application. This together with file naming conventions and
tagging of files allows us to automatically create relations
between files on disk representing machine learning artifacts.

4 Reproducible ML Pipelines
With versioned code, data and environments, as well as prove-
nance information to mark the usages of the particular version,
it is easy to reproduce executions of the same pipeline. With
the help of provenance information we augment this repro-
ducibility scenario with additional functionality such as deter-
mining whether your current setup will provide similar results
to the original and warn the user in case the input datasets, the
environment or the code differ to the original. We also pro-
vide an environment that encourages exploration and learning
through the ability to search through full text elasticsearch
queries for most used datasets, most recent pipeline using a
specific dataset or the persons who ran the latest version of a
particular pipeline successfully. Provenance can also be used
to warn a user not to expect a similar result to previous runs
due to changes in the code, data or environment.

5 Provenance for Debugging ML Pipelines
Implicit provenance provides us with links between ML ar-
tifacts used and created in each of the stages of the pipeline.
We know at what time they were used, by whom and in what
application. This allows us to determine the footprint of each
stage of the pipeline, as the files that were read, modified,
created or changed in any way during the execution of the
pipeline stages. From the footprint of each of the pipeline
stages we can also determine the impact of previous stages.
We defined the impact of a pipeline stage as the union of
footprints for pipeline stages that use the output of the current
stage as input. Since artifacts can be shared across pipelines,
and since pipelines can be partially re-executed and forked
into new pipelines, the impact of a pipeline can be quite large.

6 Summary
In this paper, we discussed how the implicit model for prove-
nance can be used next to a feature store with versioned data
to build reproducible and more easily debugged ML pipelines.
Our future work will provide development tools and visual-
ization support that can help developers more easily navigate
and re-run pipelines based on the architecture we have built.
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