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A confidence sequence is a sequence of confidence intervals that is uni-
formly valid over an unbounded time horizon. Our work develops confidence
sequences whose widths go to zero, with nonasymptotic coverage guarantees
under nonparametric conditions. We draw connections between the Cramér–
Chernoff method for exponential concentration, the law of the iterated log-
arithm (LIL) and the sequential probability ratio test—our confidence se-
quences are time-uniform extensions of the first; provide tight, nonasymptotic
characterizations of the second; and generalize the third to nonparametric
settings, including sub-Gaussian and Bernstein conditions, self-normalized
processes and matrix martingales. We illustrate the generality of our proof
techniques by deriving an empirical-Bernstein bound growing at a LIL rate,
as well as a novel upper LIL for the maximum eigenvalue of a sum of random
matrices. Finally, we apply our methods to covariance matrix estimation and
to estimation of sample average treatment effect under the Neyman–Rubin
potential outcomes model.

1. Introduction. It has become standard practice for organizations with online presence
to run large-scale randomized experiments, or “A/B tests,” to improve product performance
and user experience. Such experiments are inherently sequential: visitors arrive in a stream
and outcomes are typically observed quickly relative to the duration of the test. Results are of-
ten monitored continuously using inferential methods that assume a fixed sample, despite the
known problem that such monitoring inflates Type I error substantially [1, 8]. Furthermore,
most A/B tests are run with little formal planning and fluid decision-making, compared to
clinical trials or industrial quality control, the traditional applications of sequential analysis.

This paper presents methods for deriving confidence sequences as a flexible tool for infer-
ence in sequential experiments [12, 32, 43]. For α ∈ (0,1), a (1 − α)-confidence sequence is
a sequence of confidence sets (CIt )∞t=1, typically intervals CIt = (Lt ,Ut ) ⊆ R, satisfying a
uniform coverage guarantee: after observing the tth unit, we calculate an updated confidence
set CIt for the unknown quantity of interest θt , with the uniform coverage property

P(∀t ≥ 1 : θt ∈ CIt ) ≥ 1 − α.(1.1)

With only a uniform lower bound (Lt ), that is, if Ut ≡ ∞, we have a lower confidence se-
quence. Likewise, if Lt ≡ −∞ we have an upper confidence sequence given by (Ut ). Theo-
rems 1 to 3 and Lemma 2 are our key tools for constructing confidence sequences. All build
upon the general framework for uniform exponential concentration introduced in Howard et
al. [25], which means our techniques apply in diverse settings: scalar, matrix and Banach-
space-valued observations, with possibly unbounded support; self-normalized bounds appli-
cable to observations satisfying weak moment or symmetry conditions; and continuous-time
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FIG. 1. Left panel shows 95% pointwise confidence intervals and uniform confidence sequences for the mean
of a Rademacher random variable, using one simulation of 100,000 i.i.d. draws. Right panel shows cumulative
chance of miscoverage based on 10,000 replications; flat grey line shows the nominal target level 0.05. The
CLT intervals are asymptotically pointwise valid (these are similar to the exact binomial confidence intervals,
which are nonasymptotically pointwise valid). The pointwise Hoeffding intervals are nonasymptotically pointwise
valid. The confidence sequence based on a linear boundary, as in Lemma 1, is valid uniformly over time and
nonasymptotically, but does not shrink to zero width. Finally, the confidence sequence based on a curved boundary
is valid uniformly and nonasymptotically, while also shrinking towards zero width; here we use the two-sided
normal mixture boundary, (3.7), qualitatively similar to the stitched bound (1.2).

scalar martingales. Our methods allow for flexible control of the “shape” of the confidence
sequence, that is, how the sequence of intervals shrinks in width over time. As a simple
example, given a sequence of i.i.d. observations (Xt)

∞
t=1 from a 1-sub-Gaussian distribution

whose mean μ we would like to estimate, Theorem 1 yields the following (1−α)-confidence
sequence for μ, a special case of the more general bound (3.3):∑t

i=1 Xi

t
± 1.7

√
log log(2t) + 0.72 log(5.2/α)

t
.(1.2)

The O(
√

t−1 log log t) asymptotic rate of this bound matches the lower bound implied by the
law of the iterated logarithm (LIL), and nonasymptotic bounds of this form are called finite
LIL bounds [29]. We develop confidence sequences that possess the following properties:

(P1) Nonasymptotic and nonparametric: our confidence sequences offer coverage at all
sample sizes without exact distributional assumptions or asymptotic approximations.

(P2) Unbounded sample size: we do not require a final sample size to be chosen ahead of
time. They may be tuned for a planned sample size but always permit additional sampling.

(P3) Arbitrary stopping rules: we make no assumptions on the stopping rule used by an
experimenter to decide when to end the experiment, or when to act on certain inferences.

(P4) Asymptotically zero width: the interval widths of our confidence sequences shrink
toward zero at a 1/

√
t rate, ignoring log factors, just as with pointwise confidence intervals.

These properties give us strong guarantees and broad applicability. An experimenter may
always choose to gather more samples, and may stop at any time according to any rule—the
resulting inferential guarantees hold under the stated assumptions without any approxima-
tions. Of course, this flexibility comes with a cost: our intervals are wider than those that rely
on asymptotics or make stronger assumptions, for example, a known stopping rule. Typical,
fixed-sample confidence intervals derived from the central limit theorem do not satisfy any
of (P1)–(P3), and accommodating any one property necessitates wider intervals; we illustrate
this in Figure 1. It is perhaps surprising that these four properties come at a numerical cost of
less than doubling the fixed-sample, asymptotic interval width—the discrete mixture bound
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illustrated in Figure S2 in the Supplementary Material [26] stays within a factor of two of the
fixed-sample CLT bounds over five orders of magnitude in time.

1.1. Related work. The idea of a confidence sequence goes back at least to Darling and
Robbins [12]. They are called repeated confidence intervals by Jennison and Turnbull [31, 32]
(with a focus on finite time horizons) and always-valid confidence intervals by Johari, Pekelis
and Walsh [35]. They are sometimes labeled anytime confidence intervals in the machine
learning literature [28].

Prior work on sequential inference is often phrased in terms of a sequential hypothesis test,
defined as a stopping rule and an accept/reject decision variable, or in terms of an always-
valid p-value [35]. In Section 6, we discuss the duality between confidence sequences, se-
quential hypothesis tests, and always-valid p-values. We show in Lemma 3 that definition
(1.1) is equivalent to requiring P(θτ ∈ CIτ ) ≥ 1 − α for all stopping times τ , or even for all
random times τ , not necessarily stopping times. Hence the choice of definition (1.1) over
related definitions in the literature is one of convenience.

Recent interest in confidence sequences has come from the literature on best-arm identi-
fication with fixed confidence for multi-armed bandit problems. Garivier [20], Jamieson et
al. [29], Kaufmann, Cappé and Garivier [37] and Zhao et al. [77] present methods satisfy-
ing properties (P1)–(P4) for independent, sub-Gaussian observations. Our results are sharper
and more general, and our Bernstein confidence sequence scales with the true variance in
nonparametric settings. Confidence sequences are a key ingredient in best-arm selection al-
gorithms [30] and related methods for sequential testing with multiple comparisons [28, 49,
76]. Our results improve and generalize such methods.

Maurer and Pontil [50] and Audibert, Munos and Szepesvári [3] prove empirical-Bernstein
bounds for fixed times or finite time horizons. Our empirical-Bernstein bound holds uni-
formly over infinite time. Balsubramani [5] takes a different approach to deriving confidence
sequences satisfying properties (P1)–(P4) by lower bounding a mixture martingale. This work
was extended in Balsubramani and Ramdas [6] to an empirical-Bernstein bound, the only
infinite-horizon, empirical-Bernstein confidence sequence we are aware of in prior work. Our
result removes a multiplicative prefactor and yields sharper bounds. We emphasize that our
proof technique is quite different from all three of these existing empirical Bernstein bounds;
see Appendix A.8.

The simplest confidence sequence satisfying properties (P1)–(P3) follows by inverting a
suitably formulated sequential probability ratio test (SPRT, [73]), such as in Section 3.6 of
Howard et al. [25]. Wald worked in a parametric setting, though it is known that the nor-
mal SPRT depends only on sub-Gaussianity (e.g., Robbins [55]). The resulting confidence
sequence does not shrink toward zero width as t → ∞ (property P4), a problem which stems
from the choice of a single point alternative λ. Numerous extensions have been developed to
remedy this defect, and our work is most closely tied to two approaches. First, in the method
of mixtures, one replaces the likelihood ratio with a mixture

∫ ∏
i[fλ(Xi)/f0(Xi)]dF(λ),

which is still a martingale [5, 7, 14, 16, 38, 41, 55, 57, 58, 72, 73]. Second, epoch-based
analyses choose a sequence of point alternatives λ1, λ2, . . . approaching the null value, with
corresponding error probabilities α1, α2, . . . approaching zero so that a union bound yields
the desired error control [13, 37, 56].

The literature on self-normalized bounds makes extensive use of the method of mixtures,
sometimes called pseudo-maximization [15–18, 20]; these works introduced the idea of us-
ing a mixture to bound a quantity with a random intrinsic time Vt . These results are mostly
given for fixed samples or finite time horizon, though de la Peña, Klass and Lai [15], equa-
tion (4.20), includes an infinite-horizon curve-crossing bound. Lai [41] treats confidence se-
quences for the parameter of an exponential family using mixture techniques similar to those
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of Section 3.2. Like most work on the method of mixtures, Lai’s work focused on the para-
metric setting (which we discuss in Section 4.4), while we focus on the application of mixture
bounds to nonparametric settings.

Johari et al. [34] adopt the mixture approach for a commercial A/B testing platform,
where properties (P2) and (P3) are critical to provide an “off-the-shelf” solution for a va-
riety of clients. Their application relies on asymptotics which lack rigorous justification. In
Section 4.2, we give nonasymptotic justification for a similar confidence sequence under
a finite-sample randomization inference model, and in Section 5 we demonstrate how our
methods control Type I error in situations where asymptotics fail.

1.2. Outline. We organize our results using the sub-Gaussian, sub-gamma, sub-
Bernoulli, sub-Poisson and subexponential settings defined in Section 2.

1. The stitching method gives new closed-form sub-Gaussian or sub-gamma boundaries
(Theorem 1). Our sub-gamma treatment extends prior sub-Gaussian work to cover any mar-
tingale whose increments have finite moment-generating function in a neighborhood of zero;
see Proposition 1. Our proof is transparent and flexible, accommodating a variety of boundary
shapes, including those growing at the rate O(

√
t log log t) with a focus on tight constants,

though we do not recommend this bound in practice unless closed-form simplicity is vital.
2. Conjugate mixtures give one- and two-sided boundaries for the sub-Bernoulli, sub-

Gaussian, sub-Poisson and subexponential cases (Section 3.2) which avoid approximations
made for analytical convenience. The sub-Gaussian boundaries are unimprovable without fur-
ther assumptions (Section 3.6). These boundaries include a common tuning parameter which
is critical in practice and we discuss why their O(

√
t log t) growth rate may be preferable to

the slower O(
√

t log log t) rate (Section 3.5).
3. Discrete mixtures facilitate numerical computation of boundaries with a great deal of

flexibility, at the cost of slightly more involved computations (Theorem 2). Like conjugate
mixture boundaries, these boundaries avoid unnecessary approximations and are unimprov-
able in the sub-Gaussian case.

4. Finally, for sub-Gaussian processes, the inverted stitching method (Theorem 3) gives
numerical upper bounds on the crossing probability of any increasing, strictly concave bound-
ary over a limited time range. We show that any such boundary yields a uniform upper tail
inequality over a finite horizon, and compute its crossing probability.

Building on this foundation, we present a a state-of-the-art empirical-Bernstein bound
(Theorem 4) for any sequence of bounded observations using a new self-normalization proof
technique. We illustrate our methods with two novel applications: the nonasymptotic, sequen-
tial estimation of average treatment effect in the Neyman–Rubin potential outcomes model
(Section 4.2), and the derivation of uniform matrix bounds and covariance matrix confidence
sequences (Corollary 3 and Section 4.3). We give simulation results in Section 5. Section 6
discusses the relationship of our work to existing concepts of sequential testing. Proofs of
main results are in Appendix A, with others deferred to Appendix C.

2. Preliminaries: Linear boundaries. Given a sequence of real-valued observations
(Xt)

∞
t=1, suppose we wish to estimate the average conditional expectation μt := t−1 ×∑t

i=1 Ei−1Xi at each time t using the sample mean X̄t := t−1∑t
i=1 Xi ; here we assume

an underlying filtration (Ft )
∞
t=1 to which (Xt) is adapted, and Et denotes expectation con-

ditional on Ft . Let St := ∑t
i=1(Xi − Ei−1Xi), the zero-mean deviation of our sample sum

from its estimand at time t . Given α ∈ (0,1), suppose we can construct a uniform upper tail
bound uα :R≥0 →R≥0 satisfying

P
(∃t ≥ 1 : St ≥ uα(Vt )

)≤ α(2.1)
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for some adapted, real-valued intrinsic time process (Vt )
∞
t=1, an appropriate time scale to

measure the (squared) deviations of (St ). This uniform upper bound on the centered sum (St )

yields a lower confidence sequence for (μt ) with radius t−1uα(Vt ):

P(∀t ≥ 1 : X̄t − t−1uα(Vt ) ≤ μt) ≥ 1 − α.

Note that an assumption on the upper tail of (St ) yields a lower confidence sequence
for (μt ); a corresponding assumption on the lower tail of (St ) yields an upper confidence
sequence for (μt ). In this paper, we formally focus on upper tail bounds, from which lower
tail bounds can be derived by examining (−St ) in place of (St ). In general, the left and right
tails of (St ) may behave differently and require different sets of assumptions, so that our
upper and lower confidence sequences may have different forms. Regardless, we can always
combine upper and lower confidence sequences using a union bound to obtain a two-sided
confidence sequence (1.1).

When the (Xt) are independent with common mean μ, the resulting confidence sequence
estimates μ, but the setup requires neither independence nor a common mean. In general,
the estimand μt may be changing at each time t ; Section 4.2 gives an application to causal
inference in which this changing estimand is useful. In principle, μt may also be random,
although none of our applications involve random μt .

To construct uniform boundaries uα satisfying inequality (2.1), we build upon the follow-
ing general condition [25], Definition 1.

DEFINITION 1 (Sub-ψ condition). Let (St )
∞
t=0, (Vt )

∞
t=0 be real-valued processes adapted

to an underlying filtration (Ft )
∞
t=0 with S0 = V0 = 0 and Vt ≥ 0 for all t . For a function

ψ : [0, λmax) → R and a scalar l0 ∈ [1,∞), we say (St ) is l0-sub-ψ with variance process
(Vt ) if, for each λ ∈ [0, λmax), there exists a supermartingale (Lt (λ))∞t=0 w.r.t. (Ft ) such that
EL0(λ) ≤ l0 and

exp
{
λSt − ψ(λ)Vt

}≤ Lt(λ) a.s. for all t.(2.2)

For given ψ and l0, let Sl0
ψ be the class of pairs of l0-sub-ψ processes (St ,Vt ):

S
l0
ψ := {

(St ,Vt ) : (St ) is l0-sub-ψ with variance process (Vt )
}
.(2.3)

When stating that a process is sub-ψ , we typically omit l0 from our terminology for sim-
plicity. In scalar cases, we always have l0 = 1, while in matrix cases l0 = d , the dimension of
the (square) matrices.

Where does Definition 1 come from? The jumping-off point is the martingale method
for concentration inequalities ([4, 24, 51]; [54], Section 2.2), itself based on the classical
Cramér–Chernoff method ([10, 11]; [9], Section 2.2). The martingale method starts off with
an assumption of the form Et−1e

λ(Xt−Et−1Xt ) ≤ eψ(λ)σ 2
t for all t ≥ 1, λ ∈ R. Then, denoting

St := ∑t
i=1(Xi − Ei−1Xi) and Vt := ∑t

i=1 σ 2
i , the process exp{λSt − ψ(λ)Vt } is a super-

martingale for each λ ∈ R. Unlike the martingale method assumption, Definition 1 allows
the exponential process to be upper bounded by a supermartingale, and it permits (Vt ) to be
adapted rather than predictable. We also restrict our attention to λ ≥ 0 for one-sided bounds.

Intuitively, the process exp{λSt − ψ(λ)Vt } measures how quickly St has grown relative to
intrinsic time Vt , and the free parameter λ determines the relative emphasis placed on the tails
of the distribution of St , that is, on the higher moments. Larger values of λ exaggerate larger
movements in St , and ψ captures how much we must correspondingly exaggerate Vt . ψ is
related to the heavy-tailedness of St and the reader may think of it as a cumulant-generating
function (CGF, the logarithm of the moment-generating function). For example, suppose (Xt)

is a sequence of i.i.d., zero-mean random variables with CGF ψ(λ) := logEeλX1 which is
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finite for all λ ∈ [0, λmax). Then, setting Vt := t , we see that Lt(λ) := exp{λSt − ψ(λ)Vt } is
itself a martingale, for all λ ∈ [0, λmax). Indeed, in all scalar cases, we consider Lt(λ) is just
equal to exp{λSt −ψ(λ)Vt }. See Appendix Tables S3 and S4, drawn from Howard et al. [25],
for a catalog of sufficient conditions for a process to be sub-ψ using the five ψ functions
defined below. We use many of these conditions in what follows.

We organize our uniform boundaries according to the ψ function used in Definition 1.
First recall the Cramér–Chernoff bound: if (Xt) are independent zero-mean with bounded
CGF logEeλXt ≤ ψ(λ) for all t ≥ 1 and λ ∈ R, then writing St =∑t

i=1 Xi , we have P(St ≥
x) ≤ e−tψ�(x/t) for any x > 0, where ψ� denotes the Legendre–Fenchel transform of ψ .
Equivalently, writing zα(t) := tψ�−1(t−1 logα−1), we have P(St ≥ zα(t)) ≤ α for any fixed
t and α ∈ (0,1). In other words, the function zα gives a high-probability upper bound at any
fixed time t for any sum of independent random variables with CGF bounded by ψ . When we
extend this concept to boundaries holding uniformly over time, there is no longer a unique,
minimized boundary, and the following definition captures the class of valid boundaries.

DEFINITION 2. Given ψ : [0, λmax) →R and l0 ≥ 1, a function u :R→R is called an
l0-sub-ψ uniform boundary with crossing probability α if

sup
(St ,Vt )∈Sl0

ψ

P
(∃t ≥ 1 : St ≥ u(Vt )

)≤ α.(2.4)

Although u does depend on the constant l0 in Definition 1, for simplicity we typically omit
this dependence from our notation, writing simply that u is a sub-ψ uniform boundary.

Five particular ψ functions play important roles in our development; below, we take 1/0 =
∞ in the upper bounds on λ:

• ψB,g,h(λ) := 1
gh

log(
gehλ+he−gλ

g+h
) on 0 ≤ λ < ∞, the scaled CGF of a centered random vari-

able (r.v.) supported on two points, −g and h, for some g,h > 0, for example, a centered
Bernoulli r.v. when g + h = 1.

• ψN(λ) := λ2/2 on 0 ≤ λ < ∞, the CGF of a standard Gaussian r.v.
• ψP,c(λ) := c−2(ecλ − cλ − 1) on 0 ≤ λ < ∞ for some scale parameter c ∈ R, which is

the CGF of a centered unit-rate Poisson r.v. when c = 1. By taking the limit, we define
ψP,0 = ψN .

• ψE,c(λ) := c−2(− log(1 − cλ) − cλ) on 0 ≤ λ < 1/(c ∨ 0) for some scale c ∈ R, which is
the CGF of a centered unit-rate exponential r.v. when c = 1. By taking the limit, we define
ψE,0 = ψN .

• ψG,c(λ) := λ2/(2(1 − cλ)) on 0 ≤ λ < 1/(c ∨ 0) (taking 1/0 = ∞) for some scale param-
eter c ∈ R, which we refer to as the sub-gamma case following Boucheron, Lugosi and
Massart [9]. This is not the CGF of a gamma r.v. but is a convenient upper bound which
also includes the sub-Gaussian case at c = 0 and permits analytically tractable results.

One may freely scale ψ by any positive constant and divide Vt by the same constant so
that Definition 1 remains satisfied; by convention, we scale all ψ functions above so that
ψ ′′(0+) = 1. When we speak of a sub-gamma process (or uniform boundary) with scale
parameter c, we mean a sub-ψG,c process (or uniform boundary), and likewise for other cases.
We often write ψB , ψP , etc., dropping the range and scale parameters from our notation. As
we summarize in Figure 2 and detail in Proposition S7, certain general implications hold
among sub-ψ boundaries. In particular, any sub-Gaussian boundary can also serve as a sub-
Bernoulli boundary; any sub-Poisson boundary serves as a sub-Gaussian or sub-Bernoulli
boundary; and, importantly, any sub-gamma or subexponential boundary can serve as a sub-
ψ boundary in any of the other four cases. Indeed, a sub-gamma or subexponential boundary
applies to many cases of practical interest, as detailed below.
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FIG. 2. Relations among sub-ψ boundaries: each arrow indicates that a sub-ψ boundary at the source node
can also serve as a sub-ψ boundary at the destination node, with appropriate modifications to their parameters.
Details are in Proposition S7.

PROPOSITION 1. Suppose ψ is twice-differentiable and ψ(0) = ψ ′(0+) = 0. Suppose,
for each c > 0, uc(v) is a sub-gamma or subexponential uniform boundary with crossing
probability α for scale c. Then v �→ uk1(k2v) is a sub-ψ uniform boundary for some constants
k1, k2 > 0 depending only on ψ .

Proposition 1 restates Howard et al. [25], Proposition 1, which shows that any process
(St ) which is sub-ψ is also sub-gamma and subexponential, if ψ satisfies the conditions of
Proposition 1. Note that these conditions are satisfied for any mean-zero random variable if
the CGF exists in a neighborhood of zero, so the conditions are quite weak [36], Theorem 2.3.

EXAMPLE 1 (Confidence sequence for the variance of a Gaussian distribution with un-
known mean). Suppose X1,X2, . . . are i.i.d. draws from a N (μ,σ 2) distribution and
we wish to sequentially estimate σ 2 when μ is also unknown. Let St := σ−2∑t+1

i=1(Xi −
X̄t+1)

2 − t for t = 1,2, . . . , where X̄t := t−1∑t
i=1 Xi is the sample mean. This St is a cen-

tered and scaled sample variance, and as in Darling and Robbins [12], we use the fact that St

is a cumulative sum of independent, centered Chi-squared random variables each with one
degree of freedom (see Appendix H for details). Such a centered Chi-squared distribution has
variance two and CGF equal to 2ψE,2.

Thus (St ) is 1-subexponential with variance process Vt = 2t and scale parameter c = 2. We
may uniformly bound the upper deviations of St using any subexponential uniform boundary,
for example, the gamma-exponential mixture boundary of Proposition S5. Or, we can use
Proposition S7 to deduce that (St ) is sub-gamma with scale c = 2 (and the same variance
process) and use the closed-form stitched boundary of Theorem 1.

The above constructions yield lower confidence sequences for the variance. To obtain an
upper confidence sequence, we use the fact that (−St ) is 1-subexponential with scale pa-
rameter c = −2. Now Proposition S7 implies that (−St ) is sub-gamma with scale c = −1,
so the stitched boundary again applies, while Proposition S7 implies that (−St ) is also sub-
Gaussian, so we may alternatively use the normal mixture boundary of Proposition S2. Since
ψG,−1 is uniformly smaller than ψN , the above analysis yields tighter bounds than the sub-
Gaussian approach of Darling and Robbins [12].

The simplest uniform boundaries are linear with positive intercept and slope. This is for-
malized in Howard et al. [25], partially restated below.

LEMMA 1 ([25], Theorem 1). For any λ ∈ [0, λmax) and α ∈ (0,1),

u(v) := log(l0/α)

λ
+ ψ(λ)

λ
· v(2.5)

is a sub-ψ uniform boundary with crossing probability α.
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While Lemma 1 provides a versatile building block, the O(Vt ) growth of u(Vt ) may be
undesirable. Indeed, from a concentration point of view, the typical deviations of St tend to be
only O(

√
Vt), so the bound will rapidly become loose for large t . From a confidence sequence

point of view, recall that the confidence radius for the mean is given by u(Vt )/t . Typically,
Vt = 	(t) a.s. as t → ∞, so the confidence radius will be asymptotically zero width if and
only if u(v) = o(v). In other words, we cannot achieve arbitrary estimation precision with
arbitrarily large samples unless the uniform boundary is sublinear. We address this problem
in Section 3, building upon Lemma 1 to construct curved sub-ψ uniform boundaries.

3. Curved uniform boundaries. We present our four methods for computing curved
uniform boundaries in Sections 3.1 to 3.4. In Section 3.5, we discuss how to tune boundaries,
a necessity for good performance in practice, and we describe the unimprovability of sub-
Gaussian mixture bounds in Section 3.6.

3.1. Closed-form boundaries via stitching. Our analytical “stitched” bound is useful in
the sub-Gaussian case or, more generally, the sub-gamma case with scale c. We require three
user-chosen parameters:

• a scalar η > 1 determines the geometric spacing of intrinsic time,
• a scalar m > 0 which gives the intrinsic time at which the uniform boundary starts to be

nontrivial, and
• an increasing function h : R≥0 → R>0 such that

∑∞
k=0 1/h(k) ≤ 1, which determines the

shape of the boundary’s growth after time m.

Recalling the scale parameter c for the ψG function above and the constant l0 in Definition 1,
we define the stitching function Sα as

(3.1)

Sα(v) :=
√

k2
1v�(v) + k2

2c2�2(v) + k2c�(v),

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�(v) := logh

(
logη

(
v

m

))
+ log

(
l0

α

)
,

k1 := (
η1/4 + η−1/4)/√2,

k2 := (
√

η + 1)/2,

and define the stitched boundary as u(v) = Sα(v ∨ m). Note Sα(v) ≤ k1
√

v�(v) + 2ck2�(v)

when c > 0, while Sα(v) ≤ k1
√

v�(v) when c ≤ 0, with equality in the sub-Gaussian case
(c = 0). These simpler expressions may sometimes be preferable. For notational simplicity,
we suppress the dependence of Sα on h, η, l0 and c; we will discuss specific choices as
necessary. In our examples, �(v) grows as O(logv) or O(log logv) as v ↑ ∞, so the first
term, k1

√
Vt�(Vt ), dominates for sufficiently large Vt , specifically when Vt/�(Vt ) � 2c2√η.

THEOREM 1 (Stitched boundary). For any c ≥ 0, α ∈ (0,1), η > 1,m > 0 and h :
R≥0 → R≥0 increasing such that

∑∞
k=0 1/h(k) ≤ 1, the function v �→ Sα(v ∨ m) is a sub-

gamma uniform boundary with crossing probability α. Further, for any sub-ψG process (St )

with variance process (Vt ) and any v0 ≥ m,

P
(∃t ≥ 1 : Vt ≥ v0 and St ≥ Sα(Vt )

)≤
∞∑

k=�logη(v0/m)�

1

h(k)
.(3.2)

The first sentence above says that the probability of St crossing Sα(Vt ∨m) at least once is
at most α, while the second says that, even if it does happen to cross once or more, the proba-
bility of further crossings decays to zero beyond larger and larger intrinsic times v0. Note that
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FIG. 3. Illustration of Theorem 1, stitching together linear boundaries to construct a curved boundary. We
break time into geometrically-spaced epochs ηk ≤ Vt < ηk+1, construct a linear uniform bound using Lemma 1
optimized for each epoch, and take a union bound over all crossing events. The final boundary is a smooth
analytical upper bound to the piecewise linear bound.

(3.2) implies P(supt Vt = ∞ and St ≥ Sα(Vt ) infinitely often) = 0. The proof of Theorem 1,
given with discussion in Appendix A.1, follows by taking a union bound over a carefully cho-
sen family of linear boundaries, one for each of a sequence of geometrically-spaced epochs;
see Figure 3. The high-level proof technique is standard, often referred to as “peeling” in the
bandit literature, and closely related to chaining elsewhere in probability theory. Our proof
generalizes beyond the sub-Gaussian case and involves careful parameter choices in order to
achieve tight constants. In brief, within each epoch, there are many possible linear bound-
aries, and we have found that optimizing the linear boundary for the geometric mean of the
epoch endpoints strikes a good balance between tight constants and analytical simplicity in
the final boundary. Appendix G gives a detailed comparison of constants arising from our
bound with similar bounds from the literature.

The boundary shape is determined by choosing the function h and setting the nominal
crossing probability in the kth epoch to equal α/h(k). Then Theorem 1 gives a curved bound-
ary which grows at a rate O(

√
Vt logh(logη Vt )) as Vt ↑ ∞. The more slowly h(k) grows as

k ↑ ∞, the more slowly the resulting boundary will grow as Vt ↑ ∞. A simple choice is expo-
nential growth, h(k) = ηsk/(1−η−s) for some s > 1, yielding Sα(v) = O(

√
v logv). A more

interesting example is h(k) = (k + 1)sζ(s) for some s > 1, where ζ(s) is the Riemann zeta
function. Then, when l0 = 1, Theorem 1 yields the polynomial stitched boundary: for c ≥ 0,

(3.3)
Sα(v) = k1

√
v

(
s log log

(
ηv

m

)
+ log

ζ(s)

α logs η

)

+ ck2

(
s log log

(
ηv

m

)
+ log

ζ(s)

α logs η

)
,

where the second term is neglected in the sub-Gaussian case since c = 0. This is a “finite LIL

bound,” so-called because Sα(v) ∼
√

sk2
1v log logv, matching the form of the law of the iter-

ated logarithm [68]. We can bring sk2
1 arbitrarily close to 2 by choosing η and s sufficiently

close to one, at the cost of inflating the additive term log(ζ(s)/(logs η)). Briefly, increasing
η increases the size of each epoch in the aforementioned peeling argument, which reduces
the looseness of the union bound over epochs. But the larger we make the epochs, the fur-
ther each linear boundary deviates from the ideal curved shape at the ends of the epochs,
which inflates our final boundary. The choice of s involves a similar tradeoff: increasing s

causes us to exhaust more of our total error probability budget on earlier epochs, decreasing
the constant term (which matters most for early times), at the cost of a union bound over
smaller error probabilities in later epochs, which shows up as an increase in the leading con-
stant. We discuss parameter tuning in more practical terms in Section 3.5. For example, take



1064 HOWARD, RAMDAS, MCAULIFFE AND SEKHON

η = 2, s = 1.4,m = 1; if St is a sum of independent, zero-mean, 1-sub-Gaussian observa-
tions, we obtain

P

(
∃t ≥ 1 : St ≥ 1.7

√
t

(
log log(2t) + 0.72 log

(
5.2

α

)))
≤ α.(3.4)

Figure S2 in Appendix G compares a sub-Gaussian stitched boundary to a numerically-
computed discrete mixture bound with a mixture distribution roughly corresponding to
h(k) ∝ (k + 1)1.4, as described in Appendix A.6. This discrete mixture boundary acts as
a lower bound (see Section 3.6) and shows that not too much is lost by the approximations
involved in the stitching construction. Figure S3 compare the same stitched boundary to re-
lated bounds from the literature; our bound shows slightly improved constants over the best
known bounds.

Although our stitching construction begins with a sub-gamma assumption, it applies to
other sub-ψ cases, including sub-Bernoulli, sub-Poisson and subexponential cases; see Fig-
ure 2 and Proposition 1. Further, our stitched bounds apply equally well in continuous-time
settings to Brownian motion, continuous martingales, martingales with bounded jumps and
martingales whose jumps satisfy a Bernstein condition; see Corollary S2.

While our focus is on nonasymptotic results, Theorem 1 makes it easy to obtain the fol-
lowing general upper asymptotic LIL, proved in Appendix A.2.

COROLLARY 1. Suppose (St ) is sub-ψ with variance process (Vt ) and ψ(λ) ∼ λ2/2 as
λ ↓ 0. Then

lim sup
t→∞

St√
2Vt log logVt

≤ 1 on
{
sup

t
Vt = ∞

}
.(3.5)

3.2. Conjugate mixture boundaries. For appropriate choice of mixing distribution F , the
integral

∫
exp{λSt − ψ(λ)Vt }dF(λ) will be analytically tractable. Since, under Definition 1,

this mixture process is upper bounded by a mixture supermartingale
∫

Lt(λ)dF(λ), such
mixtures yield closed form or efficiently computable curved boundaries, which we call con-
jugate mixture boundaries. This approach is known as the method of mixtures, one of the
most widely-studied techniques for constructing uniform bounds [14, 38, 41, 55, 57, 58, 72,
73]. Unlike the stitched bound of Theorem 1, which involves a small amount of looseness
in the analytical approximations, mixture boundaries involve no such approximations and, in
the sub-Gaussian case, are unimprovable in the sense described in Section 3.6. We restate the
following standard idea behind the method of mixtures using our definitions, with a proof in
Appendix A.3. The proof details a technical condition on product measurability which we
require of Lt .

LEMMA 2. For any probability distribution F on [0, λmax) and α ∈ (0,1),

Mα(v) := sup
{
s ∈ R :

∫
exp

{
λs − ψ(λ)v

}
dF(λ)︸ ︷︷ ︸

=:m(s,v)

<
l0

α

}
(3.6)

is a sub-ψ uniform boundary with crossing probability α, so long as the supermartingale (Lt )

of Definition 1 is product measurable when the underlying probability space is augmented
with the independent random variable λ.

For each of our conjugate mixture bounds, we compute m(s, v) in closed form. The bound-
ary u(v) can then be computed by numerically solving the equation m(s, v) = l0/α in s, as
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we show in Appendix D. When an identical sub-ψ condition applies to (−St ) as well as
(St ), we may apply a uniform boundary to both tails and take a union bound, obtaining a
two-sided confidence sequence. However, mixing over λ ∈ R rather than λ ∈ R≥0 yields a
two-sided bound directly, so in some cases we present two-sided variants along with their
one-sided counterparts. We give details for the following conjugate mixture boundaries in
Appendix A.3:

• one-, two-sided normal mixture boundaries (sub-Gaussian case);
• one-, two-sided beta-binomial mixture boundaries (sub-Bernoulli case);
• one-sided gamma-Poisson mixture boundary (sub-Poisson case); and
• one-sided gamma-exponential mixture boundary (subexponential case).

The two-sided normal mixture boundary has a closed-form expression:

u(v) :=
√

(v + ρ) log
(

l2
0(v + ρ)

α2ρ

)
.(3.7)

The one-sided normal mixture boundary has a similar, closed-form upper bound, making
these especially convenient. It is clear from (3.7) that the normal mixture boundary grows as
O(

√
v logv) asymptotically, and this rate is shared by all of our conjugate mixture bound-

aries. Indeed, Proposition 2 below, proved in Appendix A.4, shows that such a rate holds for
any mixture boundary as given by (3.6) whenever the mixing distribution is continuous with
positive density at and around the origin, a property which holds for all mixture distributions
used in our conjugate mixture boundaries, subject to regularity conditions on ψ which hold
for the CGF of any nontrivial, mean-zero r.v. and specifically for the five ψ functions in
Section 2.

PROPOSITION 2. Assume (i) ψ is nondecreasing, ψ(0) = ψ ′(0+) = 0, ψ ′′(0+) = c > 0,
and ψ has three continuous derivatives on a neighborhood including the origin; and (ii) F

has density f (w.r.t. Lebesgue) which is continuous and positive on a neighborhood including
the origin. Then

Mα(v) =
√√√√v

[
c log

(
cl2

0v

2πα2f 2(0)

)
+ o(1)

]
as v → ∞.(3.8)

Note that f need not place mass on all of [0, λmax), only near the origin, for the asymptotic
rate to hold. Proposition 2 shows how the asymptotic behavior of any such mixture bound
depends only on the behavior of ψ and f near the origin, a result reminiscent of the central
limit theorem. Analogous, related results for the sub-Gaussian special case using ψ(λ) =
λ2/2 can be found in Robbins and Siegmund [58], Section 4, and Lai [42], Theorem 2, in
some cases under weaker assumptions on F .

In contrast to previous derivations of conjugate mixture boundaries in the literature, all of
our conjugate mixture boundaries include a common tuning parameter ρ > 0 which controls
the sample size for which the boundary is optimized. Such tuning is critical in practice, as we
explain in Section 3.5, but has been ignored in much prior work. Additionally, with the ex-
ception of the sub-Gaussian case, most prior work on the method of mixtures has focused on
parametric settings. We instead emphasize the applicability of these bounds to nonparametric
settings. For example, when the observations are bounded, one may construct a confidence
sequence making use of empirical-Bernstein estimates (Theorem 4) based on our gamma-
exponential mixture (Proposition S5). See Appendix J for other conditions in which mixture
bounds yield nonparametric uniform boundaries.
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3.3. Numerical bounds using discrete mixtures. In applications, one may not need an ex-
plicit closed-form expression so long as the bound can be easily computed numerically. Our
discrete mixture method is an efficient technique for numerical computation of curved bound-
aries for processes satisfying Definition 1. It permits arbitrary mixture densities, thus produc-
ing boundaries growing at the rate O(

√
v log logv). Recall that the shape of the stitched

bound was determined by the user-specified function h. For the discrete mixture bound, one
instead specifies a probability density f over finite support (0, λ] for some λ ∈ (0, λmax).
We first discretize f using a series of support points λk , geometrically spaced according to
successive powers of some η > 1, and an associated set of weights wk :

λk := λ

ηk+1/2 and wk := λ(η − 1)f (λk
√

η)

ηk+1 for k = 0,1,2, . . . .(3.9)

THEOREM 2 (Discrete mixture bound). Fix ψ : [0, λmax) →R, α ∈ (0,1), λ ∈ (0, λmax),
and a probability density f on (0, λ] that is nonincreasing and positive. For supports λk and
weights wk defined in (3.9),

(3.10) DMα(v) := sup

{
s ∈ R :

∞∑
k=0

wk exp
{
λks − ψ(λk)v

}
<

l0

α

}
,

is a sub-ψ uniform boundary with crossing probability α.

We suppress the dependence of DMα on f , l0, λ and η for notational simplicity. Though
Theorem 2 is a straightforward consequence of the method of mixtures, our choice of dis-
cretization (3.9) makes it effective, broadly applicable and easy to implement. See Ap-
pendix A.5 for the proof of this result. Figure S2 includes an example bound, demonstrating
a slight advantage over stitching. Appendix A.6 describes a connection between the stitching
and discrete mixture methods, including a correspondence between the alpha-spending func-
tion h and the mixture density f . Finally, we note that the method can be applied even when
f is not monotone; one must simply choose the discretization (3.9) more carefully, using
known properties of f .

3.4. Inverted stitching for arbitrary boundaries. In the method of mixtures, we choose a
mixing distribution F and the machinery yields a boundary Mα . Likewise, in the stitching
construction of Theorem 1, we choose an error decay function h and obtain a boundary Sα .
Here, we invert the procedure: we choose a boundary function g(v) and numerically compute
an upper bound on its St -upcrossing probability using a stitching-like construction.

THEOREM 3. For any nonnegative, strictly concave function g : R → R and vmax > 1,
the function

u(v) :=
{
g(1 ∨ v), v ≤ vmax,

∞, otherwise
(3.11)

is a sub-Gaussian uniform boundary with crossing probability at most

l0 inf
η>1

�logη vmax�∑
k=0

exp
{
−2(g(ηk+1) − g(ηk))(ηg(ηk) − g(ηk+1))

ηk(η − 1)2

}
.(3.12)

The proof is in Appendix A.7. For simplicity, we restrict to the sub-Gaussian case; exam-
ination of the proof will show that the method applies in other sub-ψ cases as well, since
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we simply apply Lemma 1 to appropriately chosen lines, but more involved numerical cal-
culations will be necessary, as the closed form (3.12) no longer applies. A similar idea was
considered by Darling and Robbins [14], using a mixture integral approximation instead of
an epoch-based construction to derive closed-form bounds. Theorem 3 requires numerical
summation but yields tighter bounds with fewer assumptions. As an example, Theorem 3
with η = 2.99 shows that

P
(∃t : 1 ≤ Vt ≤ 1020 and St ≥ 1.7

√
Vt

(
log log(eVt ) + 3.46

))≤ 0.025.(3.13)

This boundary is illustrated in Figure S2.

3.5. Tuning boundaries in practice. All uniform boundaries involve a tradeoff of tight-
ness at different intrinsic times: making a bound tighter for some range of times requires
making it looser at other times. Roughly speaking, the choice of a uniform boundary involves
choosing both what time the bound should be optimized for (e.g., should the bound be tightest
around 100 observations or around 100,000 observations?) as well as how quickly the bound
degrades as we move away from the optimized-for time (e.g., if we optimize for 100 samples,
will the bound be twice as wide when we reach 1000 samples, or will it stay within a factor
of two until we reach 1,000,000 samples?). A boundary which decays more slowly will nec-
essarily not be as tight around the optimized-for time. In brief, linear boundaries decay the
most quickly, conjugate mixture boundaries decay substantially more slowly, and polynomial
stitched boundaries decay even more slowly; we feel that mixture boundaries strike a good
balance in practice.

Here, we explain how to optimize uniform boundaries for a particular time and discuss the
above tradeoff in more detail. Let W−1(x) be the lower branch of the Lambert W function,
the most negative real-valued solution in z to zez = x. Consider the unitless process St/

√
Vt ,

and the corresponding uniform boundary v �→ u(v)/
√

v. Since all of our uniform boundaries
u(v) have positive intercept at v = 0, and all grow at least at the rate

√
v log logv as v → ∞,

the normalized boundary u(v)/
√

v diverges as v → 0 and v → ∞. For the two-sided normal
mixture (3.7), there is a unique time m at which u(v)/

√
v is minimized; m is proportional to

tuning parameter ρ as follows:

PROPOSITION 3. Let u(v) be the two-sided normal mixture boundary (3.7) with param-
eter ρ > 0.

(a) For fixed ρ > 0, the function v �→ u(v)/
√

v is uniquely minimized at v = m with m

given by

m

ρ
= −W−1

(
− α2

el2
0

)
− 1.(3.14)

(b) For fixed m > 0, the choice of ρ which minimizes the boundary value u(m) is also
determined by (3.14).

The above result is proved in Appendix C.1; it is a matter of elementary calculus, but
addresses a question that has received little attention in the literature. Figure 4 includes the
normalized versions of two normal mixture boundaries optimized for different times, m =
300 and m = 5000. Optimizing for the range of values of Vt most relevant in a particular
application will yield the tightest confidence sequences. However, as the Figure shows, one
need not have a very precise range of times, so long as one uses a conservatively low value
for m, because u(v)/

√
v grows slowly after time m. Indeed, for the normal mixture boundary

with α = 0.05 and l0 = 1, we have u(m)/
√

m ≈ 3.0 and u(100m)/
√

100m ≈ 3.6, so that the
penalty for being off by two orders of magnitude is modest.
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FIG. 4. Comparison of normalized uniform boundaries u(v)/
√

v optimized for different intrinsic times. Nor-
mal mixture uses Appendix Proposition S2, while gamma mixture uses Appendix Proposition S5. Polynomial
stitched boundary is given in (3.3), with η = 2 and s = 1.4. Discrete mixture applies Theorem 2 to the density
f (λ) = 0.4 · 10≤λ≤0.38/[λ log1.4(0.38e/λ)] with η = 1.1, and λmax = 0.38; see Appendix A.6 for motivation. All
boundaries use α = 0.025.

The one-sided normal mixture boundary of Appendix Proposition S2 with crossing proba-
bility α is nearly identical to the two-sided normal mixture boundary with crossing probabil-
ity 2α, so one may choose ρ as in Proposition 3 with α doubled. For the gamma-exponential
mixture and other non-sub-Gaussian uniform boundaries, Proposition 3 provides a good
approximation in practice. Figure 4 includes gamma-exponential mixture boundaries with
the same ρ values as each corresponding normal mixture boundary. Though the normalized
gamma-exponential mixture boundary with m = 300 clearly reaches its minimum at v > m,
this choice of ρ seems reasonable. Discrete mixtures can be similarly tuned by adjusting the
precision of the mixing distribution, but require additional considerations (Appendix E).

Comparing the sub-Gaussian stitched boundary, discrete mixture boundary and normal
mixture boundary optimized for m = 300 in Figure 4 illustrates another important point for
practice: although the normal mixture bound grows more quickly than the others as v → ∞,
it remains smaller over about three orders of magnitude. This makes it preferable for many
real-world applications, as the longest feasible duration of an experiment is rarely more than
two orders of magnitude larger than the earliest possible stopping time. For example, many
online experiments run for at least one week to account for weekly seasonality effects, and
very few such experiments last longer than 100 weeks. As both the normal mixture and the
discrete mixture are unimprovable in general (Section 3.6), the difference is attributable to
the choice of mixture, or alternatively, to the fact that the normal mixture trades tightness
around the optimized-for time in exchange for looseness at much later times. The lesson is
that the O(v log logv) rate, while asymptotically optimal in certain settings and useful for
theory and some applications, may not be preferable in all real-world scenarios.

3.6. Unimprovability of uniform boundaries. Definition 2 of a sub-ψ boundary u in-
volves only an upper bound on the u-crossing probability of any sub-ψ process (St ). One
may reasonably ask for corresponding lower bounds on the u-crossing probability to quan-
tify how tight this boundary is. In the ideal case, we might desire a boundary u such that the
true u-crossing probability of some process (St ) is equal to the upper bound. In nonparamet-
ric settings, we cannot achieve this goal for every sub-ψ process. However, we might still ask
that there exists some sub-ψ process for which the true u-crossing probability is arbitrarily
close to the upper bound, so that the latter is unimprovable in general. That is, we might ask
that the inequality on the supremum in Definition 2 holds with equality.

The fact we wish to point out, known in various forms, is that in the scalar, sub-Gaussian
case, exact mixture bounds are unimprovable in the above sense. It is in this sense that the
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discrete mixture bound in Figure S2 provides a lower bound, showing that the sub-Gaussian
polynomial stitched bound cannot be improved by much. The following result shows that, for
any exact, sub-Gaussian mixture boundary Mα , as defined in Lemma 2 for ψ = ψN , there
exists a sub-Gaussian process whose true Mα-crossing probability is arbitrarily close to α.
The result is similar to Theorem 2 of Robbins and Siegmund [58], which gives a more general
invariance principle, but requires conditions on the boundary that appear difficult to verify for
arbitrary mixture boundaries Mα . Recall that S1

ψN
is the class of pairs of processes (St ,Vt )

such that (St ) is 1-sub-Gaussian with variance process (Vt ).

PROPOSITION 4. For any exact, 1-sub-Gaussian mixture boundary Mα ,

sup
(St ,Vt )∈S1

ψN

P
(∃t ≥ 1 : St ≥ Mα(Vt )

)= α.(3.15)

We prove Proposition 4 in Appendix C.2. In general, for each α there is an infinite variety
of boundaries that are unimprovable in the above sense, differing in when they are loose and
tight. These different boundaries will yield confidence sequences which are loose or tight at
different sample sizes, or, equivalently, are efficient for detecting different effect sizes. Such
a boundary cannot be tightened everywhere without increasing the crossing probability.

4. Applications. After presenting an empirical-Bernstein confidence sequence for
bounded observations, we apply our techniques to causal effect estimation and matrix mar-
tingales. We also consider estimation for a general, one-parameter exponential family.

4.1. An empirical-Bernstein confidence sequence. The following novel result is proved
in Appendix A.8 using a self-normalization argument, which leads to its attractive simplicity.
Recall the estimand μt := t−1∑t

i=1 Ei−1Xi , the average conditional expectation.

THEOREM 4. Suppose Xt ∈ [a, b] a.s. for all t . Let (X̂t ) be any [a, b]-valued predictable
sequence, and let u be any subexponential uniform boundary with crossing probability α for
scale c = b − a. Then

P

(
∀t ≥ 1 : |X̄t − μt | < u(

∑t
i=1(Xi − X̂i)

2)

t

)
≥ 1 − 2α.(4.1)

This is an empirical-Bernstein bound because it uses the sum of observed squared devia-
tions to estimate the true variance, much like a classical t-test. Hence the confidence radius
scales with the true standard deviation for sufficiently large samples, regardless of the support
diameter b − a, and with no prior knowledge of the true variance. Note also that this bound
does not require that observations share a common mean.

The confidence statement (4.1) holds for any sequence of predictions (X̂i), but predictions
closer to the conditional expectations, X̂i ≈ Ei−1Xi , will yield smaller confidence intervals
on average. A simple choice is the mean, X̂t = (t − 1)−1∑t−1

i=1 Xi , which will be effective
when the samples are i.i.d., for example. But the predictions (X̂i) can also make use of trends,
seasonality, stratification or regression (in the presence of covariates), machine learning al-
gorithms or any other information that may aid with prediction.

For an explicit example, assume Xi ∈ [0,1] and define the empirical variance as V̂t :=∑t
i=1(Xi − X̄i−1)

2. Invoking Theorem 4 with the boundary (3.3) using c = 1, η = 2, m = 1,
and h(k) ∝ k1.4, we have the following 95% confidence sequence for μt :

X̄t ± 1.7
√

(V̂t ∨ 1)(log log(2(V̂t ∨ 1)) + 3.8) + 3.4 log log(2(V̂t ∨ 1)) + 13

t
.(4.2)
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When a closed form is not required, the gamma-exponential mixture (supplement Proposi-
tion S5, see [26]) may yield tighter bounds than stitching; simulations in Section 5 demon-
strate the use of Theorem 4 with this mixture.

4.2. Estimating ATE in the Neyman–Rubin model. As one illustration of Theorem 4, we
consider the sequential estimation of average treatment effect under the Neyman–Rubin po-
tential outcomes model [27, 61, 67]. We imagine a sequence of experimental units, each with
real-valued potential outcomes under control and treatment denoted by {Yt (0), Yt (1)}t∈N, re-
spectively. These potential outcomes are fixed, but we observe only one outcome for each
unit in the experiment. We assign a randomized treatment to each unit, denoted by the {0,1}-
valued random variable Zt ∈ Ft , observing Y obs

t := Yt (Zt ). Here, treatment is assigned by
flipping a coin for each subject, with a bias possibly depending on previous observations.
This treatment assignment is the only source of randomness. Specifically, let Pt := Et−1Zt

and suppose 0 < Pt < 1 a.s. for all t ; then we permit Pt to vary between individuals and to
depend on past outcomes. This accommodates Efron’s biased coin design [19] and related
covariate balancing methods.

At each step t , having treated and observed units 1, . . . , t , we wish to draw inference about
the estimand ATEt := t−1∑t

i=1[Yi(1) − Yi(0)]. In particular, we seek a confidence sequence
for (ATEt )

∞
t=1. To construct our estimator, we may utilize any predictions Ŷt (0) and Ŷt (1) for

each unit’s potential outcomes; these random variables must be Ft−1-measurable, for each t .
We then employ the inverse probability weighting estimator

Xt := Ŷt (1) − Ŷt (0) +
(

Zt − Pt

Pt (1 − Pt)

)(
Y obs

t − Ŷt (Zt )
)
,(4.3)

which is (conditionally) unbiased for the individual treatment effect Yt (1) − Yt (0). As with
Theorem 4, better predictions will lead to shorter confidence intervals, but the coverage guar-
antee holds for any choice of predictions, and a reasonable choice would be the average
of past observed outcomes. See Aronow and Middleton [2] for a similar strategy for fixed-
sample estimation.

We assume bounded potential outcomes; for simplicity, we assume Yt (k) ∈ [0,1] for all
t ≥ 1, k = 0,1, and we assume predictions are likewise bounded. We further assume that
treatment probabilities are uniformly bounded away from zero and one. Then an empirical-
Bernstein confidence sequence for ATEt follows from Theorem 4, where we use X̂t = Ŷt (1)−
Ŷt (0) so that

Vt :=
t∑

i=1

(Xi − X̂i)
2 =

t∑
i=1

(
Zi − Pi

Pi(1 − Pi)

)2(
Y obs

i − Ŷi(Zi)
)2

.(4.4)

COROLLARY 2. Suppose Pt ∈ [pmin,1 − pmin] a.s., Yt (k) ∈ [0,1] and Ŷt (k) ∈ [0,1] for
all t ≥ 1, k = 0,1. Let u be any subexponential uniform boundary with scale 2/pmin and
crossing probability α. Then

P

(
∀t ≥ 1 : |X̄t − ATEt | < u(Vt)

t

)
≥ 1 − 2α.(4.5)

For u, one may choose the gamma-exponential mixture boundary (supplement Proposi-
tion S5) or the stitched boundary (3.3) with c = 2

pmin
. Figure 5 illustrates our strategy on

simulated data. Over the range t = 100 to t = 100,000 displayed, our bound is about twice
as wide as the fixed-sample CLT bound, with the ratio growing at a slow O(

√
log t) rate

thereafter. Of course, the fixed-sample CLT bound provides no uniform coverage guarantee.
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FIG. 5. Upper half of 95% empirical-Bernstein confidence sequence for ATEt under Bernoulli randomization
based on one simulated sequence of i.i.d. observations, Pt ≡ 0.5, Yi(0) ∼ Ber(0.5), Yi(1) = ξi ∨ Yi(0) where
ξi ∼ Ber(0.2). Grey line shows estimand ATEt . Dotted line shows fixed-sample confidence bounds based on
difference-in-means estimator and normal approximation; these bounds fail to cover the true ATEt at many times.
Our bound uses Ŷt (k) =∑t−1

i=1 Y obs
i 1Zi=k/

∑t−1
i=1 1Zi=k , α = 0.05 and a gamma-exponential mixture bound with

ρ = 12.6, chosen to optimize for intrinsic time Vt = 100.

4.3. Matrix iterated logarithm bounds. Our second application is the construction of iter-
ated logarithm bounds for random matrix sums and their use in sequential covariance matrix
estimation. The curved uniform bounds given in Section 3 may be applied to matrix mar-
tingales by taking (St ) to be the maximum eigenvalue process of the martingale and (Vt )

the maximum eigenvalue of the corresponding matrix variance process. Howard et al. [25],
Section 2, give sufficient conditions for Definition 1 to hold in this matrix case. Then The-
orem 1 yields a novel matrix finite LIL; here, we give an example for bounded increments.
We denote the space of symmetric, real-valued, d × d matrices by S

d ; γmax(·) denotes the
maximum eigenvalue; �η,s(v) = s log log(ηv/m) + log dζ(s)

α logs η
; and k1(η), k2(η) are defined

in (3.1).

COROLLARY 3. Suppose (Yt )
∞
t=1 is a S

d -valued matrix martingale such that γmax(Yt −
Yt−1) ≤ b a.s. for all t . Let Vt := γmax(

∑t
i=1 Et−1(Yt − Yt−1)

2) and St := γmax(Yt ). Then for
any η > 1, s > 1,m > 0, α ∈ (0,1), we have

(4.6) P

(
∃t ≥ 1 : St ≥ k1(η)

√
(Vt ∨ m)�η,s(Vt ∨ m) + bk2(η)

3
�η,s(Vt ∨ m)

)
≤ α.

The result follows using the polynomial stitched boundary after invoking Fact 1(c) and
Lemma 2 of Howard et al. [25] (cf. [69]), which show that (St ) is sub-gamma with variance
process (Vt ), scale c = b/3, and l0 = d . Beyond bounded increments, the same bound holds
for any sub-gamma process. As evidenced by Proposition 1, this is a very general condition.

Taking η and s arbitrarily close to one and using the final result of Theorem 1, we obtain
the following asymptotic matrix upper LIL, proved in Appendix A.9. Here, we denote the
martingale increments by �Yt := Yt − Yt−1.

COROLLARY 4. Let (Yt )
∞
t=1 be a S

d -valued, square-integrable martingale, and define
Vt = γmax(

∑t
i=1 Ei−1�Y 2

t ). Then

lim sup
t→∞

γmax(Yt )√
2Vt log logVt

≤ 1 a.s. on
{
sup

t
Vt = ∞

}
(4.7)

whenever either (1) the increments (�Yt ) are i.i.d., or (2) the increments (�Yt) satisfy a
Bernstein condition on higher moments: for some c > 0, for all t and all k > 2, Et−1(�Yt )

k �
(k!/2)ck−2

Et−1�Y 2
t .
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FIG. 6. The matrix confidence sequence of Corollary 5 based on one simulated sequence. Observations are
drawn i.i.d. taking values ±(

√
2

√
2)T , ±(1/

√
2 − 1/

√
2)T each with probability 1/4, with covariance matrix

� = 1
4
( 5 3

3 5

)
, which is represented by the ellipse xT �−1x = 1. Confidence ball with level α = 0.05 is represented

by shaded area between ellipses corresponding to elements of the confidence ball with minimal and maximal trace.
Confidence sequence from Corollary 5 uses b = 4 and a discrete mixture boundary with ψ = ψG using c = 2b/3,
mixture density f LIL

1.4 from (A.51) with s = 1.4 matching (3.4), η = 1.1 and λ = 0.262 chosen as described in
Appendix E.

The Bernstein condition holds if the increments are uniformly bounded, γmax(�Yt ) ≤
c for some c > 0. Also, in the i.i.d. case, P(Vt → ∞) = 1 and then (4.7) states that
lim supt→∞ γmax(Yt )/

√
2γmax(E�Y 2

1 )t log log t ≤ 1, a.s. on {supt Vt = ∞}. When d = 1, this
recovers the classical upper LIL, showing that Corollary 4 cannot be improved uniformly, but
we are not aware of an appropriate lower bound for the general matrix case.

We now consider the nonasymptotic sequential estimation of a covariance matrix based
on bounded vector observations [22, 39, 62, 70, 71]. In particular, we observe a sequence
of independent, mean zero, Rd -valued random vectors xt with common covariance matrix
� = Extx

T
t . We wish to estimate � using an operator-norm confidence ball centered at

the empirical covariance matrix �̂t := t−1∑t
i=1 xix

T
i . For fixed-sample estimation, when

‖xi‖2 ≤ √
b a.s. for all i ∈ [t], the analysis of Tropp [70], Section 1.6.3, implies

P

(
‖�̂t − �‖op ≥

√
2b‖�‖op log(2d/α)

t
+ 4b log(2d/α)

3t

)
≤ α.(4.8)

We use a sub-Poisson uniform boundary to obtain a uniform analogue.

COROLLARY 5. Let (xt )
∞
t=1 be a sequence of Rd -valued, independent random vectors

with Ext = 0, ‖xt‖2 ≤ √
b a.s. and Extx

T
t = � for all t . If u is a sub-Poisson uniform bound-

ary with crossing probability α and scale 2b, then

P

(
∃t ≥ 1 : ‖�̂t − �‖op ≥ 1

t
u
(
bt‖�‖op

))≤ α.(4.9)

For example, using the polynomial stitched bound with scale c = 2b/3 and m =
b‖�‖op, Corollary 5 gives a (1 − α)-confidence sequence for � with operator norm radius

O(
√

t−1 log log t). This bound has the closed form

(4.10) P

(
∃t ≥ 1 : ‖�̂t − �‖op ≥ k1

√
b‖�‖op�(t)

t
+ 4bk2�(t)

3t

)
≤ α,

where �(t) = s log log(ηt) + log dζ(s)
α logs η

, and k1, k2 are defined in (3.1).
In other words, with high probability, we have for all t ≥ 1 that

‖�̂t − �‖op �
√

b log(d log t)

t
+ b log(d log t)

t
.(4.11)
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FIG. 7. Summary of 1000 simulations, each with 100,000 i.i.d. observations from the indicated distribution. Top
panels show the proportion of replications in which the 95%-confidence sequence has excluded the true mean
by time t . Bottom panels show the mean confidence interval width. The “three point” distribution takes values
−1.408 and 1 with probability 0.495 each, and takes value 20 with probability 0.01. “Hoeffding” uses a nor-
mal mixture boundary (3.7), while“Beta-Binomial” uses the beta-binomial mixture (Proposition S3). “Pointwise
Bernoulli” uses a nonasymptotic bound based on the Bernoulli KL-divergence, which is valid pointwise but not
uniformly. “Empirical Bernstein” uses the strategy given in Theorem 4 with a gamma-exponential mixture bound-
ary, Proposition S5. “Naive SN” uses a normal mixture boundary with an empirical variance estimate, which
does not guarantee coverage. In all cases, ρ is chosen to optimize for a sample size of t = 500.

Compared to the fixed-sample result (4.8), we obtain uniform control by adding a factor
of log log t . We are not aware of other results like these for sequential covariance matrix
estimation. Figure 6 illustrates the confidence sequence of Corollary 5 on simulated data
using a discrete mixture boundary with the mixture density f LIL

s defined in (A.51).

4.4. One-parameter exponential families. Suppose (Xt) are i.i.d. from an exponential
family in mean parametrization, with sufficient statistic T (X) having mean in some set �.
For each μ ∈ �, we write the density as fμ(x) = h(x) exp{θ(μ)T (x) − A(θ(μ))} where
A′(θ(μ)) = μ. Let ψμ be the cumulant-generating function of T (X1)−μ when ET (X1) = μ,
that is, ψμ(λ) := A(λ + θ(μ)) − A(θ(μ)) − λμ, with ψμ(λ) := ∞ if the RHS does not ex-
ist. Writing St (μ) :=∑t

i=1 T (Xi) − tμ, the process exp{λSt (μ) − tψμ(λ)} is the likelihood
ratio testing H0 : θ = θ(μ) against H1 : θ = θ(μ) + λ, and if we use a method-of-mixtures
uniform boundary, the resulting confidence sequence will be dual to a family of mixture se-
quential probability ratio tests, as discussed in Section 6. To obtain a two-sided confidence
sequence, we use the “reversed” CGF ψ̃μ(λ) = ψμ(−λ). We summarize these observations
as follows; see Lai [41], Theorem 1, for a related result.

COROLLARY 6. Suppose, for each μ ∈ �, uμ is a sub-ψμ uniform bound with crossing
probability α1, and ũμ is a sub-ψ̃μ uniform bound with crossing probability α2. Defining

CIt := {
μ ∈ � : −ũμ(t) < St (μ) < uμ(t)

}
,(4.12)

we have P(∀t ≥ 1 : ET (X1) ∈ CIt ) ≥ 1 − α1 − α2.
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5. Simulations. In1 Figure 7, we illustrate the error control of some of our confidence
sequences for estimating the mean of an i.i.d. sequence of observations (Xi) with bounded
support [a, b]. We compare four strategies:

1. The Hoeffding strategy exploits the fact that bounded observations are sub-Gaussian
([24]; cf. [25], Lemma 3(c)). We use a two-sided normal mixture boundary (3.7) with variance
process Vt = (b − a)2t/4.

2. The beta-binomial strategy uses the stronger condition that bounded observations are
sub-Bernoulli ([24]; cf. [25], Fact 1(b)), accounting for the true mean as well as the bounded-
ness, but possibly failing to take account of the true variance. For hypothesized true mean
μ, this strategy uses the beta-binomial mixture boundary given in Proposition S3, with
parameters g(μ) = μ − a and h(μ) = b − μ, and variance process Vt(μ) = g(μ)h(μ)t .
The confidence set for the mean is {μ ∈ [a, b] : −fg(μ),h(μ)(Vt (μ)) ≤ ∑t

i=1 Xi − tμ ≤
fh(μ),g(μ)(Vt (mu))}. This is more efficiently computed using the mixture supermartingale
m(St ,Vt ) of (A.23), as {μ ∈ [a, b] : m(

∑t
i=1 Xi − tμ,Vt (μ)) < 1/α}.

3. The pointwise Bernoulli strategy uses the same sub-Bernoulli condition as the beta-
binomial strategy, but relies on a fixed-sample Cramér–Chernoff bound which is valid point-
wise but not uniformly over time. Specifically, we reject mean μ if Vtψ

�
B(St/Vt ) ≥ logα−1,

where St is the sum of centered observations as usual, Vt = (μ − a)(b − μ)t , and we set
g = μ − a,h = b − μ in ψB , with ψ�

B its Legendre–Fenchel transform.
4. The empirical-Bernstein strategy uses an empirical estimate of variance, thus achieving

a confidence width scaling with the true variance in all three cases. Here, we use Theorem 4
with a gamma-exponential mixture boundary (supplement Proposition S5). For predictions,
we use the mean of past observations: X̂t = (t − 1)−1∑t−1

i=1 Xi .
5. The naive self-normalized (“Naive SN”) strategy plugs the empirical variance estimate,

the sum of squared prediction errors from Theorem 4, into the two-sided normal mixture
(3.7). It ignores the facts that the observations are not sub-Gaussian with respect to their true
variance and that the variance is estimated. This strategy is similar to that of Johari et al. [34]
and does not guarantee coverage. Though it will sometimes control false positives, coverage
rates can easily be inflated for asymmetric, heavy-tailed distributions, as we illustrate.

We present three cases of bounded distributions. The first case is the easiest, with Ber(0.5)

observations. Here, the sub-Gaussian variance parameter based on the boundedness of the
observations is equal to the true variance, so the Hoeffding strategy performs well. The
empirical-Bernstein strategy is only a little wider, and all four successfully control false
positives. The story changes with the more difficult Ber(0.01) distribution, however. The
Hoeffding boundary is far too wide, since it fails to make use of information about the true
variance. The beta-binomial bound uses information about variance provided by the first mo-
ment to achieve the correct scaling. The naive self-normalized strategy, on the other hand,
yields confidence intervals that are too small and fail to control false positive rate. The em-
pirical Bernstein strategy, though only slightly wider than the naive bound for large sample
sizes, gives just enough extra width to control the false positive rate and is nearly as narrow as
the beta-binomial bound. The final, three-point distribution takes values −1.408 and 1 with
probability 0.495 each, and takes value 20 with probability 0.01. Here, the beta-binomial
strategy yields confidence intervals that are too wide. In this most difficult case, only the
empirical Bernstein strategy yields tight intervals while controlling false positive rates.

1The repository https://github.com/gostevehoward/cspaper contains code to reproduce all simulations and plots
in this paper. Uniform boundaries themselves are implemented in R and Python packages at https://github.com/
gostevehoward/confseq.

https://github.com/gostevehoward/cspaper
https://github.com/gostevehoward/confseq
https://github.com/gostevehoward/confseq
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6. Implications for sequential hypothesis testing. We have organized our presentation
around confidence sequences and closely related uniform concentration bounds due to our
belief that they offer a useful “user interface” for sequential inference. However, our methods
also yield always-valid p-values [35] for sequential tests. Indeed, a slew of related definitions
from the literature are equivalent or “dual” to one another. Here, we briefly discuss these
connections. The following result, proved in Appendix C.4, gives equivalent formulations of
common definitions in sequential testing.

LEMMA 3. Let (At )
∞
t=1 be an adapted sequence of events in some filtered probability

space and let A∞ := lim supt→∞ At . The following are equivalent:

(a) P(
⋃∞

t=1 At) ≤ α.
(b) P(AT ) ≤ α for all random (not necessarily stopping) times T .
(c) P(Aτ ) ≤ α for all stopping times τ , possibly infinite.

Our definition of confidence sequences (1.1), based on Darling and Robbins [12] and Lai
[43], differs from that Johari, Pekelis and Walsh [35], who require that P(θτ ∈ CIτ ) ≥ 1 − α

for all stopping times τ . They allow τ = ∞ by defining CI∞ := lim inft→∞ CIt . By taking
At := {θt /∈ CIt } in Lemma 3, we see that the distinction is immaterial, and furthermore, that
we could equivalently define confidence sequences in terms of arbitrary random times, not
necessarily stopping times. This generalizes Proposition 1 of Zhao et al. [77].

Always-valid p-values and tests of power one. As an alternative to confidence sequences,
Johari, Pekelis and Walsh [35] define an always-valid p-value process for some null hy-
pothesis H0 as an adapted, [0,1]-valued sequence (pt )

∞
t=1 satisfying P0(pτ ≤ α) ≤ α for all

stopping times τ , where P0 denotes probability under the null H0. Taking At := {pt ≤ α} in
Lemma 3 shows that we may replace this definition with an equivalent one over all random
times, not necessarily stopping times, or with the uniform condition P0(∃t ∈ N : pt ≤ α) ≤ α.
By analogy to the usual dual construction between fixed-sample p-values and confidence in-
tervals, one can see that confidence sequences are dual to always-valid p-values, and both
are dual to sequential tests, as defined by a stopping time and a binary random variable in-
dicating rejection [35], Proposition 5. In particular, for the null H0 : θ = θ�, if (CIt ) is a
(1 − α)-confidence sequence for θ , it is clear that a test which stops and rejects the null as
soon as θ� /∈ CIt controls type I error: P0(reject H0) = P0(∃t ∈ N : θ� /∈ CIt ) ≤ α. Typically,
then a confidence sequence based on any of the curved uniform bounds in this paper, with
radius u(v) = o(v), will yield a test of power one [13, 55]. In particular, for a confidence
sequence with limits X̄t ± u(Vt ), it is sufficient that X̄t

a.s.→ θ and lim supt→∞ Vt/t < ∞ a.s.,
conditions that usually hold. These conditions imply that the radius of the confidence se-
quence, u(Vt )/t , approaches zero, while the center X̄t is eventually bounded away from θ�

whenever θ �= θ�, so that the confidence sequence eventually excludes θ� with probability
one.

In the one-parameter exponential family case considered in Section 4.4, as noted above, the
exponential process exp{λSt (μ) − tψμ(t)} is exactly the likelihood ratio for testing H0 : θ =
θ(μ) against H1 : θ = θ(μ)+λ. From the definitions (4.12) and (2), we see that, when using a
mixture uniform boundary, a sequential test which rejects as soon as the confidence sequence
of Corollary 6 excludes μ� can be seen as equivalently rejecting as soon as either of the
mixture likelihood ratios

∫
exp{λSt −ψμ�(λ)t}dF(λ) or

∫
exp{−λSt −ψμ�(−λ)t}dF(λ) ex-

ceeds 2/α. Thus a sequential hypothesis test built upon a mixture-based confidence sequence
is equivalent to a mixture sequential probability ratio test [55] in the parametric setting. As
discussed in Appendix A.6, stitching can be viewed as an approximation to certain mixture
bounds, so that hypothesis tests based on stitched bounds are also approximations to mixture
SPRTs. Importantly, our confidence sequences are natural nonparametric generalizations of
the mixture SPRT, recovering various mixture SPRTs in the parametric settings.
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Pros and cons of the running intersection. Our definition (1.1) of a confidence sequence
allows for the parameter θt to vary with t . It is common in the literature on sequential testing
to assume a single, stationary parameter, θt ≡ θ , but this assumption has a troublesome con-
sequence in the context of confidence sequences. If the confidence sequence (CIt ) satisfies
P(∀t : θ ∈ CIt ) ≥ 1 −α, then the running intersection C̃It :=⋂

s≤t CIt is also uniformly valid
for θ , is never larger and may be much smaller. This was observed by Darling and Robbins
[13], and is used in the implementation of Johari et al. [34], for example. (In the language of
sequential testing, if (pt )

∞
t=1 is an always-valid p-value process, then so is (mins≤t ps)

∞
t=1.)

However, the intersected intervals C̃It may become empty at some point. This is particu-
larly likely if the underlying parameter is drifting over time, contrary to the assumption of
stationarity or identically distributed observations, and such a drift would be the likely inter-
pretation of this event in practice. In this nonstationary case, the nonintersected sequence is
the more sensible one to use. The solution of Johari et al. [34] is to “reset” the experiment,
discarding data accumulated up to that point, on the rationale that such an event indicates that
previous data are no longer relevant to estimation of the current parameter of interest. How-
ever, this means that our confidence sequence can go from a very high precision estimate at
some time t to knowing almost nothing at time t + 1, which is difficult for an experimenter to
interpret and could lead to misleading inference just before the reset. Jennison and Turnbull
[32] make a case for the nonintersected intervals on slightly different grounds, arguing that
estimation at time t ought to be a function of the sufficient statistic at that time. Shifting to
the potential outcomes model in Section 4.2 neatly avoids this issue: because the estimand
is changing at each time, the nonintersected intervals are the only reasonable choice for esti-
mating ATEt and no conceptual difficulty remains.

7. Summary and future work. We have discussed four techniques for deriving curved
uniform boundaries, each improving upon past work, with careful attention paid to constants
and to practical issues. By building upon the general framework of Howard et al. [25], we
have emphasized the nonparametric applicability of our boundaries. A leading example of
the utility of this approach is the general empirical Bernstein bound, with an application to
sequential causal inference, and we have also shown how our framework immediately yields
novel results for matrix martingales.

7.1. Other related work. We introduced the method of mixtures and the epoch-based
analyses in Section 1.1. Two other methods of extending the SPRT deserve mention, though
they are distinct from our approaches. First, the approach of Robbins and Siegmund [59,
60] examines

∏
i fλ̂i−1

(Xi)/f0(Xi) where λ̂i−1 is a “nonanticipating” estimate based on
X1, . . . ,Xi−1. This is similar to a generalized likelihood ratio but modified to retain the
martingale property (cf. Wald [74], Section 10.5, [48]). Second, the sequential generalized
likelihood ratio approach examines supλ

∏
i fλ(Xi)/f0(Xi), which is not a martingale under

the null [40, 44, 66].
The concept of test (super)martingales expounded by Shafer et al. [63] is related to our

methods for conducting inference based on Ville’s inequality applied to nonnegative super-
martingales. Their main example is the Beta mixture for i.i.d. Bernoulli observations, an
example which originated with Ville [72] and discussed by Robbins [55] and Lai [41]. A re-
cent “safe testing” framework of Grünwald, de Heide and Koolen [23] is also tightly related.
In terms of these frameworks, our work can be viewed as constructing “safe confidence in-
tervals” (and thus safe tests) using nonparametric test supermartingales.

A very different approach is that of group sequential methods [33, 47, 52, 53]. These meth-
ods rely on either exact discrete distributions or asymptotics to assume exact normality of
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group increments, either of which permits computation of sequential boundaries via numeri-
cal integration. The resulting confidence sequences are tighter than ours, but lack nonasymp-
totic guarantees or closed-form results and do not support continuous monitoring.

A related problem is that of terminal confidence intervals, in which one assumes a rigid
stopping rule and wishes to construct a confidence interval upon termination. Siegmund [64]
gave an analytical treatment of the problem; numerical methods are also available for group
sequential tests [33], Section 8.5. However, the idea of a rigid stopping rule is often restrictive.

7.2. Future work. We discuss in Appendix I how our work may be extended to mar-
tingales in smooth Banach spaces and real-valued, continuous-time martingales. It may be
fruitful to explore applications in those areas.

Our consideration of optimality has been limited to the discussion in Section 3.6. It
would be valuable to further explore various optimality properties for nonasymptotic uniform
bounds. For example, it is standard in sequential testing to compute the expected sample size
to reject a null under parametric alternatives. Though we target less restrictive assumptions,
it may be instructive to compute bounds in special cases. Second, a natural counterpoint to
our uniform concentration bounds would be a set of uniform anticoncentration bounds. This
would yield a nonasymptotic extension of the “lim inf” half of the classical LIL. Balsub-
ramani [5], Theorem 3, gives one such interesting result. Last, in practice, one will rarely
require updated inference after every observation, and may be content to take observations
in groups. Further, one may be satisfied with a finite time horizon [21]. This is the domain
in which group-sequential methods shine, but SPRT-based methods can be made competitive
by estimating the “overshoot” of the stopped supermartingale [45, 46, 65, 75]. It would be
interesting to understand whether such improvements work out in nonparametric settings.
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SUPPLEMENTARY MATERIAL

Supplement to “Time-uniform, nonparametric, nonasymptotic confidence se-
quences” (DOI: 10.1214/20-AOS1991SUPP; .pdf). Proofs, additional figures, implemen-
tation details, and extension to smooth Banach spaces and continuous-time processes.

REFERENCES

[1] ARMITAGE, P., MCPHERSON, C. K. and ROWE, B. C. (1969). Repeated significance tests on accumulating
data. J. Roy. Statist. Soc. Ser. A 132 235–244. MR0250405 https://doi.org/10.2307/2343787

[2] ARONOW, P. M. and MIDDLETON, J. A. (2013). A class of unbiased estimators of the average treatment
effect in randomized experiments. J. Causal Inference 1 135–154.

[3] AUDIBERT, J.-Y., MUNOS, R. and SZEPESVÁRI, C. (2009). Exploration-exploitation tradeoff using
variance estimates in multi-armed bandits. Theoret. Comput. Sci. 410 1876–1902. MR2514714
https://doi.org/10.1016/j.tcs.2009.01.016

[4] AZUMA, K. (1967). Weighted sums of certain dependent random variables. Tohoku Math. J. (2) 19 357–367.
MR0221571 https://doi.org/10.2748/tmj/1178243286

[5] BALSUBRAMANI, A. (2014). Sharp finite-time iterated-logarithm martingale concentration.
arXiv:1405.2639.

https://doi.org/10.1214/20-AOS1991SUPP
http://www.ams.org/mathscinet-getitem?mr=0250405
https://doi.org/10.2307/2343787
http://www.ams.org/mathscinet-getitem?mr=2514714
https://doi.org/10.1016/j.tcs.2009.01.016
http://www.ams.org/mathscinet-getitem?mr=0221571
https://doi.org/10.2748/tmj/1178243286
http://arxiv.org/abs/arXiv:1405.2639


1078 HOWARD, RAMDAS, MCAULIFFE AND SEKHON

[6] BALSUBRAMANI, A. and RAMDAS, A. (2016). Sequential nonparametric testing with the law of the iterated
logarithm. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence.
UAI’16 42–51. AUAI Press.

[7] BERCU, B., DELYON, B. and RIO, E. (2015). Concentration Inequalities for Sums and Mar-
tingales. SpringerBriefs in Mathematics. Springer, Cham. MR3363542 https://doi.org/10.1007/
978-3-319-22099-4

[8] BERMAN, R., PEKELIS, L., SCOTT, A. and VAN DEN BULTE, C. (2018). p-hacking and false discovery in
A/B testing. Technical Report No. 3204791. SSRN.

[9] BOUCHERON, S., LUGOSI, G. and MASSART, P. (2013). Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford Univ. Press, Oxford. With a foreword by Michel Ledoux. MR3185193
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001

[10] CHERNOFF, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Ann. Math. Stat. 23 493–507. MR0057518 https://doi.org/10.1214/aoms/1177729330

[11] CRAMÉR, H. (1938). Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Scientifiques
736.

[12] DARLING, D. A. and ROBBINS, H. (1967). Confidence sequences for mean, variance, and median. Proc.
Natl. Acad. Sci. USA 58 66–68. MR0215406 https://doi.org/10.1073/pnas.58.1.66

[13] DARLING, D. A. and ROBBINS, H. (1967). Iterated logarithm inequalities. Proc. Natl. Acad. Sci. USA 57
1188–1192. MR0211441 https://doi.org/10.1073/pnas.57.5.1188

[14] DARLING, D. A. and ROBBINS, H. (1968). Some further remarks on inequalities for sample sums. Proc.
Natl. Acad. Sci. USA 60 1175–1182. MR0235604 https://doi.org/10.1073/pnas.60.4.1175

[15] DE LA PEÑA, V. H., KLASS, M. J. and LAI, T. L. (2004). Self-normalized processes: Exponential in-
equalities, moment bounds and iterated logarithm laws. Ann. Probab. 32 1902–1933. MR2073181
https://doi.org/10.1214/009117904000000397

[16] DE LA PEÑA, V. H., KLASS, M. J. and LAI, T. L. (2007). Pseudo-maximization and self-normalized
processes. Probab. Surv. 4 172–192. MR2368950 https://doi.org/10.1214/07-PS119

[17] DE LA PEÑA, V. H., KLASS, M. J. and LAI, T. L. (2009). Theory and applications of multivariate self-
normalized processes. Stochastic Process. Appl. 119 4210–4227. MR2565565 https://doi.org/10.1016/
j.spa.2009.10.003

[18] DE LA PEÑA, V. H., LAI, T. L. and SHAO, Q.-M. (2009). Self-Normalized Processes: Limit Theory and
Statistical Applications. Probability and Its Applications (New York). Springer, Berlin. MR2488094
https://doi.org/10.1007/978-3-540-85636-8

[19] EFRON, B. (1971). Forcing a sequential experiment to be balanced. Biometrika 58 403–417. MR0312660
https://doi.org/10.1093/biomet/58.3.403

[20] GARIVIER, A. (2013). Informational confidence bounds for self-normalized averages and applications. In
2013 IEEE Information Theory Workshop (ITW) 1–5. IEEE.

[21] GARIVIER, A. and LEONARDI, F. (2011). Context tree selection: A unifying view. Stochastic Process.
Appl. 121 2488–2506. MR2832411 https://doi.org/10.1016/j.spa.2011.06.012

[22] GITTENS, A. and TROPP, J. A. (2011). Tail bounds for all eigenvalues of a sum of random matrices. ACM
Report 2014-02, Caltech.

[23] GRÜNWALD, P., DE HEIDE, R. and KOOLEN, W. (2019). Safe testing. arXiv:1906.07801.
[24] HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist.

Assoc. 58 13–30. MR0144363
[25] HOWARD, S. R., RAMDAS, A., MCAULIFFE, J. and SEKHON, J. (2020). Time-uniform Chernoff bounds

via nonnegative supermartingales. Probab. Surv. 17 257–317. MR4100718 https://doi.org/10.1214/
18-PS321

[26] HOWARD, S. R., RAMDAS, A., MCAULIFFE, J. and SEKHON, J. (2021). Supplement to “Time-uniform,
nonparametric, nonasymptotic confidence sequences.” https://doi.org/10.1214/20-AOS1991SUPP

[27] IMBENS, G. W. and RUBIN, D. B. (2015). Causal Inference—for Statistics, Social, and Biomedical
Sciences: An Introduction. Cambridge Univ. Press, New York. MR3309951 https://doi.org/10.1017/
CBO9781139025751

[28] JAMIESON, K. and JAIN, L. (2018). A bandit approach to multiple testing with false discovery control. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems 3664–
3674.

[29] JAMIESON, K., MALLOY, M., NOWAK, R. and BUBECK, S. (2014). lil’ UCB: An optimal exploration
algorithm for multi-armed bandits. In Proceedings of the 27th Conference on Learning Theory 35
423–439.

[30] JAMIESON, K. and NOWAK, R. (2014). Best-arm identification algorithms for multi-armed bandits in the
fixed confidence setting. In 48th Annual Conference on Information Sciences and Systems (CISS) 1–6.

http://www.ams.org/mathscinet-getitem?mr=3363542
https://doi.org/10.1007/978-3-319-22099-4
http://www.ams.org/mathscinet-getitem?mr=3185193
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
http://www.ams.org/mathscinet-getitem?mr=0057518
https://doi.org/10.1214/aoms/1177729330
http://www.ams.org/mathscinet-getitem?mr=0215406
https://doi.org/10.1073/pnas.58.1.66
http://www.ams.org/mathscinet-getitem?mr=0211441
https://doi.org/10.1073/pnas.57.5.1188
http://www.ams.org/mathscinet-getitem?mr=0235604
https://doi.org/10.1073/pnas.60.4.1175
http://www.ams.org/mathscinet-getitem?mr=2073181
https://doi.org/10.1214/009117904000000397
http://www.ams.org/mathscinet-getitem?mr=2368950
https://doi.org/10.1214/07-PS119
http://www.ams.org/mathscinet-getitem?mr=2565565
https://doi.org/10.1016/j.spa.2009.10.003
http://www.ams.org/mathscinet-getitem?mr=2488094
https://doi.org/10.1007/978-3-540-85636-8
http://www.ams.org/mathscinet-getitem?mr=0312660
https://doi.org/10.1093/biomet/58.3.403
http://www.ams.org/mathscinet-getitem?mr=2832411
https://doi.org/10.1016/j.spa.2011.06.012
http://arxiv.org/abs/arXiv:1906.07801
http://www.ams.org/mathscinet-getitem?mr=0144363
http://www.ams.org/mathscinet-getitem?mr=4100718
https://doi.org/10.1214/18-PS321
https://doi.org/10.1214/20-AOS1991SUPP
http://www.ams.org/mathscinet-getitem?mr=3309951
https://doi.org/10.1017/CBO9781139025751
https://doi.org/10.1007/978-3-319-22099-4
https://doi.org/10.1016/j.spa.2009.10.003
https://doi.org/10.1214/18-PS321
https://doi.org/10.1017/CBO9781139025751


NONPARAMETRIC CONFIDENCE SEQUENCES 1079

[31] JENNISON, C. and TURNBULL, B. W. (1984). Repeated confidence intervals for group sequential clinical
trials. Control. Clin. Trials 5 33–45.

[32] JENNISON, C. and TURNBULL, B. W. (1989). Interim analyses: The repeated confidence interval approach.
J. Roy. Statist. Soc. Ser. B 51 305–361. With discussion and a reply by the authors. MR1017201

[33] JENNISON, C. and TURNBULL, B. W. (2000). Group Sequential Methods with Applications to Clinical
Trials. CRC Press/CRC, Boca Raton, FL. MR1710781

[34] JOHARI, R., KOOMEN, P., PEKELIS, L. and WALSH, D. (2017). Peeking at A/B tests: Why it matters, and
what to do about it. 1517–1525. ACM Press.

[35] JOHARI, R., PEKELIS, L. and WALSH, D. J. (2015). Always valid inference: Bringing sequential analysis
to A/B testing. arXiv preprint arXiv:1512.04922.

[36] JØRGENSEN, B. (1997). The Theory of Dispersion Models. Monographs on Statistics and Applied Proba-
bility 76. CRC Press, London. MR1462891

[37] KAUFMANN, E., CAPPÉ, O. and GARIVIER, A. (2016). On the complexity of best-arm identification in
multi-armed bandit models. J. Mach. Learn. Res. 17 Paper No. 1, 42. MR3482921

[38] KAUFMANN, E. and KOOLEN, W. (2018). Mixture martingales revisited with applications to sequential
tests and confidence intervals. arXiv:1811.11419.

[39] KOLTCHINSKII, V. and LOUNICI, K. (2017). Concentration inequalities and moment bounds for sample
covariance operators. Bernoulli 23 110–133. MR3556768 https://doi.org/10.3150/15-BEJ730

[40] KULLDORFF, M., DAVIS, R. L., KOLCZAK, M., LEWIS, E., LIEU, T. and PLATT, R. (2011). A maximized
sequential probability ratio test for drug and vaccine safety surveillance. Sequential Anal. 30 58–78.
MR2770706 https://doi.org/10.1080/07474946.2011.539924

[41] LAI, T. L. (1976). On confidence sequences. Ann. Statist. 4 265–280. MR0395103
[42] LAI, T. L. (1976). Boundary crossing probabilities for sample sums and confidence sequences. Ann. Probab.

4 299–312. MR0405578 https://doi.org/10.1214/aop/1176996135
[43] LAI, T. L. (1984). Incorporating scientific, ethical and economic considerations into the design of clinical

trials in the pharmaceutical industry: A sequential approach. Comm. Statist. Theory Methods 13 2355–
2368.

[44] LAI, T. L. (1997). On optimal stopping problems in sequential hypothesis testing. Statist. Sinica 7 33–51.
MR1441143

[45] LAI, T. L. and SIEGMUND, D. (1977). A nonlinear renewal theory with applications to sequential analysis.
I. Ann. Statist. 5 946–954. MR0445599

[46] LAI, T. L. and SIEGMUND, D. (1979). A nonlinear renewal theory with applications to sequential analysis.
II. Ann. Statist. 7 60–76. MR0515684

[47] LAN, K. K. G. and DEMETS, D. L. (1983). Discrete sequential boundaries for clinical trials. Biometrika
70 659–663. MR0725380 https://doi.org/10.2307/2336502

[48] LORDEN, G. and POLLAK, M. (2005). Nonanticipating estimation applied to sequential analy-
sis and changepoint detection. Ann. Statist. 33 1422–1454. MR2195641 https://doi.org/10.1214/
009053605000000183

[49] MALEK, A., KATARIYA, S., CHOW, Y. and GHAVAMZADEH, M. (2017). Sequential multiple hypothesis
testing with type I error control. In Artificial Intelligence and Statistics 1468–1476.

[50] MAURER, A. and PONTIL, M. (2009). Empirical Bernstein bounds and sample variance penalization. In
Proceedings of the Conference on Learning Theory.

[51] MCDIARMID, C. (1998). Concentration. In Probabilistic Methods for Algorithmic Discrete Mathe-
matics. Algorithms Combin. 16 195–248. Springer, Berlin. MR1678578 https://doi.org/10.1007/
978-3-662-12788-9_6

[52] O’BRIEN, P. C. and FLEMING, T. R. (1979). A multiple testing procedure for clinical trials. Biometrics 35
549–556.

[53] POCOCK, S. J. (1977). Group sequential methods in the design and analysis of clinical trials. Biometrika 64
191–199.

[54] RAGINSKY, M., SASON, I. et al. (2013). Concentration of measure inequalities in information theory, com-
munications, and coding. Found. Trends Commun. Inf. Theory 10 1–246.

[55] ROBBINS, H. (1970). Statistical methods related to the law of the iterated logarithm. Ann. Math. Stat. 41
1397–1409. MR0277063 https://doi.org/10.1214/aoms/1177696786

[56] ROBBINS, H. and SIEGMUND, D. (1968). Iterated logarithm inequalities and related statistical procedures.
In Mathematics of the Decision Sciences, Part 2 (Seminar, Stanford Calif., 1967) 267–279. Amer.
Math. Soc., Providence, RI. MR0251777

[57] ROBBINS, H. and SIEGMUND, D. (1969). Probability distributions related to the law of the iterated loga-
rithm. Proc. Natl. Acad. Sci. USA 62 11–13. MR0242228 https://doi.org/10.1073/pnas.62.1.11

[58] ROBBINS, H. and SIEGMUND, D. (1970). Boundary crossing probabilities for the Wiener process and
sample sums. Ann. Math. Stat. 41 1410–1429. MR0277059 https://doi.org/10.1214/aoms/1177696787

http://www.ams.org/mathscinet-getitem?mr=1017201
http://www.ams.org/mathscinet-getitem?mr=1710781
http://arxiv.org/abs/arXiv:1512.04922
http://www.ams.org/mathscinet-getitem?mr=1462891
http://www.ams.org/mathscinet-getitem?mr=3482921
http://arxiv.org/abs/arXiv:1811.11419
http://www.ams.org/mathscinet-getitem?mr=3556768
https://doi.org/10.3150/15-BEJ730
http://www.ams.org/mathscinet-getitem?mr=2770706
https://doi.org/10.1080/07474946.2011.539924
http://www.ams.org/mathscinet-getitem?mr=0395103
http://www.ams.org/mathscinet-getitem?mr=0405578
https://doi.org/10.1214/aop/1176996135
http://www.ams.org/mathscinet-getitem?mr=1441143
http://www.ams.org/mathscinet-getitem?mr=0445599
http://www.ams.org/mathscinet-getitem?mr=0515684
http://www.ams.org/mathscinet-getitem?mr=0725380
https://doi.org/10.2307/2336502
http://www.ams.org/mathscinet-getitem?mr=2195641
https://doi.org/10.1214/009053605000000183
http://www.ams.org/mathscinet-getitem?mr=1678578
https://doi.org/10.1007/978-3-662-12788-9_6
http://www.ams.org/mathscinet-getitem?mr=0277063
https://doi.org/10.1214/aoms/1177696786
http://www.ams.org/mathscinet-getitem?mr=0251777
http://www.ams.org/mathscinet-getitem?mr=0242228
https://doi.org/10.1073/pnas.62.1.11
http://www.ams.org/mathscinet-getitem?mr=0277059
https://doi.org/10.1214/aoms/1177696787
https://doi.org/10.1214/009053605000000183
https://doi.org/10.1007/978-3-662-12788-9_6


1080 HOWARD, RAMDAS, MCAULIFFE AND SEKHON

[59] ROBBINS, H. and SIEGMUND, D. (1972). A class of stopping rules for testing parametric hypotheses.
In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ.
California, Berkeley, Calif., 1970/1971), Vol. IV: Biology and Health 37–41. MR0403111

[60] ROBBINS, H. and SIEGMUND, D. (1974). The expected sample size of some tests of power one. Ann. Statist.
2 415–436. MR0448750

[61] RUBIN, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. J.
Educ. Psychol. 66 688.

[62] RUDELSON, M. (1999). Random vectors in the isotropic position. J. Funct. Anal. 164 60–72. MR1694526
https://doi.org/10.1006/jfan.1998.3384

[63] SHAFER, G., SHEN, A., VERESHCHAGIN, N. and VOVK, V. (2011). Test martingales, Bayes factors and
p-values. Statist. Sci. 26 84–101. MR2849911 https://doi.org/10.1214/10-STS347

[64] SIEGMUND, D. (1978). Estimation following sequential tests. Biometrika 65 341–349. MR0513934
https://doi.org/10.2307/2335213

[65] SIEGMUND, D. (1985). Sequential Analysis: Tests and Confidence Intervals. Springer Series in Statistics.
Springer, New York. MR0799155 https://doi.org/10.1007/978-1-4757-1862-1

[66] SIEGMUND, D. and GREGORY, P. (1980). A sequential clinical trial for testing p1 = p2. Ann. Statist. 8
1219–1228. MR0594639

[67] SPLAWA-NEYMAN, J. (1990). On the application of probability theory to agricultural experiments. Es-
say on principles. Section 9. Statist. Sci. 5 465–472. Translated from the Polish and edited by D. M.
Dabrowska and T. P. Speed. MR1092986

[68] STOUT, W. F. (1970). The Hartman–Wintner law of the iterated logarithm for martingales. Ann. Math. Stat.
41 2158–2160.

[69] TROPP, J. A. (2011). Freedman’s inequality for matrix martingales. Electron. Commun. Probab. 16 262–
270. MR2802042 https://doi.org/10.1214/ECP.v16-1624

[70] TROPP, J. A. (2015). An introduction to matrix concentration inequalities. Found. Trends Mach. Learn. 8
1–230.

[71] VERSHYNIN, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Compressed
Sensing 210–268. Cambridge Univ. Press, Cambridge. MR2963170

[72] VILLE, J. (1939). Étude Critique de la Notion de Collectif. NUMDAM. MR3533075
[73] WALD, A. (1945). Sequential tests of statistical hypotheses. Ann. Math. Stat. 16 117–186. MR0013275

https://doi.org/10.1214/aoms/1177731118
[74] WALD, A. (1947). Sequential Analysis. Wiley, New York. MR0020764
[75] WHITEHEAD, J. and STRATTON, I. (1983). Group sequential clinical trials with triangular continuation

regions. Biometrics 39 227–236. MR0712749 https://doi.org/10.2307/2530822
[76] YANG, F., RAMDAS, A., JAMIESON, K. G. and WAINWRIGHT, M. J. (2017). A framework for Multi-

A(rmed)/B(andit) testing with online FDR control. In 31st Conference on Neural Information Pro-
cessing Systems.

[77] ZHAO, S., ZHOU, E., SABHARWAL, A. and ERMON, S. (2016). Adaptive concentration inequalities for
sequential decision problems. In 30th Conference on Neural Information Processing Systems.

http://www.ams.org/mathscinet-getitem?mr=0403111
http://www.ams.org/mathscinet-getitem?mr=0448750
http://www.ams.org/mathscinet-getitem?mr=1694526
https://doi.org/10.1006/jfan.1998.3384
http://www.ams.org/mathscinet-getitem?mr=2849911
https://doi.org/10.1214/10-STS347
http://www.ams.org/mathscinet-getitem?mr=0513934
https://doi.org/10.2307/2335213
http://www.ams.org/mathscinet-getitem?mr=0799155
https://doi.org/10.1007/978-1-4757-1862-1
http://www.ams.org/mathscinet-getitem?mr=0594639
http://www.ams.org/mathscinet-getitem?mr=1092986
http://www.ams.org/mathscinet-getitem?mr=2802042
https://doi.org/10.1214/ECP.v16-1624
http://www.ams.org/mathscinet-getitem?mr=2963170
http://www.ams.org/mathscinet-getitem?mr=3533075
http://www.ams.org/mathscinet-getitem?mr=0013275
https://doi.org/10.1214/aoms/1177731118
http://www.ams.org/mathscinet-getitem?mr=0020764
http://www.ams.org/mathscinet-getitem?mr=0712749
https://doi.org/10.2307/2530822

	Introduction
	Related work
	Outline

	Preliminaries: Linear boundaries
	Curved uniform boundaries
	Closed-form boundaries via stitching
	Conjugate mixture boundaries
	Numerical bounds using discrete mixtures
	Inverted stitching for arbitrary boundaries
	Tuning boundaries in practice
	Unimprovability of uniform boundaries

	Applications
	An empirical-Bernstein conﬁdence sequence
	Estimating ATE in the Neyman-Rubin model
	Matrix iterated logarithm bounds
	One-parameter exponential families

	Simulations
	Implications for sequential hypothesis testing
	Always-valid p-values and tests of power one
	Pros and cons of the running intersection

	Summary and future work
	Other related work
	Future work

	Acknowledgments
	Supplementary Material
	References

