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Abstract: 

The study of whole-brain functional brain connectivity with functional magnetic 

resonance imaging (fMRI) has been largely based on the assumption that a given condition 

(e.g., rest or task) can be evaluated by averaging over the entire experiment. In actuality, the 

data are much more dynamic, showing evidence of time-varying connectivity patterns, even 

within the same experimental condition. In this paper, we review a family of blind-source 

separation (BSS) approaches that have proven useful for studying time-varying patterns of 

connectivity across the whole brain. Initial work in this direction focused on time varying 

coupling among data-driven nodes, but more recently time-varying nodes have also been 

considered. We also discuss extensions of these approaches including transformations into the 

time-frequency domain and others. We also provide a rich set of examples of various 

applications that yielded new information about the healthy and the diseased brain. In sum, due 

in large part to developments in the field of signal processing, the fMRI community has seen a 

major new development in the development of approaches that can both capture whole-brain 

systemic connectivity information (connectomics) while also allowing this system to evolve 

over time as it naturally does (i.e., chronnectomics). 
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Introduction 

Big data1, the human connectome2, the BRAIN initiative3, and the chronnectome4: 

There is a major ongoing movement in the US, European Union, China, and Japan to 

understand the human brain and brain connectivity (cf. human connectome project2,3 and 

BRAIN initiative (multi-agency), NSF’s neural & cognitive systems program, the Human 

Brain Project (EU), Brain/MINDS (Japan), and others). Critical themes across all of these 

projects are technology development for studying the human brain and harnessing 

developments resulting from the human genome project and others. These themes continue to 

revolutionize our understanding of the complexity of the human brain, and are driving the 

recent focus on scaling science to handle “big data” problems. The study of changes in brain 

networks (functional connectomics5,6) over time, termed the ‘chronnectome’, was recently 

highlighted as one of the “Best of 2014” by NIMH Director Dr. Tom Insel7 in terms of a 

concept that brought engineers, physicists, and neurobiologists together to better understand 

the temporal dynamics of the brain imaging signals. Specifically, Dr. Insel noted the power of 

“convergence” or merger of multiple disciplines7,8. The chronnectome is a model of the brain 

in which nodal activity and connectivity patterns are changing in predictable and meaningful 

ways through time4,9. Thus, the concept of the chronnectome, is making the specific assumption 

that the dynamics are nonstationary in interesting ways. One can focus on chronnectomic 

changes at various scales, including milliseconds (as measured by EEG or MEG), seconds (as 

measured by fMRI), minutes (as measured by changes between experiments using average or 

static connectivity approaches10-12), and changes over months/years (at which point 

incorporating additional information such as changes in brain structure or epigenetic changes 

becomes very useful for longitudinal studies) (see Figure 1a). Characterization of brain 

connectivity across the lifespan is a major priority both in the human connectome project5 and 

the BRAIN initiative3.  
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One of the earliest examples of time-varying connectivity is the concept of EEG 

microstates, or points in time during which there is a common synchrony across multiple brain 

regions13-17. More recently, fMRI, which provide a more spatially specific measure of function 

across the entire brain (at the cost of decreased temporal resolution), has been used to study 

time-varying connectivity. In this review, we primarily focus on the recent emergence of data-

driven approaches that can capture whole-brain patterns of time-varying connectivity within 

one fMRI experiment (either at rest or during a task). Initial results suggest that such an 

approach provides more information than static connectivity approaches, thus motivating 

methods that acknowledge the dynamically changing brain within a single experiment. Such 

approaches will likely make evaluation of connectivity changes over longer time scales even 

more informative. There has been great progress in the use of functional connectivity measures 

to study the healthy and diseased brain, and whole-brain measures have proven extremely 

powerful. The functional magnetic resonance imaging (fMRI) community has now realized 

that assessment of functional connectivity has been limited by an implicit assumption of spatial 

and temporal stationarity throughout the measurement period18. Dynamics are potentially even 

more prominent in the resting-state, during which mental activity is unconstrained19. The 

development or adaptation of approaches to study time-varying connectivity in the brain has 

emerged along multiple lines, including the detection of important transition points (e.g. 

changepoint analysis20), time-frequency approaches21, and windowing approaches22-24. 

Data-driven approaches, in particular (joint) blind source separation has proven useful 

for taking advantage of the available prior and statistical information to fully characterize both 

static and dynamic brain connectivity25,26. Hence, the term chronnectome describes a focus on 

Figure 1: (a) The Chronnectome concept of studying connectivity at multiple time scales4, 

(b) overview of some of the key steps and options used in computing time-varying 

connectivity measures. 
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identifying time-varying, but reoccurring, patterns of coupling among brain regions. The 

chronnectome (in contrast to another interesting concept called the dynome, which is focused 

on time-varying (oscillatory) activity whose basic characteristics (frequency, phase, amplitude, 

etc.) are generally assumed to be static27) is making the specific assumption that the dynamics 

are nonstationary in interesting ways. In the context of this paper, ‘dynamics’ is thus referring 

to intrinsic nonstationarities rather than dynamics in its mathematical sense. A number of 

approaches in this respect are revealing exciting new information about the brain including 

information about sleep states28 as well as disease29, and represent a much more natural way to 

analyze brain imaging data, especially that which is largely unconstrained, such as resting fMRI 

data. A high-level summary of the key steps for capturing whole-brain data-driven time-

varying connectivity is presented in Figure 1b. Input to the analysis can consist of timecourses 

from regions or from networks (e.g. component timecourses). Next, timecourse pairs can be 

analyzed using a fixed or adaptive windowing approach23,30 or a time-frequency approach21,31. 

The next step involves estimating the states, which can be done a number of ways, e.g. k-means 

clustering30, PCA26,32 or ICA33,34. Finally, summary measure of the states can be done for each 

state separately, e.g. dwell time or connectivity within each state matrix29,35, or across all states 

such as in a meta-state approach33,34. 

In the remainder of this article, we highlight some key signal-processing aspects of the 

ongoing chronnectomics work with a focus on whole-brain data-driven approaches applied to 

fMRI data. We start by introducing approaches for defining the input features that are used in 

such approaches, with a particular focus on data-driven approaches that can help estimate time-

varying aspects of both the functional connectivity and the spatial locations. Next, we introduce 

static and dynamic connectivity and discuss a number of relevant issues including validation. 

We then provide several examples of the many current applications that have emerged based-

on blind source separation-based methods developed in our lab. In contrast to previous 
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reviews4,18, the focus of the current article is to review data-driven whole-brain approaches 

from a signal processing perspective. In addition, we offer new high-level summaries of the 

various steps in capturing time-varying connectivity (Figure 1b), new approaches (e.g. whole-

brain time-frequency analyses), new strategies for modeling (e.g. subspace analysis and 

dynamic model-based connectivity) and new application examples (e.g. results from the 

EEG/fMRI sleep study and the substance use study). 

Feature generation 

One key challenge for studying time-varying connectivity in the brain is generating the 

features that capture the time-varying dynamics. Approaches include those that make use of a 

priori information, e.g., picking a pair of brain regions (seeds) or using a whole-brain 

predefined atlas of regions in fMRI data as well as data-driven approaches. Data-driven 

approaches include sparsity-based parcellation36 and latent variables analysis methods such as 

principal component analysis (PCA), group independent component analysis (ICA) 37 spatially 

constrained ICA38, independent vector analysis25, and tensor decompositions39. For example, 

in 40,41 first event related potentials in EEG data are detected and then summarized using PCA 

of time-dependent node correlation matrices. On the other hand, for fMRI data, decompositions 

that use ICA and IVA can be adapted to extract dynamic features in multiple ways as 

demonstrated in 30,34,42 among other references. 

Independent component analysis: ICA is based on the assumption that the observations 

are a linearly mixed set of independent sources/components, an assumption that allows 

identification of the original sources subject to only scaling and permutation ambiguities, and 

under rather mild conditions for identifiability. If we consider the simple linear mixing model 𝐱(𝑣) = 𝐀𝐬(𝑣), 1 ≤ 𝑣 ≤ 𝑉, 𝐱(𝑣), 𝐬(𝑣) ∈ ℛ𝑁 where 𝑣 is the sample index such as voxel, pixel, 

or time and the mixing matrix 𝐀 is full rank, one can obtain the independent component 
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estimates 𝐮(𝑣) = 𝐖𝐱(𝑣) by estimating a demixing matrix 𝐖 through optimization of an 

appropriate cost measuring independence25,43. 

ICA has proven very useful for fMRI data analysis, and can be performed in two 

different ways44,45 namely spatial ICA that extracts independent spatial maps, and temporal 

ICA that extracts independent time courses by considering the transposed version of the data 

matrix. Spatial ICA is more widely used as the spatial independence assumption is better suited 

for the systematically non-overlapping nature of the spatial patterns46. For spatial ICA, the data 

matrix 𝐗 is formed by flattening a given slice at time 𝑡 as a row such that 𝐗 is time points by 

voxels, 𝑇 × 𝑉, and dimension 𝑇 is typically reduced to 𝑁 using PCA prior to ICA. 

In the group ICA model37,47, which has been implemented in the GIFT toolbox 

(available at http://mialab.mrn.org/software/gift), there are double dimension reduction stages 

using PCA where the first step is to perform a subject level PCA, and after vertical 

concatenation of dimension-reduced subject data, a second level PCA is applied at the group 

level to estimate a common group subspace48. Individual subject maps are then reconstructed 

using the group and subject-level PCA matrices thus preserving most of the variability for 

individual subjects. Other implementations and uses of the Group ICA model are also possible 

and discussed in 37. An example of the traditional use of group ICA is shown in Figure 2. The 

spatial maps are characterized by a single timecourse and provide information about the degree 

to which each voxel is linearly related to that timecourse, as such it informs us about within 

network connectivity. In the figure components are divided into anatomical domains (each box 

is a domain) and within a domain different components are indicated with different colors. 

Relationships among the timecourses (matrix in Figure 2) capture the functional network 

connectivity or among-network connectivity. The matrix indicates the degree to which each 

component is correlated with the other components. Correlations are positive (red) values and 

anticorrelations (blue) are represented as negative values. Results are shown for healthy 
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controls (HC) and patients with schizophrenia (SZ)29. Some approaches have also attempted to 

combine aspects of both spatial and temporal ICA44,49. 

 

 

Independent vector analysis: In independent vector analysis (IVA), one explicitly 

assumes a separate source and mixing matrix for each dataset and, for 𝐾 datasets, write 𝐱[𝑘](𝑣) = 𝐀[𝑘]𝐬[𝑘](𝑣), 𝐱[𝑘](𝑣), 𝐬[𝑘](𝑣) ∈ ℛ𝑁   𝑘 = 1,2, … , 𝐾. Then the independent 

decomposition of all 𝐾 datasets is achieved jointly by fully taking advantage of the statistical 

second and higher-order correlation that exist among the datasets. 

The key definition in the formulation of IVA is the source component vector (SCV) 

that is formed by using the corresponding elements of the source random vectors 𝐬[𝑘](𝑣) such 

that the nth SCV is given by [sn[1]sn[2], … , sn[𝐾]]𝑇  where the subscript refers to nth source in each 

of K datasets, e.g., for data from K subjects, this would be the nth spatial map for each 

subject25,50. The IVA decomposition is achieved by minimizing the mutual information among 

the SCVs (as opposed to sources in ICA) which is equivalent to finding sources that are 

independent within each dataset while maximizing the mutual information within each one of 𝑁 SCVs25. The use of this statistical dependence allows the mitigation of permutation 

ambiguity for sources (modes) that are dependent across the datasets, so that the source 

estimates across subjects are aligned. 

Figure 2: Data-driven maps from group ICA provides components that capture 

information about within network (component) connectivity that are characterized by 

timecourses that can be used to assess functional network connectivity (FNC) or among 

network connectivity which can be assessed in the simplest manner by computing the 

cross-correlation among component timecourses. Results are shown for healthy controls 

(HC) and patients with schizophrenia (SZ)29. 
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Capturing time-varying connectivity 

The capture of time-varying coupling between variables is a topic which has been 

heavily studied in other fields and in communications for signal processing in particular. 

However, the specific application to whole-brain functional connectivity is relatively new22 

and its application to brain imaging data poses particular challenges that are currently being 

studied. One important challenge is how to best identify relevant features from the high-

dimensional brain imaging data. Both group ICA and IVA can be effectively used for extracting 

features of interest from the fMRI data that in a second step can be used to characterize the 

dynamic properties. In this section, we provide a brief introduction of the use of both tools in 

this context. 

Time-varying connectivity captured with group ICA: One approach is to use group ICA 

of multiple subjects and after selection of components of interest, capturing time-varying 

changes in the coupling (e.g. covariance) among component timecourses, using FNC with a 

tapered window30. The FNC information shown in Figure 2 was computed by assuming the 

connectivity is static throughout the experiment. Dynamic approaches capture time-varying 

connectivity within fMRI data30,51 or changes in the spatial maps (spatial FNC). The simplest 

approach is to use a windowing method24,30,52. An example of this can be seen in Figure 3 in 

which group ICA was run on multiple subjects, followed by selection of components of interest 

and then cross-correlation of the ICA time courses, called dynamic FNC (dFNC). On the left 

side is shown a cross-correlation matrix for the entire ICA timecourse for a single subject. A 

tapered Gaussian window was used to compute time-varying correlation matrices (top of 

Figure 3-A2, with individual correlations shown at the bottom of A2 for the black boxes 

marked in the matrix in A1). There is considerable variability in the connectivity, which does 

not appear to be noise due to the modularity of the correlation matrices and the fact that the 

time course tends to be low frequency. 
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Dynamics of spatial patterns captured with IVA: We can also process overlapping 

windows jointly using IVA as demonstrated in 42 to capture time-varying spatial patterns. Since 

IVA jointly optimizes independence, use of shorter time windows becomes possible allowing 

for sufficient statistical power for the estimation. One example for the use of IVA to capture 

changes in the spatial coupling (either changes in the within component maps or in the coupling 

among spatial networks) is to use it in conjunction with a group level PCA48. The data are 

partitioned into K time windows of equal size T, and then the window from each of the M 

subjects is analyzed groupwise as shown in Figure 4. In the figure, the dimensionality of each 

dataset 𝑋′ is reduced from MT to N, resulting in dimension reduced datasets. This approach 

enables us to capture changes in the spatial patterns reflecting connectivity over time. We show 

later summary of results from an application of this approach to evaluate group differences in 

spatial dynamics. 

 

 

Characterization of time-varying connectivity 

Once the relevant features are extracted from the data, they must be analyzed to evaluate 

their dynamic properties. Here, we briefly mention three important approaches among those: 

Markov modeling, meta-states analysis based on windowed or adaptive approaches (e.g., where 

pairwise correlations are computed using small portions of the data), and time-frequency 

Figure 3: FNC dynamics via windowing: single example subject: (A1) average FNC 

(cross-correlation of ICA time courses) for a single subject, (A2) FNC time series between 

select components and snapshots of whole-brain FC30. 

Figure 4: Independent vector analysis approach to characterize spatially dynamic and 

static components4,18,42. Here spatial maps of a component vector are related over the time 

windows but should be distinct from the spatial maps of all other components (whether 

within or outside the current window wi). 
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analysis (where a time-frequency approach is used to transform the data and study patterns of 

amplitude, phase, and frequency over time21,31). 

Markov modeling/state transitions: Markov chain modeling provides a powerful way 

to characterize (and hence distinguish) time-varying connectivity30,42. A data-driven approach 

can be used to learn both the states and the transitions from the data (in both space and time). 

Figure 5A shows the state assignments as a function of time for three example subjects for the 

dFNC approach. Transition behavior can be characterized by considering a Markov chain (MC) 

in which the probability to go from the current state to the next state is conditionally 

independent from all states that occurred (in time) before the current state. In Figure 5B, we 

show the average transition matrix (TM) for our example. Red squares along the diagonal 

signify a very high probability of staying in the same state. For the off-diagonal elements, hotter 

colors in the S1 column indicate a higher probability of entering S1 from the other states, and 

cooler colors in the S3 row indicate a lower probability of exiting S3. Because the MC is 

irreducible (any state can be reached from any other state in a finite number of steps), its 

stationary distribution () can be obtained as the principal eigenvector of the estimated TM53. 

The vector , displayed in Figure 5C, represents the probability distribution over the states of 

the MC when the chain is in its stationary regime, i.e., in the expected behavior of the system 

in the long-run. In our example, the stationary probability for S3 is far greater than the 

probabilities for other states, meaning that in the long-run the system is most likely to be found 

in S3. Markov chains enable us to capture the propagation of probability distribution vectors 

over the states (i.e., mixed state vectors) through a network. 

 

Figure 5: A) State vectors for the three example subjects. Assigned states are plotted at the 

time point corresponding to the center of the sliding window. (B) The state transition 

matrix (TM), averaged over subjects. High values along the diagonal indicate a high 

probability of staying in a state. Note that transition probability is color-mapped on a log-

scale. (C) The stationary probability vector (, principal eigenvector of the TM) shows the 

steady-state, or “long-run” behavior. Error bars indicate the non-parametric 95% 
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Cross-state summary measures (e.g. meta-states): A core challenge for dynamic 

network connectivity analysis is to summarize the data in ways that simultaneously reduce its 

dimensionality and expose features that are strongly predictive of important population 

characteristics. The native dimension of network correlation space can easily exceed 1000. 

However recent approaches have been developed to summarize the dynamic information in a 

higher level summary. In this case, the goal is to calculate a tractable characterization of time-

varying connectivity in terms of the additive contributions of a set of basis correlation patterns 

(BCPs) obtained according to some specified optimization criterion (using, for example, 

temporal ICA, spatial ICA, PCA or k-means clustering)34,54. A BCP in the context of a PCA-

based approach would be called an eigenconnectivity. This is summarized in the “Estimation 

of dynamic states” panel of Figure 1b. The time-indexed N-element vectors of BCP weights, 

discretized according to signed quartile, are the meta-states. In a recent work (see Figure 6), 

results showed a summary of a 3-level 5-state quantization in 400 heathy subjects that indicates 

1) only 22 of these meta-states are occupied more than 1% of the time, 2) these states including 

mostly single or double state occupancy, and 3) females show more single state occupancy than 

males, who show more double state occupancy34. Using a large, balanced multi-site dataset, 

we have also investigated the effect of SZ diagnosis on four interrelated measures of meta-state 

dynamism, separately evaluated with respect to BCPs obtained from four common 

algorithms55. These analyses have yielded consistent and significant evidence for reduced 

connectivity dynamism in schizophrenia patients and provide strong evidence in support of 

such summary measures. There are a number of possible ways to compute cross-state summary 

measures, a topic of ongoing work. One example of such a metrics is the concept of a k-level 

hub (e.g. states that are returned to k or more times). Related concepts include absorbing 

confidence intervals (CIs) obtained from 1000 bootstrap resamples of the average TM 

(resampling subjects). 
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(subjects stay for extended periods of time) and transient (subjects come in and out multiple 

short periods of time) hubs, both of which appear highly different in schizophrenia55. 

 

 

Time-frequency analysis: Chang et al. first introduced the use of time-frequency 

methods to study time-varying connectivity (coherence) in a few regions of interest21. More 

recently, a whole-brain time frequency approach was proposed that enables brain states to be 

estimated. The proposed approach can be considered an extension and generalization of both 

the time-domain30 and the coherence approaches21 (see 56 for more details). Using this 

approach, we can more fully characterize a state via multiple frequency bands by its 

connectivity pattern (covariance), frequency contribution, and phase (e.g., anticorrelated pairs 

would have a 180 degree phase shift). Figure 7 shows an example of a state that was defined 

via k-means clustering after the use of a complex Morlet filter to separate 5 different frequency 

bands with magnitude and phase. This particular state has most of its power within 0.07-0.13 

Hz, has some strong 0 and 180 degree phase patterns, and captures some very interesting 

patterns. Results from a large rest fMRI dataset (N=400) identified two states, with similar 

correlation patterns, but distinct frequency profiles, one of which was highly predictive of 

males versus females31. This provides additional evidence that ignoring the dynamic 

information obscures important information. 

 

 

Figure 6: Bar chart shows relative occurrence frequency of each combo-state. The bottom 

label of each bar is the coded and visual representation of the associated combo-state and 

the top is labeled by the gender that on average occupies that combo-state more along with 

the FDR-adjusted p-values for that comparison (dark blue: M>F and dark red: F>M). On 

the top right corner of the figure, each of the pie chart shows overall occurrence frequency 

of the associated combo-state34. 

Figure 7: Multiband state with 25% occurrence rate showing the most power in the 0.07 

and 0.13 frequency bands. Phase histogram and color indicate the phase of the dynamics. 
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Validation 

There have been quite a few studies published that provide important information 

validating the presence of chronnectomic information in fMRI data. For example, one study of 

a large N = 400 subject dataset performed a split-half replication and also varied a number of 

parameters including the number of estimated states and the window size57. Other studies have 

shown that dynamic connectivity tracks closely with sleep state28, psychedelic experience58, 

are reflected in both humans and macaques 51, and are associated with daydreaming59. Cross-

validated classification also appears to be more powerful when applied to dynamic connectivity 

measures4,60. The comparison of dynamic connectivity measures in the presence of tasks which 

activate known brain regions also provides powerful evidence to support the presence of 

connectivity states18,61. 

Concurrent EEG/fMRI Experiments: Concurrent EEG provides a useful way to validate 

these dynamic changes by providing convergent evidence for them. While EEG alone cannot 

provide a ground truth measure, since EEG and fMRI are generated by and sensitive to very 

different sources, we do expect that fMRI changes in connectivity over time that reflect 

neuronal changes will also be detectable with EEG. An illustrative example focused on 

differences in dynamics associated with the eyes open versus eyes closed state is presented in 

Figure 8. Concurrent EEG/fMRI data are collected using a Brain Products EEG system, which 

had been previously used to collect data comparing a variety of frequencies in EEG with fMRI 

data in the resting state for eyes open and eyes closed62,63. Preliminary analysis of these data 

using a group ICA approach to evaluate temporal dynamics is shown in Figure 864. The left 

panel shows two dynamic states estimated from the fMRI data. Both of these states showed a 

significant difference with eyes open vs closed with S1 being dominantly occurring for eyes 

open, whereas S5 showing significantly more occurrence during the eyes closed stage and 

demonstrating more EEG alpha power. The anti-correlation with brain regions associated with 
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inner reflection (regions in the widely studied default mode network65) was also stronger in the 

eyes open data, and as the states were associated with more EEG drowsiness measures, these 

anti-correlations diminished and then subsided64. This is only a relatively simple approach to 

relating EEG and fMRI data, more advanced methods that take advantage of the joint 

information during the estimation process would likely be even more fruitful in demonstrating 

the benefits of dynamic connectivity63,66-69. 

 

 

Incorporating dynamics improves contrast-to-noise: Data shown in Figure 9 were 

evaluated from a normative resting fMRI data set (N=200 healthy controls) using a simple 

model that incorporates an explicit static subspace (while modeling the dynamic information 

in a nuisance subspace). In this case, the model that incorporates the dynamic information 

(Figure 9 right) shows a higher contrast-to-noise ratio than when the dynamic information is 

completely ignored (Figure 9 left). This result also provides strong support for the use of 

models that capture both the static and dynamic connectivity information. 

 

 

Choice of estimation strategy and parameters: One common critique of windowed 

correlation approaches is that they can introduce spurious correlations24,70. There have been a 

number of papers that evaluate various window parameters and performance in simulations in 

real data quite carefully22,24,30. In particular spurious changes in connectivity appear if the 

Figure 8: Concurrent EEG/fMRI temporal dynamics during eyes open (EO) versus eyes 

closed (EC)64. fMRI analysis on the left, and EEG data analyzed within identified fMRI 

states for one electrode shown on the right top panel. EEG data reflected considerably 

more theta/delta power during the states occurring more in the EC condition. EEG was 

strongly correlated with the identified fMRI states as show in the panel on bottom right 

showing the distance among EEG and fMRI which reduced as EEG windows were shifted 

in time away from the fMRI states. 

Figure 9: Data showing static FNC pattern estimated by a model incorporating dynamics 

has higher contrast-to-noise than one ignoring dynamics. 
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sliding window length is shorter than the largest period present in the signals24, suggesting 

window lengths of at least 30 seconds for fMRI. The combination of multimodal data (e.g. 

EEG and fMRI) might help mitigate the issue and confirm that the changes are real71. Instead 

of a fixed window, adaptive windowing approaches can also be used23. More importantly, fixed 

windowed approaches perform quite similarly in their mean to adaptive windowing 

approaches23. In addition, the combination of multivariate approaches with windowing appears 

to be more robust to spurious correlations than univariate approaches4. Another choice involved 

is the number of states. This has not yet been evaluated comprehensively, though in multiple 

papers, an evaluation of results with various numbers of states is presented in order to ensure 

that results are not heavily dependent on the final choice (see, e.g. 30). 

Applications 

There have already been numerous uses of time-varying connectivity in fMRI data. In 

this section, we review three interesting applications: first, a study of changes in spatial 

connectivity patterns in schizophrenia, second, an evaluation of the relationship between sleep 

stage and connectivity, and finally, an evaluation of the differences in connectivity states in 

individuals who are either heavy smokers or heavy drinkers. 

Changes in time-varying spatial patterns in schizophrenia patients: It is challenging to 

consider changes over time in both spatial and temporal aspects of connectivity, but spatial 

patterns are also an important aspect of the dynamic information. In an analysis of patients with 

schizophrenia and healthy controls, we use the windowed IVA approach shown in Figure 4 

with 7 windows each of which overlapped by 50% to cover a 200 timepoint resting fMRI data 

set. Thirty components were estimated, 12 of them were determined to be related to brain 

function and not artifact. It is shown, through computation of Markov chain transition 

probabilities between multiple states, that controls show significantly less probability to 

transition between states. This provides a way to summarize changes in the spatial patterns 
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over time. We can also evaluate changes in the dependencies between pairs of spatial networks 

over time. To estimate spatial dependencies we can compute a mutual information matrix for 

each subject and each window. The spatiotemporal dependency dynamics are very interesting 

and some show significant differences between schizophrenia and healthy controls (e.g. 

schizophrenia patients show more coupling between medial prefrontal cortex (brain regions 

thought to mediate cognition) and temporal lobe (regions which process sound and language 

and are known to be disrupted in schizophrenia) network dynamics than controls, Figure 10). 

This is a simple summary measure of only 7 windows but it indicates that spatial dynamics are 

a sensitive measure of disease state. 

 

 

Time-varying connectivity in fMRI maps to EEG defined sleep stages: As evidence of 

the utility of the dynamic patterns, we evaluated resting state fMRI data collected from 55 

subjects for 50 minutes each (1500 volumes, TR=2.08 s) with a Siemens 3T Trio scanner while 

the subjects transitioned from wakefulness to at most sleep stage N3 (details in 72). 

Simultaneous EEG was acquired facilitating sleep staging according to AASM criteria 

resulting in a hypnogram per subject (a vector assignment of consecutive 30s EEG epochs to 

one of awake, N1, N2 and N3 sleep). Following our recent work30, we estimated dFNC between 

components following a group ICA. We then computed the counts of these dFNC windows for 

each hypnogram state. Results show states 1 and 5 map strongly onto the awake and deeper 

sleep stages, respectively (see Figure 11)73. More work is needed, but results strongly support 

the utility of capturing dynamic connectivity. 

 

Figure 10: Schizophrenia patients exhibit significant changes in the spatial dependency 

between default mode and temporal lobe networks. 

Figure 11: Dynamic states 1 and 5 map onto awake and deeper sleep stages. 
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Time-varying connectivity is significantly changed in substance users: A greater 

understanding of individual differences in the neurobiology of substance use is integral to 

developing more effective interventions. A large body of evidence shows aberrant brain 

structure and function in substance users. While some specific regions are implicated (e.g. 

mesocorticolimbic regions) in craving and loss of controls, for the most part, these studies are 

heterogeneous and do not provide the ability to discriminate between substance users and 

controls at the level of the individual. In part we believe this is because the connectivity 

methods have focused on static measures and hence did not fully capture the variability of the 

patterns within the patient groups. In particular, it is clear that 1) large heterogeneity in the 

SUD brain function makes analysis challenging, 2) while certain brain pathways have been 

hypothesized as most affected, all of these disorders encompass multiple interacting brain 

regions. Hence being able to evaluate the dependencies between multiple functional brain 

networks is critical to understand the disorders. dFNC results were computed for smokers and 

drinkers (N=50) and identified significant changes in correlation among multiple brain 

networks.  

In Figure 12, dFNC matrices for two dynamic states showing differences among 

smokers and drinkers are shown. State 1 lacks most of the anticorrelation between default mode 

and other networks (pink boxes), as well as the connectivity within sensorimotor regions. Some 

interesting differences are also apparent when evaluating the dwell time each group spent in 

the dynamic states. For example, smokers and drinkers both spent significantly more of their 

time within state 2. The percent time each group spend in these two states is illustrated in 

Figure 13 and is significantly different between controls, smokers, and drinkers. Neither of 

these interesting results is observable from the static results. The importance of such a result, 

is that the ability of methods that focus on dynamics to separate out information about the 

neurobiology of substance use may teach us more about how the brain is different in nicotine 
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or alcohol use, and importantly this information may provide a more accurate biomarker that 

can be used to predict, e.g. treatment outcomes. 

 

 

 

 

Conclusions 

In summary, time-varying connectivity is a powerful tool for improving our 

understanding of the brain. There are still plenty of avenues of ongoing investigation that 

require creative thinking and the development of advanced signal processing methods to 

improve the estimation performance and the extraction and characterization of meaningful 

information. For example, some specific directions of interest include the development of 

approaches that can capture both static and dynamic connectivity patterns. Also, approaches 

that can capture spatiotemporal patterns of connectivity would be very desirable as it is clear 

that both are changing in systematic and interesting ways. Finally, more studies that map task 

information onto the states will help our understanding of the function of these connectivity 

states74. Finally, there is important need for continued work in characterizing single-states, 

multiple-states, or other summary measures that provide intuitive ways of conveying brain 

connectivity in a way that respects the dynamic nature of the brain. Such approaches should 

inform us about the healthy brain as well as point us to important aspects of disease, especially 

for complex mental illnesses such as schizophrenia and autism spectrum disorder. 

Figure 12: Dynamic FNC ‘states’ that showed significant group differences. In particular, 

smoker and drinker spent more time in State 1 vs State 2 (of 5 estimated states). Notably, 

state 1 lacks the predominant anticorrelation between default mode regions which is visible 

in state 2 suggesting their lack may serve as either a protective factor or as a marker of 

substance use. 

Figure 13: Dwell time (percent) for states 1 and 2. Smoker and drinkers are spending 

significantly (p<0.0001) more time in state one whereas controls are spending more of their 

time in state 2. 
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Figure 1: (a) The Chronnectome concept of studying connectivity at multiple time scales4, 

(b) overview of some of the key steps and options used in computing time-varying 

connectivity measures. 
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Figure 2: Data-driven maps from group ICA provides components that capture information 

about within network (component) connectivity that are characterized by timecourses that can 

be used to assess functional network connectivity (FNC) or among network connectivity 

which can be assessed in the simplest manner by computing the cross-correlation among 

component timecourses 
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Figure 3: FNC dynamics via windowing: single example subject: (A1) average FNC (cross-

correlation of ICA time courses) for a single subject, (A2) FNC time series between select 

components and snapshots of whole-brain FC30. 
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Figure 4: Independent vector analysis approach to characterize spatially dynamic and static 

components4,18,42. Here spatial maps of a component vector are related over the time windows 

but should be distinct from the spatial maps of all other components (whether within or 

outside the current window wi). 
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Figure 5: A) State vectors for the three example subjects. Assigned states are plotted at the 

time point corresponding to the center of the sliding window. (B) The state transition matrix 

(TM), averaged over subjects. High values along the diagonal indicate a high probability of 

staying in a state. Note that transition probability is color-mapped on a log-scale. (C) The 

stationary probability vector (, principal eigenvector of the TM) shows the steady-state, or 

“long-run” behavior. Error bars indicate the non-parametric 95% confidence intervals (CIs) 

obtained from 1000 bootstrap resamples of the average TM (resampling subjects). 
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Figure 6: Bar chart shows relative occurrence frequency of each combo-state. The bottom 

label of each bar is the coded and visual representation of the associated combo-state and the 

top is labeled by the gender that on average occupies that combo-state more along with the 

FDR-adjusted p-values for that comparison (dark blue: M>F and dark red: F>M). On the top 

right corner of the figure, each of the pie chart shows overall occurrence frequency of the 

associated combo-state34. 
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Figure 7: Multiband state with 25% occurrence rate showing the most power in the 0.07 and 

0.13 frequency bands. Phase histogram and color indicate the phase of the dynamics. 
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Figure 8: Concurrent EEG/fMRI temporal dynamics during eyes open (EO) versus eyes 

closed (EC)64. fMRI analysis on the left, and EEG data analyzed within identified fMRI 

states for one electrode shown on the right top panel. EEG data reflected considerably more 

theta/delta power during the states occurring more in the EC condition. EEG was strongly 

correlated with the identified fMRI states as show in the panel on bottom right showing the 

distance among EEG and fMRI which reduced as EEG windows were shifted in time away 

from the fMRI states. 
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Figure 9: Data showing static FNC pattern estimated by a model incorporating dynamics has 

higher contrast-to-noise than one ignoring dynamics. 
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Figure 10: Schizophrenia patients exhibit significant changes in the spatial dependency 

between default mode and temporal lobe networks. 
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Figure 11: Dynamic states 1 and 5 map onto awake and deeper sleep stages. 
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Figure 12: Dynamic FNC ‘states’ that showed significant group differences. In particular, 

smoker and drinker spent more time in State 1 vs State 2 (of 5 estimated states). Notably, 

state 1 lacks the predominant anticorrelation between default mode regions which is visible in 

state 2 suggesting their lack may serve as either a protective factor or as a marker of 

substance use. 
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Figure 13: Dwell time (percent) for states 1 and 2. Smoker and drinkers are spending 

significantly (p<0.0001) more time in state one whereas controls are spending more of their 

time in state 2. 
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