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Abstract 

Although there is a consensus about time variation in market betas, it is not clear how 

this variation should be captured.  Several researchers continue to analyze different 

versions of the conditional CAPM.  However, Ghysels (1998) shows that these 

conditional CAPM models fail to capture the dynamics of beta risk.  In this study, we 

introduce a new model, threshold CAPM, which outperforms both the conditional and 

unconditional CAPMs by generating smaller pricing errors. We also show that the 

beta risk changes through time with the changes in the economic environment and the 

dynamics of time variation of beta differ across industries. These findings have 

important implications for asset allocation, portfolio selection, and hedging decisions.
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I.  INTRODUCTION 

The Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965), and 

Black (1972) has constituted one of the cornerstones of modern finance theory for the 

last four decades.  The CAPM posits a simple and stable linear relationship between 

an asset's systematic risk and its expected return.  However, recent studies, notably 

Banz (1981), Basu (1983), Bhandari (1988), and Fama and French (1992), have found 

weak or no statistical evidence in support of this simple relationship.  Stimulated by 

these findings, a number of researchers have sought to find alternative explanations 

for the risk and return trade off.  One line of attack has been that of Fama and French 

(1993, 1995) who concluded that fundamental variables, namely Book-to-Market 

equity ratio and Market Equity, found to explain the variation in returns must be 

proxies for some unidentified risk factors.  Another line has been advocated by Ferson 

(1989), Ferson and Harvey (1991, 1993), Ferson and Korajczyk (1995), and 

Jaganathan and Wang (1996), who argue that beta and market risk premium vary over 

time, therefore, static CAPM should be improved by incorporating time variation in 

beta in the model.    

 

Although there is now considerable empirical evidence on time variation in betas, it is 

not clear how this variation should be captured.  Many researchers1 model the 

variation in betas using continuous approximation and the theoretical framework of 

the conditional CAPM.  However, Ghysels (1998) shows that this approximation fails 

to capture the dynamics of beta risk.  He argues that betas change through time very 

slowly and linear factor models like the conditional CAPM may have a tendency to 

overstate the time variation. Thus, they produce time variation in beta that is highly 

volatile, leading to large pricing errors. He concludes that it is better to use the static 
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CAPM in pricing, as we do not have a proper model that captures time variation in 

betas correctly.  

 

Empirically documented large pricing errors could be due to the linear approach used 

in the above models. Treating a non-linear relationship as a linear one can lead to 

serious prediction problems in estimation. Thus, we first test for the existence of 

significant evidence of non-linearity in the time series relationship of industry returns 

with market returns using sup-LM test of Hansen (1996).  Our findings exhibit that 

there exists statistically significant non-linearity in this relationship with respect to 

real interest rates.  Bansal and Viswanathan (1993) also documents a similar non-

linearity of returns with respect to market risk and interest rates.  Nevertheless, there 

are very few non-linear asset-pricing models in the finance literature, as they are 

cumbersome to analyze and interpret.  In this paper we take a nonlinear approach to 

estimate betas over time, as we believe that acknowledging the non-linearity is an 

important step towards capturing the dynamics of beta.  Along these lines we benefit 

from Hansen's (2000) threshold regression framework.  The threshold regression 

theory has gained a lot of momentum recently, for some of the selected studies in this 

literature see Hansen (2000),  Caner and Hansen (2001), Gonzalo and Pitarakis 

(2001), Gonzalo and Gonzales (1998), Chan (1993) and Chan and Tsay (1998).      

 

In this study, we propose a new version of conditional CAPM; threshold CAPM .  

The threshold CAPM is a simple and intuitive nonlinear model. It captures the slow 

variation in betas and allows betas to respond to the changes in the economic 

environment.  We model the market risk as a function of an underlying economic 

variable which we call threshold variable.  The model allows beta to change when the 
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threshold variable hits a certain threshold level thus it allows for two different beta 

regimes.2  In order to capture slowly changing nature of market risk3 threshold CAPM 

treats beta to be constant for certain ranges of the threshold variable. We think that, 

this way of modeling the dynamics of beta is a good approximation for a slowly 

changing continuous beta.  To verify this point, we perform a forecasting exercise 

same as in Ghysels (1998) and compared pricing errors of threshold CAPM with 

unconditional CAPM, conditional CAPM, and conditional APT.  Threshold CAPM 

generates much smaller pricing errors.        

 

In this paper we also statistically test the existence of time variation in market risk due 

to the threshold variable.  Our findings document that there exist shifts in the betas 

associated with the threshold variables.  Then we estimate the value of an economic 

variable that indicates a change in the economic conditions along with the 

corresponding values of betas.  Our framework enables us not only to estimate 

different risk characteristics for various industries during different economic 

conditions but also estimate the level of an economic variable that causes the regime 

change.  

 

The outline of the paper is as follows; section 2 introduces the methodology; section 3 

explains our data set and empirical results and section 4 concludes the paper.  

 

II.  METHODOLOGY 

  

A.  Threshold CAPM 

 

We begin with a very basic version of the conditional CAPM; 
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[ ] [ t1ttt1t Z|rmEZ|rE ++ β= ]

}

,                                                                    (1)   

  

where βt is the parameterised time varying beta, rmt+1 represents the excess return 

from t to t+1 on the market portfolio, rt+1 is the excess return on any asset or portfolio 

of assets, and Zt is a set of instruments. 

 

We use a similar specification of conditional CAPM suggested by Ferson and Harvey 

(1999), and we model time varying beta as 

 

{ } { λ>λ≤ β+β=β
tt Z2Z1t 11                                                                                  (2) 

 

where 1{} is the indicator function and λ is the threshold parameter.  When we 

combine (1)-(2) we have the following threshold CAPM equation: 

 

{ } { } 1t1tZ2Z11t erm)11(r
tt ++λ>λ≤+ +β+β=                                                                   (3) 

 

where e is the error term.  We call Zt threshold variable.  Market return and error 

terms are uncorrelated over time. 

 

B.  Econometric Model 
 
 
The observed sample is {rt, rmt, Zt}, t=1,….,T.  The random variables rt, rmt, and  Zt 

are real valued.  The threshold variable Zt is assumed to have a continuous 

distribution.  Threshold regression has the same format as in equation (3). 
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We can rewrite equation (3) in the following form; 

 

 )( 1111 ++++ +′+′= tttt exxr λδθ                                                                      (4) 

 

where xt+1 = rmt+1, , θ = β}{11 1)( λλ ≤++ =
tztt xx 2 and δ = β1-  β2. 

 

The results can be generalized to the case where only a sub set of parameters switch 

between the regimes and to the case where some regressors only enter in one of the 

two regimes.  Also, λ takes values in a bounded subset of the real line: Γ.   

Assumptions: (Hansen (2000)) 

1) [rmt, Zt, et] are strictly stationary ergodic and ρ-mixing with   ρ-mixing 

coefficients satisfying ∑ρm½  < ∞. 

2) E [et| Zt-1] = 0 

3) E | rmt |4 < ∞ , E | rmtet |4 < ∞. 

4) for all λ ∈ Γ, E[ rmt
4 et

4 | Zt = λ] ≤ C, E[ rmt
4 | Zt = λ] ≤ C for some C < ∞ and  

∞<≤λ f)(f
 where f(.) is the density function of Zt. 

5) E[ rmt
2 | Zt = λ ] and E[ rmt

2 et
2 | Zt = λ ] is continuous at λ = λ0 

 where λ0 is the true value of threshold. 

6)  δT = c T-α with c≠0, 0<α<1/2 

7) c' E[ rmt
2 | Zt = λ0 ] c > 0 and c' E[ rmt

2 et
2 | Zt = λ0 ] c > 0 and f(λ0) > 0. 

8) E[rmt
2 1[Zt≤λ]] > 0 for all λ ∈ Γ. 

Assumption 1 excludes time trends, integrated processes and long memory processes. 

Assumption 2 shows the correct specification of the conditional mean.  Assumption 5 
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excludes regime dependent heteroskedasticity.  Assumption 6 specifies that difference 

in regression slopes gets smaller as the sample size increases.  This helps us in getting 

a nuisance parameter free limit distribution.  However, this assumption is not needed 

for building confidence intervals and assumption 7 is a full rank condition 

  which is needed to have non-degenerate asymptotic distributions.   

 

We assume rmt, Zt, and et  are strictly stationary ergodic and ρ-mixing with   ρ-mixing 

coefficients satisfying ∑ρm½  < ∞. The ρ-mixing assumption controls the degree of 

time series dependence and allows the processes to be autocorrelated and 

heteroskedastic. The ρ-mixing assumption is sufficiently flexible to embrace many 

non-linear time series processes including threshold autoregressions.4 

 

B.1.  Testing for a Threshold 

 

We use the heteroskedasticity consistent Lagrange Multiplier (LM) test for a threshold 

as in Hansen (1996).  We test for the null of  

H0:  δ = 0 against 

H1:  δ ≠ 0 

For all λ ∈ Γ we have the following LM statistics for the null of no threshold. 
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             is obtained from the restricted least squares.  Unfortunately, the large sample 

limit for sup-LM test is not nuisance free, since the threshold is not identified under 

the null of no threshold effect.  So Hansen (1996) suggests a bootstrap analog of the 

sup-LM test. Hansen (1996) shows that this bootstrap method yields asymptotically 

correct p-values.  The bootstrap analog consists of the following steps; 

1) Form LMT (λ) for each λ ∈ Γ 

2) Select the largest LMT (λ) among them and call this LMT
* (λ). 

3) Then generate the dependent variable for the bootstrap in the following way; 

multiply a standard normal random vector of T observations cell by cell with 

the residuals from the Restricted Least Squares regression.  This gives us in 

our case rb 

4) Then calculate LMT
b(λ) with fixed regressors and rb as the dependent variable. 

5) Select the largest LMT
b(λ) and call it LMT

b*(λ)  
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6) Generate 1000 bootstrap replications of LMT
b*(λ), which is repeating steps 3 

to 5 1000 times. 

7) p-value is the percentage of LMT
b*(λ) exceeding LMT

* (λ). 

 

B.2.  Estimation 

 

In this section, we estimate the unknown threshold parameter λ, however we slightly 

change the model to have 

 

                              (5) T

)

1,......, t                    )( 1111 =+′+′= ++++ ttTtt exxr λδθ

 

where δT is the “threshold effect”.  We let δT → 0 as T → ∞ (See Hansen (2000) 

sections 1 and 5 for details) in order to have a nuisance parameter free asymptotic 

distribution.  However, confidence intervals for λ can be built even when the 

threshold effect does not decrease with the sample size.  We can rewrite (5) in a 

matrix form where X and Xλ are T × 2 matrices and R is a Tx1 vector. 

 

                                                                                      (6) eXXR T ++= δθ λ

 

We use LS estimation as in Hansen (2000, section 2): 

 

                      ()(),,( δθδθλδθ λλ XXRXXRST −−′−−=

 

where ST is the sum of squared errors.  To estimate slope parameters and the threshold 

parameter, we observe that first given λ, equation (5) is linear in θ and δT.  We can 
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have the conditional LS estimates θ by regressing Y on [X X)(ˆ and )(ˆ
T λδλ λ].  Then 

set  

 

 )        ),(ˆ),(ˆ(S)(S TT λλδλθ=λ

 

The estimate of threshold parameter λ  can be uniquely defined as ˆ

 

  argmin S=λ̂ T(λ)            

 

where λ is minimised over the set ΓT = Γ ∩ {Z1,……,ZT}.  So  can be derived by 

less than T function evaluations.  Then slope estimates can be computed by plugging 

in λ  into and δ , namely , and .  The asymptotic distribution for the 

threshold estimate  follows from theorem 1 of Hansen (2000). 

λ̂

ˆ )(ˆ λθ )(ˆ λ

λ̂

)ˆ(ˆ λθ )ˆ(ˆ λδ

 

Proposition 1 (Hansen (2000)):  Under assumption 1 - 7,  

  

[ ]
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In proposition 1 the rate of convergence is T1-2α, this shows that a large α decreases 

threshold effect which reduces the precision of the estimator.  The "small effect" 

asymptotics is similar to what is found in the "change point" literature.  The 

distribution for K is known and it is shown in Hansen (2000).  In order to build 
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confidence intervals for the threshold parameter we invert the likelihood ratio test for 

testing H0 : λ = λ0.  This test statistic has a nuisance free limit for details see Hansen 

(2000). 

  

We use lemma A-12 of Hansen (2000) to establish the limit for the slope parameters.   

Set                                                            

),( δθ=θ
Then  

Proposition 2: (Lemma A-12 Hansen (2000))  Under assumptions 1 - 7 

 

[ ] )V,0(N)ˆ(ˆT d0
2/1

θ→θ−λθ

 

Where Vθ is the standard asymptotic covariance matrix if λ = λ0 were fixed.  

Basically this result shows that one can approximate the distribution of the slope 

parameters by the usual normal approximation as if λ were known with certainty.  For 

building confidence intervals see section 4 of Hansen (2000).  An important part to 

note is that assumption 6 is not required for building confidence intervals, both for the 

slope and threshold parameter.  The confidence intervals can be built where the 

threshold effect is constant as well (Theorem 3 Hansen (2000)).  Note that we use 

heteroskedasticity robust confidence regions for our parameters. 

 

III.  RESULTS 
 
A. Data 
 
The data used in this study is the same data used in Ferson and Korajczk (1995) and 

Ghysels (1998).  It covers monthly data from January 1927 to January 1988 on twelve 

industry portfolios of NYSE firms grouped by 2-digit SIC industry code.  Names of 

these industries are reported in Table 1.  For economic variables, we use one month 

real t-bill rate, dividend yield of the CRSP value-weighted NYSE stock index, 

detrended stock price level, measure of the slope of the term structure and quality 

related yield spread in the corporate bond market.  We chose these variables as 
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threshold variables because they are suggested by previous studies as predicting stock 

returns5.  Details of the data are in Ferson and Korajczyk (1995).       

B.  Testing 
 
The first test explores the question of whether there are statistically significant 

discrete regime shifts in betas due to certain instrumental variables which are 

empirical proxies for changing economic environment.  Table 2 reports the bootstrap 

p-values for the sup LM test used in Hansen (1996) which depict the likelihood of no 

regime shift.  These values are reported for industry portfolios (January 1927 - 

January 1988).  As can be seen in Table 2, all of the twelve industry portfolios exhibit 

time variation in betas due to real interest rates at one percent significance level.  We 

also observe similar findings for maturity spread; eight out of twelve industry 

portfolios exhibit time variation in betas at ten percent or below significance levels.  

However, for the other financial variables the evidence is mixed6.  The econometric 

theory that underlies the threshold CAPM requires only one threshold variable.  

Therefore we concentrate only on one variable, namely interest rates7.  For this 

purpose, we choose the variable that produces the lowest p-value across all industries.  

As it can be seen in Table 2, the threshold variable is real T-bill rate.  Intuitively, real 

T-bill rate signals a regime shift in the strongest manner.  Similar descriptive findings 

are documented in the literature by other studies such as Campbell and Mei (1993), 

Ferson (1989), and Jaganathan and Wang (1996).      

 

As reported by Ghysels (1998), betas change through time very slowly.  The 

conditional CAPM models may have a tendency to overstate the time variation. 

Therefore, they produce time variation in beta that is highly volatile and changing too 

rapidly.  This is also confirmed with the evidence reported in Braun, Nelson and 
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Sunier (1995), where they used bivariate EGARCH model to estimate conditional 

betas and found weak evidence of time variation in conditional betas. This 

explanation is also consistent with our findings.  If a couple of significant changes 

exist in betas and the rest of the time they are more or less stable, continuous 

approximations of the CAPM will produce highly volatile beta estimates.  

 

C.  Estimation 

 

In Table 3, we report betas and the threshold estimate of a inflation adjusted one-

month T-bill rate.  Columns two and three show the values for betas in two regimes.  

Column four is the threshold estimates for one month real T-bill rate, and column five 

is the average betas estimated from the unconditional CAPM.  As can be seen in 

Table 3, there are considerable shifts in the betas at different regimes in all twelve 

industries.  For example, the Services Industry (Industry 11) possess a less risky 

nature with a beta value of 0.83 when the real interest rate is below %3.5; it becomes 

a riskier industry with a beta value of 1.32 when the real interest rate is above the 

estimated threshold level of %3.5.  However, if one ignores the time variation in beta 

and estimates the constant beta using unconditional CAPM at 0.95, it is possible to 

make serious pricing errors. On the other hand, the Utilities Industry (Industry 9) 

depicts little time variation in betas under two regimes where the magnitude of the 

pricing error will be low.  

 

In Table 3, we also observe that the shifts of the regimes in each industry are at 

different real interest rate levels which indicates that each industry responds to the 

fluctuations in interest rates differently.  We notice that in ten out of twelve industries 
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the threshold betas are higher in the high interest rate regimes than they are in low 

interest rate regimes.  In only two industries we observe the opposite.   

 

Betas and expected returns vary over time depending on the information about firm 

specific issues and overall economic conditions at any given point in time.  As 

Jagannathan and Wang (1996) argues, time variation in beta may come from two 

different sources.  During high interest rate periods highly leveraged firms are more 

likely to face financial problems so their betas are more likely to rise.  At the same 

time, the decrease in the uncertainty about the growth prospects of firms can cause 

their betas to decrease.  It is not immediately clear which cause will dominate. Hence 

betas might be higher or lower during high interest rate periods. It is also reasonable 

to expect fluctuations in the betas of different sectors in the economy due to sudden 

changes in technology or taste.  In addition, some industries may be more capital 

intensive than others which makes them more sensitive to interest rates.  Hence we do 

not expect betas of different sectors to respond to the changing economic conditions 

in the same way.   

 

As mentioned earlier, our findings show that in most of the industries betas increase 

with increasing interest rates. Therefore because of the nature of the firms within 

those industries leverage effect dominates. Only in two industry groups the other 

effect dominates and the betas decrease with increasing interest rates.  In order to 

understand these complex dynamics within each industry and firm, one would need a 

detailed analysis of the operating and financial positions of these firms within each 

industry, but it is far beyond the scope of the present paper. 

 16



One may be tempted to explore the possibility of more regime shifts using the same 

methodology and partitioning the data into two groups according to the level of the 

threshold estimate. More specifically it is possible to collect those observations below 

the threshold estimate in one group, and those above the threshold estimate in another 

group, and then test for the existence of further regime shifts in these sub groups.   

However, the econometric theory of partitioning data in the applications of threshold 

models has not been established yet and smaller number of observations in sub 

periods may yield unreliable beta estimates.    

 

  

  

D.  Forecasting 

 

In order to find the economic value of our findings to pricing, we calculate the pricing 

errors of threshold CAPM as described by equation (4) and compare them with the 

pricing errors of the unconditional CAPM, conditional CAPM and conditional APT 

reported in Gyhsels (1998).  We used the following Root Mean Square Error formula 

to calculate the pricing errors of threshold CAPM. 

 

Note that the comparisons of pricing errors does not include non-linear APT of Bansal 

and Viswanathan (1993).  Prediction through non-linear APT requires a lot of 

additional assumptions thus, generating predictions of returns for forecasting purposes 

are nontrivial8.   

The following moment conditions specify the unconditional CAPM in Ghysels (1998) 
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The conditional CAPM models of Ferson and Harvey (1993) in Ghysels (1998) are 
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Multifactor conditional APT model of Ferson and Korajczyk (1995) in Ghysels  

(1998) is defined by the following moment conditions 
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where Ft is a K x 1 vector of factor mimicking portfolios, βI is a K x 1 vector of the 

betas for asset i, and Zt is a (L + 1) vector of instruments. 
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In-sample Root Mean Squared Errors (RMSE) of pricing errors for each model are 

reported in Table 5.  The threshold CAPM produces much smaller pricing errors for 

all industries, thus outperforms the unconditional CAPM, conditional CAPMs, and 

multifactor conditional APT.  In the case of Industry 4, the decrease in pricing errors 

goes up to 50%.   

 

There is now a consensus on time variation in market risk.  The conditional CAPM is 

an attempt to capture this variation. However Ghysels (1998) shows that the 

conditional CAPM is unable to specify time variation accurately thus leads to higher 

pricing errors compared to the unconditional CAPM.  In view of these findings, we 

believe that it is crucial to understand the dynamic of time variation in market risk and 

incorporate this dynamic in the pricing model.  Our findings establish that the market 

risk is more or less stable under similar economic conditions but there are discrete 

shifts triggered by significant changes in the economic environment.  Threshold 

CAPM is able to incorporate this time variation better than conditional CAPM.  As a 

result, it leads to much lower pricing errors.  

 

 

IV.  CONCLUSION 

 

Many researchers agree that the CAPM is unable to explain the variation in expected 

stock returns.  Stimulated by this inference, academicians have sought to find 

alternative solutions to the problem.  One line of research has focused on improving 

the empirical application of the model by allowing time variation in beta using the 
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conditional CAPM.  However, Ghysels (1998) show that conditional CAPM is an 

inadequate solution for the problem as it produces higher pricing errors.   

 

In this paper we show that changes that occur through time in the risk factor, beta, are 

associated with changes in the economic environment; the dynamic of time variation 

of beta differs across industries and; threshold CAPM outperforms both conditional 

and unconditional CAPMs since it produces much lower pricing errors.    

Therefore, both the constant and the other time varying betas lead to serious errors in 

asset allocation, portfolio choice, and hedging.  

 

For the future research, we plan to form a multifactor version of threshold CAPM.  

Another interesting line of research is to use a panel threshold model to capture the 

cross section of expected stock returns.  However, the econometric theory of the panel 

threshold models is very limited at this point. 
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End Notes 

1  See Ferson and Harvey (1993), Jagannathan and Wang (1996)  

2 Nefci (1984) concludes that there is enough evidence in economic time series data to 
justify two different regimes during the business cycle. 
 
3 See Braun, Nelson and Sunier (1995) for a formal statistical test of this conjecture. 

4 For further information about ρ-mixing see Davidson (1994). 
 
5 Studies that document predictability using these variables are Fama and Schwert 
(1977), Ferson (1989), Campbell and Shiller (1988), Fama and French (1989), Poterba 
and Summers (1988), Keim and Stambaugh (1986) and Fama (1990) 
 
6 There is also a vast literature on beta dynamics over the states of the market.  See 
Chen (1982), Fabozzi and Francis (1977,1979), Granger and Silvapulle (2001), Kim 
and Zumwalt (1979) and Woodward and Anderson (2002).  The evidence on varying 
beta over the Bull and Bear markets is mixed.  In our study we detect no variation in 
beta due to the detrended stock price level except for Industry 10, as documented in 
Table 2.   
 
7 Ferson (1989) also reports evidence on the significant relationship between 
conditional betas and interest rates.   
 
8 See Ghysels (1998) for a detailed explanation on the difficulties of prediction with 
pricing kernels. 
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