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Abstract—We propose and analyze a low-complexity channel
estimator for a multiuser multicarrier code division multiple ac-
cess (MC-CDMA) downlink in a time-variant frequency-selective
channel. MC-CDMA is based on orthogonal frequency division
multiplexing (OFDM). The time-variant channel is estimated
individually for every flat-fading subcarrier, assuming small
intercarrier interference. The temporal variation of every subcar-
rier over the duration of a data block is upper bounded by the
Doppler bandwidth determined by the maximum velocity of the
users. Slepian showed that time-limited snapshots of bandlimited
sequences span a low-dimensional subspace. This subspace is
also spanned by discrete prolate spheroidal (DPS) sequences. We
expand the time-variant subcarrier coefficients in terms of orthog-
onal DPS sequences we call Slepian basis expansion. This enables
a time-variant channel description that avoids the frequency
leakage effect of the Fourier basis expansion. The square bias of
the Slepian basis expansion per subcarrier is three magnitudes
smaller than the square bias of the Fourier basis expansion. We
show simulation results for a fully loaded MC-CDMA downlink
with classic linear minimum mean square error multiuser de-
tection. The users are moving with 19.4 m/s. Using the Slepian
basis expansion channel estimator and a pilot ratio of only 2%,
we achieve a bit error rate performance as with perfect channel
knowledge.

Index Terms—Discrete prolate spheroidal sequence,
MC-CDMA, OFDM, Slepian basis expansion, time-variant
channel estimation.

I. INTRODUCTION

THIS paper describes a solution for the problem of channel
estimation in a wireless communication system based on

multicarrier (MC) code division multiple access (CDMA) when
users are moving at vehicular speed. MC-CDMA is based on or-
thogonal frequency division multiplexing (OFDM), and the data
symbols are spread by a user specific spreading sequence that is
applied in the frequency domain. The transmission scheme is
block oriented. A block consists of OFDM data symbols with
interleaved OFDM pilot symbols to allow pilot-based estima-
tion of the time-variant channel.
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OFDM transforms the time-variant frequency-selective
channel into a set of time-variant frequency-flat subcarriers.
We deal with time-variant channels that vary significantly over
the duration of a long block of OFDM symbols. Each OFDM
symbol is preceded by a cyclic prefix to avoid intersymbol
interference.

The variation of a wireless channel over the duration of a data
block is caused by several impinging wavefronts, each with po-
tentially different Doppler shifts. The Doppler frequencies de-
pend on the velocity, the carrier frequency , and the scat-
tering environment. The maximum variation in time of the wire-
less channel is upper bounded by the maximum normalized
one-sided Doppler bandwidth

(1)

where is the maximum (supported) velocity, is the
OFDM symbol duration, and is the speed of light.

Under the assumption of small intercarrier interference (ICI),
each time-variant frequency-flat subcarrier is fully described
through a sequence of complex scalars at the OFDM symbol rate

. This sequence is bandlimited by . At the receiver
side, we perform block-oriented processing for data detection
and channel estimation. Hence, we aim at finding a channel rep-
resentation that describes a time-variant subcarrier for the dura-
tion of a single data block.

In [1] and [2], the autocorrelation of the channel, i.e., its
second-order statistic, is assumed to be known, and a Kalman
filter or a Karhunen–Loéve transform are applied. The autocor-
relation is calculated under the assumption of a dense scatterer
model in the limit of an infinite number of scatterers [3], [4, Sec.
2.5.2]. This assumption is not fulfilled in practical channels [5].
Furthermore, the actual velocity of the user and the angles of
arrival enter the autocorrelation as parameters and must be esti-
mated explicitly. Another approach along these lines is to esti-
mate and track the channel statistics online [6].

We estimate the parameters of a deterministic channel model
from a single realization of a randomly fading channel using
known pilot symbols. The discrete multipath channel model
discussed in [7] is a deterministic channel description that de-
pends nonlinearly on the Doppler frequencies of each propaga-
tion path. We want to avoid such a nonlinear estimation problem
[8], [9].

We use a basis expansion with an appropriately chosen set
of basis functions to describe the variation of the channel in
time. Fourier basis functions are applied in [10] and [11] to
represent the time-variant channel. We have observed that the
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Fourier basis expansion, i.e., a truncated discrete Fourier trans-
form (DFT), has the following major drawback: the rectangular
window associated with the DFT introduces spectral leakage
[12, Sec. 5.4]. The energy from low-frequency Fourier coef-
ficients leaks to the full frequency range. When the DFT is
truncated, an effect similar to the Gibbs phenomenon [12, Sec.
2.4.2], together with spectral leakage, leads to significant phase
and amplitude errors at the beginning and at the end of the data
block [4]. This results in a floor in the bit error rate (BER) for
channels with Doppler spread, as was shown in [13] and [14].

The Slepian basis expansion represents bandlimited se-
quences with a minimum number of basis functions avoiding
the deficiencies of the Fourier basis expansion. Slepian showed
in [15] that time-limited parts of bandlimited sequences span
a low-dimensional subspace. The orthogonal basis is spanned
by the so-called discrete prolate spheroidal (DPS) sequences.
These DPS sequences have a double orthogonality property:
They are orthogonal over the finite set and
the infinite set simultaneously. This re-
markable property enables parameter estimation without the
drawbacks of windowing in the case of the Fourier basis expan-
sion [15, Sec. 3.1.4]. The basis functions of the Slepian basis
expansion are bandlimited to the known maximum variation
in time of the channel and time-concentrated for the
duration of the transmitted data block with length [16].

A. Contributions

• We apply the concept of discrete prolate spheroidal se-
quences for the estimation of time-variant mobile com-
munication channels.

• We compare the channel estimation square bias and vari-
ance of the Slepian basis expansion and the Fourier basis
expansion for time-variant flat-fading channels. Analyt-
ical expressions are established for time-variant channels
with arbitrary Doppler spectra of finite support. Numer-
ical simulations are carried out for time-variant channels
with Jakes’ Doppler spectrum [17] and compared with
the analytical results.

• We develop a low-complexity channel estimator for a
MC-CDMA downlink in a time-variant frequency-se-
lective channel. This estimator does not need detailed
knowledge of the channels autocorrelation (i.e., the
Doppler spectrum).

• We show simulation results for a fully loaded
MC-CDMA downlink with classic linear minimum
mean square error (MMSE) multiuser detection [18].
The users are moving with 19.4 m/s. Using the Slepian
basis expansion channel estimator and a pilot ratio of
only 2%, we achieve a bit error rate performance as with
perfect channel knowledge.

B. Paper Organization

To simplify the initial presentation, we define a signal model
for a time-variant flat-fading channel in Section III. In Sec-
tion IV, the properties of the DPS sequences are described,
and the associated Slepian basis expansion for time-variant
flat-fading channel estimation is defined. We give an analytical
and numerical performance evaluation of the time-variant

flat-fading channel estimation error for the Slepian basis expan-
sion and the Fourier basis expansion in Section V. In Section VI,
the MC-CDMA system is introduced, and we generalize our
channel estimator to time-variant frequency-selective channels.
The performance results of the Slepian basis expansion are
compared with the one obtained with the Fourier basis expan-
sion. Finally, we conclude in Section VII.

II. NOTATION

Column vector with elements .
Matrix with elements .
Upper left part of with dimension .
Transpose of .
Conjugate transpose of .

diag Diagonal matrix with entries .
identity matrix.

column vector with all ones.
column vector with all zeros.

Complex conjugate of .
Absolute value of .
Largest integer, lower or equal than .
Smallest integer, greater or equal than .

-norm of vector .
1 for , 0 otherwise.

III. SIGNAL MODEL FOR FLAT-FADING

TIME-VARIANT CHANNELS

We consider the transmission of a symbol sequence
with symbol rate over a time-variant flat-fading
channel in order to simplify the initial presentation. The symbol
duration is much longer than the delay spread of the channel

. Discrete time is denoted by . The channel in
equivalent baseband notation incorporates the transmit
filter, the physical channel, and the matched receive filter. The
received sequence is given by the multiplication of the
symbol sequence and the sampled time-variant channel

plus additional circular symmetric complex white
Gaussian noise with zero mean and variance

(2)

We transmit symbols in blocks of length . Each block con-
sists of data symbols with interleaved pilot sym-
bols

(3)

The data symbols satisfy for and
for .

The pilot symbols are independent identically distributed
(i.i.d.) chosen with equal probability from the QPSK symbol
set for and for .
The pilot placement is defined through the index set

(4)

Fig. 1 shows an example for the pilot set defined in (4). The
optimal pilot placement is not known to the authors; however, a
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Fig. 1. Example pilot pattern P = f2; 7; 12g defined by (4) for M = 15 and
J = 3.

uniform placement performs well as shown below. The symbols
have constant modulus, their energy is normalized

.
For channel estimation and equalization at the receiver, we

need an efficient representation of the channel for
. The theory of time-concentrated and bandlim-

ited sequences developed by Slepian [15] enables a new ap-
proach for the time-variant channel estimation problem, which
we will pursue in Section IV. We will exploit the knowledge of
two parameters only: the maximum Doppler bandwidth
and the block length .

IV. SLEPIAN BASIS EXPANSION

Slepian [15] answered the question of which sequences are
bandlimited to the frequency range and simul-
taneously most concentrated in a certain time interval of length

. The sequences we are seeking will have their max-
imum energy concentration in an interval with length

(5)

while being bandlimited to ; hence

(6)

where

(7)

We see that .
The solution of this constrained maximization problem are

the discrete prolate spheroidal (DPS) sequences [15]. The DPS
sequences are defined as the real-valued so-
lution of

(8)

for and [15]. We drop
the explicit dependence of and on and ,
which we consider fixed system parameters for the remainder
of the paper.

The DPS sequence is the unique sequence that is
band-limited and most time-concentrated in a given interval
with length , is the next sequence having maximum
energy concentration among the DPS sequences orthogonal to

, and so on. Thus, the DPS sequences show that a set

of orthogonal sequences exists that is exactly bandlimited and
simultaneously posses a high (but not complete) time concen-
tration in a certain interval with length . The eigenvalues
are a measure for this energy concentration expressed by (5).

The DPS sequences are doubly orthogonal on the infinite set
and the finite set . More

specifically

(9)

where . This means that the DPS se-
quences are orthonormal on the set and
orthogonal on the set . The eigenvalues

are clustered near 1 for and rapidly drop to
zero for . Therefore, the signal space dimen-
sion [15, Sec. 3.3] of time-limited snapshots of a bandlimited
signal is approximately given by

(10)

For a rigorous proof, see [19]. All the properties described so
far enable parameter estimation without the drawbacks of win-
dowing as in the case of the Fourier basis expansion [15, Sec.
3.3].

For our application, we are interested in for the time
index set only. We introduce the term
Slepian sequences for the index limited DPS sequences and
define the vector with elements for

. The Slepian sequences are eigenvectors
of the matrix , fulfilling

(11)

The eigenvalues are identical to those in (8). Matrix is
defined as

(12)

where .
Concluding, the Slepian sequences span an orthonormal basis

that allows the representation of a time-limited snapshot of ban-
dlimited sequences through a basis expansion. The Slepian basis
expansion expands the sequence in terms of Slepian se-
quences

(13)

where . The dimension of this basis ex-
pansion fulfills

(14)

Wherever possible, we will use a generic notation for the
basis expansion quantities , , , and to indicate
that the expression is applicable to any set of orthonormal basis
functions . If we specifically want to reference the Slepian
basis expansion, we use the superscript . In Fig. 2, the DPS
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Fig. 2. Eigenvalue spectrum � for the Slepian sequences. The Slepian
sequences are designed for block length M = 256 and a maximum Doppler
bandwidth � = 3:9 � 10 . The approximate dimension of the signal
space evaluates to D = d2� Me + 1 = 3.

Fig. 3. Slepian sequences u [m] for block lengthM = 256 and maximum
normalized Doppler bandwidth � = 3:9 � 10 .

eigenvalue spectrum is given. The Slepian sequences for
are depicted in Fig. 3.

By choosing , we can control the mean square error (MSE)
of the basis expansion defined as

MSE (15)

In order to highlight the utility of the Slepian basis expan-
sion in terms of dimension reduction, we give a numerical
example of an actual communication system. We use the fol-
lowing parameters: carrier frequency GHz, symbol
rate s , maximum speed of the user

km h m s, maximum normalized
Doppler frequency , and data block length

. With these system parameters, the approximate

dimension of the signal space .
Therefore, the dimension of the estimation problem is reduced
by a factor of , which is a very considerable saving.

The pilot pattern in our application allows us to obtain
channel knowledge for . We define the vector

... (16)

with the instantaneous values of the basis functions and the cor-
relation matrix

(17)

where we have used the fact that . The basis
expansion parameters in (13) are estimated according to

(18)

where

(19)

We use a generic notation since (16)–(18) are valid for any basis
expansion.

V. BASIS EXPANSION ERROR ANALYSIS FOR TIME-VARIANT

FLAT-FADING CHANNELS

To demonstrate the merits of the Slepian basis expansion,
we compare its performance to the Fourier basis expansion by
means of simulations with the system defined in (2). Addition-
ally, we will compare the simulation results with analytic results
derived in Sections V-B and C.

A. Channel Model and System Assumption

The actual realization of the time-variant flat-fading channel
is calculated according to the simulation model in the Ap-

pendix. The autocorrelation of is

(20)

where is the zeroth-order Bessel function of the first kind,
and

(21)

is the one-sided normalized Doppler bandwidth in the range
. The true speed of the user is denoted by , with

.
The symbol duration s

s is chosen for later comparison with the MC-CDMA
system introduced in Section VI. The speed of the user is varied
in the range km h m s, which
results in a range of Doppler bandwidths 180 Hz
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or normalized to the symbol duration .
The length of the data block is 256 symbols, and the time
index is restricted to . All basis expansions use
the same amount of parameters to model the channel

.
The MSE (15) of the basis expansion can be described by the

sum of a square bias and a variance term

MSE bias var (22)

We will see in Section V-B that bias depends on the actual
set of basis functions, and var depends linearly on the noise
variance and the dimension of the basis expansion.

B. Basis Expansion Square Bias

Using Niedzwiecki’s results from [4, Sec. 6] and specializing
to our application, we obtain an analytic expression for the basis
expansion square bias. We define the instantaneous frequency
response of the basis expansion estimator according to

(23)

where , and .
In (23), the sum projects the com-

plex exponential onto the basis function at the pilot grid posi-
tions, i.e., we calculate the inner product with every basis func-
tion. Then, the realization at time instant is calculated by left
multiplying with .

The complex exponential in (23) is shifted by ; thus,
is the instantaneous amplitude response of the basis

expansion at time instant . The phase of , which is
expressed by , is the instantaneous phase shift of
the basis expansion at time index . The design goal for a basis
expansion is to have no amplitude error and no
phase error . Therefore, the instantaneous
error characteristic of the basis expansion is defined as [4, Sec.
6.1.4]

(24)

The square bias per symbol bias of the basis expansion
estimator can be expressed as the integral over the instantaneous
error characteristic multiplied by the power spectral
density of (see [4, Sec. 6.1.4])

bias (25)

where is given by

(26)

The square bias for a block of length is given by

bias bias (27)

In order to obtain analytic performance results, we evaluate
the basis expansion estimator for the autocorrelation defined in
(20), which corresponds to the Jakes’ spectrum

for (28)

and elsewhere. Inserting (28) in (25) and calcu-
lating the integral numerically, we plot the results after evalu-
ating (27) in Fig. 4. The results for the Slepian basis expansion
are obtained by using in (16), and for the Fourier basis
expansion, we substitute

(29)

into (16).
Note that the Slepian basis expansion estimator only exploits

that for and does not require any
other knowledge about the Doppler spectrum of the time-variant
channel for the design of the basis functions. The design pa-
rameters for our Slepian basis expansion are and .
Only to allow for easier comparison with other publications, we
use the autocorrelation (20). Real channels do not show Jakes’
Doppler spectrum, as was proven by measurements in [5]. In
fact, with (25), we are able to evaluate the basis expansion esti-
mator square bias for any autocorrelation. To achieve optimum
performance with the Slepian basis expansion, the power spec-
tral density must fulfill

for (30)

which is ensured by the physical mechanism behind the Doppler
effect in a wireless channel.

The numerical square bias results are obtained using the
signal model defined in Section III for . We average
over 2000 channel realizations of the channel defined in Sec-
tion V-A. The channel estimation is performed according to
(18). Using the reconstruction expression (13) and evaluating
(15) in the sense of an empirical mean provides the numerical
square bias results under the condition . Fig. 4 plots the
square bias of the the Slepian basis expansion and the Fourier
basis expansion for and pilots.
The simulation results in terms of bias versus normalized
Doppler bandwidth are given in Fig. 4, together with the
analytic results that show a perfect match. The square bias
of the Slepian basis expansion is three magnitudes smaller
if compared with the Fourier basis expansion. The square
bias of the Fourier basis expansion slightly decays toward

since this frequency
coincides with the one of the Fourier basis function and, thus,
is a local minimum. The same behavior is also visible in Fig. 6.
Similar performance results for the Fourier basis expansion are
reported in [21] as well.

In [22], a set of nonorthogonal complex exponential basis
functions with and
is used. This basis spans an approximation of the Slepian sub-
space by definition. We depict its square bias after an orthog-
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Fig. 4. bias for the Fourier and the Slepian basis expansion with dimension
D = D = 5 and J = 10 pilots. We vary the Doppler bandwidth in
the range 0 � � � 3:8 � 10 . Additionally, we depict the square bias for
the polynomial approach of [20] (denoted "Polynomial") and the nonorthogonal
complex exponentials used in [11] (denoted "Slepian approx."), both with five
basis functions.

Fig. 5. Square bias per symbol bias [m] for the Fourier and the Slepian basis
expansion with dimension D = D = 5, J = 10 pilots, and v = 27.8
m/s.

onalization step in Fig. 4 (denoted "Slepian approx.") for five
basis functions.

A polynomial approach resulting from a Taylor expansion
was used in [20]. This basis is not restricted to time-limited and
bandlimited functions. Thus, its square bias varies heavily over
the normalized Doppler range of interest, as shown in Fig. 4
(denoted "Polynomial") for five basis functions.

The Slepian basis expansion needs fewer parameters and
shows better performance than the spline approximation inves-
tigated in [23].

Fig. 5 plots the analytic result for the square bias per symbol
(25). This shows clearly that the square bias per symbol of the
Fourier basis expansion is highest at the edges of the data block.
The square bias curve of the Slepian basis expansion has the
same qualitative behavior toward the block boundaries, but the

Fig. 6. MSE of the basis expansion estimator with J = 10 pilot symbols
at an E =N = 10 dB for one user moving with v = 0 . . . 27:8 m=s
corresponding to � = 0 . . . 3:8 � 10 .

square bias per symbol of the Slepian basis expansion is several
magnitudes lower compared to the Fourier basis expansion.

C. Basis Expansion Variance

For channel estimation purposes, we define

(31)

Note that this definition is different from , which we will
use later for data detection, cf. (50). Using the results from [4,
Sec. 6.1.4], we can express the basis expansion estimator vari-
ance as

var (32)

Equation (32) becomes exact for bias . Thus, var in-
creases with the dimension of the basis expansion and de-
creases with an increasing number of pilot symbols but does
not depend on the block length .

Fig. 6 evaluates the basis expansion estimator for a signal-to-
noise ratio of dB, pilot symbols, and

. The square bias of the Fourier basis ex-
pansion dominates the MSE (22), and the distance to the Slepian
basis expansion is reduced because of the present noise level of

dB.
Fig. 7 plots the analytic and simulation results for a varying

number of pilot symbols with
and dB. The MSE of the Slepian basis expansions
is smaller than the MSE of the Fourier basis expansion.

Finally, we fix and and vary
in the range of 0 to 30 dB. Fig. 8 shows that the Fourier basis
expansion is biased and that its MSE saturates for increasing

at 3.5 . The Slepian basis expansion is (practi-
cally) unbiased. The error floor of the Fourier basis expansion
can be explained due to the structure of (22). With increasing

, the variance var (32) decreases, and the square bias
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Fig. 7. MSE of the basis expansion estimator with J 2 f5; . . . ; 15g pilot
symbols at an E =N = 15 dB for one user moving with v = 27:8 m=s
corresponding to � = 3:8 � 10 .

Fig. 8. MSE of the basis expansion estimator for J = 10 pilot symbols at an
E =N = 0 . . . 30 dB for one user moving with v = 27:8m=s corresponding
to � = 3:8 � 10 .

bias (27) starts to dominate the MSE since it is independent of
.

From this analysis, it is clear that the Slepian basis expansion
offers major performance gains compared with the Fourier basis
expansion while having the same complexity.

VI. MC-CDMA FOR TIME-VARIANT

FREQUENCY-SELECTIVE CHANNELS

In this section, we define the signal model for a MC-CDMA
downlink in a time-variant channel, the linear MMSE multiuser
detector, and the Slepian basis expansion channel estimator. We
provide simulation results showing that this system needs a pilot
ratio of 2% only, in order to achieve the same performance as
with perfect channel knowledge.

A. Signal Model

In MC-CDMA, a data symbol is spread by a user-specific
spreading code. The resulting chips are processed by an inverse
DFT to obtain an OFDM symbol. The transmission is block
oriented. A data block consists of OFDM data symbols
and OFDM pilot symbols. Every OFDM symbol is preceded
by a cyclic prefix to avoid ISI. The channel varies significantly
over the duration of a long data block.

The base station transmits quaternary phase shift keying
(QPSK) modulated symbols with symbol rate

. There are users in the system, and the
user index is denoted by . Each symbol is spread by a random
spreading sequence with elements .
Fig. 9 depicts the downlink transmitter schematically. The data
symbols result from the binary information sequence

of length by convolutional encoding
with code rate , random interleaving, and QPSK modulation
with Gray labeling.

In order to accommodate for time-variant channel estimation,
the data symbols are distributed over a block of length

, allowing for pilot symbol insertion. Thus, the data symbols
satisfy for and for

, where the pilot placement is defined through (4). We
ignore the effects of path loss and shadow fading

for (33)

and a perfect power control is assumed. As shown in Fig. 9, the
spread signals of all users are added together, and common pilot
symbols with elements are added

(34)

where

(35)

and

(36)

contains the stacked data symbols for users. The elements of
the pilot symbol vector for and

are i.i.d. chosen with equal probability from the scaled QPSK
symbol set ; otherwise, for

.
Then, an -point inverse DFT is performed, and a cyclic

prefix of length is inserted [24]. The OFDM symbol including
the cyclic prefix has length . After parallel serial
conversion, the chip stream with chip rate is
transmitted over a time-variant multipath fading channel .
We denote the chip-rate sampled time-variant impulse response
by

(37)

A time-variant channel impulse response generally intro-
duces intercarrier interference in an OFDM system. However,
if the channel variation in time, measured by the normalized
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Fig. 9. Model for the MC-CDMA transmitter and the channel in the time-variant downlink.

Doppler bandwidth, stays below a certain threshold, the in-
tercarrier interference can be neglected for the receiver side
processing [25]. This threshold is fulfilled if the one-sided
normalized Doppler bandwidth is much smaller than the
normalized subcarrier bandwidth

(38)

For , the DFT is still applicable [26], although the
channel is time variant.

For the processing at the receiver side, we are able to treat the
time-variant channel as constant for the duration of each single
OFDM symbol if (38) is fulfilled. Hence

(39)

respectively

(40)

in vector notation. The time-variant frequency response
with elements is defined as the DFT of the

time-variant impulse response

(41)

where .
The receiver removes the cyclic prefix and performs a DFT.

The received signal vector after these two operations is given by

diag (42)

where complex additive white Gaussian noise with zero mean
and covariance is denoted by with elements

.

B. Multiuser Detector

The linear MMSE receiver detects the data using the received
vector , the spreading matrix , and the time-variant fre-
quency response , which is assumed to be known for the
moment [18]. We define the time-variant effective spreading se-
quences

diag (43)

and the time-variant effective spreading matrix
to express the unbiased

time-variant linear MMSE filter

(44)

The code symbol estimates are given by .
After demapping and deinterleaving, the code bit estimates are
supplied to the decoder. After the decoder, a hard decision is
performed to obtain the transmitted data bits .

C. Slepian Basis Expansion Channel Estimator

The performance of the receiver crucially depends on the
channel estimates for the time-variant frequency response .
The MC-CDMA signal model describes a transmission that
takes place over parallel frequency-flat channels. In order
to reflect this, we rewrite (42) as a set of equations for every
subcarrier ,

(45)

where are the elements of [see (34)]. Comparing
(45) with (2), we see that the structure of these equations are
identical. The bandlimited property of directly applies
to as well. This allows us to estimate the time-variant
frequency-flat subcarrier with the Slepian basis expan-
sion (18). We define

(46)

where , and

(47)

Although we will use the Slepian basis expansion, we keep the
notation regarding the basis expansion generic. Hence, any basis
expansion can be used for performance comparisons.

The estimated time-variant frequency response is given by
. Further noise suppression is

obtained if we exploit the correlation between the subcarriers
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. Finally, the channel estimates
are inserted into (43), and multiuser detection can be

performed.

D. Simulation Results

The realizations of the time-variant frequency-selective
channel , sampled at the chip-rate , are generated
using an exponentially decaying power-delay profile
according to COST 259 [27]

(48)

for . The discrete time indices and de-
note sampling at rate s , as in the Uni-
versal Mobile Telecommunications System (UMTS). The root
mean square delay spread of the power-delay profile in (48) is

s, and its essential support . The auto-
correlation for every channel tap is given by

(49)

which results in the classical Jakes’ spectrum. Each OFDM
symbol has a length of chips. We use the simulation model
(52) for every channel tap . The simulation
uses a chip-rate sampled time-variant channel; thus, any pos-
sible effect from residual ICI would be visible in the simulation
results.

The system operates at carrier frequency 2 GHz, and the
users move with velocity 19.4 m/s. This gives 126 Hz
and 0.0026. The number of subcarriers 64, and the
OFDM symbol with cyclic prefix has length of
79. The block length 256. The system is designed for

28.5 m/s, which results in 3. The Fourier basis
expansion and the Slepian basis expansion, both applied for per-
formance comparison, use the same dimensionality

5. We evaluate the performance of the Slepian basis
expansion channel estimation with the lowest number of pilots
possible . Thus, we have as many pilots as basis
functions in the basis expansion. The pilot ratio is 2%.

For data transmission, a convolutional, nonsystematic, nonre-
cursive, four-state, rate 1/2 code with generator polyno-
mial is used. The illustrated results are obtained by av-
eraging over 400 independent channel realizations. The QPSK
symbol energy is normalized to 1, and the is defined as

(50)

Fig. 10 illustrates the downlink MC-CDMA receiver perfor-
mance with users in terms of BER versus .
Additionally, the plot also shows the single user bound, which is
defined as the performance for one user 1 and a perfectly
known channel .

In order to relate the values in Fig. 10 to the channel
estimation performance results in Section III, we establish the
relation

(51)

Fig. 10. Downlink MC-CDMA receiver performance in terms of BER
versus E =N . We compare the Slepian basis expansion and the Fourier
basis expansion, all using D = 5 basis functions. The K 2 f32; 64g users
are moving with v = 19.4 m/s, and the lowest amount of pilots possible
J = D = 5 is used. For reference the single-user bound (SUB) and the
performance with perfect channel knowledge (PER) are shown as well.

where we took the higher pilot energy in the downlink into ac-
count. For the simulation results with 32 users, the
values for the simulation in Fig. 10 are in the range 11 dB

28 dB. For 64 users, the range is from 17 dB
34 dB.

Taking (51) into account when referring to Fig. 8 makes clear
that the drastic reduced MSE for the Slepian basis expansion
channel estimation leads to pronounced reduction in bit error
rates if compared with the Fourier basis expansion. This is be-
cause the Fourier basis expansion is biased, as is visible for
higher values in Fig. 8, which leads to an error floor
in Fig. 10.

We also plot the receiver performance for a perfectly known
channel (denoted "PER") in Fig. 10. The receiver performance
is extremely close to the one with perfect channel knowledge
when only as few as 2% pilots are used.

It is important to point out that we use a simulation model
for the time-variant frequency-selective channel (see the Ap-
pendix) that is completely different from the basis expansion
model, which we use for equalization. Thus, we proved the ro-
bustness of the Slepian basis expansion for a very realistic class
of time-variant channels. Our results are therefore more general
than the one presented in [11], which are limited to the class of
Fourier basis expansion channels only.

VII. CONCLUSION

We showed that the Slepian basis expansion is very suitable
to the modeling of a time-variant frequency-selective channel
for the duration of a data block. The Slepian basis expansion
is specified according to just two system parameters: the max-
imum Doppler bandwidth and the block length . A
lower bound for the model order results naturally.

We have compared the Fourier and the Slepian basis ex-
pansion for the same numerical complexity (same number of
unknowns). The square bias of the Slepian basis expansion
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compared with the Fourier basis expansion is three magnitudes
smaller. We showed that the Slepian basis expansion outper-
forms the polynomial approach in [20] for normalized Doppler
spreads 0.0023 .

We presented simulation results for a fully loaded
64 MC-CDMA downlink for users moving at 19.4 m/s using
a classic linear MMSE multiuser detector. The pilot ratio for
channel estimation was 2% only. Applying the Slepian basis
expansion for channel estimation, we achieved the same bit error
rate performance as with perfect channel knowledge.

APPENDIX

SIMULATION MODEL FOR TIME-VARIANT CHANNELS

WITH JAKES’ SPECTRUM

We use the model from [28] with a correction for low veloci-
ties [29]. Our model ensures a Rayleigh distribution of for
all velocities and even at m s. The detailed simulation
model for is defined as follows:

(52)

(53)

with

for

where , , and are independent and uniformly distributed
over for all . For the numerical simulations, we fix the
number of interfering paths to .

In the limit , (53) reduces to

(54)

Because of the central limit theorem and the independence
of all and , the channel coefficients are normally
distributed. Therefore, the model converges to a block fading
channel.

In [28], is replaced by the common phase . In this case,
the distribution of the channel coefficients is significantly
different from a normal distribution.
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