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abstract

We propose a dynamic econometric microstructure model of trading, and we
investigate how the dynamics of trades and trade composition interact with
the evolution of market liquidity, market depth, and order flow. We estimate
a bivariate generalized autoregressive intensity process for the arrival rates of
informed and uninformed trades for 16 actively traded stocks over 15 years
of transaction data. Our results show that both informed and uninformed
trades are highly persistent, but that the uninformed arrival forecasts respond
negatively to past forecasts of the informed intensity. Our estimation generates
daily conditional arrival rates of informed and uninformed trades, which we
use to construct forecasts of the probability of information-based trade (PIN).
These forecasts are used in turn to forecast market liquidity as measured by
bid-ask spreads and the price impact of orders. We observe that PINs vary
across assets and over time, and most importantly that they are correlated
across assets. Our analysis shows that one principal component explains
much of the daily variation in PINs and that this systemic liquidity factor may be
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important for asset pricing. We also find that PINs tend to rise before earnings
announcement days and decline afterwards. ( JEL: C51, C53, G10, G12, G14)

keywords: Arrival rates, informed trades, uninformed trades, autoregres-
sive process, market depth, liquidity

A fundamental insight of the microstructure literature is that order flow is informa-
tive regarding subsequent price movements. This informational role arises because
orders arrive from both informed and uninformed traders, and market observers
can infer new information regarding the value of the asset from the composition
and existence of trades. Thus, market parameters such as volume, volatility, mar-
ket depth, and liquidity are all linked in the sense that each is influenced by the
underlying order arrival processes. In this paper, we propose a dynamic econo-
metric microstructure model of trading, and we investigate how the dynamics
of trades and trade composition interact with the evolution of market liquidity,
market depth, and order flows.

There are many reasons why understanding market liquidity and depth are
important. From a practical perspective, the cost of trading in a security is inex-
tricably linked to these market variables, and market professionals devise trading
strategies that explicitly incorporate these factors. From a more academic perspec-
tive, understanding the evolution of liquidity and its interaction with information
flow provides insight into the price formation process as well as into more funda-
mental asset pricing issues as formulated by Easley, Hvidkjaer, and O’Hara (2002),
O’Hara (2003), and Acharya and Pedersen (2005). We argue in this paper that un-
derstanding market parameters such as liquidity requires understanding a more
basic market variable, the order arrival process.

Our dynamic microstructure model follows Easley and O’Hara (1992) by let-
ting the arrival of informed and uninformed traders dictate the order flow and
the price formulation. Different from them, however, our model explicitly allows
the arrival rates of informed and uninformed trades to be time-varying and pre-
dictable. We propose a forecasting relation for the bivariate arrival rate process
which is analogous to the GARCH (Bollerslev 1986) specifications on volatilities.
We estimate the parameters that govern the forecasting dynamics using a maxi-
mum likelihood method. The likelihood function is determined by the probability
of having a given set of buy and sell orders each day, as a function of the arrival
rate forecasts. Thus, our model specification allows us to forecast the arrival rates
of informed and uninformed orders, and then to forecast the resultant measures of
liquidity based on these order arrival processes.

Our modeling approach is a blending of model-based microstructure (see, for
example, Easley and O’Hara 1992) with the literature analyzing the econometric
determinants of the joint dynamics between trades and prices. Examples of the
latter include Hasbrouck (1991), Dufour and Engle (2000), Engle (2000), Engle and
Russell (1998), Manganelli (2000), Engle and Lange (2001), Chordia, Roll, and Sub-
rahmanyam (2000, 2001a, 2001b, 2002, 2005), Chordia and Subrahmanyam (2004),
Hasbrouck and Seppi (2001), and Korajczyk and Sadka (2006). In common with
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this econometric literature, our model generates direct forecasts on market liquid-
ity and depth. Different from them, however, we do not rely on exogenous dynamic
specifications of trade and price linkages. Instead, our inclusion of a GARCH-style
specification into a microstructure model allows us to show why particular com-
ponents of order imbalance matter, thus providing an econometric structure for
investigating order flow information and its resultant effects on market liquidity
and depth.

To illustrate the potential of our methodology, we estimate the dynamic model
for 16 actively traded stocks using daily numbers of buys and sells over 15 years
from January 1983 to December 1998. We find that both the informed and unin-
formed order flows are highly persistent. More trade today generates more trade
tomorrow by both kinds of traders. However, the uninformed arrival forecasts
respond negatively to past forecasts on the informed arrival. Informed trade ar-
rival responds more to past order imbalance than it does to overall trade volumes,
with the impulse responses to both variables positive and the decay exponential.
Uninformed trade responds more to past uninformed trade than it does to past
informed trade. The impulse responses suggest a slower decay to the uninformed
trading behavior.

We use the estimated model to generate forecasts on the arrival rates of in-
formed and uninformed traders. Based on the arrival rate forecasts, we compute
forecasts of the probability of information-based trading (PIN), which has been
shown to have explanatory power for both spreads and returns. We also use the ar-
rival rate forecast to predict trading-cost relevant measures such as bid-ask spreads
and price impacts. For example, our microstructure model directly links the arrival
rates of informed and uninformed traders to the bid-ask spread, and so our arrival
rate forecasts can be used to predict bid-ask spreads. We illustrate the power of this
approach by predicting opening spreads for a sample of stocks, and we find signif-
icantly positive results for most stocks. Similarly, given the arrival rate forecasts,
we can use Bayesian updating to calculate the price impact of any given sequence
of order flows. As an illustration, we define a measure of market depth we term
the half-life. This measure is defined as the number of consecutive buys needed
for the price impact to exceed half of the exogenously specified maximum impact.
The half-life estimates provide a compact forecast of the market depth based on
the forecasts of arrival rates of informed and uninformed traders.

We also illustrate the value of our dynamic model of trading by showing how
our estimated PINs vary around earnings announcement days. One might expect
PINs to be high before earnings announcements, and low afterwards as earnings
announcements turn private information about earnings into public information.
In a recent working paper, Benos and Jochec (2007) ask whether constant PINs
estimated from the static model over time periods of at least 28 trading days
before and after earnings announcement have this property. They find that their
PIN estimates do not have the expected property. Our belief is that this occurs
because the variation in trade based on private information occurs in short periods
before and after announcements and using long periods to estimate PINs obscures
this effect. Using our dynamic model, we find significant variation in PIN, in the
predicted direction, in the week or so before and after earnings announcement
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days. This result suggests that with our dynamic specification PIN can be used in
event studies.

We believe that our results will have an impact in three areas of finance.
First, institutional investors need to predict trading costs in order to evaluate the
efficiency of alternative trading strategies. In order to do this, it is necessary to
predict the price impact of hypothetical trades. Our approach allows us to do
a better job of making these predictions than standard microstructure models.
We provide an illustrative example in Section 4. Second, the liquidity of assets is
important for risk management as one of the risks associated with an asset position
is the cost of reversing the position. We can predict the PIN, which in turn allows
us to forecast liquidity. Third, our more sophisticated model of PIN shows that
PINs are both autocorrelated and cross-correlated. Since PIN can be viewed as a
simple measure of liquidity, our results show that liquidity covaries across assets.
Acharya and Pedersen (2005) argue that liquidity risk matters for asset pricing and
our PIN analysis shows that there is a systemic liquidity factor. Further, our new
PINs should allow us to improve on the asset pricing results of Easley, Hvidkjaer,
and O’Hara (2002).

The paper is organized as follows. We begin in Section 1 by setting out our
dynamic microstructure models. Section 2 describes the data set and our estimation
procedure. Section 3 provides our estimation results on the order arrival processes,
and we examine the impulse response functions to shocks to trade imbalances
and overall volume levels. Section 4 investigates the application of the arrival rate
forecasts to the prediction of bid-ask spreads and price impacts. This section also
illustrates how to use our dynamic model of PINs in an event study. Section 5
provides some diagnostic analysis of the forecasting results. Section 6 concludes.

1 MODEL FORMULATION

In this section, we propose a dynamic microstructure model of trading. We use this
model as a vehicle to investigate how the dynamics of trades and trade composition
interact with the evolution of market liquidity and depth. From a practical perspec-
tive, portfolio managers observe the order flow of buys and sells on an asset, but
not information on what type of player is behind each order and why that player
sends a particular order. The idea of building the dynamic microstructure model is
to provide a theoretical base according to which portfolio managers can infer the
unobservable arrival rates of different types of players from the publicly observ-
able streams of buys and sells. From an academic perspective, the microstructure
framework enables us to separate information risk and liquidity risk, and their
different impacts on asset pricing.

To build our dynamic model, we use the model of Easley and O’Hara (1992)
as our benchmark, but allow the arrival rates of different types of trades to fol-
low autoregressive processes. Every day agents update their parameter estimates
based on past information before embarking on their trading day. We can use the
microstructure model in a conditional form to construct the likelihood function
of the observed order flows. By maximizing the likelihood function, we identify
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the parameters that govern the dynamic processes of the arrival rates. Using the
estimated model, we can generate forecasts on the arrival rates, information flow,
market liquidity, and depth.

1.1 The Static Model Benchmark

We follow Easley and O’Hara (1992) and Easley, Kiefer, and O’Hara (1996, 1997a,
1997b) in modeling a market in which a competitive market maker trades a risky
asset with uninformed and informed traders. Trade occurs over discrete trading
days and, within each trading day, trade occurs in continuous time. Information
events occur between trading days with probability α. When these events occur,
they are either bad news with probability δ, or good news with probability 1 − δ.
Traders informed of bad news sell and those informed of good news buy. We
assume that orders from these informed traders follow a Poisson process with daily
arrival rate µ. Uninformed traders trade for liquidity reasons. We assume that buy
and sell orders from uninformed traders each arrive at the market according to
a Poisson process with daily arrival rate ε. A more extensive discussion of this
structure can be found in Easley, Kiefer, and O’Hara (1996, 1997a, 1997b).

Under this model, the probability of observing B number of buys and S number
of sells at a given date t is given by

Pr[yt = (B, S)] = α(1 − δ)e−(µ+2ε) (µ + ε)B(ε)S

B!S!

+αδe−(µ+2ε) (µ + ε)S(ε)B

B!S!
+ (1 − α)e−2ε (ε)B+S

B!S!
, (1)

where yt denotes the observation vector (number of buys and sells) for day t. The
probability can be regarded as a mixture of three Poisson probabilities, weighted
by the probability of having a “good news day” α(1 − δ), a “bad news day” αδ, and
a “no news day” (1 − α). The model is static in the sense that each day the arrivals
of an information event, and trades conditional on information events, are drawn
from identical and independent distributions.

1.2 Time-Varying Arrival Rates of Trades

The benchmark model assumes constant arrival rates for both informed and un-
informed traders. In reality, agents continually gain information about the trading
environment and consequently update their estimates of these arrival rates. To
capture this effect econometrically, we specify how the arrival rates evolve and
what the key information sources are about the arrival rates. With the dynamics
specification, the arrival rates in Equation (1) become conditional arrival rate fore-
casts, and the probabilities of buys and sells vary over time with the conditional
arrival rate forecasts.

1.2.1 The information content of trades. According to the benchmark mi-
crostructure model, data on daily numbers of buys and sells contain important in-
formation about the underlying arrival rates of informed and uninformed traders.
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Let TT = S + B denote the total number of trades per day. The expected value of
the total trades, E[TT], is equal to the sum of the Poisson arrival rates of informed
and uninformed trades:

E[TT] = α(1 − δ)(ε + µ + ε) + αδ(µ + ε + ε) + (1 − α)(ε + ε) = αµ + 2ε.

Furthermore, the expected value of the trade imbalance K = S − B is given
by:

E[K ] = αµ(2δ − 1).

Hence, when the probability of bad news δ is not exactly one-half, the mean of
trade imbalance provides information on the arrival of informed trades. A more
informative quantity is the absolute value of the trade imbalance. The expectation
on absolute differences of Poisson variables takes on rather complicated forms (see
Katti 1960), but the first-order term of this expectation relates directly to the arrival
of the informed trades: E[|K |] .= αµ.

These relations provide the key information sources that agents would use to
update their arrival rate estimates. In this paper, we model the arrival rate dynamics
with a forecasting specification that uses past values of balanced and imbalanced
trade as well as past arrival forecasts to forecast informed and uninformed arrival
rates. It seems reasonable to allow arrival rates to depend on these variables as
traders can observe them and can thus condition their trading choices on this data.

1.2.2 A generalized autoregressive specification on arrival rates of trades.
The arrival rate of informed trades is αµ and the arrival rate of the uninformed
trades is 2ε. We use ψ = [αµ, 2ε]� to denote the vector of the two arrival rates. To
remove any deterministic trend in arrival rates, we model the detrended arrival
rates ψ̃i t = ψi te−gi t , i = 1, 2, as a vector stationary process, where the vector g ≡
[g1, g2]� captures the growth rates of the two intensities.

In order to allow our arrival rate forecasts to depend on past observables, we
specify that the detrended arrival rate forecasts follow bivariate vector autoregres-
sive process with predetermined forcing variables,

ψ̃t = ω +
p∑

k=1

�kψ̃t−k +
q−1∑
j=0

� j Z̃t− j , (2)

where ψ̃t denotes the detrended time-t forecast of the arrival rate vector at time
t + 1, Zt ≡ [|Kt|, TTt − |Kt|]� denotes the time-t observed absolute trade imbal-
ance and balanced trades, and Z̃i t = Zi te−gi t , i = 1, 2, denotes the detrended trade
quantities. This equation is directly analogous to a GARCH equation (Bollerslev
1986), where unobservable quantities (arrival rates) are modeled as a function
of observables (imbalanced and balanced trades). In principle, as in GARCH-type
specifications, we can incorporate any predetermined observables into the forecast-
ing equation as long as they are informative about the informed and uninformed
trade arrivals.
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To compute multistep forecasts of the arrival rates, it is necessary to forecast
future values of Z̃ based on the model. As a first-order approximation, Et−1[Z̃t]

.=
ψ̃t−1. Then, as in GARCH models, the above forecasting relation can be rewritten
as an ARMA(max[p, q ], q ) process:

ψ̃t
.= ω +

max[p,q ]∑
k=1

�∗
k ψ̃t−k +

q∑
j=0

� jξt− j , (3)

where

�∗
k =

{
�k + �k−1 if k ≤ q
�k if k > q

,

and ξt ≡ Z̃t − Et−1[Z̃t]
.= Z̃t − ψ̃t−1 denotes the forecasting error. The stationarity

of the process requires that the eigenvalues of �∗
k be less than one.

For model estimation, we set p = q = 1. Adding back the time trend, we can
rewrite the forecasting relation as

ψt = ω � egt + �[ψt−1 � eg] + �Zt , (4)

where � is the Hadamard product.
Equation (4) forecasts the product of the parameter α and the arrival rate of

informed traders µ. However, the likelihood function needs separate inputs for
the two quantities. To separate them, we assume that α, the probability of an infor-
mation event, is constant over time. In reality, informed trades could vary because
of variations in either the arrival rate of informed traders µ or the probability of
an information event α, or both. We find it more plausible that the arrival rate of
informed traders is time varying than that the probability of an information event
is time varying. Some information events are more important than others. We use
the time-varying arrival rate of informed traders to capture the variation in the
importance of the information events. More important information events attract
more informed traders. Nevertheless, it is possible that the probability of having
an information event also follows a stochastic process that we miss-identify as
variation in informed traders with this assumption.

1.3 Maximum Likelihood Estimation

With daily observations on the number of buys and sells, we use a maximum
likelihood method to estimate the parameters that govern the dynamics of the
arrival rates of informed and uninformed trades [ω, g, �, �], the probability of
an information event α, and the probability of bad news δ. First, given initial
guesses on the model parameters, we use Equation (4) to forecast the informed
and uninformed trade arrival rates at each time t based on information at time
(t − 1) to obtain [αµt−1, 2εt−1]. Second, conditional on the time-(t − 1) forecasts
of the time-t arrival rates, we compute the time-(t − 1) conditional probability of
having Bt buys and St sells at time t according to the benchmark microstructure
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model,

Pr[yt = (Bt , St)|Ft−1] = α(1 − δ)e−(µt−1+2εt−1) (µt−1 + εt−1)Bt (εt−1)St

Bt!St!

+αδe−(µt−1+2εt−1) (µt−1 + εt−1)St (εt−1)Bt

Bt!St!

+ (1 − α)e−2εt−1
(εt−1)Bt+St

Bt!St!
, (5)

whereFt−1 denotes the time-(t − 1) filtration. Equation (5) represents a direct exten-
sion of Equation (1), where the constant arrival rates of informed and uninformed
traders are replaced by their conditional forecasts.

We construct the aggregate log likelihood function on the time series of buys
and sells as a summation of the logarithm of the daily conditional probabilities
given in (5):

L
({yt}T

t=1

∣∣
) =
T∑

t=1

ln Pr[yt = (Bt , St)|Ft−1], (6)

where T denotes the number of daily observations and 
 denotes the vector of
model parameters, 
 ≡ [δ, α, g, ω, �, �]. We obtain the parameter estimates by
maximizing this aggregate likelihood function on the number of buys and sells.

Although the estimation procedure is straightforward, we often encounter
numerical problems when performing the estimation in practice. The three com-
ponents of the conditional probability in Equation (5) all have the factorials of
buys and sells in the denominator and have the arrival rates raised to the power
of buys and sells in the numerator. As the number of buys and sells become very
large numbers for some heavily traded stocks, the computation generates overflow
errors for both the numerator and the denominator. Furthermore, the exponential
operation on the negative of the arrival rates can also generate underflow errors
when the arrival rates are large.

To circumvent the numerical difficulty, we factor out a common term from
the three components of the conditional probability, e−2εt−1 (µt−1 + εt−1)Bt+St /(B!S!),
and rewrite the log likelihood function as,

L
({yt}T

t=1

∣∣
) =
T∑

t=1

[−2εt−1 + (Bt + St) ln(µt−1 + εt−1)]

+
T∑

t=1

ln
[
α(1 − δ)e−µt−1 xSt

t−1 + αδe−µt−1 xBt
t−1 + (1 − α)xBt+St

t−1

]
− ln[Bt!St!], (7)

with xt ≡ εt/(µt + εt) ∈ [0, 1]. For model estimation, we also drop the last term
− ln[Bt!St!] as it does not vary with the choice of model parameters.
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Our model formulation combines the strength of GARCH-type specifications
in forecasting arrival rate dynamics with a microstructure setting to generate a
likelihood function that is tightly linked to the interactions between informed and
uninformed traders. The GARCH specification in Equation (4) makes a static mi-
crostructure model dynamic and enables a highly stylized microstructure story
to capture observed order flow behaviors. On the other hand, the microstructure
backdrop provides guidance on the forecasting dynamics specifications and in-
formative observable choices. It also generates structural interpretations on the
estimated model parameters.

2 DATA AND ESTIMATION

We select 16 actively traded stocks to illustrate our approach to estimating the
arrival rates dynamics and forecasting trading costs.1 These stocks are Ashland
(ASH), Exxon Mobil (XOM), Duke Energy (DUK), Enron (ENE), AOL Time Warner
(AOL), Philip Morris (MO), ATT (T), Pfizer (PFE), Southwest Air (LUV), AMR
(AMR), Dow Chemical (DOW), CitiGroup (C), JP Morgan Chase (JPM), Wal Mart
(WMT), Home Depot (HD), and General Electric (GE). We choose representative
stocks from a variety of industries that had high trading volume and were listed
on the NYSE. The latter criterion is intended to avoid differences introduced by
different trading platforms. Trade data for these stocks are taken from the TAQ
transactions database over 15 years for the period January 3rd, 1983, to December
24th, 1998 (3891 business days). A minimum level of trading activity is necessary to
extract the information changes from each day, so we exclude days when there are
either no buys or no sells. The least active stock is Enron, from which we drop 244
inactive days, then JP Morgan Chase (244 days), Ashland (65 days), Duke Energy
(61 days), Wal Mart (19 days), Exxon Mobil (18 days), Southwest Air (7 days),
Pfizer (4 days), ATT (4 days), and Philip Morris (3 days). Furthermore, the data for
AOL Time Warner, CitiGroup, and Home Depot start late. The starting dates are,
respectively, September 16, 1996; October 29, 1986; and April 19, 1984.

The TAQ data provide a complete listing of quotes, depths, trades, and volume
at each point in time for each traded security. For our analysis, we require the
number of buys and sells for each day, but the TAQ data record only transactions,
not who initiated the trade. The classification problem has been dealt with in a
number of ways in the literature, with most methods using some variant on the
uptick or downtick property of buys and sells. In this article, we use a technique
developed by Lee and Ready (1991). Those authors propose defining trades above
the midpoint of the bid-ask spread to be buys and trades below the midpoint of
the spread to be sells. Trades at the midpoint are classified depending upon the
price movement of the previous trade. Thus, a midpoint trade will be a sell if the
midpoint moves down from the previous trade (a downtick) and will be a buy if
the midpoint moves up. If there is no price movement, we move back to the prior

1Fifteen of these stocks were randomly selected from the most active stocks on the NYSE. Ashland was
included for comparison with the results of Easley, Kiefer, and O’Hara (1997a).
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price movement and use that as our benchmark. We apply this algorithm to each
transaction in our sample to determine the daily numbers of buys and sells. The
first trade each day is excluded from our sample as it is determined by a different
mechanism.

We begin by analyzing the properties of the trade variables. Table 1 reports
the summary statistics of the trade quantities Z = [|K |, TT − |K |], the number of
imbalanced and balanced trades. We observe the following features:

� Trades are increasing. The daily number of balanced trades TT − |K | grows
faster than the trade imbalance K . The estimated annual growth rate for the
balanced trade ranges from 2.4% for DOW to 94% for AOL. The growth rate
for the trade imbalance ranges from negative for XOM (−3.66%) and DOW
(−1.51%) to 133% for AOL.

� The number of balanced trades is more volatile than trade imbalance. For all stocks
investigated, the standard deviation of the balanced trades is much larger
than the standard deviation of the trade imbalance. Standard deviations are
measured on the detrended residuals. Furthermore, the intercept of the de-
trending regression is also larger for the number of balanced trades TT − |K |
than for the trade imbalance |K |, implying that the number of balanced trades
dominates the total trades.

� Trades are highly persistent. Balanced trades are more persistent than the trade
imbalance. The first order autocorrelation for balanced trade ranges from
0.697 to 0.953 while that for the trade imbalance ranges from 0.145 and 0.772.
Autocorrelations are measured on the detrended residuals.

� Balanced trades and trade imbalances are cross-correlated. The two quantities are
generally positively correlated. The cross-correlation coefficient between the
balanced trade TT − |K | and the trade imbalance |K | ranges from −0.004 for
XOM to 0.802 for Citigroup.

The above observations suggest a level of complexity to the order arrival pro-
cess that is not well captured by static models. The observations also suggest that
informed and uninformed trade behaviors exhibit complex dynamic interactions,
which are the key motivations for our dynamic specifications of the arrival rates.
The observation that balanced and imbalanced trades show both serial and cross-
sectional dependence indicates that the arrival rates of informed and uninformed
trades are not constant over time, but instead follow some correlated, autoregres-
sive dynamics. The observation that the trades are increasing over time prompts
us to also incorporate a deterministic time trend in the arrival rate dynamics spec-
ification.

Using the time series of balanced and imbalanced trades on each of the 16
stocks, we maximize the log likelihood defined in Equation (7) to estimate the pa-
rameters that govern the dynamics of the arrival rates of informed and uninformed
trades. These estimated parameters indicate how the two arrival rates interact
with each other and how they move over time. From the estimated dynamics and
observations on order flows, we then construct arrival rate forecasts, which in turn
predict market liquidity, depth, and potential trading cost in each stock.
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Table 1 Summary statistics of trading activities.

Ticker g (%) a SD Auto ρ

ASH 5.073 0.921 10.190 0.145 0.206
11.495 2.721 37.044 0.809 —

XOM −3.662 3.685 47.322 0.326 –0.004
6.447 5.149 197.227 0.885 —

DUK 3.743 1.551 15.216 0.224 0.183
10.419 3.200 57.442 0.882 —

ENE 11.557 0.870 16.761 0.291 0.326
16.285 2.812 82.516 0.908 —

AOL 133.194 2.896 131.974 0.571 0.683
93.718 5.408 688.675 0.906 —

MO 14.643 2.323 83.095 0.579 0.455
15.132 4.655 340.383 0.899 —

T 6.033 3.369 78.816 0.433 0.132
4.495 5.808 235.872 0.815 —

PFE 13.650 2.170 76.184 0.683 0.625
13.944 4.431 375.726 0.953 —

LUV 17.934 0.360 21.802 0.452 0.416
18.387 2.476 88.850 0.873 —

AMR 5.503 2.071 27.079 0.267 0.369
7.186 4.388 128.836 0.836 —

DOW −1.513 2.928 31.871 0.419 0.125
2.394 5.121 88.271 0.697 —

C 22.445 1.482 76.227 0.772 0.802
24.244 3.341 314.672 0.951 —

JPM 12.619 1.609 33.315 0.473 0.554
13.800 3.778 151.941 0.898 —

WMT 11.009 2.490 58.606 0.514 0.210
15.338 4.057 207.550 0.907 —

HD 21.105 1.387 57.029 0.658 0.533
22.693 3.206 179.999 0.887 —

GE 10.925 2.557 57.672 0.398 0.328
12.771 5.057 452.945 0.947 —

Entries report the summary statistics of the trade quantities Z = [|K |, V − |K |], where |K | = |S − B| is
the trade imbalance (difference between number of sells and buys) and TT = S + B is the total number
of trades (sells plus buys) at each day. Under each ticker, the first row reports the properties of trade
imbalance |K | while the second row reports the properties of the number of balanced trades TT − |K |.
The second column (g) reports the growth rates, estimated from the following regression:

ln Zi t = a + gi t + et , i = 1, 2.

The third column (a ) reports the regression intercept estimate. The fourth column (SD) reports the stan-
dard deviation of the regression residual et . The fifth column (Auto) reports the first-order autocorrelation
of the residual. The last column (ρ) reports the cross-correlation between the trade imbalance |K | and
the number of balanced trades TT − |K |, measured on the detrended residuals.
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Table 2 Maximum likelihood estimates for model parameters.


 ASH XOM DUK ENE AOL MO ATT PFE

δ 0.5511 0.7743 0.5349 0.4816 0.5371 0.3834 0.5951 0.4482
(0.0142) (0.0092) (0.0127) (0.0136) (0.0000) (0.0132) (0.0111) (0.0145)

α 0.4092 0.5266 0.4867 0.4481 0.5203 0.4922 0.4908 0.4074
(0.0103) (0.0090) (0.0099) (0.0098) (0.0000) (0.0093) (0.0087) (0.0098)

g1 0.0072 0.0001 0.0471 0.0523 0.0154 0.1445 0.0078 0.1389
(0.0044) (0.0043) (0.0031) (0.0041) (0.0000) (0.0009) (0.0078) (0.0014)

g2 0.0093 0.0027 0.0491 0.0537 0.1593 0.1424 0.0321 0.1388
(0.0042) (0.0040) (0.0030) (0.0041) (0.0000) (0.0007) (0.0033) (0.0013)

ω1 2.1190 2.4286 2.3074 1.9913 3.0877 2.8442 0.8761 2.1160
(0.0957) (0.1300) (0.0956) (0.0861) (0.0000) (0.0688) (0.1187) (0.0640)

ω2 7.8509 8.1612 7.8323 8.8338 10.1759 9.4953 5.5258 12.4808
(0.5016) (0.4496) (0.4637) (0.5569) (0.0000) (0.1034) (0.4442) (0.2546)

�∗
11 0.5204 0.6117 0.5046 0.5378 0.4863 0.6387 0.5042 0.5081

(0.0179) (0.0040) (0.0156) (0.0152) (0.0002) (0.0033) (0.0032) (0.0048)
�∗

12 0.0348 0.0413 0.0371 0.0329 0.0666 0.0260 0.0595 0.0314
(0.0028) (0.0009) (0.0025) (0.0021) (0.0000) (0.0006) (0.0013) (0.0009)

�∗
21 −1.7298 −1.2705 −1.6347 −2.0162 −1.9612 −0.9257 −1.8897 −2.8179

(0.1279) (0.0339) (0.1008) (0.1351) (0.0000) (0.0262) (0.0425) (0.0909)
�∗

22 1.1219 1.1360 1.1193 1.1417 1.2552 1.0549 1.2227 1.1769
(0.0123) (0.0022) (0.0101) (0.0116) (0.0001) (0.0011) (0.0028) (0.0039)

�11 0.0768 0.1302 0.0913 0.0719 0.1120 0.1305 0.0926 0.0575
(0.0033) (0.0024) (0.0033) (0.0028) (0.0000) (0.0025) (0.0017) (0.0015)

�12 0.0720 0.0826 0.0718 0.0646 0.0815 0.0997 0.0877 0.0482
(0.0028) (0.0015) (0.0024) (0.0024) (0.0000) (0.0019) (0.0016) (0.0012)

�21 0.3022 0.4449 0.3335 0.3431 0.4376 0.3948 0.3671 0.3698
(0.0067) (0.0023) (0.0057) (0.0052) (0.0000) (0.0013) (0.0013) (0.0017)

�22 0.3316 0.3590 0.3308 0.3574 0.2938 0.4627 0.4253 0.3471
(0.0035) (0.0012) (0.0036) (0.0029) (0.0001) (0.0006) (0.0007) (0.0009)

L(×105) 5.9201 64.0319 9.9586 12.5957 31.3832 98.6538 112.6279 74.8664
(Continued overleaf)

3 THE ARRIVAL RATE DYNAMICS

Table 2 reports the parameter estimates and the maximized log likelihood values
for each stock. Our focus here is on the dynamics of informed and uninformed
order flow rather than directly on the parameter estimates. We first discuss how
to construct the dynamics from the parameter estimates. In the next section, we
turn our attention to the impact of the dynamics on market liquidity, depth, and
trading cost analysis.

To understand how the arrival rates of the two types of trades interact with
each other and how they respond to innovations in the order flow, we rewrite the
generalized autoregressive process as,

ψ̃t = ω + �ψ̃t−1 + �Z̃t
.= ω + �∗ψ̃t−1 + �ξt .
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Table 2 (Continued).


 LUV AMR DOW C JPM WMT HD GE

δ 0.2998 0.3827 0.5529 0.4275 0.5375 0.5864 0.5600 0.5008
(0.0138) (0.0153) (0.0129) (0.0143) (0.0131) (0.0106) (0.0156) (0.0130)

α 0.4276 0.4707 0.4161 0.4960 0.5191 0.5814 0.3397 0.4342
(0.0096) (0.0101) (0.0096) (0.0104) (0.0102) (0.0090) (0.0104) (0.0097)

g1 0.0682 0.0996 0.0486 0.0809 0.0908 0.0614 0.0759 0.1229
(0.0035) (0.0039) (0.0027) (0.0042) (0.0028) (0.0013) (0.0018) (0.0022)

g2 0.0701 0.1010 0.0452 0.0848 0.0918 0.0714 0.0790 0.1233
(0.0034) (0.0038) (0.0023) (0.0041) (0.0027) (0.0010) (0.0018) (0.0020)

ω1 2.0010 2.7846 2.2215 2.6584 2.9133 2.8769 2.7226 2.0085
(0.0718) (0.1719) (0.1242) (0.0897) (0.0957) (0.0617) (0.0929) (0.0734)

ω2 6.7676 9.4418 10.2262 9.7331 9.4784 6.4879 10.6474 8.9251
(0.2306) (0.5416) (0.4643) (0.3617) (0.3080) (0.0899) (0.1842) (0.2661)

�∗
11 0.5514 −0.3745 0.5461 0.5143 0.3432 0.7717 0.4794 0.5210

(0.0085) (0.0267) (0.0071) (0.0078) (0.0086) (0.0029) (0.0048) (0.0040)
�∗

12 0.0444 0.2131 0.0366 0.0577 0.0697 0.0210 0.0364 0.0301
(0.0020) (0.0069) (0.0014) (0.0016) (0.0022) (0.0005) (0.0013) (0.0008)

�∗
21 −1.4905 −4.5369 −1.7943 −1.7880 −2.1052 −0.4211 −2.0071 −1.9364

(0.0594) (0.1841) (0.0642) (0.0694) (0.0708) (0.0118) (0.0778) (0.0589)
�∗

22 1.1461 1.7012 1.1393 1.2133 1.2219 1.0334 1.1371 1.1186
(0.0068) (0.0259) (0.0054) (0.0070) (0.0074) (0.0007) (0.0033) (0.0020)

�11 0.0960 0.1202 0.0900 0.0630 0.1106 0.1370 0.0801 0.0973
(0.0026) (0.0029) (0.0022) (0.0016) (0.0026) (0.0022) (0.0025) (0.0023)

�12 0.0863 0.0980 0.0716 0.0721 0.0982 0.1045 0.0727 0.0680
(0.0022) (0.0023) (0.0018) (0.0017) (0.0022) (0.0017) (0.0023) (0.0016)

�21 0.3294 0.4634 0.3817 0.2637 0.3840 0.2878 0.3282 0.4300
(0.0033) (0.0025) (0.0031) (0.0022) (0.0030) (0.0016) (0.0018) (0.0020)

�22 0.3478 0.4002 0.3806 0.3358 0.3677 0.3886 0.3248 0.3994
(0.0018) (0.0012) (0.0014) (0.0013) (0.0016) (0.0010) (0.0010) (0.0008)

L(×105) 12.9931 29.3080 38.1600 35.0912 30.5118 53.0571 38.1229 115.8519

Entries are maximum likelihood estimates of model parameters that govern the arrival rate dynamics:

ψt = ωegt + �ψt−1eg + �Zt ,

where ψt ≡ [αµt , 2εt]� denotes time t forecasts of the arrival rates of informed and uninformed trades at
time t + 1 and Z ≡ [|K |, TT − |K |]� denotes the realized trade imbalance and number of balanced trades
at time t. The autoregressive matrix is given by �∗ = � + �. In the parentheses are standard errors. The
last row reports the log-likelihood value (L).

The second line is obtained via a linear approximation on the expectation of the
balanced and imbalanced trades. The term �∗ = � + � captures the first-order
persistence of the arrival rate forecasts and ξt

.= Z̃t − ψ̃t−1 denotes the forecasting
error, or innovation, in trading quantities. Based on this linear approximation, the
multiperiod impact of a trade innovation on the arrival rate forecasts is given by



184 Journal of Financial Econometrics

the following impulse response function:

∂Et
[
ψ̃ i

t+k

]
∂ξ

j
t

= [(�∗)k�]i j , i, j = 1, 2; k = 0, 1, 2, . . . (8)

where [·]i j denotes the (i, j)th element of the impulse response matrix and captures
the impact of the j th element of the shock ξ j on the ith element of the arrival rate,
ψ̃ i . In this system, the estimates on � capture the instantaneous impact of the time-
t innovation on the time-t forecast of the next period’s arrival rates. In contrast,
the autoregressive matrix �∗ measures the persistence of the arrival rate forecasts
and determines to a large degree the multiperiod impact of the trade innovations.
The whole picture of dynamics is obtained by a joint analysis of the instantaneous
impact �, the autoregressive matrix �∗, and the whole impulse response function
of each element.

3.1 The Instantaneous Impact of Trade Innovations

The instantaneous impact of trade innovations ξ on the arrival rate forecasts ψ̃

is captured by the � matrix. Inspecting the estimates of the � matrix in Table 2,
we find that the estimates for all elements of the matrix are positive for all the 16
stocks. Therefore, shocks to both balanced and imbalanced trades have positive
instantaneous impacts on the arrival rate of both informed and uninformed agents.
Further inspection shows that the estimates for the �21 and �22 elements are larger
than the estimates for the �11 and �12 estimates, indicating that both trade innova-
tions have a larger impact on the arrival rate forecast of uninformed trades than
on the arrival rate forecast of informed trades. As a result, we can more effectively
forecast the uninformed arrival rate than the informed.

The elements �11 and �21 capture the instantaneous impact of the innovation in
trade imbalance |K | on the informed and uninformed arrival forecasts, respectively,
holding the number of balanced trades constant. Hence, the positive coefficients
imply that given a fixed number of balanced trades, increasing trade imbalances
increase the arrival forecasts on both informed and uninformed arrivals, potentially
because increasing the trade imbalance in this scenario also increases the total
number of trades.

On the other hand, if we hold the total number of trades constant, the instan-
taneous effect of a relative increase in the trade imbalance is captured by �11 − �12

on the informed arrival forecast and by �21 − �22 on the uninformed arrival fore-
cast. We find that the estimates for the difference �11 − �12 remain predominantly
positive, with only one exception in Citigroup. Thus, we conclude that a relative
increase in the composition of the imbalanced trades also increases the arrival fore-
casts of informed trades for most stocks. However, the estimates for the difference
�21 − �22 have mixed signs negative for seven firms and positive for nine forms.
Hence, the impact of a relative increase in the composition of imbalanced trades is
ambiguous on the arrival forecast of uninformed trades.

Overall, we find that an absolute increase in either balanced or imbalanced
trades increases the forecasts of both informed and uninformed arrivals. So we
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Table 3 Stationarity of the dynamic arrival rate processes.

Ticker Eigenvalue 1 Eightvalue 2

ASH 0.6473 0.9950
XOM 0.7464 1.0013
DUK 0.6281 0.9958
ENE 0.6821 0.9974
AOL 0.7401 1.0014
MO 0.7080 0.9855
T 0.7347 0.9921
PFE 0.6901 0.9950
LUV 0.6996 0.9979
AMR 0.3310 0.9957
DOW 0.6936 0.9918
C 0.7259 1.0018
JPM 0.5672 0.9979
WMT 0.8115 0.9936
HD 0.6209 0.9956
GE 0.6437 0.9959

Entries report the two eigenvalues of the estimated autocorrelation matrix
�∗ = � + � for each of the 16 stocks. The eigenvalues should be less than
one for the processes to be stationary.

forecast greater arrival rates for both types of traders following an increase in trade
of either type. However, an increase in the relative composition of the imbalanced
trades while holding the total number of trades constant has a positive impact on
the arrival forecast of informed trades, but an ambiguous impact on the arrival
forecast of uninformed trades. So we forecast a greater arrival rate for informed
traders following an increase in the share of trades that are imbalanced, but there
is no clear effect of the share of imbalanced trades on the forecast of uninformed
arrivals.

3.2 The Serial Dependence of Arrival Rate Forecasts

The �∗ matrix captures the first-order persistence of the vector arrival rate forecasts
on informed and uninformed trades. The diagonal terms of �∗ capture how the
current forecast is correlated with the lagged forecast of the same arrival rate. The
parameter estimates reported in Table 2 indicate that the diagonal terms of �∗ are
mostly positive, indicating a trend following or herding behavior for both types
of arrival rate forecasts. Table 3 reports the eigenvalues of this impact multiplier
for the 16 stocks in our sample. Under the linear approximation, both eigenvalues
should be less than one for the vector process to be stationary. Given the nonlin-
earity inherent in the dependence of Et−1[Zt] on ψt−1, we cannot directly use the
eigenvalues to determine the stationarity of the system. Nevertheless, the magni-
tudes of the eigenvalues give us an approximate picture of the persistence. For all
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the 16 stocks, we find that the second eigenvalue of the multiplier matrix is very
close to one, demonstrating the extreme persistence of the system.

The dynamics of the vector arrival rate processes is further complicated by
the presence of large off-diagonal terms in �∗. In particular, the (2, 1)th element
of the impact multiplier, �∗

21, captures the impact of the previous informed ar-
rival rate forecast on the current uninformed arrival rate forecast. For all 16 stocks,
the estimates for �∗

21 in Table 2 are all remarkably negative. Thus, a forecasted
increase in the arrival rate of informed trades leads to a systematic decrease in
our forecasts of the uninformed arrival rate. This forecasting relation is not pre-
dicted by traditional microstructure models, which view the only determinant
of uninformed trading as the presence of other uninformed traders. The behav-
ior is more in line with models that allow discretionary behaviors for liquidity
traders, e.g., Admati and Pfleiderer (1988), Foster and Vishwanathan (1990), and
Lei and Wu (2000).

The impact of previous day’s uninformed order arrival forecast on today’s
informed arrival forecast is captured by the (1, 2)th element of impact multiplier,
�∗

12. The estimates on �∗
12 reported in Table 2 are small, and are not consistently

positive or negative across the 16 stocks. Hence, the arrival forecasts of informed
trades do not depend much on lagged forecasts on the uninformed arrivals. This
dynamic behavior is consistent with the hypothesis that informed traders act
mainly on information, and do not respond strongly to the activity of uninformed
traders.

3.3 The Multiperiod Impact of Trade Innovation

The impulse response function, defined in Equation (8), describes how a shock to
one of the state variables will alter the evolution of these variables through time.
Such shocks will typically decay over time but in this case there is substantial per-
sistence. The impulse-response function is determined jointly by the instantaneous
impact matrix � and the impact multiplier �∗. In Figure 1, we plot the normalized
impulse-response function for the 16 stocks in our sample, computed based on
Equation (8). To compare the relative persistence of each of the four elements, we
normalize each element of the impulse-response function by the corresponding
element in � so that all elements of the impulse response are normalized to one
at the instantaneous level k = 0. The 16 stocks generate very similar persistence
patterns. In particular, the arrival rate of uninformed trades (dotted line) is much
more persistent than the arrival rate of informed trades (solid line), with one ex-
ception on AOL (the fifth panel). The persistence of cross-impacts falls between
the two direct impacts.

This persistent behavior of informed and uninformed trades is not unexpected
given that many studies have shown volume to be significantly and positively
autocorrelated. But this result is at variance with the predictions of microstructure
models in which trades are viewed as iid. Perhaps more importantly, the result
reveals that trade patterns are predictable across trading days.
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Figure 1 The normalized impulse response function. Lines depict the impulse response functions
of the bivariate arrival rate system for the 16 companies. Each panel is for one company. In each
panel, the solid line captures the impact of the trade imbalance |K | on the arrival of informed
trades, the dashed line captures the impact of the trade imbalance on the arrival of uninformed
trades, the dash-dotted line captures the impact of the balanced trade TT − |K | on the informed
trade arrival, and the dotted line captures the impact of the balanced trade on the uninformed
arrival. For ease of comparison, we normalize all responses at k = 0 to one.

3.4 Robustness of Arrival Rate Dynamics with Respect to
Model Perturbations

We have also done the estimation with a generalized autoregressive process on
the logarithm of the arrival rates instead of the arrival rates themselves. This
specification is analogous to the EGARCH model of Nelson (1991). The maximized
log likelihood values from the two models are very close to one another, neither
model consistently dominating the other model across all stocks. More importantly,
parameter estimates from both models imply similar dynamic behaviors for the
informed and uninformed arrivals, showing the robustness of the results.2 For both
models, uninformed trades tend to be highly persistent. Uninformed order arrivals
clump together, with high-volume days more likely to follow high-volume days,
and conversely. However, an increase in the forecast of informed arrival rate leads

2The estimation results for this alternative specification are available upon request.
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to a decline in future forecast of the uninformed arrival rate. The informed arrival
rates also exhibit complex patterns, but the forecast of the informed arrival rate
depends little on past forecasts of the arrival rates of uninformed trades.

4 FORECASTING MARKET LIQUIDITY AND DEPTH

In addition to providing insights on how the informed and uninformed dynami-
cally interact with each other, the estimation of our dynamic model also generates
direct forecasts on the arrival rates of informed and uninformed trades. These
forecasts are informative in predicting the market liquidity and market depth.
Thus, they are useful not only for academics in better understanding the market
microstructure, but also for practitioners in better positioning their trades, and for
risk managers seeking to measure the risks of illiquidity.

We also use our dynamic model to generate a time series of the PIN. This
variable has been used in many studies to provide insight into the microstructure
questions, such as the determinants of bid-ask spreads, and asset pricing questions,
such as the determinants of the cost of capital. But all prior work using PIN required
an assumption that it was constant over a substantial period of time. So PIN could
not be used to provide insight into short-term, transitory changes in information-
based trading. Here we show how to use the time series of PINs produced by
our dynamic model to investigate the effects of earnings announcements on the
variation in information-based trading.

4.1 Market Liquidity and Bid-Ask Spread

Market liquidity is often measured by the bid-ask spread: markets in which the
bid-ask spread is small are interpreted as liquid markets. Our model links bid-
ask spreads directly to the trade sequence and the arrival rates of informed and
uninformed trades. By forecasting the arrival rates, we can predict the dynamics
of bid-ask spreads.

We start by analyzing the bid quote in response to a sell order. Under our
model, an application of Bayes rule shows that the probabilities of a good and a
bad information event conditional on a sell order at time t are given by, respectively,

Pr(good|sellt) = Prt(good)εt−1

Prt(bad)µt−1 + εt−1
, Pr(bad|sellt) = Prt(bad)(εt−1 + µt−1)

Prt(bad)µt−1 + εt−1
, (9)

where Prt(good) and Prt(bad) denote the prior probabilities at time t of a good
and a bad information event, respectively, and (µt−1, εt−1) denote the time-(t − 1)
forecast of the arrival rates of informed and uninformed traders at time t. In a
competitive market, the bid price must provide the market maker zero expected
profit conditional on a trade at the bid, i.e., the arrival of a sell order. Thus, the
bid price should be equal to the expected value of the asset conditional on history
and on the arrival of a sell order. If we use V to denote the expected asset value
conditional on good news and V the expected value conditional on bad news, we
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can derive the bid price as

bidt = Pr(good|sellt)V + Pr(bad|sellt)V + Pr(no news|sellt)V∗

= V∗ + (V − V)
δ Prt(good)εt−1 − (1 − δ) Prt(bad)(εt−1 + µt−1)

Prt(bad)µt−1 + εt−1
, (10)

where Pr(no news|sellt) = 1 − Pr(good|sellt) − Pr(bad|sellt) is the probability of
no information event and V∗ ≡ (1 − δ)V + δV denotes the unconditional expected
value of the asset.

Now, we consider the ask price for a buy order. Again, we can apply the Bayes
rule to derive the probabilities of a good and a bad information event conditional
on a buy order,

Pr(good|buyt) = Prt(good)(εt−1 + µt−1)
Prt(good)µt−1 + εt−1

; Pr(bad|buyt) = Prt(bad)εt−1

Prt(good)µt−1 + εt−1
.

(11)

The ask price is the expected value of the asset conditional on this buy order,

askt = V∗ + (V − V)
δ Prt(good)(εt−1 + µt−1) − (1 − δ) Prt(bad)εt−1

Prt(good)µt−1 + εt−1
. (12)

From Equations (10) and (12), we can compute the bid-ask spread as a function
of the trade sequence and the arrival rates of informed and uninformed traders.
Therefore, our forecasts on the arrival rates lead to direct forecasts on the market
liquidity as measured by bid-ask spreads.

For illustration, we consider the special case at the opening of each day t. We
start the day with the unconditional probabilities of good and bad information
events,

Pr(good) = (1 − δ)α, Pr(bad) = δα. (13)

Plugging the unconditional priors in (13) into Equations (10) and (12), we obtain
the date-t opening bid-ask spread (OSt):

OSt = (V − V)δ(1 − δ)αµt−1

[
(αµt−1 + 2εt−1)

((1 − δ)αµt−1 + εt−1)(δαµt−1 + εt−1)

]
. (14)

If we further assume that δ = 1/2, i.e., bad and good news have equal probabilities,
the opening bid-ask spread simplifies to

OSt = (V − V)
αµt−1

αµt−1 + 2εt−1
= (V − V)PINt−1, (15)

where PINt−1 ≡ αµt−1/(αµt−1 + 2εt−1) denotes the time-(t − 1) forecasted fraction
of informed trades at time t that are based on information. Hence, the opening
bid-ask spread is directly linked to the expected trade composition.

Our dynamic model provides conditional expectations of the arrival rates of
informed and uninformed trades. We use the arrival rate forecasts to compute
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Table 4 Sample properties of the forecasts on proportion of informed trades (PIN).

Ticker Mean SD Auto Min Med Max

ASH 0.157 0.036 0.987 0.063 0.154 0.273
XOM 0.121 0.025 0.951 0.045 0.114 0.213
DUK 0.157 0.026 0.980 0.068 0.158 0.237
ENE 0.149 0.036 0.992 0.065 0.145 0.286
AOL 0.123 0.017 0.714 0.068 0.125 0.165
MO 0.120 0.018 0.838 0.046 0.120 0.179
T 0.110 0.012 0.831 0.053 0.109 0.161
PFE 0.103 0.011 0.973 0.063 0.103 0.150
LUV 0.187 0.043 0.988 0.073 0.187 0.302
AMR 0.153 0.010 0.594 0.113 0.153 0.184
DOW 0.103 0.011 0.808 0.056 0.103 0.158
C 0.162 0.027 0.991 0.085 0.162 0.257
JPM 0.140 0.017 0.838 0.058 0.141 0.198
WMT 0.168 0.048 0.977 0.040 0.159 0.355
HD 0.128 0.036 0.978 0.054 0.114 0.233
GE 0.083 0.011 0.774 0.026 0.083 0.124

Entries report the sample average (Mean), standard deviation (SD), first-order autocorrelation (Auto),
minimum (Min), median (Med), and maximum (Max) estimates on the forecasted time series of propor-
tion of informed trades (PIN).

forecasts of the probability of informed trades, PIN. This conditional PIN is inter-
preted as the forecast of the probability that a trade on the next day will be from an
informed agent. Then, we use these conditional PINs to predict market liquidity,
exemplified by the opening bid-ask spread, using (14). The summary statistics for
the PIN forecasts are reported in Table 4.

Figure 2 plots the time series of the PIN forecasts for each stock. For ease of
comparison, we apply the same scale for all panels. We observe an obvious decline
in the PIN forecasts over time for several stocks, especially during the last several
years of our sample.

A new generation of asset pricing theories ascribe a role to liquidity. Easley,
Hvidkjaer, and O’Hara (2002), O’Hara (2003), and Acharya and Pedersen (2005)
differ on the measures of liquidity but agree on their importance. A simple measure
of illiquidity is PIN, or the probability of informed trading. High values imply wide
bid-ask spreads, small market depths, and costly trading by uninformed traders.
From Table 4 and Figure 2, it is clear that PIN varies across assets and over time.
Although the average level of PIN is substantially different for these 16 stocks,
perhaps even more important is the movement in this indicator. For each stock,
the PIN estimate varies greatly over time. The minimum PIN estimates for most
stocks are in single digits (in percentage points), but the maximum can well be over
30 percentage points.
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Figure 2 The time series of PIN forecasts. Lines depict the time series of the PIN forecasts from
our estimated dynamic model for each stock. PIN denotes the probability of informed trades,
defined as the arrival of informed trades over the arrival of total trades. Each panel represents one
stock. For ease of comparison, we apply the same scale on all panels.

From an asset pricing point of view, the covariance of illiquidity across assets
is also of importance. Just as with the risk of return, diversification can reduce the
risk that an investor must sell when an asset is particularly illiquid. Hence, the
strength of correlation matters, see for example Hasbrouck and Seppi (2001) and
Chordia, Roll, and Subrahmanyam (2000). It is clear from Figure 2 that PIN moves
similarly across assets. Table 5 reports the cross-correlation estimates between
the PIN time series on different stocks. The correlations are estimated using the
common sample of the two stocks involved. The estimates differ greatly across
different stock pairs, ranging from −0.14 to 0.83. Based on the common sample
of 14 stocks,3 we perform principal component analysis and plot the normalized
eignevalues of each principal component in Figure 3. The plots show that one
principal component explains 37% of the daily variation in the 14 PIN series. This
estimate suggests that there is a systematic liquidity factor that underlies the stocks

3We drop AOL and C from the common sample analysis because their sample lengths are much shorter
than the other stocks.



EASLEY ET AL. | Informed and Uninformed Arrival Rates 193

Figure 3 Percentage variation explained by each principal component of the PIN time series on
14 stocks. The length of bars denotes the normalized eigenvalues of the covariance matrix of the
daily changes in the 14 time series of PIN estimates from our dynamic model. The normalized
eigenvalues can be interpreted as the percentage variation explained by each principal component.

that we estimate. While diversification can remove the idiosyncratic component of
the liquidity risk, the systematic liquidity risk in each stock should be priced.

To examine how informative the arrival rate forecasts are in predicting the
opening bid-ask spread, we run the following forecasting regression on each stock:

ln OPSt = c0 + c1 ln PINt−1 + c2 ln OPSt−1 + c3 GARCHt−1 + c4 ln Volumet−1 + et ,

(16)

where OPS denotes the percentage opening bid-ask spread of a stock, defined as

OPS ≡ 2
ask − bid
ask + bid

, (17)

where we normalize the bid-ask spread by the average of the bid and ask level.
The normalization has two purposes. First, we want to abstract from the impact of
the scale of the quote. Second, we use the mid-quote as a proxy for the maximum
impact of the information event. The term PINt−1 denotes the time-(t − 1) forecast
of the proportion of informed trades at time t. In addition to PIN, we also include
three control variables: (1) the lagged spread OPSt−1, (2) a standard GARCH(1,1)
volatility estimate on the stock returns, GARCHt−1, which measures the time-
(t − 1) forecast of time-t return volatility, and (3) the aggregate trading volume
at time (t − 1). We use these control variables to capture variations in the spread
that are not explained by the proportion of informed trades. The first variable
captures the unexplained persistence of the spread. The second variables captures
the contribution of the price data, which can potentially reveal information about
the variation in the spread between the upper and lower bounds of the valuation
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(V − V). The last variable captures the impact of trade size, which is absent from
our model. The significance of the estimates on c1 indicates how informative our
PIN forecasts are in predicting the opening bid-ask spread, on top of the predictions
from the three control variables.

Since the estimate for δ is not exactly at 1/2 for most stocks, in theory we
should use a more complicated function of arrival rates as in (14) rather than
PIN. Nevertheless, we use PIN for its simplicity and its intuitive interpretation
as a measure for expected trade composition. Furthermore, several studies have
generated the PIN estimates from the static model (based on either a rolling or
a nonoverlapping window) and explored their implications. Using PIN from our
dynamic model provides a comparison with these studies.

We estimate the regressions using generalized methods of moments, with the
weighting matrix calculated according to Newey and West (1987) with 30 lags.
Table 6 reports the slope estimates, their standard errors (in parentheses), and
the R-squares of the regressions in (16). The forecasting performance of the PIN
forecasts are quite remarkable. The estimates for the c1 coefficient, which captures
the impact of the probability of informed trades, are significantly positive for all but
two stocks. The sample average of c1 over the 16 stocks is 0.253, with an average
standard deviation of 0.105. The strong statistical significance of the coefficient
estimates are remarkable given that the arrival rate forecasts are obtained from
purely trade quantities while the opening bid-ask spread is a price behavior.

The c2 coefficient estimates on the autoregressive component are also signifi-
cantly positive for all stocks, indicating that the persistence of the bid-ask spreads
cannot be fully explained by the arrival rate forecasts. Furthermore, the coefficient
estimates c3 on the GARCH volatility are on average positive and that on the trad-
ing volume are on average negative, suggesting that the opening bid-ask spread
is higher if the previous day’s volatility is high but trading volume is low. Over-
all, the regression in (16) exhibits pronounced forecasting power, with an average
R-square of 31.2%.

It is important to note that our arrival rates forecasts can be used to forecast
the bid-ask spreads under any given trade sequences. Here, we use the specific
regressions on the opening bid-ask spreads to illustrate their forecasting power
and potential usefulness in forecasting the time-variation in market liquidity.

4.2 Market Depth and Price Impacts of Trade Orders

When a portfolio manager tries to purchase or liquidate a large position by sending
consecutive buy or sell orders to the market, the price change induced by this series
of orders could be significant. Using our dynamic microstructure framework, we
can compute the price impact of this sequence of orders as a function of the arrival
rates of informed and uninformed trades. Since we have forecasts of the arrival
rates, our dynamic model can also be used to forecast the market depth and the
potential cost of loading or unloading a position.

We use a sequence of N consecutive buy orders as an example. Let PrN−1
t (good)

and PrN−1
t (bad) denote the probabilities of a good and a bad information event
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Table 6 Forecasting opening bid-ask spread.

Ticker c0 c1 c2 c3 c4 R2

ASH −3.234 0.625 0.200 3.576 −0.036 0.221
(0.664) (0.061) (0.024) (2.453) (0.010) —

XOM −1.007 0.520 0.334 −0.205 −0.118 0.274
(0.319) (0.059) (0.033) (0.399) (0.022) —

DUK −5.512 0.446 0.228 9.648 −0.018 0.229
(1.133) (0.122) (0.025) (3.118) (0.013) —

ENE −1.860 0.405 0.352 −2.245 −0.010 0.206
(0.364) (0.068) (0.035) (0.950) (0.012) —

AOL −14.457 −0.886 0.344 27.622 0.162 0.410
(1.539) (0.167) (0.079) (2.697) (0.044) —

MO −3.705 0.124 0.285 −0.751 0.003 0.085
(0.323) (0.061) (0.028) (0.579) (0.011) —

T −0.232 0.341 0.522 −0.289 −0.106 0.325
(0.349) (0.103) (0.026) (0.451) (0.018) —

PFE −4.942 −0.215 0.238 6.878 −0.105 0.292
(0.441) (0.102) (0.027) (0.662) (0.015) —

LUV −2.140 0.578 0.269 −0.239 −0.019 0.264
(0.278) (0.069) (0.026) (0.848) (0.011) —

−1.314 0.082 0.557 −0.119 −0.068 0.339
AMR (0.416) (0.138) (0.032) (0.173) (0.013) —

−0.063 0.418 0.499 0.383 −0.144 0.321
DOW (0.259) (0.081) (0.025) (0.874) (0.018) —

−5.156 0.335 0.277 11.511 −0.045 0.491
C (1.515) (0.289) (0.053) (1.970) (0.049) —

−0.648 0.267 0.444 −1.784 −0.108 0.400
JPM (4.531) (0.170) (0.032) (19.243) (0.014) —

−3.886 0.210 0.453 4.243 0.029 0.318
WMT (0.356) (0.049) (0.033) (0.987) (0.010) —

−0.587 0.531 0.420 −0.302 −0.093 0.610
HD (0.329) (0.059) (0.030) (1.020) (0.010) —

−2.508 0.273 0.377 2.333 −0.065 0.214
GE (0.317) (0.078) (0.037) (0.822) (0.016) —

Average −3.203 0.253 0.363 3.766 −0.046 0.312
(0.821) (0.105) (0.034) (2.328) (0.018) —

Entries report the estimates (standard deviation in parentheses) of the following forecasting regression
on opening percentage bid-ask spread:

ln OPSt = c0 + c1 ln PINt−1 + c2 ln OPSt−1 + c3 GARCHt−1 + c4 ln Volumet−1 + et ,

where OPSt is the opening percentage bid-ask spread at date t, PINt−1 the time-(t − 1) forecast of the
proportion of informed trades at time t, GARCHt−1 is the time-(t − 1) GARCH(1,1) forecast of time-t
volatility for the stock return, and Volumet−1 is the aggregate trading volume of the stock on date t − 1.
PIN is computed based on the arrival rates forecasts, which are obtained based on parameter estimates
reported in Table 2. The columns under R2 reports the R-square of the regression. The last two rows
report the sample averages of the estimates and standard errors.
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Figure 4 The price impact of consecutive buy orders on Ashland Oil. The lines depict the normal-
ized price impact curves of consecutive buys (γ N

t /δ), computed based on the arrival rate forecasts
on Ashland Oil from our dynamic model on three different dates, when the forecasted proportion
of informed trades (PIN) is at the minimum (left panel), median (middle panel), and maximum
(right panel), respectively.

conditional on N − 1 consecutive buy orders. From (12), we can derive the price
impact of N consecutive buys as

askN
t = V∗ + (V − V)γ N

t ,

where γ N
t captures the impact of N consecutive buys:

γ N
t = δ PrN−1

t (good)(εt−1 + µt−1) − (1 − δ) PrN−1
t (bad)εt−1

PrN−1
t (good)µt−1 + εt−1

. (18)

The probabilities PrN−1
t (good) and PrN−1

t (bad) can be readily updated via Bayes
rule as in (11), starting from the unconditional priors at the opening. As the number
of consecutive buy orders increases, the probability of a good information event
increases and approaches unity while the probability of a bad information event
approaches zero. The price impact γ N

t converges to δ, and the price converges to
the expected upper bound of the asset value V. The speed of convergence governs
the depth of the market and is determined by the arrival rate forecasts (µt−1, εt−1).

To illustrate how the arrival rate forecasts impact the market depth, we use
the first stock of our sample, Ashland Oil, as an example and consider three dates
in our sample period when the PIN forecasts on Ashland are at the sample mini-
mum, median, and maximum, respectively. At each of three PIN levels, we use the
estimated model parameters on Ashland Oil and the arrival rate forecasts for that
date to compute the price impacts of N consecutive buy orders (γ N

t ) according to
Equation (18) and then normalize the impacts by their convergent value δ. Figure 4
plots the three normalized price impact curves (γ N

t /δ) as a function of the number
of consecutive buy orders (N) at the three selected PIN levels for Ashland.

All three normalized curves start at zero with zero trade and converge to
one as the stock price converges to its upper bound V with increasing number of
consecutive buy orders. The speeds of convergence are captured by the slope of the
curves and are different under different arrival rate forecasts. During the sample
period, the minimum forecasted PIN for Ashland is 6.34%. Under this minimum
level of forecasted informed trading (left panel), the market maker adjusts the ask
quote slowly to the order flow. It takes about 30 consecutive buy orders for the stock
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price to converge to its upper bound. The market is therefore deep. In contrast, the
maximum PIN forecast for Ashland is 27.27%. At this maximum level of forecasted
informed trading (right panel), the market makers adjusts the ask price quickly to
the sequence of buy orders. The price converges to its upper bound after fewer than
10 consecutive buy orders. The middle panel in Figure 4 shows an intermediate
price impact curve when the forecasted proportion of arrival rates are at the median
level of 15.37%.

Given the estimated model parameters and the arrival rate forecasts, we can
also compute the price impact curve for N consecutive sells and for any sequence
of buys and sells. Knowledge of the price impact curve is very important for
institutional portfolio managers in analyzing the potential trading cost and in
designing strategies for loading or unloading their positions. Our arrival rate
forecasts can be used to predict the market depth and trading cost in terms of such
price impact curves.

The price impact curve of a sequence of order flows provides the complete
picture on the market depth, but it is often useful to summarize the market depth
with a more compact measure. For example, Engle and Lange (2001) define a
market depth measure VNET, which is designed to capture the net order flow
associated with a fixed price movement. The larger this net order flow is for a fixed
price movement, the deeper the market is. Based on the arrival rate forecasts, we
construct an analogous measure of market depth: the half-life (τ1/2) of the price
impacts for consecutive buys. Our measure is defined as the number of buys N
needed for the normalized price impact γ N

t /δ to exceed half of its maximum impact.
Intuitively, the half-life measure provides the portfolio managers an estimate on
the maximum number of buy orders he can execute for the price impact to stay
within a certain range.

Our half-life measure and VNET differ in at least two important aspects. First,
VNET is defined on the excess trading volume while we are only concerned with
the net number of trades. Trade size does not play a role in our analysis. A second
difference is that VNET implicitly assumes that the sequence of trades does not
matter, only the net trade imbalance affects prices. In our model, however, the exact
sequence of trading history also plays an important role in the price movement. We
therefore specifically define the half-life as a function of the number of consecutive
buys, not net order flows.

Figure 5 depicts three typical time series of our market depth (half-life) fore-
casts for, from left to right, Ashlan, Exxon Mobil, and General Electric, respectively.
For all three stocks, the market depth measured by half-life has increased in the
nineties.

4.3 Informed Arrivals Before and After Earnings Announcements

We specify the arrival rates of informed and uninformed trades as a vector au-
toregressive process, in which balanced and imbalanced trades act as noisy signals
about the underlying arrival rates. The arrival of informed trades is jointly deter-
mined by the arrival of traders and the arrival of information. Large informational
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Figure 5 Time-varying forecasts of market depth. Lines depict three typical time series on the
half-life (τ1/2) of the price impact of consecutive buy orders, defined as the number of consecutive
buys needed for the impact to exceed half of its maximum. The half-life is computed based on
our estimated dynamic model for, from left to right, Ashland, Exxon Mobil, and General Electric,
respectively.

events, such as the releases of important economic numbers and the announce-
ment of corporate earnings, happen at predetermined calendar dates, generating
calendar days effects in the information flow and in the arrival rate of informed
trades.

To study whether our arrival rate estimates capture some of the calendar day
effects, we take corporate earnings announcements as an example and perform
an event study around announcement days. Specifically, we compute the aver-
age PIN estimates as a function of the number of business days before and after
the earning announcement days for each company. We obtain the announcement
dates from the CompuStat. During our sample period, there are altogether 834
earnings announcements for the 16 stocks. Among them, 124 happened on Mon-
days, 183 happened on Tuesdays, 190 happened on Wednesdays, 229 happened
on Thursdays, and 108 happened on Fridays. We do not know the exact timing of
the announcement. Since the announcement can happen before the open, after the
close, or during the trading hours, our measure of the number of business days
before and after the announcement can deviate from the true measure by one day.

The left panel of Figure 6 plots the average PIN estimates as a function of
the number of business days before and after the earning announcement date.
The solid line denotes the sample average. The two dash-dotted lines represent
the one standard deviation bands on the mean estimates. The plot shows that the
proportion of informed trades increases as the announcement date approaches and
declines after the announcement. The variation is the most significant within a ±7
business day window.

For comparison, we also compute the average proportion of imbalanced trades,
defined as |B − S|/(B + S). If the order imbalances reveal the informed arrival
with little noise, we would expect to observe similar average patterns. Figure 6
plots the results on the proportion of imbalanced trades in the right panel. The
average proportions of imbalanced trades are higher than the average proportion
of informed trade arrivals, potentially indicating that the imbalanced trades contain
more noise than the balanced trades about the underlying arrival rates. The average
estimates of the proportion of imbalanced trades show large zig-zag variations
across different days, with little identifiable systematic patterns. Comparing the
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Figure 6 Proportion of informed arrivals and imbalanced trades before and after earnings an-
nouncements. The left panel plots the average proportion of informed trade arrival rates as a
function of number of days before and after the earning announcement dates. The right panel
plots the proportion of imbalanced trades. In both panels, the solid lines denote the sample aver-
age over the 834 earning announcement events across the 16 stocks. The dash-dotted lines define
a one-standard deviation band.

scales of the two panels reveals that the large noise-induced zig-zag variation in the
right panel completely dominates the systematic pattern observed in the left panel.
The difference between the highest average PIN estimate at the announcement day
and the lowest PIN estimate at seven days after the announcement is 56 basis points.
By contract, the zig-zag pattern in the right panel generates differences between
neighboring estimates as high as 153 basis points. Thus, the systematic information
about informed and uninformed arrivals is completely buried in the large noise of
the raw order flow numbers. The different results from the two panels highlight
the virtue of our dynamic specification in extracting useful information from the
highly noisy realizations.

In a working paper, Benos and Jochec (2007) divide each quarter in between
the earnings announcement days into two subsample periods. Then, they estimate
the constant arrival rates in the static model separately for the two periods. They
compute the PIN from the two sets of estimates and find that the average PIN
estimate is lower before the announcement than after the announcement period.
Our result shows that the PIN variation around the announcement dates happen
within a very narrow window of ±7 days before and after the announcement.
Thus estimation based on the static model using one and a half-month window is
unlikely to reveal actual announcement day effects.

Several other studies have estimated the PIN measure assuming that the arrival
rates of informed and uninformed trades are constant over time. Examples include
Easley, Kiefer, and O’Hara (1996), Easley et al. (1996), Easley, O’Hara, and Paperman
(1998), Easley, Hvidkjaer, and O’Hara (2002, 2005), Dennis and Weston (2001),
Easley, O’Hara, and Saar (2001), Vega (2005). To accommodate the time variation of
the arrival rates in reality, they resort to repeated calibration over different sample
periods. The re-calibration is often performed on a quarterly or annual frequency.
In this paper, by specifying a dynamic process for the arrival rates, we can capture
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the daily time variation of the arrival rates, and we can do so consistently with a
model that is estimated only once over the whole sample period. Our analysis in
this section further shows that capturing the daily variation in the arrival rates can
be important in, for example, predicting opening bid-ask spreads and revealing
announcement day effects.

5 DIAGNOSTIC ANALYSIS

By blending a microstructure framework with a dynamic forecasting specification,
we can infer and predict the unobservable arrival rates of informed and uninformed
trades based on the observable order flow of buys and sells. Our analysis so far
has shown the great promise of using the arrival rate forecasts to predict bid-ask
spreads and the price impact of a sequence of order flows, both of which are
determining factors for trading cost analysis.

The accuracy of the arrival rate forecasts depends both on the microstruc-
ture setup and on the dynamic forecasting specification. The microstructure setup
determines the likelihood of a sequence of buys and sells whereas the dynamic
specification dictates the dynamics of the arrival rates. In this section, we perform
diagnostic analysis on our dynamic microstructure model.

Based on the forecasted arrival rates of informed and uninformed trades, we
forecast balanced and imbalanced trades. Therefore, one way to investigate the
robustness of our specification is to check for remaining structure in the residuals
of these trade forecasts. If our specification captures the data well, we should
find minimal structure from the following standardized forecasting residuals et ≡
[e1t , e2t]�:

eit = Zi t − Et−1[Zi t]√
Vart−1[Zi t]

, i = 1, 2, with Zt = [|Kt|, TTt − |Kt|].

If the model is specified correctly, each of the two standardized forecasting residuals
eit should be serially independent and should have zero mean and unit variance.
The number of buys and sells is governed by mixtures of Poisson distributions as
shown in Equation (5). We can readily compute the conditional mean and variance
of the trade quantities Zt by simulation.

Table 7 reports the summary statistics for the residuals. For each stock, the
first row reports the properties of the standardized residual on the absolute trade
imbalance and the second row reports the properties of the standardized residual
on the balanced trades. Compared to the summary statistics of the raw trade
quantities Z in Table 1, the forecasting residuals show much less structure. The
sample averages of the residuals are very close to zero. The serial dependence (the
first-order autocorrelation) is significantly smaller than that in the raw series, and
in many cases are no longer significantly different from zero. The cross-correlations
between the two residuals are also smaller than those between the two elements
of the raw trade quantities.

Nevertheless, we can still discern some remaining structure in the residuals.
For example, the standard deviation of the standardized residual of the balanced
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Table 7 Summary statistics of the standardized forecasting residuals.

Ticker Mean SD Auto VR ρ

ASH −0.022 0.996 0.014 0.157 −0.111
0.008 1.872 0.026 0.693 —

XOM 0.176 1.208 0.206 0.182 −0.354
−0.100 2.934 0.064 0.844 —

DUK 0.073 1.179 0.090 0.184 −0.275
−0.069 1.845 0.007 0.807 —

ENE 0.044 1.074 0.050 0.254 −0.186
−0.024 2.081 0.025 0.837 —

AOL 0.215 1.084 −0.005 0.500 0.233
0.028 6.108 0.104 0.832 —

MO 0.000 1.028 0.145 0.317 −0.026
−0.101 4.122 0.096 0.865 —

T 0.204 1.182 0.280 0.140 −0.192
−0.275 3.837 0.097 0.728 —

PFE 0.204 1.076 0.179 0.239 −0.033
−0.098 3.439 0.095 0.919 —

LUV −0.124 0.880 0.096 0.342 −0.036
−0.066 2.584 0.057 0.830 —

AMR −0.220 0.887 0.028 0.564 0.058
0.057 3.233 0.042 0.703 —

DOW 0.012 1.001 0.152 0.093 −0.110
0.018 2.825 0.047 0.573 —

C 0.441 0.896 0.089 0.200 0.068
−0.337 4.527 0.205 0.773 —

JPM −0.025 1.038 0.085 0.387 −0.076
−0.014 2.707 0.072 0.830 —

WMT 0.085 1.156 0.187 0.237 −0.236
−0.177 3.132 0.089 0.867 —

HD 0.317 1.115 0.285 0.135 −0.089
−0.142 3.417 0.121 0.825 —

GE 0.103 1.074 0.111 0.415 −0.138
0.029 3.513 0.083 0.893 —

Average 0.093 1.055 0.124 0.272 −0.094
−0.079 3.261 0.077 0.801 —

Entries report the summary statistics of standardized forecasting residuals on the absolute trade imbal-
ance |K | and the balanced trade TT − |K |:

eit = Zi t − Et−1[Zi t]√
Vart−1[Zi t]

, i = 1, 2, with Zt = [|Kt |, TTt − |Kt |].

“Mean” is the sample average, “SD” is the standard deviation, “Auto” is the first-order autocorrelation,
“VR” is the ratio of the variance of the forecasted trade quantity Et−1[Zi t] versus the variance of the
realized quantity Zt , VR = Var (Et−1[Zi t])/Var (Zi t), and “ρ” denotes the cross-correlation coefficient
between the two residuals. For each stock, the first row reports the properties of the residual on absolute
trade imbalance and the second row reports the properties of the residual on balanced trade. The last
two rows report the sample averages of the statistics across the 16 stocks.
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trade is systematically greater than one for all stocks. We conjecture that the bias
is induced by the Poisson arrival assumptions on the informed and uninformed
traders. A Poisson distribution is natural and tractable for modeling the arrival
of traders, but a key limitation of this assumption is that the mean and variance
of a Poisson variable are controlled by a single parameter—the Poisson arrival
rate. The biases in the residuals of the balanced trades seem to indicate that the
observed distribution of the balanced trades is more dispersed than implied by the
mixture of Poisson distributions. If our conjecture is correct, the observed biases in
the forecasting residuals can be corrected by choosing a more flexible distribution
for the arrival of informed and uninformed traders so that we can disentangle the
mean and variance of the trade quantities.

To gauge the forecasting power of our dynamic systems, we also report the
percentage of variance (VR) in the two trade quantities explained by our model.
The percentage variance VR is defined as the ratio of the variance of the forecasted
trade quantities over the variance of the realized trade quantities. Overall, the
model explains a larger percentage of the variation in the balanced trades than
for the trade imbalance. This is not surprising given the inherent difficulty in
forecasting informed arrivals.

As a test on our forecasting dynamics specification, we investigate whether
the standardized residuals eit can be forecasted further by additional variables:

eit = c0 + c1 Ẑi(t−1) + c2 GARCHt−1 + c3 ln Volumet−1 + ηi t , (19)

where Ẑi(t−1) denotes the time-(t − 1) autoregressive forecasts of Zit , GARCHt−1

denotes the time-(t − 1) GARCH(1,1) forecasts of the stock return volatility, and
Volumet−1 is the time-(t − 1) aggregate trading volume of the stock. In this regres-
sion, we use the first variable to capture the persistence of the order flows that
is missed by our dynamic specification in Equation (4). Furthermore, we use the
GARCH volatility to capture the information from the price data, and the trading
volume to capture the information in the trade size, neither of which is accom-
modated in our forecasting specification in Equation (4). A significant estimate on
c1 would point to further room for improvement in our dynamics specification.
Significant estimates on c2 and c3 would show that price and trade size informa-
tion can also be embedded in the forecasting dynamics for the arrival rates. As
in GARCH-type models, the forecasting dynamics specification in Equation (2)
can readily be extended to accommodate additional observables as long as they
are informative about the unobservable arrival rates. Thus, a diagnostic regression
like this can be used to identify additional informational sources for the prediction
of the informed and uninformed arrival rates.

We estimate Equation (19) using the generalized methods of moments, where
the weighting matrix is calculated according to Newey and West (1987) with 30
lags. Furthermore, to control the scale of the slope coefficients, we standardize
each regressor by subtracting its sample mean and further scaling it by its sample
standard deviation. Table 8 reports the coefficient estimates and standard errors.
The last column under R2 reports the R-square of the regression. For each stock, the
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Table 8 Regressing the standardized forecasting residuals on additional variables.

Ticker c0 c1 c2 c3 R2

ASH −0.022 (0.020) 0.006 (0.018) −0.025 (0.016) −0.033 (0.022) 0.002
0.007 (0.029) 0.064 (0.055) 0.025 (0.030) 0.038 (0.039) 0.002

XOM 0.176 (0.041) 0.217 (0.033) −0.018 (0.019) −0.193 (0.030) 0.050
−0.103 (0.049) 0.095 (0.076) −0.036 (0.042) −0.012 (0.070) 0.001

DUK 0.073 (0.030) 0.086 (0.025) 0.117 (0.030) −0.035 (0.023) 0.015
−0.070 (0.028) 0.041 (0.062) 0.011 (0.041) 0.051 (0.038) 0.002

ENE 0.044 (0.029) 0.071 (0.030) 0.003 (0.031) −0.093 (0.034) 0.007
−0.028 (0.035) 0.004 (0.081) −0.007 (0.052) 0.095 (0.058) 0.002

AOL 0.209 (0.064) −0.042 (0.066) −0.275 (0.044) −0.252 (0.057) 0.043
0.008 (0.246) 0.819 (0.595) −0.361 (0.421) −1.041 (0.463) 0.011

MO −0.001 (0.026) 0.227 (0.022) −0.015 (0.014) −0.154 (0.026) 0.039
−0.107 (0.060) 0.023 (0.143) 0.028 (0.055) −0.042 (0.122) 0.000

T 0.203 (0.039) 0.302 (0.028) 0.021 (0.021) −0.122 (0.031) 0.059
−0.276 (0.061) 0.256 (0.094) 0.125 (0.056) −0.170 (0.090) 0.003

PFE 0.202 (0.027) 0.271 (0.028) 0.107 (0.030) −0.068 (0.031) 0.041
−0.099 (0.058) −0.000 (0.187) −0.163 (0.134) −0.091 (0.099) 0.001

LUV −0.124 (0.021) 0.105 (0.024) 0.010 (0.014) 0.025 (0.019) 0.019
−0.068 (0.040) −0.037 (0.071) −0.042 (0.038) 0.066 (0.061) 0.001

AMR −0.220 (0.022) 0.012 (0.020) −0.002 (0.013) −0.075 (0.017) 0.006
0.055 (0.048) 0.176 (0.088) −0.015 (0.040) −0.062 (0.071) 0.002

DOW 0.012 (0.022) 0.200 (0.041) 0.001 (0.014) −0.136 (0.020) 0.048
0.019 (0.047) 0.004 (0.071) 0.040 (0.038) 0.058 (0.063) 0.001

C 0.437 (0.053) 0.140 (0.041) −0.053 (0.068) −0.094 (0.050) 0.020
−0.347 (0.170) 1.291 (0.364) 1.005 (0.473) −0.165 (0.544) 0.032

JPM −0.026 (0.029) 0.087 (0.022) −0.005 (0.015) −0.103 (0.027) 0.010
−0.014 (0.050) 0.086 (0.072) 0.018 (0.034) 0.023 (0.058) 0.001

WMT 0.079 (0.029) 0.206 (0.023) 0.095 (0.028) 0.015 (0.037) 0.036
−0.183 (0.043) 0.060 (0.097) −0.097 (0.056) −0.064 (0.070) 0.001

HD 0.315 (0.031) 0.374 (0.041) 0.051 (0.029) −0.020 (0.030) 0.100
−0.148 (0.062) 0.266 (0.105) 0.134 (0.077) −0.057 (0.093) 0.003

GE 0.098 (0.029) 0.150 (0.035) 0.025 (0.022) −0.186 (0.026) 0.031
0.026 (0.053) 0.145 (0.154) 0.078 (0.064) 0.025 (0.105) 0.002

Average 0.091 (0.032) 0.151 (0.031) 0.002 (0.025) −0.095 (0.030) 0.033
−0.083 (0.067) 0.206 (0.145) 0.046 (0.103) −0.084 (0.128) 0.004

Entries report the estimates and standard deviations of the following regression on the standardized
forecasting residuals:

eit = c0 + c1 Ẑi(t−1) + c2 GARCHt−1 + c3 ln Volumet−1 + ηi t ,

where Ẑi(t−1) denotes the autoregressive forecasts on Zit GARCHt−1 is the GARCH(1,1) volatility estimate
from the stock returns, and Volumet−1 is the aggregate trading volume of the stock on date t − 1. We
standardize each regressor by subtracting its sample mean and further scaling it by its sample standard
deviation. The column under R2 reports the R-square of the regression. For each stock, the first row reports
the properties of the residual on absolute trade imbalance and the second row reports the properties of
the residual on balanced trade. The last two rows report the sample averages of the statistics across the
16 stocks.
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first row reports the regression for the residual on absolute trade imbalance and
the second row reports that for the residual on balanced trade. The last two rows
report the sample average of the statistics across the 16 stocks. The R-squares of
these regressions are very small, with an average of 3.3% for the imbalanced trade
residual and an average of 0.4% for the balanced trade. The small R-squares suggest
that the three additional variables add little to the forecasting of the order flows. In-
specting the slope coefficient estimates, we find that on average, the autoregressive
forecast of the trade imbalance predicts positively and the trading volume predicts
negatively on the trade imbalance residual. On the other hand, none of the three
variables add significantly to the prediction of the balanced trades. On average,
the intercept of the balanced residual is not statistically different from zero, either.

6 CONCLUSION

In this paper, we model the dynamics of trade arrivals in the context of the Easley
and O’Hara (1992) microstructure model. We select a sample of 16 actively traded
NYSE stocks and use 15 years of daily transaction data to illustrate how we can
estimate the arrival dynamics of trades originating from informed and uninformed
traders using the daily number of buys and sells for each stock. The model is formu-
lated as a point process for each type of investor where the parameter measuring
the trade intensity is conditional on past information. These conditional intensities
are modeled as functions of past balanced and unbalanced trades allowing for time
trends and dynamic interactions.

The most immediate conclusion is our finding of strong daily autocorrelations
in all of the trade series. Not only are trades in each stock strongly autocorrelated,
but the number of balanced trades is highly autocorrelated and the number of
unbalanced trades is weakly autocorrelated. As a consequence, the model implies
that the arrival rate of uninformed trades is highly autocorrelated but that of
informed traders is less so. Of particular interest is the observation that the arrival
rate of uninformed trades is negatively affected by the past conditional arrival
rates of informed trades. We conclude from this evidence that uninformed traders
attempt to time their trades to avoid informed traders.

A further intriguing observation is in the dynamics of the informed traders.
They show only a weak response to the conditional intensity of uninformed traders,
even though they could be expected to hide in the crowd of uninformed trading.
This is a natural finding in models with competing informed traders who will
trade until profit is extracted from prices and then stop. Thus we conclude that it
is the presence of information, rather than variation in the intensity of uninformed
trade, that determines the arrival rate of informed traders.

We also show how these insights into the behavior of informed and uninformed
traders can be used to predict other characteristics of the market. We calculate
forecasts of measures of liquidity such as bid-ask spreads and market depth from
the model estimates. We show that these forecasts are informative in predicting
variations in market liquidity. We also use our dynamic model to generate a time
series of the probability of information-based trade (PIN). We show how to use
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this time series of PINs to investigate the effects of earnings announcements on the
variation in information-based trading.

There are many potential applications for the market liquidity and depth
forecasts that our dynamic microstructure model generates. From the academic
perspective, understanding the evolution of liquidity and its interaction with in-
formation flow provides insight into the price formation process as well as into
the more general area of asset pricing. For example, Easley, Hvidkjaer, and O’Hara
(2002) use a static version of PIN forecasts to analyze whether information risk is
priced. Using our dynamic model should provide a more consistent analysis be-
tween the estimated dynamics underlying the PIN forecasts and the cross-sectional
patterns in stock returns. Most recently, Acharya and Pedersen (2005) develop an
equilibrium asset pricing model with liquidity risk. They show that a security’s
required return depends on its expected liquidity as well as on the covariances of
its own return and liquidity with market return and liquidity. Our dynamic arrival
rate specifications provide evidence on how liquidity risk evolves over time and
on its correlations across assets. We believe that our approach should provide a
valuable starting point for further tests of the asset pricing implications of dynamic
liquidity and a deeper understanding of the origins of liquidity correlations.

From a practical perspective, our model-based market liquidity and depth fore-
casts should be useful for trading cost analysis, which has emerged as a valuable
tool to help portfolio managers handle execution costs in implementing their trad-
ing strategies. With performance typically benchmarked to some index, whether
a manager is able to outperform is ever more determined by the skill with which
he executes trades. Our dynamic microstructure model allows richer forecasts of
trading cost from hypothetical trade sequences and should be useful in allowing
traders to select strategies to minimize these costs.

Finally, from a risk management point of view, our estimates provide a
forward-looking estimate of the sources of liquidation costs of a portfolio posi-
tion. This should prove a useful input to calculation of the “liquidity risk” of a
portfolio.
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