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Acceptance sampling plans for generalized exponential distribution when the lifetime experiment is trun-
cated at a pre-determined time are provided in this article. The tables are provided for the minimum sample
size required to ensure a certain median life of the experimental unit when the shape parameter is two. The
operating characteristic function values of the sampling plans and the associated producer’s risks are also
presented. It is shown that the tables presented here can be used if instead of median life, other percentile
life is chosen as the criterion or if the shape parameter is not two. Examples are provided for illustrative
purposes.

Keywords: acceptance sampling plan; operating characteristic function value; median and percentile
points; consumer and producer’s risks

1. Introduction

Acceptance sampling plan is an essential tool in the Statistical Quality Control. In most of the
statistical quality control experiment, it is not possible to perform hundred percent inspection, due
to various reasons. The acceptance sampling plan was first applied in the US Military for testing
the bullets during World War II. For example, if every bullet was tested in advance, no bullets
were available for shipment, and on the other hand if no bullets were tested, then disaster might
occur in the battle field at the crucial time. Acceptance sampling plan is a ‘middle path’ between
hundred percent inspection and no inspection at all.

In the acceptance sampling plan, a consumer decides to accept or reject the lot based on a
random sample collected from the lot. The problem can be formulated as follows. Suppose, n

units are placed in a life test and the experiment is stopped at a predetermined time T . The number
of failures till the time point T is observed, and suppose it is m. The lot is accepted if m is less
than or equal to the acceptance number, say c, otherwise it is rejected. Therefore, any acceptance
sampling plan provides n, the number of units on test, and the acceptance number c. For a given
acceptance sampling plan, the consumer’s and producer’s risk are the probabilities that a bad lot
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is accepted and a good lot is rejected, respectively. Usually, with every acceptance sampling plan,
the associated consumer’s and producer’s risks are also presented.

The standard approach to handle this problem is to assume a parametric model for the lifetime
distribution and then find the minimum sample size needed to ensure a certain mean/median
life of the lifetime distribution of the items in the lot, when the experiment is stopped at a
pre-determined time, say T . Therefore, in any time truncated acceptance sampling plan, other
than n, c, T , there will be another component, say θm, where θm is the specified mean/median
life of the distribution and it acts as a quality parameter for the lifetime distribution under
consideration.

Extensive work has been done on the acceptance sampling plan since its inception. Dif-
ferent parametric forms have been assumed and extensive tables are available for different
parametric values and for different sample sizes. Acceptance sampling plans based on trun-
cated life tests for exponential distribution was first discussed by Epstein [5], see also Sobel and
Tischendrof [15]. The results were extended for the Weibull distribution by Goode and Kao [6].
Gupta and Groll [8] and Gupta [7] provided extensive tables on acceptance sampling plans for
gamma, normal and log-normal distributions. Kantam and Rosaiah [11], Kantam et al. [12],
Rosaiah and Kantam [14], and Balakrishnan et al. [4] provide the time truncated acceptance
plans for half-logistics, log-logistics, Rayleigh and generalized Birnbaum–Saunders distributions,
respectively.

Recently, it is observed that the generalized exponential distribution has been used quite effec-
tively to analyze lifetime data. In many cases it is observed that it provides a better fit than the
Weibull, gamma, log-normal or generalized Rayleigh distributions. The main aim of this study
is to develop the time truncated acceptance sampling plans for the generalized exponential dis-
tribution and compare the results with the existing ones. It is known that for the generalized
exponential distribution mean is not in a compact form, but the median is in a compact form.
Moreover, it is suggested by Gupta [7] that for a skewed distribution the median represents a
better quality parameter than the mean. On the other hand, for a symmetric distribution, mean is
preferable to use as a quality parameter. Since generalized exponential distribution is a skewed
distribution we prefer to use the median as the quality parameter, and it will be denoted by θm.
In this manuscript, on the basis of the assumptions that the lifetime follows generalized expo-
nential distribution, we present a methodology to find the minimum sample size required to
ensure a specified median life of the items under study. It is further assumed that the life testing
experiment will be stopped at a pre-determined time T , if more than c failures does not occur
before that stipulated time. Otherwise the experiment is stopped as soon as (c + 1)th failure
occurs.

The lot is accepted if the specified median is greater than a specified quantity (to ensure a certain
quality of the product) with a pre-fixed probability 1 − P ∗, specified by the consumer and it is
known as the consumer’s risk. For a given acceptance sampling plan, a good lot might be rejected
with a non-zero probability and that is known as the producer’s risk. For different acceptance
plans, we present the associated producer’s risk also, based on the operating characteristic function
values. In practice, instead of median life the consumer may prefer to characterize the quality
based on some other percentile point (may be 75th percentile point). We discuss how to use
the present tables (based on medians) for other percentile points also. Two examples have been
discussed for illustrative purposes.

Rest of the paper is organized as follows. In Section 2, we give a brief description of the
generalized exponential (GE) distribution. Acceptance sampling plans based on the median are
provided in Section 3. How these tables can be used for other percentile points are also discussed
in Section 4. An approximation of the minimum sample size is provided in Section 5. Descriptions
of the tables and illustrative examples are provided in Section 6 and finally we conclude the paper
in Section 7.
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2. Generalized exponential distribution

The two-parameter generalized exponential distribution has the following probability density
function (PDF);

f (x; α, λ) = α

λ
e−x/λ(1 − e−x/λ)α−1; x > 0. (1)

Here α > 0 and λ > 0 are the shape and scale parameters, respectively. From now on a generalized
exponential random variable with the PDF (1) will be denoted by GE(α, λ). As the name suggests,
this is an extension of the exponential distribution, similarly as theWeibull and gamma distribution,
but in different ways.

The two-parameter generalized exponential distribution was originally introduced by Gupta and
Kundu [9] as a possible alternative to the well known Weibull and Gamma distributions. Since
then extensive work has been done on this distribution. It is further observed that the generalized
exponential distribution can be used quite effectively in many circumstances, in place of log-
normal or generalized Rayleigh distribution also. Statistical inferences, order statistics, closeness
properties with other distributions have been discussed by several authors. The readers are referred
to the recent review article by Gupta and Kundu [10] for a current account on the generalized
exponential distribution.

It is observed that the shape of the PDF and hazard functions (HF) of the generalized exponential
distribution depend on the shape parameter α. The PDF is a decreasing function or a unimodal
function if 0 < α ≤ 1 or α > 1, respectively. The HF of the generalized exponential distribution is
a decreasing function if α < 1, and for α > 1 it is an increasing function. The PDFs and HFs of the
generalized exponential distribution are very similar to those of Weibull and gamma distributions.
It is also observed in different studies that generalized exponential distribution might fit better
than Weibull or gamma distribution in some cases. In different studies it has been shown that for
certain ranges of the parameter values, it is extremely difficult to distinguish between GE and
Weibull, gamma, log-normal, generalized Rayleigh distributions.

The cumulative distribution function (CDF) of GE(α, λ) is given by

FGE(x; α, λ) = (1 − e−x/λ)α. (2)

If X ∼ GE(α, λ),then the mean and variance of X can be expressed as

E(X) = λ[ψ(α + 1) − ψ(1)], V (X) = λ2[ψ ′(1) − ψ ′(α + 1)]. (3)

Here ψ(·) and ψ ′(·) are the digamma and polygamma functions, respectively, i.e.

ψ(u) = d

du
�(u), ψ ′(u) = d

du
ψ(u) where �(u) =

∫ ∞

0
xu−1e−xdx.

It is clear that both the mean and variance are increasing functions of λ. The pth percentile point
of GE(α, λ), say θp = F−1

GE (p; α, λ) is given by

θp = −λ ln(1 − p1/α). (4)

Therefore, the median of GE(α, λ) becomes

θm = −λ ln

(
1 −

(
1

2

)1/α
)

. (5)

From now on unless otherwise mentioned, we treat θm as the quality parameter. From Equation (5)
it is clear that for fixed α = α0, θm ≥ θ0

m ⇔ λ ≥ λ0
m, where

λ0
m = θ0

m

− ln(1 − (1/2)1/α0)
· (6)
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Note that λ0
m also depends on α0; for brevity we do not make it explicit. Now we develop the

acceptance sampling plans for the generalized exponential distribution to ensure that the median
lifetime of the items under study exceeds a pre-determined quality provided by the consumer say
θ0
m, equivalently λ exceeds λ0

m, with a minimum probability P ∗.

3. Acceptance sampling plans

In this section, we provide the acceptance sampling plans under the assumptions that lifetime
distribution follows a two-parameter GE(α, λ). It is further assumed that the shape parameter α

is known. In acceptance sampling plans, usually the test terminates at a pre-specified time T and
the number of failures (not the actual failure times) during this time point are noted. On the basis
of the number of failed items, a confidence limit (lower) on the median (in this case) is formed.
Alternatively, on the basis of the number of failures, it is then desired to establish a specified
median life with a given probability of at least P ∗, specified by the consumer. In this proposed
acceptance sampling plans, the decision to accept the specified median takes place, if and only if
the number of failures m at the end of the time point T does not exceed c, the acceptance number.
Naturally, if more than c failures already occurs before T , there is no point in continuing the test.
In this case as soon as (c + 1)th failure takes place before time point T , the test terminates with
the decision not to accept the lot.

Under these circumstances, one wants to find out the smallest sample size necessary to achieve
these objectives. Therefore, as mentioned earlier an acceptance sampling plan consists of (a) the
number of units n to be used for testing purposes, (b) the acceptance number c, (c) the ratio T/λ0

m,
where λ0

m is same as defined in Equation (6), corresponds to θ0
m, the specified median life of the

given population GE(α, λ) and T is the maximum testing time. The shape parameter α0 and the
prescribed (bare) median life are provided before hand. The choice of c, T and n will be made
in general from the producer’s risk, which is the probability of rejecting a good lot, i.e., a lot for
which the true median life is greater than or equal to the specified median life. On the other hand
the consumer’s risk is fixed in this formulation and cannot exceed 1 − P ∗. Therefore, it can be
seen that P ∗ is the confidence level in the sense that the chance of rejecting a lot having median
θ ≤ θ0

m is at least P ∗.
Finally it should be pointed out clearly that whenever we are talking about a lot, it means

a lot of very large size, so that binomial distribution can be used. Moreover, the acceptance
and rejection of the lot are equivalent to the acceptance or rejection of the hypothesis on the
quality parameter, namely θ ≥ θ0

m. The problem can be described mathematically as follows:
given a number 0 < P ∗ < 1, an experimental (maximum) time point T , the median value θ0

m and
an acceptance number c, we want to find the smallest positive integer n, so that if the observed
number of failures m does not exceed c, it is ensured that θm ≥ θ0

m with a minimum probability P ∗.
In this case for given c, P ∗, T , α0 and θ0

m, we need to find n, the smallest positive integer, which
satisfies the inequality

c∑
i=0

(
n

i

)
pi(1 − p)n−i ≤ 1 − P ∗, (7)

where

p = FGE(T ; α, λ) = (1 − e−T/λm)α. (8)

It is clear that p depends only on the ratio T/λ0
m. It is a monotonically increasing function of

T/λ0
m and it is a decreasing function of λ0

m. Because of the monotonicity, it may be observed
that in Equation (7) we can establish with probability P ∗ that FGE(T /λ) ≤ FGE(T /λ0

m), which
implies λ ≥ λ0

m. Therefore, if n is the smallest integer which satisfies Equation (7), then for the
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same n, replacing p with FGE(T ; α0, λ), Equation (7) will satisfy for all λ ≥ λ0
m. Note that p as

defined in Equation (8) depends only on the ratio T/λ0
m for fixed α = α0.

In Table 1, we present the minimum values of n, satisfying Equation (7) for P ∗ = 0.75, 0.90,
0.95, 0.99 and for T/λ0

m = 0.628, 0.942, 1.257, 1.571, 2.356, 3.141, 3.927, 4.712, keeping α0

fixed. We mainly choose these P ∗ and T/λm values so that we can compare our results with those
obtained by Gupta and Groll [8], Gupta [7], Kantam et al. [12], Baklizi and El Masri [3] and
Balakrishnan et al. [4].

Table 1. Minimum sample size necessary to assure that the median life exceeds a given value θ0
m, with

probability P ∗ and the corresponding acceptance number c when the shape parameter α0 = 2.

T /λ0
m

P ∗ c ↓ 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.75 0 5 3 2 2 1 1 1 1
1 9 5 4 3 2 2 2 2
2 13 8 6 5 4 3 3 3
3 17 10 8 6 5 4 4 4
4 21 13 9 8 6 5 5 5
5 25 15 11 9 7 6 6 6
6 29 17 13 11 8 8 7 7
7 33 20 15 12 10 9 8 8
8 36 22 16 14 11 10 9 9
9 40 24 18 15 12 11 10 10

10 44 27 20 16 13 12 11 11

0.90 0 7 3 2 2 2 1 1 1
1 12 7 5 4 3 2 2 2
2 17 10 7 6 4 4 3 3
3 22 13 9 7 5 5 4 4
4 26 15 11 9 7 6 5 5
5 30 18 13 11 8 7 6 6
6 35 20 15 12 9 8 8 7
7 39 23 17 14 10 9 9 8
8 43 25 19 15 12 10 10 9
9 47 28 20 17 13 11 11 10

10 51 30 22 18 14 12 12 11

0.95 0 9 5 4 3 2 1 1 1
1 15 9 6 5 4 3 3 2
2 20 12 8 6 5 4 3 3
3 25 14 10 8 6 5 5 4
4 29 17 12 10 7 6 6 5
5 34 20 14 11 8 7 7 6
6 38 22 16 13 10 8 8 7
7 43 25 18 15 11 10 9 8
8 47 28 20 16 12 11 10 10
9 51 30 22 18 13 12 11 11

10 55 33 24 19 15 13 12 12

0.99 0 14 8 5 4 3 2 2 1
1 21 12 8 6 4 3 3 3
2 26 15 10 8 6 4 4 4
3 32 18 13 10 7 6 5 5
4 37 21 15 12 8 7 6 6
5 42 24 17 13 10 8 7 7
6 46 27 19 15 11 9 8 8
7 51 30 21 17 12 10 9 9
8 56 32 23 18 13 11 11 10
9 60 35 25 20 15 13 12 11

10 65 38 27 22 16 14 13 12
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3.1 Operating characteristic functions of the sampling plans (n, c, T/λ0
m)

The operating characteristic (OC) function of the sampling plan (n, c, T /λ0
m) provides the

probability of accepting the lot. For the above acceptance sampling plan this probability is
given by

OC(p) = P {accepting a lot} =
c∑

i=0

(
n

i

)
pi(1 − p)n−i = 1 − Bp(c + 1, n − c), (9)

here Bp(c + 1, n − c) is the incomplete beta function and here p is as defined in Equation (8).
Bp(c + 1, n − c) is an increasing function of p, and therefore, OC(p) is a decreasing function
of p. Moreover, for fixed T , p is a decreasing function of λ ≥ λ0

m. On the basis of Equation (9),
for fixed α = α0, and c, the operating characteristic function values as a function of λ/λ0

m

are presented in Table 2, for different values of P ∗ and for the given acceptance sampling
plans.

Table 2. OC values for the time truncated acceptance sampling plan (n, c, T /λ0
m) for a given P ∗, when c = 2

and α0 = 2.

α/α0

P ∗ n T/λm 2 4 6 8 10 12

0.75 13 0.628 0.8590 0.9934 0.9992 0.9998 1 1
8 0.942 0.8124 0.9890 0.9986 0.9997 0.9999 1
6 1.257 0.7640 0.9830 0.9976 0.9995 0.9998 0.9999
5 1.571 0.7115 0.9751 0.9962 0.9991 0.9997 0.9999
4 2.356 0.5512 0.9403 0.9888 0.9971 0.9990 0.9996
3 3.141 0.6103 0.9439 0.9886 0.9969 0.9989 0.9996
3 3.972 0.4311 0.8819 0.9716 0.9914 0.9969 0.9987
3 4.712 0.2897 0.8002 0.9439 0.9814 0.9928 0.9969

0.90 17 0.628 0.7507 0.9857 0.9982 0.9996 0.9999 1
10 0.942 0.6992 0.9785 0.9970 0.9994 0.9998 0.9999

7 1.257 0.6714 0.9726 0.9959 0.9991 0.9997 0.9999
6 1.571 0.5796 0.9556 0.9927 0.9983 0.9995 0.9998
4 2.356 0.5512 0.9403 0.9888 0.9971 0.9990 0.9996
4 3.141 0.2952 0.8400 0.9622 0.9888 0.9960 0.9984
3 3.972 0.4311 0.8819 0.9716 0.9914 0.9969 0.9987
3 4.712 0.2897 0.8002 0.9439 0.9814 0.9928 0.9969

0.95 20 0.628 0.6634 0.9776 0.9971 0.9994 0.9998 0.9999
12 0.942 0.5837 0.9641 0.9948 0.9988 0.9997 0.9999

8 1.257 0.5792 0.9594 0.9937 0.9985 0.9996 0.9998
6 1.571 0.5697 0.9556 0.9927 0.9983 0.9995 0.9998
5 2.356 0.3443 0.8800 0.9751 0.9932 0.9977 0.9991
4 3.141 0.2952 0.8400 0.9622 0.9888 0.9960 0.9984
3 3.972 0.4311 0.8819 0.9716 0.9914 0.9969 0.9987
3 4.712 0.2897 0.8002 0.9439 0.9814 0.9928 0.9969

0.99 26 0.628 0.4943 0.9554 0.9938 0.9986 0.9996 0.9999
15 0.942 0.4252 0.9355 0.9900 0.9977 0.9993 0.9997
10 1.257 0.4120 0.9254 0.9876 0.9970 0.9991 0.9997

8 1.571 0.3520 0.9007 0.9819 0.9954 0.9985 0.9994
6 2.356 0.2011 0.8061 0.9556 0.9874 0.9957 0.9983
4 3.141 0.2952 0.8400 0.9622 0.9888 0.9960 0.9984
4 3.972 0.1386 0.7014 0.9124 0.9709 0.9888 0.9952
4 4.712 0.0601 0.5512 0.8400 0.9403 0.9754 0.9888
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3.2 Producer’s risk

The producer’s risk is the probability of rejection of the lot, when θm ≥ θ0
m, or equivalently λ ≥ λ0

m.
It can be computed as follows;

PR(p) = P {rejecting a lot} = 1 − P {accepting the lot|λ > λ0
m}

=
n∑

i=c+1

(
n

i

)
pi(1 − p)n−i = Bp(c + 1, n − c).

Table 3. Minimum ratio of true median life to specified median life for the acceptance of a lot with producer’s
risk of 0.05, when α0 = 2.

T /λ0
m

P ∗ c ↓ 0.628 0.942 1.257 1.571 2.356 3.141 3.927 4.712

0.75 0 7.30 8.30 9.00 11.20 11.50 15.30 19.10 23.00
1 3.41 3.59 4.12 4.21 4.52 6.03 7.55 9.04
2 2.60 2.86 3.11 3.40 4.20 4.14 5.20 6.20
3 2.25 2.37 2.67 2.63 3.30 3.32 4.15 5.00
4 2.05 2.22 2.22 2.50 2.79 2.86 3.57 4.30
5 1.92 2.02 2.10 2.20 2.46 2.56 3.20 3.84
6 1.82 1.88 2.02 2.16 2.23 2.97 2.93 3.52
7 1.75 1.85 1.95 1.97 2.40 2.74 2.73 3.28
8 1.67 1.76 1.80 1.97 2.23 2.56 2.58 3.10
9 1.63 1.69 1.77 1.84 2.09 2.42 2.45 2.94

10 1.60 1.68 1.74 1.731 1.98 2.30 2.34 2.81

0.90 0 8.70 8.30 9.00 11.20 16.70 15.03 19.10 23.00
1 4.02 4.41 4.80 5.15 6.31 6.03 7.53 9.04
2 3.05 3.31 3.50 3.90 4.20 5.60 5.17 6.20
3 2.63 2.83 2.92 3.00 3.30 4.40 4.16 5.00
4 2.34 2.45 2.61 2.78 3.30 3.71 3.57 4.30
5 2.15 2.30 2.41 2.63 2.90 3.28 3.20 3.84
6 2.06 2.12 2.27 2.34 2.61 2.97 3.71 3.52
7 1.96 2.05 2.17 2.29 2.39 2.74 3.43 3.30
8 1.88 1.94 2.09 2.11 2.49 2.56 3.21 3.10
9 1.82 1.90 1.94 2.09 2.34 2.42 3.03 2.94

10 1.76 1.83 1.90 1.97 2.21 2.30 2.88 2.81

0.95 0 9.84 10.90 13.00 14.00 16.80 15.30 19.01 23.01
1 4.56 5.11 5.35 6.03 7.73 8.41 10.16 9.04
2 3.36 3.71 3.81 3.89 5.10 5.59 5.20 6.20
3 2.84 2.97 3.15 3.34 3.94 4.40 5.50 4.98
4 2.50 2.67 2.79 3.03 3.30 3.71 4.64 4.30
5 2.33 2.48 2.56 2.63 2.90 3.28 4.10 3.84
6 2.17 2.27 2.39 2.52 2.94 2.97 3.71 3.52
7 2.08 2.18 2.27 2.44 2.69 3.19 3.43 3.28
8 1.99 2.11 2.18 2.24 2.49 2.97 3.21 3.85
9 1.91 2.00 2.10 2.21 2.34 2.79 3.03 3.63

10 1.85 1.96 2.04 2.07 2.41 2.64 2.88 3.45

0.99 0 12.40 14.40 14.16 16.10 21.05 22.31 28.44 23.50
1 5.49 6.03 6.40 6.70 7.73 8.41 10.61 12.71
2 3.90 4.25 4.41 4.77 5.83 5.60 7.14 8.40
3 3.30 3.50 3.78 3.94 4.50 5.25 5.50 6.60
4 2.90 3.07 3.27 3.50 3.75 4.40 4.64 5.57
5 2.65 2.80 2.89 3.01 3.62 3.86 4.10 4.91
6 2.44 2.61 2.72 2.84 3.24 3.47 3.71 4.45
7 2.32 2.47 2.56 2.71 2.95 3.19 3.43 4.11
8 2.22 2.31 2.43 2.49 2.73 2.97 3.71 3.84
9 2.12 2.23 2.33 2.42 2.76 3.11 3.49 3.63

10 2.06 2.17 2.24 2.37 2.60 2.94 3.30 3.45
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For the given sampling plan, and for a given value of the producer’s risk, say γ , one may be
interested in knowing the minimum value of λ/λ0

m, that will ensure the producer’s risk to be at
most γ . The λ/λ0

m is the smallest quantity for which p = (1 − e−T λ)α0 = (1 − e−T/λ0
m×λ0

m/λ)α0

satisfies the inequality

PR(p) =
n∑

i=c+1

(
n

i

)
pi(1 − p)n−i ≤ γ. (10)

For a given acceptance sampling plan (n, c, T /λ0
m), and for a given P ∗, the minimum value of

λ/λ0
m, satisfying Equation (10) are computed and presented in Table 3.

4. Extensions and approximations

4.1 Sampling plans for other percentile points

So far we have discussed the acceptance sampling plans for a given median life. Now in this section
we want to describe how these tables can be used for other percentile points also. Suppose, it is
desired to obtain the acceptance sampling plans for the given pth percentile point of GE(α, λ)

given by

θp = −λ ln(1 − p1/α). (11)

In this case, we are treating θp as the quality parameter and it is desired that given α = α0, we
want an acceptance sampling plans such that θp ≥ θ0

p, equivalently λp ≥ λ0
p, where

λp = θp

− ln(1 − p1/α0)
and λ0

p = θ0
p

− ln(1 − p1/α0)
.· (12)

Let us denote the time truncation parameter as T̃ which may be different than T . Therefore, here
for given c, P ∗, T̃ , α0, and θ0

p, we want to find n, the smallest positive integer n, which satisfies

c∑
i=0

(
n

i

)
pi(1 − p)n−i ≤ 1 − P ∗, (13)

where

p = (1 − e−T̃ /λ0
p )α0 . (14)

Therefore, Table 1 (based on median) can be used for other percentiles also if T̃ /λ0
p = T/λ0

m.

4.2 Sampling plans for other shape parameters

In Table 1 we have presented the sampling plans when α0 = 2. But the natural question is how to
use this table for other shape parameters also. Let α0 denote the tabulated value and α denote the
true value. In this case also let us denote by T̃ , the time truncation parameter associated with the
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new α value, which may be different than T . In this subsection only let us denote

λm = − θm

ln(1 − 1/2)1/α
, (15)

and λ0
m is same as defined in Equation (6). Therefore, when the shape parameter is α,

P {accepting the lot} =
c∑

i=0

(
n

i

)
pi(1 − p)n−i , (16)

here p = (1 − e−T̃ λm)α . Now equating

p = (1 − e−T̃ /λm)α = (1 − e−T/λ0
m)α0 , (17)

we obtain
T̃

λm

= − ln [1 − (1 − e−T/λ0
m)α0/α]. (18)

Therefore, the same table can be used for other α values also, using T̃ /λm as given in Equation (18),
instead of T/λ0

m.

4.3 Approximations

As it has been mentioned earlier that Table 1 has been obtained using a trial and error method
on n, and using the monotonicity property of n with respect to p. In all these calculations, it has
been assumed that the lot is very large and p is not very small, so that the binomial approximation
can be used. If p is very small and n is large, then binomial distribution is approximated by the
Poisson distribution with mean β = np. Therefore, Equation (7) can be written as

c∑
i=0

e−ββi

i! ≤ 1 − P ∗, (19)

where β = n(1 − e−T/λ0
m)α0 . We have

c∑
i=0

e−ββi

i! = 1 − Gc+1(β, 1), (20)

where Gk(x, δ) denotes the cumulative distribution function of a gamma distribution with the
shape and scale parameters as k and δ, respectively, i.e.

Gk(x; δ) = δk

�(k)

∫ x

0
tk−1e−δtdt. (21)

Therefore, if γc+1,P ∗ denotes the P ∗ percentage point of a standardized (scale parameter one)
gamma variable with the shape parameter c + 1, then

n ≈
[

γc+1,P ∗

(1 − e−T/λ0
m)α0

]
+ 1, (22)

here [x] represents the largest integer less than or equal to x. Now using the relation between the
gamma and χ2 random variables, we immediately obtain

n ≈
[

χ2
2c+2,P ∗

2(1 − e−T/λ0
m)α0

]
+ 1, (23)

here χ2
2c+2,P ∗ denotes the P ∗ percentage point of a χ2 variable with degrees of freedom 2c + 2.
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4.4 Descriptions of tables and examples

In Table 1 we provide the minimum sample size required to ascertain that the median life exceeds
θ0
m with probability at least P ∗, the corresponding acceptance number c and when α0 = 2. It has

been prepared by using (a) trial and error method on n, (b) monotonicity property of n with respect
to p, and (c) binomial probabilities. For example in Table 1, when P ∗ = 0.90, T/λ0

m = 1.571,
c = 2, the corresponding table value is 6. It implies that out of 6 items, if 2 items fail before time
point T , then a 90% upper confidence interval of λ will be (T /1.571, ∞). In other words, if out
of 6 items, less than or equal to 2 items fail before time point T , then we can accept the lot with
probability 0.90 with the assurance that

λ ≥ T

1.571
⇐⇒ θm ≥ T

1.571
×

(
− ln

(
1 −

√
1

2

))
= T × 0.782.

Table 2 represents operating characteristic function values for the time truncated acceptance
sampling plan obtained from Table 1, for different values of P ∗ and for different values of λ/λ0

m,
when c = 2. For example, when P ∗ = 0.90, T /λ0

m = 1.571, c = 2, the table value is 0.9556
when λ/λ0

m = 4. It implies, if one accepts the above time truncated acceptance sampling plan, i.e.
the lot is accepted if out of 6 items, less than or equal to 2 items fail before time point T , then if
λ ≥ 4 × T/1.571 or θm ≥ T × 4 × 0.782, then the lot will be accepted with probability at least
0.9556.

Table 3 represents the minimum ratio of the true median life to the specified median life
for the acceptance of a lot with the producer’s risk 0.05 and when α0 = 2. In this case for
example, when the consumer’s risk is 10%, i.e. P ∗ = 0.90, c = 2, T/λ0

m = 1.571, the table
value λ/λ0

m = θm/θ0
m = 3.9. It implies if θm ≥ T × 0.782 × 3.9, then with n = 6 (obtained from

Table 1) and c = 2, the lot will be rejected with probability less than or equal to 0.05.

Example 1 Suppose it is assumed that the lifetime distribution of the product under study follows
a generalized exponential distribution with α0 = 2. An experimenter wants to know the minimum
sample size to be considered to make a decision (accepting or rejecting the lot), when he/she
wants the true median life should be at least θ0

m = 1000 units with the probability of accepting a
bad lot less than or equal to 0.01 or P ∗ = 0.99. It is also assumed that the maximum affordable
time is 767 units and the maximum affordable number of failures is 2. Since

λ0
m = 1000

− ln(1 − (1/2)1/2)
= 814.37 and

T

λ0
m

= 0.942, (24)

from Table 1 we obtain n = 15. Therefore, out of 15 items if not more than 2 items fail before
T = 767 units of time, the lot can be accepted with the assurance that the true median life is at
least 1000 with the probability 0.99.

Example 2 Continuing with the same example, suppose instead of median life the practitioner
wants that the 75th percentile life should exceed 1275 units, where the affordable time is 1000
units and the affordable number of failures is 5. In this case

λ0
p = 1275

− ln(1 − √
0.75)

= 634.2 =⇒ T

λ0
p

= 1.57. (25)

If we want P ∗ = 0.95, and c = 5, then using Table 1 we get n = 14, using the column corresponds
T/λ0

m = 1.571.
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Example 3 Now we consider a data set that was already considered by Wood [17], Rosaiah and
Kantam [14] and recently by Balakrishnan et al. [4]. The data set represents the failure time in
hours of a software, which represents the lifetimes from the starting of the execution of the software
until which the failure of the software is experienced. We have the following observations; 519,
968, 1430, 1893, 2490, 3058, 3625, 4422, 5218. The problem can be stated as follows. If the
assured median life is 1000 hours, then with P ∗ = 0.90, whether the lot can be accepted or not?

First we check whether the generalized exponential distribution can be used or not. The MLEs
of α and λ are 2.6531 and 0.6547, respectively. The Kolmogorov–Smirnov distance between the
observed and fitted distribution functions is 0.125 with the associated p value 0.99. Therefore,
generalized exponential distribution provides a very good fit.

Now in our study we have assumed α to be known as 2.65 and T = 1070 h. On the basis of
that we obtain

λ0
m = 1000

− ln(1 − (1/2)1/2.65)
= 680.73 and

T

λ0
m

= 1.572. (26)

From Table 1, corresponds to the column T/λ0
m = 1.571, and for P ∗ = 0.90 we obtain n = 9

when c = 4. Therefore, if the number of failures before T = 1070 h is less than or equal to 4, we
can accept the lot with the assured median level 1000 h, with probability 0.90. Since the number of
failures before T = 1070 h is only 2, therefore we can accept the lot with the above specifications.

5. Conclusions

In this paper we have considered the time truncated acceptance sampling plan for the generalized
exponential distribution. It is assumed that the shape parameter is known and we have presented the
table for the minimum sample size required to guarantee a certain median life of the experimental
units. We have also presented the operating characteristic function values and the associated
producer’s risks. Although we have provided the Tables when the shape parameter is 2, and for
the medians only, but the tables can be used for other shape parameters and other percentiles also.
We have provided several examples to illustrate the tables. It may be pointed out that Aslam and
Shabaz [1] also considered the economic reliability test plans using the generalized exponential
distribution. The problem of interests and the approaches are quite different than those of the
present study.

Finally it should be mentioned that our results can also be used for other distributions that
can be converted to generalized exponential distribution. For example the generalized Rayleigh
(scaled Burr Type X) distribution, introduced by Surles and Padgett [16], see also Kundu and
Raqab [13], can be easily converted to generalized exponential distribution. Therefore, our tables
can be used to develop the acceptance sampling plan for generalized Rayleigh distribution.
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