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Abstract

Modern architecture research relies heavily on detailed pipeline simulation. Furthermore, programs often times

exhibit interesting and important time varying behavior on an extremely large scale. Very little analysis has been

conducted to classify the time varying behavior of popular benchmarks using detailed simulation for important

architecture features.

In this paper we classify the behavior of the SPEC95 benchmark suite over their course of execution corre-

lating the behavior between IPC, branch prediction, value prediction, address prediction, cache performance, and

reorder buffer occupancy. Branch prediction, cache performance, value prediction, and address prediction are cur-

rently some of the most influential architecture features driving microprocessor research, and we show important

interactions and relationships between these features.

In addition, we show that many programs have wildly different behavior during different parts of their execution,

which makes the section of the program simulated of great importance to the relevance and correctness of a study.

We show that the large scale behavior of the programs is cyclic in nature, point out the length of cyclic behavior for

these programs, and suggest where to simulate to achieve results representative of the program as a whole.

1 Introduction

Each year a medley of architecture alternatives for increasing instruction level parallelism (ILP) abounds. Branch

prediction, cache performance, value prediction, and address prediction are some of the most influential architecture

features driving microprocessor research. In this study we attempt to classify popular benchmarks (SPEC95), show-

ing the time varying behavior and correlation between these architectural features, in order to help guide research in

these areas.
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A secondary goal of this study is to show which parts of a program to simulate in order to achieve the repre-

sentative behavior of a program. In order to evaluate new architecture features, detailed modeling of the pipeline,

buses, and queuing delays are needed along with timing models and power estimation. Detailed simulations takes a

great deal of processing power and time, thus many times only a small subset of a whole program may be sampled.

Many programs have wildly different behavior during different parts of their execution making the section of the

program’s execution simulated of great importance to the relevance and correctness of the study. We examine this

and point out where simulation should start and how long the simulation should run to capture the cyclic behavior

of the application.

We provide these results for the SPEC95 benchmark suite, since they are the most widely used and available

benchmarks for architecture research. Researchers have shown that the SPEC95 programs have several similar

program characteristics with NT office applications and other popular programs [7]. Even so, other benchmarks

(e.g., C++ and Java programs, databases, games, and office applications) need to be studied and made available

using this same analysis. This is especially true for memory research.

The rest of the paper details our results and suggests directions for research and simulation. Section 2 describes

the motivation for this study. Section 3 describes the simulator and architecture model used. Section 4 presents

the time varying graphs showing the correlation of the different architecture features and performance. Section 5

examines which parts of a program to simulate in order to capture a representative sample of the program. Finally,

section 6 summarizes the results and contributions of this work.

2 Motivation

Branch prediction, cache performance, value prediction, and address prediction are currently four of the more in-

fluential architecture features guiding architecture research. Little research has been done to show the correlation

between these features and IPC performance, which is the goal of our study.

Branch prediction and memory design are well established research areas, since they address the two funda-

mental bottlenecks: Fetch Bottleneck and Memory Bottleneck. Branch prediction affects instruction supply, and the

overall throughput of the processor. Whereas caches are used to try and alleviate the memory bottleneck.

Address prediction, which predicts the addresses for load instructions, has been used to address the memory

bottleneck. It can be used to help guide memory disambiguation and to perform memory prefetching [2, 5].

More recently, value prediction has been proposed as an approach to break true data dependency chains by

predicting the resulting value for an instruction, and by allowing dependent instructions to use this predicted value as

a source value [8, 4]. This allows the dependent instructions to execute in parallel with the long latency instructions,

reducing the lengths of the critical paths through a program.

To our knowledge, researchers have not yet looked in detail at the correlation between IPC, branch prediction,

cache miss rates, address prediction, and value prediction. It is important to find where there exists correlation, and

this study is a first step at trying to find these correlations. These results can then be used by researchers to focus on

a subset of the programs and areas in those programs exhibiting positive or negative correlation.
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Instruction Cache 32k 2-way set-associative, 32 byte blocks, 1 cycle latency
Data Cache 64k 4-way set-associative, 32 byte blocks, 2 cycle latency
Unified L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 12 cycle latency
Branch Predictor hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bimodal predictor
Out-of-Order Issue out-of-order issue of up to 8 operations per cycle, 128 entry re-order buffer
Mechanism load/store queue, loads may execute when all prior store addresses are known
Architecture Registers 32 integer, 32 floating point
Functional Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-integer MULT/DIV, 2-FP MULT/DIV
Virtual Memory 8K byte pages, 30 cycle fixed TLB miss latency after earlier-issued instructions complete

Table 1: Baseline Simulation Model.

Another motivation for this study is to determine where we should perform simulations for our own architecture

research. Our results show the variation between the startup of an application, and where and for how long the SPEC

programs need to be simulated to achieve a representative sample of the application. This study has proved very

useful to us, and we hope that it will help guide other researchers to consistent, meaningful and reproducible results.

3 Methodology

To perform our study, we collected information for all of the SPEC95 benchmarks running their SPEC95 reference

input sets. Each program was compiled on a DEC Alpha AXP-21164 processor using the DEC C, C++, and FOR-

TRAN compilers. The programs were built under OSF/1 V4.0 operating system using full compiler optimization

(-O4 -ifo).

The timing simulator used is derived from the SimpleScalar 3.0a tool set [1], a suite of functional and timing

simulation tools for the Alpha AXP ISA. The simulator executes only user-level instructions, performing a detailed

timing simulation of an aggressive 8-way dynamically scheduled microprocessor with two levels of instruction

and data cache memory. Simulation is execution-driven, including execution down any speculative path until the

detection of a fault, TLB miss, or branch mis-prediction. The baseline microarchitecture model is detailed in Table 1.

We modified the 3.0a release of SimpleScalar, so that the memory hierarchy buses were pipelined, with a transfer

width of 8 bytes per cycle.

4 Program Behavior Over Time

To show the time varying behavior of the programs, SimpleScalar was modified to output and clear its statistics after

every 100 million committed instructions. Only the statistic counters are cleared, the state of the machine (e.g., cache

and branch prediction tables) are not cleared between intervals.

Results are then graphed for every 100 million committed instructions for the SPEC95 programs. This should

yield a clear picture of the large scale runtime behavior exhibited by each application as well as indicating which

sets of instructions are more indicative of the execution as a whole. It is however of small enough granularity that it
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provides useful information about program start up times and can be easily simulated on any machine. Each program

was run until completion, but we only graph enough intervals to show the cyclic nature for each program.

The following summarizes the data graphed:

� Instructions Per Cycle.

� Percent RUU Occupancy. SimpleScalar uses a unified Register Update Unit (RUU) to model its reorder

buffer and reservation stations [13]. In our simulations we used a 128 entry RUU, and report results in terms

of the percent of the RUU entries used on average.

� Cache Miss Rate. Cache miss rates are shown for a 32 KB 2-way associative instruction cache, and a 64 KB

4-way associative data cache. Both caches have 32 byte lines.

� Branch Prediction Miss Rate. We used McFarling’s bi-modal gshare branch predictor [9]. An 8K entry 2-bit

chooser table is used to choose between an 8K entry 2-bit bi-modal branch predictor and an 8K entry gshare

table. A 256 entry 4-way associative branch target buffer is used to provide the predicted address, and a 32

entry return address stack is used to predict return instructions. The branch misprediction rate including all

branch instructions is shown.

� Address Prediction Miss Rate. Miss rates are shown for 2-delta stride address prediction for an infinite sized

table (each load gets its own entry) [5, 11]. The 2-delta address predictor will only change the stride if seen

two times in a row. Confidence counters are not used, so miss rates are for predicting all load instructions.

� Value Prediction Miss Rate. Miss rates are shown for 2-delta value address prediction for an infinite sized

table [4, 14]. The 2-delta value predictor will only change the stride if seen two times in a row. Confidence

counters are not used, so miss rates are for predicting all load instructions.

Note, address and value prediction were not used in the architecture simulations. We only gathered their miss,

along with the program’s IPC, RUU occupancy, branch miss rate, and cache miss rates. Only loads are predicted

for value and address prediction. We chose to examine stride address and value prediction rather than last value and

context prediction because of its increased accuracy over last value prediction and it is less expensive to implement

than context prediction [11].

4.1 Result Graphs

Figures 1, 2, 3, 4, 5, and 6 show the time varying performance of the SPEC95 benchmark suite. The legend is at the

top of each figure. For each program, the results for IPC, average percent RUU occupancy, branch miss rate, value

miss rate, address miss rate, and instruction and data cache miss rates are shown on the same graph. Since all of

these different results are shown on the same graph, each graph has two Y-axis.

For each graph, the left and right Y-axis are labeled with the metrics that use that axis. For most of the graphs,

percent RUU occupancy, and value and address miss rates use the left Y-axis. Similarly, I-Cache miss rate, branch
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ruu val addr D_L1_64K I_L1_32K branch IPC
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Figure 1: Time varying behavior for applu, apsi, and fpppp. The X-axis is in terms of 100 million committed
instructions.
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ruu val addr D_L1_64K I_L1_32K branch IPC

hydro2d
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Figure 2: Time varying behavior for hydro2d, mgrid, and swim. The X-axis is in terms of 100 million committed
instructions.
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ruu val addr D_L1_64K I_L1_32K branch IPC

tomcatv

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

R
uu

 / 
V

al
 / 

A
dd

r 
/ D

at
a

0

1

2

3

In
st

 / 
B

ra
nc

h 
/ I

P
C

turb3d

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50

R
uu

 / 
V

al
 / 

A
dd

r 
/ D

at
a

0

1

2

3

4

5

In
st

 / 
B

ra
nc

h 
/ I

P
C

wave5

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

R
uu

 / 
V

al
 / 

A
dd

r 
/ D

at
a

0

1

2

3

4

In
st

 / 
B

ra
nc

h 
/ I

P
C

Figure 3: Time varying behavior for tomcatv, turb3d, and wave5. The X-axis is in terms of 100 million committed
instructions.
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ruu val addr D_L1_64K I_L1_32K branch IPC

su2cor
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Figure 4: Time varying behavior for su2cor and vortex. The X-axis is in terms of 100 million committed instructions.
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ruu val addr D_L1_64K I_L1_32K branch IPC
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Figure 5: Time varying behavior for gcc, go, and ijpeg. The X-axis is in terms of 100 million committed instructions.
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ruu val addr D_L1_64K I_L1_32K branch IPC

li
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Figure 6: Time varying behavior for li, m88ksim, and perl. The X-axis is in terms of 100 million committed
instructions.
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miss rate, and IPC usually use the right Y-axis. The D-Cache miss rate is shown on either axis depending upon

the program and axis scale in order to allow interesting trends to be seen. Therefore, the Y-axis label shows which

metrics use that axis.

The X-axis is in terms of 100 million committed instructions. We ran all of the programs to completion, and

found them to either (1) converge to a constant behavior until the last few 100 million instructions, or (2) have

a repeatable cyclic behavior until the end of their execution. The only program that did not fit into this category

was gcc, because of its different compilation phases and the ref input we chose (1cp-decl) ran for 1 billion

instructions. Therefore, the results for most programs are shown for only 50 intervals (5 billion instructions), or until

completion. We show more intervals for vortex, su2cor, go, and fpppp to capture their cyclic behavior.

Table 2 provides a correlation summary between the different architecture features, for the SPEC95 programs

that had cyclic behavior. For programs with cyclic behavior, this table shows the positive and negative correlation

between IPC, RUU occupancy, branch prediction, address prediction, value prediction, and data cache miss rates.

A + means that the two metrics both increase or decrease together. A — means that when one metric increases the

other decreases, and visa versa. A 0 means that there is basically no correlation visible. N/A means that one or both

of the metrics never really varied during execution.

The results for turb3d, wave5, su2cor, and vortex in table 2 and figures 3 and 4 show interesting corre-

lations between the different architecture features examined.

For turb3d, the dips in IPC are correlated to the increase (spikes) in data cache miss rate. The graphs also

show that when the data cache miss rates spike, the value prediction miss rate of loads decreases significantly. This

suggests that value prediction may helpful at alleviating these dips in IPC.

In wave5, the spikes in branch mispredictability are the main cause of the dips in IPC. The graph also shows

that for the intervals where branch misprediction increases, the data cache miss rate decreases significantly.

When the IPC falls in su2cor, both the branch and data miss rates increase, and they appear to be highly

correlated.

For vortex, it is clear to see that the reason for the dips in IPC are due to the I-cache miss rate spikes.

5 Where to Simulate

In this section we discuss simulation methodology and the different options for selecting where to simulate. We start

out by first discussing simulation methodology, to motivate the need for fast forwarding and knowing in detail where

to fast forward.

5.1 Simulation Models

When examining and optimizing strictly in-order machines, a trace base simulation can be quite effective at rep-

resenting the real execution on the machine. In an in-order machine events occur sequentially with respect to the

instructions, thus a single instruction contains a great deal of the machines state information.
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program IPC-R IPC-B IPC-V IPC-A IPC-D IPC-I B-V B-A B-D D-V D-A
ijpeg 0 0 + + + NA 0 0 0 + +
vortex + — — — NA — + + NA NA NA
applu — + — 0 + NA — 0 + — NA
fpppp + + — + + NA — + + — +
mgrid NA + NA NA NA NA NA NA NA NA NA
tomcatv + — NA NA NA NA NA NA NA NA NA
turb3d — — + + — NA — — + — —
wave5 NA — + + + NA — — — NA +
su2cor — — + + — 0 — — + — —

Table 2: For programs with cyclic behavior, this table shows the positive and negative correlation between IPC, RUU
occupancy (R), branch prediction (B), address prediction (A), value prediction (V), and data cache miss rates (D).
A + means that the two metrics both increase or decrease together. A — means that when one metric increases the
other decreases, and visa versa. A 0 means that there is basically no correlation visible. N/A means that one or both
of the metrics never really varied during execution.

In contrast to this, a more modern out of order machine with speculative execution executes many instruction

simultaneously, and the sequential nature is lost. This profoundly effects almost every analysis because time, and

even order, are decoupled from the code found in the executable. Branch prediction is affected by the fact that many

predictions may be needed per cycle, an affect outside the scope of trace based simulation. This in turn affects

the memory hierarchy, which may fetch data for loads that we later squashed. It was shown by Pai et.al. [10] that

in-order execution models cannot model the effects of out of order execution with reasonable accuracy. To correctly

model such a machine requires complex software, software which due to it’s complexity executes slowly.

SimpleScalar [1], one of the fastest simulators, executes on the order of 1000 times slower than hardware. Several

techniques exist for speeding out of order execution simulation, such as memoization and direct execution.

To help decrease simulation time, Schnarr and Larus examined using direct execution with memoization [12].

With memoization, the simulation of an executable often times reaches sections of code that perform the same

function as something already done in the past, these past executions are cached, and then replayed when they are

seen again later. Direct execution, the translation of simulated hardware to native machine code, was also shown to

be applicable to out of order execution with some effort by Krishnan and Torrellas [6].

However, even with these techniques, full simulation is still often many times too slow to simulate a large number

of real programs to completion. The resources to execute hundred of billions of instructions for each of the eighteen

SPEC95 benchmarks is far outside the average researcher, especially if several design alternatives are in need of

evaluation. In addition, direct execution and memoization still has potential problems when dealing with speculative

execution and recovery (e.g., value prediction), and execution driven simulation is still needed.

5.2 Limited Simulation

For the above reasons, to test a research design using detailed pipeline simulation, most researchers execute only

a small fraction of the program. A few hundred million instructions may be typically executed, starting from a
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predetermined point.

Historically researchers executed from the start of the application, but this usually does not represent the majority

of the program’s behavior because it is still in initialization phase. Recently researchers have started to fast-forward

to a given point in execution, and then start their simulation from there, ideally skipping over the initialization

code to an area of code representative of the whole. During fast-forward the simulator simply needs to act as a

functional simulator, and may take full advantage of direct execution. After the fast-forward point has been reached,

the simulator switches to full timing simulation. Unfortunately, without analysis to determine the relevance of the

sampling being simulated, blindly fast-forwarding may still not provide a representative sample of the program’s

execution.

Another potential option is to perform sampling over a larger area of instructions. To provide meaningful results,

one still has to sample at intervals of 10 million or more sequential instructions in order to provide meaningful results

due the time it takes to warm up the architecture structures (.e.g, caches). Conte et.al. [3] show techniques for the

reconciliation of such disjoint sample points. However the basic problem is still the same, the blind simulation of a

random place in a program’s execution, will not yield consistent and representative results.

5.3 Choosing Where to Simulate

One solution is to take advantage of the nature of the programs. Most programs tend to be cyclic in nature, due to the

loop model prevalent in modern software. By cyclic behavior we mean that the IPC, along with the other attributes

of the program, alternate between a high and low steady state repetitively until the program terminates. As the

graphs in the last section already showed, these loop structures are often times quite large, on the order of six billion

instructions for some programs. The results show that simulating one of these cyclic loops should exactly equal

the results obtained from the complete execution of the program. This advocates for simulating an even number of

cyclic phases at carefully chosen points in the program.

Table 3 shows the steady state statistics for the non-cyclic programs. Each of these programs has the form

Initialization-SteadyState-Finish. The start column is the number of simulation intervals (in terms of 100 million

committed instructions) after which the simulation reaches steady state. The rest of the data in the table corresponds

to when the program is in its steady state phase. IPC is the instructions per cycle, Br is the branch misprediction rate

reported from the simulator, Data is the L1 data cache miss rate for a 64k 4-way cache, and Inst is the L1 Instruction

cache miss rate for a 32k 2-way cache. Val is the average steady state value misprediction rate, and Addr is the

address misprediction rate. Value prediction and address prediction are not applied in the simulator and thus do not

effect cache miss rates or IPC. The results show for perl that simulation needs to start at 900 million committed

instructions in order to skip over the initialization phase. The perl graph in figure 6 shows during the initialization

that the value prediction miss rate is 15%, but during the steady state it is 21%, as is summarized in table 3.

Table 4 shows, for the cyclic programs, the difference between various phases of execution for the above listed

statistics. The first group of results are the steady state results when the IPC is high, and the second set of results are

when the IPC is low. The new column cycle, is the number of hundreds of millions of committed instructions that
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Average Behavior
program start IPC Br Val Addr Data Inst Ruu
gcc 0 1.8 7.9 21 21 4.7 7.6 34
go 30 1.8 17 25 20 0.7 1.4 40
li 27 2.7 4.0 28 32 3.1 0.0 42
m88ksim 5 3.6 2.1 7.6 6.3 0.3 0.4 45
perl 9 3.0 2.6 21 22 0.5 0.7 44
apsi 2 1.8 5.9 30 6 14 0.0 65
hydro2d 6 0.8 0.3 8.7 0.5 29 0.0 70
swim 3 1.6 0.2 47 0.1 19 0.0 75

Table 3: Steady state program behavior for those programs which are non-cyclic.

Average Behavior When IPC High Average Behavior When IPC Low
program start cycle %high IPC Br Val Addr Data %low IPC Br Val Addr Data
ijpeg 4 6 75 4.0 11 27 26 0.6 25 3.4 11 26 26 0.3
vortex 30 62 88 3.6 0.5 16 21 0.5 12 2.2 1.3 19 24 1.0
applu 5 3 33 1.8 6.3 25 6 19 67 1.7 5.9 34 6.2 13
fpppp 45 14 12 4.0 2.0 25 1.7 3.2 88 1.4 1.7 26 0.9 0.05
mgrid 1 5 60 1.9 2.1 48 1.2 7.0 40 1.8 2.0 49 1.2 7.0
tomcatv 13 5 40 0.94 0.61 47 0.28 18.5 60 0.88 0.67 47 0.31 18.5
turb3d 13 7 57 4.2 0.79 28 7.4 0.5 43 2.8 0.93 20 4.2 12.0
wave5 14 7 28 3.0 0.26 40 10 18 72 1.7 0.91 30 2.2 7.5
su2cor 20 37 30 2.1 1 48 17 28 70 1.8 11 40 8 30

Table 4: Phase behavior of programs with visible large scale cycles

are executed in a single large cyclic phase. The column high shows the percent of executed instructions in the cyclic

phase when the IPC is high, and low shows the percent of executed instructions in the cyclic phase when IPC is

low. Note that for some programs, such as su2cor and vortex, the difference is quite large. If one simulated for

less than the length of the cyclic phase, very different results could be seen depending upon the few 100 of million

instructions simulated.

6 Summary

This study compares the time varying behavior of the SPEC95 programs. The results show that there are interesting

correlations between IPC, value prediction, branch prediction, address prediction, and data cache misses. This type

of classification is needed for popular programs to help guide researchers in these areas.

Another contribution of this study is showing where to fast forward to and how long to simulate for the SPEC95

programs in order to simulate a representative part of the program’s execution. We found that after the initialization

phase the programs (running the SPEC95 reference input) either (1) converge to a steady state, or (2) have a cyclic

IPC behavior which is repeated until the program terminates. We plan on making the SPEC95 executables and inputs
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used available, so that others can use this paper with those binaries and inputs for architecture simulation research.

We are currently preparing this work for submission by analyzing code examples to show why there was signif-

icant correlation between these architecture features for turb3d, wave5, su2cor and vortex.
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