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Abstract

This paper provides a detailed analysis of the asymptotic properties
of a kernel estimator for a Seemingly Unrelated Regression Equations
model with time-varying coefficients (tv-SURE) under very general con-
ditions. Theoretical results together with a simulation study differentiates
the cases for which the estimation of a tv-SURE outperforms the estima-
tion of a Single Regression Equations model with time-varying coefficients
(tv-SRE). The study shows that Zellner’s results cannot be straightfor-
wardly extended to the time-varying case. The tv-SURE is applied to the
Fama and French five-factor model using data from four different interna-
tional markets. Finally, we provide the estimation under cross-restriction
and discuss a testing procedure.
Keywords: Time-varying; Nonparametric; SURE; Five factor model;
Asset pricing.

JEL: C01, C03, C14.

1 Introduction

Systems of multivariate regression equations are very common in the economic
literature. The household consumption problem, Grunfeld’s investment data
problem, asset pricing, portfolio management and monetary policy problems
are all suitable for multi-equation models. In fact, due to the financial global-
ization, strong and complex relationships among different markets have likely
been established which lead to multi-equation specifications of asset/portfolio
returns. For example, recently Ando and Bai (2015) analysed multifactor mod-
els in the presence of a large number of potential observable risk factors and
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unobservable common and group-specific factors, where cross-correlation among
equations is exploited. In summary, asset pricing models can be estimated in a
seemingly unrelated regression equation (SURE) setting, exploiting the advan-
tage from the cross-relation among equation errors.

In general, parameters of a system of equations may be estimated indepen-
dently for each equation as if all equations were self-sufficient. We refer to this
methodology as the Single Regression Equation (SRE, from now on). However,
it is possible to consider that all equations in the system are bound by the
variance-covariance matrix of the errors, the SURE methodology. Although,
under the usual hypotheses of lack of causality and absence of lags, the SRE
and SURE estimators are both consistent, Zellner (1962) shows that the SURE
estimator may have a smaller variance than the SRE estimator, especially when
there is a strong correlation among the errors of each equation and when the
regressors among equations are orthogonal. Moreover, if the regressors are the
same across equations, the SRE and SURE estimators are equivalent under sta-
tionary errors. Thus, there is no gain in estimating the classic CAPM as a SURE
model rather than as a SRE model when the market return is the same for all
equations. However, if the stocks are from different markets or a more complex
model is used such as the Fama and French three-factor or the Fama and French
five-factor models (Fama and French (1993), Fama and French (2015)), where
regressors among equations are different, then the SURE might provide a more
efficient estimator than the SRE, with the lowest variance.

Other examples where a SURE may be advantageous are: 1) international
asset pricing models where instead of global market factors, local or domestic
factors are used as regressors, as in Fama and French (2017); 2) models whose
regressors include firm, industry and/or country macroeconomic variables, as in
Aretz et al. (2010); and 3) models that relate coefficients with state variables
as in Cai et al. (2015).

Additionally, economies and financial markets evolve over time and invest-
ment strategies that worked in the past might not be viable at the present time,
thus models must be flexible to account for these changes. Recently, research in
time-varying coefficients in nonparametric asset pricing models has been popu-
lar lately, see Ang and Kristensen (2012), Ferreira et al. (2011), Esteban et al.
(2015) and Cai et al. (2015) for further details. Time-varying coefficients ac-
count for the variations in the asset/portfolio sensitivity to the risk factors,
along time. On the basis of this, this paper focuses on SURE models with
time-varying coefficients (tv-SURE from now on) and on its comparison with
the time-varying Single Regression Equation (tv-SRE). The objective of our re-
search is to study the conditions in which the tv-SURE is advantageous over the
tv-SRE, and therefore the conditions in which Zellner’s result may be extended
to the time-varying framework.

Methodologically, we propose a kernel smoothing estimator for the above
models, within the family of Orbe et al. (2003, 2005); Cai (2007); Ferreira et al.
(2011); Ang and Kristensen (2012); Phillips et al. (2017) among others. This
approach enables us to relax the usual assumption of stationarity and consider
locally stationary variables as defined in Dahlhaus (1997) and Dahlhaus (2000).
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A different approach has been considered in Henderson et al. (2015), where
a SURE estimation is provided through coefficients depending on some extra
stationary variables, in a similar manner to Cai et al. (2009) and Das (2005).

There are two main differences between the constant coefficients and time-
varying coefficients frameworks. First, nonparametric estimators of the tv-
SURE and tv-SRE are biased and this bias plays an important role in the
asymptotic results. The best estimator between the tv-SURE and the tv-SRE
is the one with the smallest mean square error. In Zellner’s framework instead,
the best estimator between the SURE and SRE is the one with the smallest
variance, as both of them are unbiased. Second, the smoothing parameter or
bandwidth also plays an important role in the choice of the best estimator. Even
if all regressors are equal across equations, the tv-SRE and tv-SURE estimates
might be different when each equation is estimated with a different bandwidth.
An intuitive explanation of this is that, although a tv-SURE model is linear, the
inclusion of time-varying coefficients permits nonlinear relationships between the
regressors and the dependent variable. Recall that any non-linear model may be
approximated by a time-varying coefficients linear model as shown in Granger
(2008).

Therefore, Zellner’s results cannot be straightforwardly extended to the time-
varying coefficients context and a deeper analysis must be done before deciding
to use a tv-SURE over a tv-SRE.

We propose a general tv-SURE estimator, that allows for different degree of
smoothness across equations. The asymptotic results provide consistency and
asymptotic normality, at the usual rates of converge of nonparametric method-
ologies. A careful study of the leading terms shows the role of the bandwidth
in the bias and variance. Thus, the theoretical results and the simulation study
support the selection of a unique bandwidth for all equations in this context.

Empirically, the tv-SURE for asset pricing models uses the information
across markets that, in a globalized world, are likely to be highly correlated.
Moreover, the time varying estimation of the coefficients might benefit dynamic
investment strategies. We apply the estimation procedure to the Fama and
French five-factors specification, Fama and French (2015) and Fama and French
(2017), and a discussion of the results is provided. We have used portfolios for
four different regions, North America, Europe, Asia Pacific and Japan. The es-
timation of the sensitivities over time allows us to make an interpretation of the
betas for different types of portfolios not only through their long-run value as
in Ang and Kristensen (2012), but also according to the stability over time and
the variations over several financial periods. Since the coefficients measure the
sensitivity of portfolio excess returns to risk factors in a certain region, a natural
question is whether or not this sensitivity is equal for all international markets.
With this question in mind, a tv-SURE estimator under cross-restrictions and
a test of these restrictions are proposed and the asymptotic properties derived.

The rest of the paper is structured as follows. Section 2 presents the model
and the estimators proposed, together with the main asymptotic properties.
Section 3 presents a simulation study. Section 4 presents the results for the
Fama and French five-factor application. Section 5 discusses the estimation
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and testing when cross-restrictions are considered and Section 6 concludes. The
proofs of the main results are relegated to the Appendix.

2 Tv-SURE estimation, consistency and asymp-

totic normality

A tv-SURE model is a system of Seemingly Unrelated Regression Equations
with time-varying coefficients, as follows,

ymt = xmt�mt + umt m = 1, . . . ,M t = 1, . . . , T ; (1)

where ymt denotes the t-th observation of the explained variable and the ex-
ogenous variables are xmt = (xm1t, ..., xmpmt). Each equation might have a
different number of exogenous variables, pm. The pm order vector �mt =
(�m1t, ...,�mpmt)

T
is unknown and represents the coefficients at time t of equa-

tionm. The error term umt is a random process such that E(umt) = E(umt|xmt) =
0 and E (umtum0t0) = �tt0�mm0t, where �tt0 = 0 if t 6= t0 and 1 if t = t0.

In summary, the system consists ofM equations with T observations for each
and P =

PM
m=1 pm number of explanatory variables. Stacking all equations in

(1), the compact matrix notation for the tv-SURE is,

Yt = Xt�t + ut m = 1, . . . ,M t = 1, . . . , T ; (2)

where Yt = (y1t . . . yMt)
T , Xt = diag(x1t . . . xMt) and �t =

�
�T
1t, ...,�

T
Mt

�T
is

a vector of order P . The error vector ut = (u1t . . . uMt)
T has zero mean and

covariance matrix E
�
utu

T
t

�
= Σt with elements �mm0t.

The aim of this section is to study the Nadaraya-Watson estimator of the
coefficients (betas) and its properties in a general setting. Neither the errors,
nor the explanatory variables need to be stationary, only locally stationary. The
possibility of a different number of explanatory variables in each equation andM
different bandwidths will be considered. Under this framework, the estimators
in Ang and Kristensen (2012) and Kristensen (2012) consider the estimation
of single regressions or tv-SRE with different bandwidths instead of estimating
the bound system or tv-SURE. Henderson et al. (2015) consider estimating a
system of varying coefficients model for cross-sectional data using a common
bandwidth. On the other hand, when several equations are considered with the
same realized explanatory variables and a common bandwidth, the estimator
becomes the same as in Ferreira et al. (2011). The novelty of this work is the
study of the conditions in which a tv-SURE and a tv-SRE are different and
therefore, the extra computational burden of a tv-SURE is justifiable in favour
of a more efficient estimator.

The proposed Nadaraya-Watson tv-SURE estimator of model (2) at time t
minimizes the following smoothed weighted sum of squared residuals,

b�t ⌘ argmin

TX

s=1

(Ys �Xs�t)
T
K

1/2
H,tsΣ

�1
s K

1/2
H,ts (Ys �Xs�t)
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whereKH,ts = diag(Kh1,ts, ...,KhM ,ts) andKhm,ts = (Thm)�1K((t�s)/(Thm))
is the matrix of weights introducing smoothness according to the vector of band-
widths, H = (h1, . . . , hM )T . Note that this minimization problem accounts for
the time-varying structure of the variance-covariance matrix of the errors, Σt.
The solution is the vector of coefficient estimates at time t below,

b�t =

 
TX

s=1

XT
s K

1/2
H,tsΣ

�1
s K

1/2
H,tsXs

!�1 TX

s=1

XT
s K

1/2
H,tsΣ

�1
s K

1/2
H,tsYs. (3)

The resulting tv-SURE estimator has a closed form that depends on the band-
width vector H and the covariance matrices Σs.
Remark 1. If the components of H are large enough, the nonparametric tv-
SURE estimator in equation (3) becomes the constant parametric estimator
below,

b�t ⌘ b� =

 
TX

s=1

XT
s Σ

�1
s Xs

!�1 TX

s=1

XT
s Σ

�1
s Ys;

which allows for heteroscedasticity and time-varying contemporaneous correla-
tion in the errors. Moreover, if the errors are stationary; that is, Σt = Σ for all
t, the estimator coincides with Zellner’s estimator, see Zellner (1962),

b� =

 
TX

s=1

XT
s Σ

�1Xs

!�1 TX

s=1

XT
s Σ

�1Ys.

Remark 2. If no smoothing over time is done, i.e. KH,ts = I, estimator (3)
looks like,

b�t =
�
XT

t Σ
�1
t Xt

��1
XT

t Σ
�1
t Yt,

Note that the expression above needs the total number of variables in the system,
P , to be smaller than the number of equations, M , to ensure identificability of
the unknown coefficients.
Remark 3. If there is no contemporaneous correlation, i.e Σt is diagonal,
Σt = diag(�2

mt)
M
m=1, then the estimator may be written as,

b�t =

 
TX

s=1

XT
s diag(Khm,ts/�

2
ms)

M
m=1 Xs

!�1 TX

s=1

XT
s diag(Khm,ts/�

2
ms)

M
m=1 Ys.

It is straightforward to check that in this case the beta estimator for each equa-
tion is,

�̂mt =

 
TX

s=1

(Khm,ts/�
2
ms)x

T
msxms

!�1 TX

s=1

(Khm,ts/�
2
ms)x

T
msyms.
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In other words, the estimation problem is equivalent to estimating each equation
independently by time-varying weighted least squares, which is a particular case
of the tv-SURE, the tv-SRE with heteroscedastic errors.

In the general framework, we state the following assumptions and results for
consistency and asymptotic normality of the proposed estimator (3).
Assumption A.1 The coefficients are smooth functions of the rescaled time,
that is, �mit = �mi(t/T ) for m = 1, . . . ,M and i = 1, . . . , pm.
Assumption A.2 The weight functionK(u) is a symmetric second order kernel
with compact support in [�1, 1], Lipschitz continuous and its Fourier transform
is absolutely integrable, such that dk =

R
u2K2(u)du, c4 =

R
K4(u)du and

ck =
R
K2(u)du are bounded.

Assumption A.3 The sequence {Xmt, umt} is strong ↵-mixing with coeffi-
cients ↵(k) of order 6/5, i.e. ↵(k) = O(k�δ), with � > 6/5. All moments up to
order 12 + ✓ exist and they are uniformly bounded, for some positive ✓.
Assumption A.4 The unconditional expectation Gt = E

�
XT

t Σ
�1
t Xt

�
at each

time t is symmetric and strictly positive definite. It can be decomposed as a
smooth function of t/T (at least twice differentiable and uniformly bounded)
and a term of order O(T�1).
Assumption A.5 The error term ut has zero mean and conditional covariance
matrix Ωt = E(utu

T
t |Xt) = E(utu

T
t ), symmetric and positive definite.

Assumption A.6 At each time t, the matrix

Ĝt =
TX

s=1

XT
s K

1/2
H,tsΣ

�1
s K

1/2
H,tsXs (4)

is positive definite and uniformly bounded from above and below.
Assumption A.7 The smoothing vector H is such that, for each m, hm =
O(h1) where h1 = h goes to zero and Th goes to infinity, as the sample size T
goes to infinity.

Assumption A.1 imposes the property of smoothness on the coefficients
over time and when the Nadaraya-Watson estimator is used, it means that
�mi(·) 2 C2[0, 1]. Assumption A.2 is a technical assumption in nonparametric
kernel estimation. Assumptions A.3–A.4 impose the condition of locally sta-
tionarity on the generating distribution process, allowing for time-varying first
and second moments on the explanatory variables. These types of processes
are very useful and they can model nonstationary variables that, contrary to
the unit root context, have a nonexplosive behaviour (see seminal works by
Dahlhaus (1997, 2000)). Assumption A.5 allows for heteroscedasticity and also
for a time-varying contemporary correlation structure, always excluding exploit-
ing patterns. Assumption A.6 is a full rank condition for the identification of the
estimator in order to ensure a unique solution of the optimization minimization
problem. Finally, Assumption A.7 is a standard condition in nonparametric
estimation necessary to prove consistency.
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To satisfy the reasonable property of consistency, we analyse the rate of
convergence of the Mean Average Square Error, MASE, defined as,

MASE
⇣
�̂t

⌘
= MASEt = tr E

⇣
�̂t � �t

⌘⇣
�̂t � �t

⌘T �
, (5)

where tr refers to the trace. We may write the MASEt in terms of bias and
variance as follows,

MASEt = ||Bias(�̂t)||
2
2 + tr V (�̂t).

The next theorem proves the convergence of MASEt to zero as the sample
size T ! 1, which implies the consistency of the tv-SURE estimator.

Theorem 1 Under assumptions A.1–A.7, the asymptotic bias and variance of
the tv-SURE estimator are,

Bias(�̂t) =
dk
2
G�1

t H
2 (Gt�

00
t + 2G0

t�
0
t) + o

�
h2
�

V (�̂t) =
ck
T
H

�1G�1
t + o

✓
1

Th

◆

where �0
t, �

00

t , and G0
t denote the respective derivatives. H = diag(h1Ip1

. . . hMIpM
)

is the matrix conformed by the smoothing parameters, where I
·
is the identity

matrix.

Theorem 1 provides the consistency of the estimator defined in (3). In
addition, it provides the expressions of the bias and variance of the estimator,
showing the crucial role of the bandwidth in both terms and its effect on the
tv-SURE estimator. Note that from Theorem 1, MASE = O(h4 + (Th)�1)
in this general tv-SURE framework, which is the usual order of convergence of
classical time-varying nonparametric estimators, see Cai (2007) among others.
However, there is an extra term containing G0 contributing to the bias of our
estimator in comparison to the time-varying case in Henderson et al. (2015).

There are two main differences from the parametric case that prevent the
immediate generalization of Zellner’s results to this nonparametric framework.
The first difference comes from the bias. Since the nonparametric estimator
is a biased estimator, the minimization of the mean square error is not only
concerned with the minimization of the variance. The second main difference
comes from the multivariate bandwidth whose presence prevents the Gt term
from disappearing from the Bias expression. Therefore, in the general nonpara-
metric framework, the advantages of using tv-SURE over the tv-SRE are not
straightforward.

In the particular setting where the bandwidth is the same for all equations
and the errors and explanatory variables are stationary, the comparison of the
two estimators is similar to the comparison of the parametric estimators. The
next corollary states this result.

7



Corollary 2 Under assumptions in Theorem 1, and in addition to H = hIP ,
Σt ⌘ Σ (i.e. Gt ⌘ G), the bias and variance terms in the MASEt defined in
(5) become,

Bias(�̂t) =
dk
2
h2�00

t + o
�
h2
�

V (�̂t) =
ck
Th

G�1 + o

✓
1

Th

◆

Remark 4. In this particular setting, it is easy to check that for equal regres-
sors in all equations, Xm = Xm0 for m 6= m0, the tv-SURE and the tv-SRE
estimators are the same, as in the parametric case. However, if the estimator
considers different bandwidths for each equation, the equivalence does not hold,
even under stationary errors.

In summary, the tv-SURE estimator has the usual asymptotic nonparametric
convergence rates with an optimal rate of O(T�4/5) for h = O(T�1/5). However,
in finite samples, the selection of one common bandwidth for all equations or
the selection of several bandwidths makes a difference in the bias and variance
values. The advantage of the tv-SURE over the tv-SRE estimator is clear under
a common bandwidth. Surprisingly, this advantage is not obvious when selecting
different bandwidths for each equation. Roughly speaking, when the bandwidths
are different across equations, their interaction with the matrices Gt and G0

t

affect the bias and variance in a cumbersome and not obvious way.
To overcome this drawback, a suboptimal bandwidth may be selected such

that the bias is negligible (always asymptotically) with respect to the variance.
In that case, the normal asymptotic distribution may be derived as stated in
the theorem below.

Theorem 3 Consider the same assumptions as in Theorem 1, and a suboptimal
rate for the bandwidths such that h = o(T�1/5). Then, the pointwise asymptotic
distribution for the tv-SURE estimator of �t is

p
TH1/2

⇣
b�t � �t

⌘
! N

�
0, ckG

�1
t

�

3 A simulation study

Theoretical results in the previous section show that the estimation of the tv-
SRE is only equivalent to the estimation of the tv-SURE for the case of equal
regressors across equations with stationary errors, while using a common band-
width for all equations. Simulation results in this section confirm this finding.
In addition, it is natural to wonder which of the two estimators fares best when
a different bandwidth for each equation is used. There is no clear theoreti-
cal result and, therefore we resort to simulations to shine some light on this
question.
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The simulated model consists of two equations with two variables each as
follows,

y1t =�11,tx11,t + �12,tx12,t + u1t,

y2t =�21,tx21,t + �22,tx22,t + u2t t = 1, . . . , T.

Two different specifications are taken for coefficients, regressors, the variance-
covariance matrix of errors and the sample size. In total, there are 24 different
settings generated in order to support the main results derived from the theory.
Two scenarios are used for the time-varying coefficients depending on the degree
of smoothness of the coefficients. As can be seen in Figure 1, in Scenario 1 (left
plot), the coefficients of both equations have the same smoothness degree; while
in Scenario 2 (right plot), the coefficients of the second equation are less smooth.
The functional forms taken for both scenarios are detailed in Table 1. These
two scenarios help to clarify the effect that coefficients’ shape (first and second
derivatives) have over the estimator bias.

Figure 1: Simulation time-varying coefficients.

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

7

Scenario 1

β
t

β11

β21

β12

β22

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

Scenario 2

β
t

β11

β21

β12

β22

Coefficients for Scenario 1 (left) and Scenario 2 (right). The coefficients β11 and β12 correspond to

the coefficients of the first equation and β21 and β22 to the second equation.

For the regressors, the two extreme cases are considered: orthogonal re-
gressors across equations, x1t?x2t and equal regressors across equations, i.e.
x1t = (x11,t, x12,t) = (x21,t, x22,t) = x2t. Regressors are generated as normal
independent random variables, xi1,t ⇠ IIDN(2, 1) and xi2,t ⇠ IIDN(�3, 1) for
i = 1, 2. Regarding the disturbances, they were simulated from a multivariate
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Table 1: Time-varying coefficients specification and errors deviations.

Scenario 1 Scenario 2
�11t 0.5(t/T )3 + exp

�
�16(t/T )2

�
+ 1 0.5(t/T )3 + exp

�
�16(t/T )2

�
+ 1

�12t (t/T )2 � 0.5(t/T ) + 2 (t/T )2 � 0.5(t/T ) + 2
�21t 2(t/T )3 + 2.5 cos2(4⇡(t/T )) + 2(t/T )3 + 1.75
�22t 3(t/T )3 + 3.25 sin2(4⇡(t/T )) + 3(t/T )3 + 2.5
�1 1.674 1.674
�2 7.813 8.3019

Coefficients (betas) in Scenario 1 have the same smoothness for both equations; while the betas in

the second equation of Scenario 2 are less smooth than the betas in the first equation. The standard

variation is constant for both equations and scenarios. It accounts for about 10% of the variance of

the simulated dependent variable.

normal distribution,

ut = (u1t, u2t)
0 ⇠ N

✓
0,Σt =

✓
0.3 �2

1 0.3 ⇢t�1�2

0.3 ⇢t�1�2 0.3 �2
2

◆◆
.

Errors are generated with a constant variance of about 10% of the variance of the
dependent variables in order to make comparison easier. Thus, the variance of
the error for the second equation is larger (see Table 1), especially in Scenario
2. The errors are contemporaneously correlated. The first case considers a
constant contemporaneous correlation ⇢t ⌘ ⇢ = 0.9, i.e. stationary errors. The
second case considers a decreasing time-varying contemporaneous correlation,
⇢t = exp(�0.5(t/T )2)�0.2, that ranges from 0.8 to 0.4. These two cases permit
the study of the effect of the correlation not only on the variance but also on
the bias of the estimator. Let us recall that the bias term contains the first
derivative of the variance-covariance matrix.

Two sample sizes are used, T = 200, 500, and the number of replications is
R = 1000. The performance comparison between the tv-SRE and the tv-SURE
estimation is done using the mean of the relative bias squared and the mean of
the relative variance, defined as follows,

MRBias2(�̂ij) = MRBias2ij =
1

T

TX

t=1

(
1

R

RX

r=1

�̂
(r)
ij,t

�ij,t
� 1

)2

MRV ar(�̂ij) = MRV arij =
1

T

TX

t=1

8
<
:

1

R

RX

r=1

 
�̂
(r)
ij,t

�ij,t

!2

�
 

1

R

RX

r=1

�̂
(r)
ij,t

�ij,t

!2
9
=
;

where �̂
(r)
ij,t is the estimate of �ij,t obtained in the rth replication.

For the tv-SRE, one bandwidth is selected for each equation independently
by minimising the one-leave-out cross-validation function,

CV (ĥi) =
1

T

TX

t=1

(yit � xit�̂it,(�t))
2 (6)
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for equations i = 1, 2, . . . ,m. Term �̂it,(�t) is the estimator of �it with band-
width hi without using tth datum (xit, yit).

For the tv-SURE estimator a multivariate cross-validation function is mini-
mized to selected the bandwidths,

CV (h̃1, . . . , h̃m) =
1

T

TX

t=1

(Yt �Xt�̂t,(�t))
2. (7)

It is also possible to choose a common bandwidth for all equations. In our
simulation study, the common bandwidth for the tv-SRE, denoted by ĥ, is cho-
sen as the mean of ĥ1, . . . , ĥm for simplicity. Similarly, the common bandwidth
for the tv-SURE, h̃ is chosen as the mean value of h̃1, . . . , h̃m.

Until now, it was assumed that the errors variance-covariance matrix was
known. However, it is commonly estimated in practice, resulting in the Feasible
tv-SURE estimator. This estimator consists of two steps, in the first Σt is
estimated and plugged into the tv-SURE in the second step.

1. Estimate Σt based on the residuals of the tv-SRE. If Σt is known to be
constant, the sample covariance matrix is a consistent estimator of it. If
Σt changes over time, a nonparametric estimator such as in Aslanidis and
Casas (2013) is a consistent alternative.

2. Estimate the coefficients of the tv-SURE by plugging Σ̂t into (3).

3.1 Results

Table 2 presents the simulation results for orthogonal regressors, constant error
variance and possibly time-varying contemporaneous correlation. Results are
organized by blocks of two columns and four rows where element (i, j) with i, j =
1, 2 corresponds to the MRBias2ij and elements in squared brackets correspond
to the MRV arij . Panel A shows the results for the constant contemporaneous
correlation cases with ⇢ = 0.9 for all cases. Panel B shows the results for a
time-varying contemporaneous correlation where ⇢t = exp(�0.5(t/T )2) � 0.2.
Both panels consider two scenarios for the time-varying coefficients, first with
similar smoothness and second with different smoothness in the coefficients, as
described in Table 1 and Figure 1. The tv-SRE and tv-SURE are compared for
different bandwidth selections and sizes T = 200, 500.

As expected from Theorem 1, there are some general results that always
hold. First, all estimation errors decrease as the sample size increases, as a
consequence of consistency. Second, the MRBias221 and MRBias222 are always
larger in Scenario 2 than in Scenario 1. This is reasonable because, as we have
seen, the estimator bias term depends on the second derivative of �t which
is larger for the second equation coefficients in Scenario 2 than in Scenario 1.
Third, the tv-SURE estimates have smaller mean relative variances than the tv-
SRE for all comparable cases: 1) for a common bandwidth ĥ and 2) for the same

pair of bandwidths (ĥ1, ĥ2). Therefore, in the orthogonal stationary regressors
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Table 2: Mean relative bias squared and mean relative variance under cross-
orthogonal regressors.

Panel A: Constant contemporaneous correlation (ρ = 0.9)

tv-SRE (ĥ) tv-SURE (ĥ) tv-SRE (ĥ1, ĥ2) tv-SURE (ĥ1, ĥ2) tv-SURE (h̃) tv-SURE (h̃1, h̃2)

Scenario 1: Coefficients with similar smoothness.
T=200 1.101 0.102 1.073 0.081 0.417 0.042 0.344 0.083 0.791 0.062 0.182 0.054

0.498 0.434 0.544 0.410 0.645 0.666 0.497 0.922 0.542 0.370 0.484 0.854
[1.328] [0.239] [0.280] [0.060] [1.812] [0.317] [0.388] [0.085] [0.324] [0.069] [0.493] [0.102]
[6.307] [1.623] [1.162] [0.412] [5.371] [1.368] [2.272] [0.726] [1.291] [0.454] [2.823] [0.863]

T=500 0.261 0.025 0.281 0.022 0.099 0.013 0.097 0.027 0.516 0.033 0.114 0.043
0.109 0.131 0.125 0.124 0.207 0.240 0.135 0.323 0.189 0.187 0.324 0.708
[0.653] [0.119] [0.136] [0.029] [0.843] [0.153] [0.178] [0.039] [0.136] [0.028] [0.190] [0.040]
[2.938] [0.849] [0.593] [0.206] [2.423] [0.701] [1.076] [0.372] [0.559] [0.195] [1.085] [0.369]

Scenario 2: Coefficients with different smoothness.
T=200 1.171 0.120 1.169 0.099 0.664 0.076 0.533 0.136 0.617 0.069 0.186 0.101

3.131 1.715 4.438 1.872 3.815 2.132 4.227 2.824 3.947 1.535 1.706 3.005
[1.005] [0.205] [0.206] [0.055] [1.248] [0.250] [0.266] [0.075] [0.284] [0.072] [0.408] [0.106]
[7.528] [1.714] [1.502] [0.446] [6.136] [1.439] [2.650] [0.745] [2.020] [0.582] [3.872] [1.054]

T=500 0.469 0.029 0.491 0.027 0.177 0.014 0.136 0.073 1.676 0.116 0.746 0.154
2.727 1.545 2.728 1.507 2.264 1.223 1.564 1.024 2.570 1.593 2.821 2.827
[0.601] [0.121] [0.123] [0.033] [0.825] [0.163] [0.171] [0.047] [0.089] [0.021] [0.123] [0.032]
[4.720] [1.240] [0.960] [0.281] [3.901] [1.006] [1.805] [0.521] [0.619] [0.188] [1.246] [0.360]
Panel B: Time-varying contemporaneous correlation (ρt = exp(�0.5(t/T )2) � 0.2)

tv-SRE (ĥ) tv-SURE (ĥ) tv-SRE (ĥ1, ĥ2) tv-SURE (ĥ1, ĥ2) tv-SURE (h̃) tv-SURE (h̃1, h̃2)

Scenario 1: Coefficients with similar smoothness.

T=200

1.234 0.104 1.148 0.074 1.778 0.157 1.896 0.181 0.372 0.029 0.555 0.044
0.562 0.448 0.510 0.445 0.481 0.326 0.422 0.507 0.380 0.217 0.293 0.228
[4.002] [0.662] [0.917] [0.181] [3.440] [0.576] [1.329] [0.265] [1.300] [0.252] [1.755] [0.343]
[1.719] [0.454] [0.404] [0.134] [2.015] [0.536] [0.476] [0.175] [0.533] [0.185] [0.595] [0.227]

T=500

0.261 0.028 0.290 0.021 0.268 0.028 0.300 0.022 0.094 0.013 0.063 0.023
0.095 0.120 0.092 0.112 0.095 0.119 0.090 0.114 0.064 0.062 0.058 0.091
[1.765] [0.306] [0.403] [0.084] [1.759] [0.304] [0.411] [0.087] [0.595] [0.125] [0.690] [0.155]
[1.047] [0.305] [0.229] [0.079] [1.050] [0.307] [0.231] [0.082] [0.329] [0.118] [0.449] [0.166]

Scenario 2: Coefficients with different smoothness.

T=200

1.213 0.141 1.174 0.169 1.073 0.128 0.917 0.309 0.519 0.140 0.794 0.253
3.090 1.702 3.195 1.767 3.277 1.778 3.417 2.194 3.848 1.588 3.804 1.388
[3.462] [0.627] [0.760] [0.193] [3.655] [0.660] [0.827] [0.221] [1.088] [0.266] [1.846] [0.428]
[1.967] [0.461] [0.493] [0.146] [1.853] [0.438] [0.532] [0.165] [0.737] [0.218] [0.974] [0.303]

T=500

0.654 0.038 0.686 0.056 0.587 0.034 0.585 0.117 0.387 0.043 1.141 0.070
2.561 1.377 2.562 1.341 2.464 1.313 1.973 1.071 2.859 1.623 1.076 0.617
[1.514] [0.289] [0.323] [0.083] [1.575] [0.299] [0.345] [0.095] [0.407] [0.104] [0.926] [0.190]
[1.223] [0.333] [0.289] [0.091] [1.204] [0.328] [0.332] [0.108] [0.367] [0.127] [0.760] [0.227]

This table presents the results, in a matricial form (equation i, coefficient j), for the MRBias2ij and
the corresponding MRV arij in square brackets. The regressors across equations are orthogonal and
the errors are homoscedastic, but with different specifications for the contemporaneous correlation:
constant correlation of 0.9 in Panel A and time-varying correlation in Panel B. Inside each panel
results are presented accounting for both scenarios: equal and different degrees of smoothness in
the coefficients. tv-SRE indicates that the regression equations are estimated separately whereas
tv-SURE means that they are estimated as a system of equations bound by the variance-covariance
matrix that takes into account their contemporaneous correlation. Bandwidths are selected in dif-

ferent ways: ĥ1 and ĥ2 are selected by cross validation of the tv-SRE, for each equation independent

with ĥ their mean. Bandwidths h̃1 and h̃2 are selected by cross validation of the tv-SURE and h̃ is
their mean. Two sample sizes are simulated T=200, 500 with R = 1000 replications.
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setting, with a constant error variance, possibly with time-varying contempo-
raneous correlation and equal bandwidths, the tv-SURE is more efficient than
the tv-SRE.

The bandwidths in the tv-SRE(ĥ1, ĥ2) are chosen by minimizing (6) for each

equation i independently. Since the bandwidth used in the tv-SRE(ĥ) is the

average between ĥ1 and ĥ2, ĥ will undersmooth one of the equations, reducing
its estimation bias and increasing its variance; while it will oversmooth the
other equation resulting in a bias increase and a variance reduction. However,
this behaviour does not hold for the pairs [tv-SURE(ĥ), tv-SURE(ĥ1, ĥ2)], [tv-

SURE(h̃), tv-SURE(h̃1, h̃2)] and [tv-SURE(ĥ1, ĥ2), tv-SURE(h̃1, h̃2)]. This is
due to the influence of the contemporaneous correlation in the estimation of the
tv-SURE.

For the variance, we see that it is always larger for the tv-SRE(ĥ1, ĥ2) than

for the tv-SURE(ĥ1, ĥ2) and the tv-SURE (h̃1, h̃2). Also, when comparing

methodologies with a common bandwidth for all equations, the tv-SURE(ĥ) and

the tv-SURE(h̃) have smaller variances than the tv-SRE(ĥ). In other words, for
different types of bandwidth selection and orthogonal regressors, Zellner is also
satisfied in the time-varying coefficients context. Regarding the bias, we see that
there are no clear results, paritcularly when we use two different bandwidths.

In general, when it comes to comparing the results for the tv-SURE using
either h̃, the average of the two optimal bandwidths of the tv-SURE, or ĥ, there
are no large differences. On the other hand, the general performance seems to
provide more stable results when using a common bandwidth, as expected from
the theoretical results.

Table 3 presents the simulation results for the equal regressors across equa-
tions case in both equations and it is organized exactly as Table 2. The main
result from this experiment is that the tv-SRE(ĥ) and tv-SURE (ĥ) are exactly
equal, as in Zellner: for equal regressors, a common bandwidth and station-
ary errors, the tv-SRE and tv-SURE are identical. As indicated in Remark 4.,
there is no gain in estimating the equations jointly in this case, not even in
the presence of high or time-varying contemporaneous correlation. When dif-
ferent bandwidths are used, we could find different results. However, the use of
different bandwidths for each equation gives no advantage to the tv-SURE.

Table 4 presents the simulation results for the Feasible tv-SURE which es-
timates the errors variance-covariance matrix in the first step to plug it in the
tv-SURE in the second step. All cases use the common bandwidth ĥ, so values
of the MRBias and MRV ar in this table must be compared with results of the
tv-SURE(ĥ) in Tables 2-3. The errors variance-covariance matrix is estimated
nonparametrically with bandwidth selection made by cross-validation. The first
two blocks consider constant contemporaneous correlation and others considers
the time-varying contemporaneous correlation.

Table 4 also features results of the orthogonal and equal regressors cases and
the two scenarios and sample sizes considered before. The comparison of the
results in Table 4 and the corresponding results of the tv-SURE(h̃) in Table 2
and Table 3, allows the effect of estimating the errors matrix to be analysed.
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Table 3: Mean relative bias squared and mean relative variance under equal
regressors.

Panel A: Constant contemporaneous correlation (ρ = 0.9)

tv-SRE (ĥ) tv-SURE (ĥ) tv-SRE (ĥ1, ĥ2) tv-SURE (ĥ1, ĥ2) tv-SURE (h̃) tv-SURE (h̃1, h̃2)

Scenario 1: Coefficients with similar smoothness.
T=200 0.811 0.085 0.811 0.085 0.247 0.043 0.615 0.303 0.438 0.060 0.316 0.194

0.395 0.394 0.395 0.394 0.541 0.669 1.240 1.636 0.317 0.271 0.815 1.012
[1.221] [0.228] [1.221] [0.228] [1.796] [0.330] [1.535] [0.292] [1.520] [0.281] [1.803] [0.34]
[5.417] [1.451] [5.417] [1.451] [4.317] [1.174] [6.244] [1.709] [6.688] [1.801] [6.696] [1.821]

T=500 0.465 0.043 0.465 0.043 0.137 0.017 0.419 0.177 1.244 0.091 0.962 0.330
0.210 0.199 0.210 0.199 0.406 0.391 0.879 0.911 0.469 0.463 1.602 1.883
[0.534] [0.114] [0.534] [0.114] [0.771] [0.163] [0.677] [0.147] [0.428] [0.091] [0.570] [0.122]
[2.568] [0.763] [2.568] [0.763] [2.036] [0.613] [3.024] [0.914] [2.002] [0.611] [2.521] [0.783]

Scenario 2: Coefficients with different smoothness.
T=200 1.344 0.103 1.344 0.103 0.733 0.058 1.116 0.337 1.746 0.135 1.416 0.393

3.005 1.769 3.005 1.769 4.025 2.462 5.590 4.082 3.645 2.195 6.504 4.793
[1.260] [0.235] [1.260] [0.235] [1.655] [0.305] [1.623] [0.302] [1.147] [0.212] [1.544] [0.284]
[8.993] [2.145] [8.993] [2.145] [7.258] [1.767] [10.78] [2.637] [8.060] [1.948] [10.371] [2.548]

T=500 0.574 0.065 0.574 0.065 0.111 0.022 0.395 0.189 1.601 0.123 0.900 0.386
2.418 1.390 2.418 1.390 2.733 1.622 2.840 1.987 2.878 1.707 4.743 4.192
[0.505] [0.108] [0.505] [0.108] [0.794] [0.170] [0.622] [0.134] [0.415] [0.088] [0.537] [0.112]
[3.568] [0.945] [3.568] [0.945] [2.699] [0.734] [3.711] [1.042] [2.811] [0.770] [3.095] [0.883]
Panel B: Time-varying contemporaneous correlation (ρt = exp(�0.5(t/T )2) � 0.2)

tv-SRE (ĥ) tv-SURE (ĥ) tv-SRE (ĥ1, ĥ2) tv-SURE (ĥ1, ĥ2) tv-SURE (h̃) tv-SURE (h̃1, h̃2)

Scenario 1: Coefficients with similar smoothness.
T=200 0.851 0.095 0.851 0.095 0.959 0.101 1.917 0.162 1.246 0.118 2.824 0.224

0.392 0.407 0.392 0.407 0.374 0.375 0.743 0.449 0.447 0.512 1.005 0.572
[3.433] [0.608] [3.433] [0.608] [3.315] [0.589] [4.702] [0.823] [3.087] [0.552] [4.252] [0.756]
[1.843] [0.481] [1.843] [0.481] [1.917] [0.500] [2.463] [0.637] [1.664] [0.441] [2.340] [0.604]

T=500 0.205 0.021 0.205 0.021 0.228 0.023 0.439 0.042 1.442 0.097 2.51 0.859
0.118 0.101 0.118 0.101 0.108 0.092 0.255 0.120 0.507 0.518 1.172 1.341
[2.026] [0.396] [2.026] [0.396] [1.971] [0.385] [2.686] [0.528] [1.219] [0.239] [1.805] [0.339]
[1.100] [0.334] [1.100] [0.334] [1.136] [0.345] [1.452] [0.437] [0.629] [0.204] [0.804] [0.256]

Scenario 2: Coefficients with different smoothness.
T=200 1.528 0.114 1.528 0.114 1.759 0.133 3.309 0.252 1.261 0.094 4.038 0.307

3.257 1.947 3.257 1.947 2.796 1.678 3.222 1.960 2.788 1.672 4.063 1.873
[2.683] [0.450] [2.683] [0.450] [2.545] [0.426] [3.955] [0.703] [2.954] [0.495] [4.150] [0.727]
[2.103] [0.496] [2.103] [0.496] [2.306] [0.544] [3.588] [0.840] [2.366] [0.561] [3.935] [0.921]

T=500 0.485 0.058 0.485 0.058 0.313 0.045 2.191 0.749 0.714 0.072 3.065 0.202
2.477 1.396 2.477 1.396 2.258 1.367 1.714 1.366 2.241 1.357 6.374 1.642
[1.368] [0.270] [1.368] [0.270] [1.522] [0.300] [2.049] [0.383] [1.325] [0.260] [1.852] [0.369]
[0.914] [0.242] [0.914] [0.242] [0.826] [0.221] [1.191] [0.321] [0.887] [0.245] [1.469] [0.390]

This table presents the results, in a matricial form (equation i, coefficient j), for the MRBias2ij
and the corresponding MRV arij in square brackets. The regressors across equations are equal and
the errors are homoscedastic, but with different specifications for the contemporaneous correlation:
constant correlation of 0.9 in Panel A and time-varying correlation in Panel B. Inside each panel
results are presented accounting for both scenarios: equal and different degrees of smoothness in
the coefficients. tv-SRE indicates that the regression equations are estimated separately whereas
tv-SURE means that they are estimated as a system of equations bound by the variance-covariance
matrix that takes into account their contemporaneous correlation. Bandwidths are selected in dif-

ferent ways: ĥ1 and ĥ2 are selected by cross validation of the tv-SRE, for each equation independent

with ĥ their mean. Bandwidths h̃1 and h̃2 are selected by cross validation of the tv-SURE and h̃ is
their mean. Two sample sizes are simulated T=200, 500 with R = 1000 replications.
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Table 4: Mean relative bias squared and mean relative variance for the Feasible
tv-SURE estimator.

Constant correlation. Time-varying correlation.
Orthogonal reg. Equal reg. Orthogonal reg. Equal reg.

Scenario 1: Coefficients with similar smoothness.
T=200 1.074 0.083 0.811 0.085 1.140 0.073 0.851 0.095

0.528 0.412 0.395 0.394 0.515 0.447 0.392 0.407
[0.284] [0.061] [1.221] [0.228] [0.914] [0.181] [3.433] [0.608]
[1.208] [0.424] [5.417] [1.451] [0.398] [0.133] [1.843] [0.481]

T=500
0.280 0.022 0.465 0.043 0.289 0.021 0.205 0.021
0.124 0.123 0.210 0.199 0.091 0.113 0.118 0.101
[0.136] [0.029] [0.534] [0.114] [0.404] [0.084] [2.026] [0.396]
[0.597] [0.208] [2.568] [0.763] [0.228] [0.078] [1.100] [0.334]

Scenario 2: Coefficients with different smoothness.
T=200 1.166 0.105 1.344 0.103 1.176 0.159 1.528 0.114

4.267 1.886 3.005 1.769 3.211 1.754 3.257 1.947
[0.209] [0.057] [1.260] [0.235] [0.833] [0.205] [2.683] [0.450]
[1.541] [0.461] [8.993] [2.145] [0.479] [0.149] [2.103] [0.496]

T=500 0.708 0.054 0.574 0.065 0.672 0.046 0.485 0.058
2.625 1.288 2.418 1.390 2.526 1.343 2.477 1.396
[0.099] [0.027] [0.505] [0.108] [0.361] [0.092] [1.368] [0.270]
[0.650] [0.212] [3.568] [0.945] [0.292] [0.090] [0.914] [0.242]

This table presents the results, in a matricial form (equation i, coefficient j), for the MRBias2ij
and the corresponding MRV arij in square brackets. Errors are homoscedastic but present different
specifications for the contemporaneous correlation which in the left block column is assumed to
be constant and time-varying for the right one. Inside each block column results are presented
according to the cases of orthogonal and equal regressors differentiated by subcolumns and also to
both scenarios, equal and different smoothness degree for the coefficients. The feasible tv-SURE
estimator is used with a common bandwidth h. Elements of the variance and covariance matrix
of the errors are estimated by smoothing residuals and using cross validation for the bandwidths
involved. For each context two samples are used T=200, 500 and R = 1000 replications.

Apart from a higher bias and variance error criteria due to the higher level
of uncertainty, it can be noted that the performance of the Feasible tv-SURE
estimator is very similar the performance of the tv-SURE.

We see that the estimation of a (Feasible) tv-SURE model is systematically
more efficient than the estimation of a tv-SRE, except for the unique case of
equal regressors, for which there is no gain. In summary, we can say that the
tv-SURE outperforms the tv-SRE when a common bandwidth is used and the
regressors are clearly different across equations. For other cases, we recommend
the use of the tv-SRE.

4 Empirical application: Time-varying five-factor

model

This section is concerned with the application of the tv-SURE to asset pric-
ing in an international framework. Recently, several studies have argued that
the three-factor model by Fama and French (1993) does not explain the whole
variation in average returns. Thus, Novy-Marx (2013) show that there is a differ-
ence in expected returns for high profitability companies in comparison to weak
profitability companies, while Aharoni et al. (2013) show that companies with
higher capital investment also have higher expected returns. To improve the
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expected returns forecast, Fama and French (2015) added two new factors that
measure the differences in profitability (robust and weak) and investment (con-
servative and aggressive), creating their five-factor model (FF5F). Later Fama
and French (2017) use the FF5F to analyse the international market mainly in
its local version, that is, returns are intend to be explained by the factors of the
same geographical zone. The model is as follows,

Rit �RFit =ai + bi (RMit �RFit) + si SMBit + hi HMLit + ri RMWit+

ci CMAit + ✏it i = 1, ..., N t = 1, ...T, (8)

where Rit is the return of the asset of certain portfolio for region/market i at
time t, RF is the risk free return rate and RM represents the return of the
market portfolio. The rest of factors are calculated as differences between the
returns on diversified portfolios of small and big stocks for SMB, high and low
book-to-market stocks for HML, robust and weak operating profitability for
RMW and stocks that have low and high investment capabilities due to their
conservative or aggressive characteristic respectively for CMA. Finally ✏ is the
error term, N the number of international markets and T the sample size.

Theoretically, if model (8) captures the whole variation in excess returns, the
intercept ai should be zero for all i. Nonetheless Fama and French (2017) show
empirically that the FF5F model still fails to account for the full variation of the
excess returns since the estimation provides intercepts statistically significant.
In particular, the average excess returns of small stocks and low profitability
firms that invest aggressively are not totally explained.

Here, we propose the time-varying FF5F, an extension of Fama and French
(2015) and Fama and French (2017) with coefficients, variances and contempo-
raneous correlations possibly varying over time. The objective is to evaluate
how the sensitivities of expected returns to each risk factor evolve over time.
In addition, the use of cross markets information in the tv-SURE might result
in a better adjustment of the confidence intervals. The time-varying five-factor
model is specified as follows,

Rit �RFit =ait + bit (RMit �RFit) + sit SMBit + hit HMLit + rit RMWit+

cit CMAit + ✏it i = 1, . . . , N t = 1, . . . , T. (9)

where

E(✏it✏js) =

8
<
:

�iit = �2
it i = j, t = s

�ijt i 6= j, t = s
0 t 6= s

The data set contains the five factors from four different international mar-
kets: North America (NA) with the US and Canada; Japan (JP); Europe (EU)
consisting of Austria, Belgium, Denmark, Finland, France, Germany Greece,
Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland,
and the United Kingdom; and Asia Pacific (AP) with Australia, New Zealand,
Hong Kong, and Singapore (excluding Japan). For the dependent variable, we
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have selected the excess returns of portfolios formed on size and book-to-market,
obtained from the Kenneth R. French data library. The period runs from July
1990 to August 2016 and it has a monthly frequency. We have focussed only on
the following four portfolios: Small/Low, Small/High, Big/Low and Big/High.

A time-varying estimator of the sensitivities will provide the evolution of
the sensitivities to the risk factors along time. Moreover, since the risk factors
are different across markets the tv-SURE will take advantage of the possible
remaining correlation between errors. Moreover, the procedure will allows us to
obtain restricted estimators to test certain restrictions, as will be discussed in
the next section.

The time-varying coefficients estimates for the four portfolios are shown in
Figures 2 to 7 for the European market. The European market is used as an
example to show the possibilities for dynamic investment strategies of a time
varying model like (9). Figures for the rest of the markets are not included to
avoid a very long article, although there are available from the authors upon
request. The cross-restrictions among markets is studied in Section 5.

In the whole estimation process, the variance-covariance matrix has been
estimated nonparametrically, as in the simulation study of the feasible tv-SURE.
The respective bandwidths have always been selected using cross-validation.
The 95% pointwise confidence intervals have been calculated using bootstrap,
equivalent to the algorithm in Chen et al. (2017).

Figure 2 presents the estimated time-varying intercepts and their 95% point-
wise bootstrap confidence interval of the European market portfolios. Results
are for the portfolios Small/Low (top left), Small/High (top right), Big/Low
(bottom left) and Big/High (bottom right). It may be observed that the inter-
cept for the Big/Low portfolio is different from zero during the whole sample
period, meaning that the five factors do not explain the total variation in ex-
pected returns. For the portfolios Small/Low (top left) and Big/High (bottom
right) the dynamics of the intercept evolve in a very similar way, approaching
zero in the last two decades. Therefore, it seems that the time-varying FF5F
is explaining the variation in expected returns in the European market better
during the present century.

Figure 3 shows the estimates of coefficients bt in the European market. They
account for the sensitivity to the market risk of each portfolio at time t. It may
be observed that all marginal effects have positive confidence intervals, close to
one. The relation between the expected returns and the market expected returns
seems to be constant for the Big/Low portfolio. On the other hand, there seems
to be a negative correlation between the sensitivities in portfolio Small/High
and portfolios Small/Low and Big/High. The former’s partial effect decreases
at the end of the nineties and slightly increases after the Global Financial Crisis
(GFC), while the coefficient does the opposite in the latter two portfolios.

Figure 4 shows the estimates of the sensitivities to the SMB risk factor in
the European market. This accounts for the spread in returns of small com-
panies over big companies. Clearly, small capitalization firms outperform big
capitalization firms. As expected, the effect of size in portfolios with small cap-
italization stocks have a positive significant effect on the excess returns. On
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Figure 2: Time-varying estimates of at from the time-varying five-factor model
in the European market.
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Time-varying pointwise estimates for the intercepts are in continuous lines and the bands rep-

resent the bootstrap 95% pointwise confidence interval corresponding to portfolios Small/Low

(top left), Small/High (top right), Big/Low (bottom left) and Big/High (bottom right). Re-

sults are only shown for the European market, although the rest are available from the authors

upon request.

the contrary, the effect is significantly negative in portfolios of big capitaliza-
tion firms. Here, all coefficients are fairly constant, with the Big/Low being the
most stable over time.

Figure 5 shows the estimates of the sensitivities to the book-to-market ratio
(HML) that aims to identify undervalued or overvalued companies. As expected,
portfolios with high book-to-market companies have a significant positive effect
on excess returns while companies with a low book-to-market ratio have a sig-
nificant negative effect. Again, the coefficients in the Big/Low portfolio seem to
be constant for the European market. The sensitivities in the other portfolios
vary over time. In particular, their values have increased slightly after the GFC.

Since Novy-Marx (2013) showed evidence of profitability premium, investors
have taken this element into account when trading stocks. Profitable firms tend
to be growth firms which increase in value very quickly. Figure 6 shows the
time varying effects of the RMW factor for the four European portfolios. Esti-
mated coefficients in the Big/Low portfolio are constant and positive, meaning
that companies with robust profitability perform better than the average. For
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Figure 3: Time-varying estimates of bt from the time-varying five-factor model
in the European market.
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Time-varying pointwise estimates for the coefficients of the excess market return are in con-

tinuous lines and the bands represent the bootstrap 95% pointwise confidence interval corre-

sponding to portfolios Small/Low (top left), Small/High (top right), Big/Low (bottom left)

and Big/High (bottom right). Results are only shown for the European market, although the

rest are available from the authors upon request.

the Small/High portfolio the effect is negative at the beginning of the sample,
rising to around zero to later take a drop just before the GFC and steadily
increasing during the last decade. This means that robust profitability compa-
nies of Small/High portfolios have recently been good investments in Europe.
Conversely, profitable companies in Small/Low and Big/High portfolios have
followed the opposite path over time. Meaning that weak profitability compa-
nies of these two portfolios are performing better than the average.

Finally, Figure 7 shows the effect of the investment factor (CMA). The ques-
tion is whether it makes sense to hold an asset of a company that has announced
great investments in, for example, a new project. This of course depends on
other factors such as its size and book-to-market ratio. The effect of CMA
in Big/Low stocks expected returns are borderline over zero, while stocks in
Small/Low and Big/High portfolios with high investments do result in expected
returns under the average with very large variances during the last decade.
Only expected returns in the Small/High portfolio have benefited from great
investments during the period of 1995-2005.
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Figure 4: Time-varying estimates of st from the time-varying five-factor model
in the European market.
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ŝ
t

1990 1995 2000 2005 2010 2015

0
.0

0
.5

1
.0

Big/Low

ŝ
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Time-varying pointwise estimates for the coefficients of SMB are in continuous lines and the

bands represent the bootstrap 95% pointwise confidence interval corresponding to portfolios

Small/Low (top left), Small/High (top right), Big/Low (bottom left) and Big/High (bottom

right). Results are only shown for the European market, although the rest are available from

the authors upon request.

In summary, the use of a tv-SURE in portfolio management provides two
new insights with respect to the constant estimators. On the one hand, the tv-
SURE allows the use of the information contained in the correlation structure
between the different international markets. On the other hand, it provides a
description of the dynamics of each risk factor sensitivity during the sample
period. As a general result, we observe that our results are coherent with the
results obtained in Fama and French (2017). Their estimates are around the
mean of our time varying estimates. This mean might be interpreted as the long-
run effect, as defined in Ang and Kristensen (2012). In addition, the tv-SURE
gives more detailed information, we see that the expected returns sensitivities
to the risk factors are very stable for the Big/Low portfolio in the European
market, while they change with time for the other three portfolios. This makes
the returns of the Big/Low portfolios the most predictable. Moreover, we see
a very similar pattern (in terms of variability over time) for Small/Low and
Big/High coefficients. Therefore, some effects are still constant, but other effects
change over time and the tv-SURE is able to perceive these dynamics. Although
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Figure 5: Time-varying estimates of ht from the time-varying five-factor model
in the European market.
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Time-varying pointwise estimates for the coefficients of HML are in continuous lines and the

bands represent the bootstrap 95% pointwise confidence interval corresponding to portfolios

Small/Low (top left), Small/High (top right), Big/Low (bottom left) and Big/High (bottom

right). Results are only shown for the European market, although the rest are available from

the authors upon request.

a long term investment might not be affected by the choice of a time-varying
model, short-term strategies will definitely benefit from a more precise estimate
at each period of time.

5 Estimation and testing under cross-linear re-

strictions

In the empirical analysis, we have estimated the sensitivities of each portfolio
expected returns to the risk factors for the European market. A natural question
is to check whether these sensitivities are the same across regions. For instance,
we might ask if the effect of excess market returns are the same for European
and North American Small/Low portfolios. One of the main aspects of the tv-
SURE is the possibility of performing estimations with cross-restrictions due to
its nature. The estimation procedure considers a set of general linear restrictions
given by,
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Figure 6: Time-varying estimates of rit from the time-varying five-factor model
in the European market.

1990 1995 2000 2005 2010 2015

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

Small/Low

r̂
t

1990 1995 2000 2005 2010 2015

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

Small/High

r̂
t

1990 1995 2000 2005 2010 2015

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

Big/Low

r̂
t

1990 1995 2000 2005 2010 2015

−
0
.6

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

Big/High

r̂
t

Time-varying pointwise estimates for the coefficients of RMW are in continuous lines and

the bands represent the bootstrap 95% pointwise confidence interval (CI) corresponding to

portfolios Small/Low (top left), Small/High (top right), Big/Low (bottom left) and Big/High

(bottom right). Results are only shown for the European market, although the rest are

available from the authors upon request.

Rt�t = rt t = 1, 2, . . . , T (10)

where Rt is the (q ⇥ P ) matrix accounting for the linear relations between the
betas, rt is a q order vector and q < P is the number of restrictions considered.
Note that we are allowing for cross-restrictions to vary over time.

The restricted tv-SURE estimator minimizes

min

TX

s=1

(Ys �Xs�t)
T
K

1/2
H,tsΣ

�1
s K

1/2
H,ts (Ys �Xs�t)

s.t. Rt�t = rt. (11)

The Lagrangian function associated with this constrained optimization prob-
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Figure 7: Time-varying estimates of cit from the time-varying five-factor model
in the European market.
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Time-varying pointwise estimates for the coefficient of CMA are in continuous lines and

the bands represent the bootstrap 95% pointwise confidence interval (CI) corresponding to

portfolios Small/Low (top left), Small/High (top right), Big/Low (bottom left) and Big/High

(bottom right). Results are only shown for the European market, although the rest are

available from the authors upon request.

lem is defined, in matrix notation, as,

SR(�t,�t) =

TX

s=1

(Ys �Xs�t)
T
K

1/2
H,tsΣ

�1
s K

1/2
H,ts (Ys �Xs�t) + 2�T

t (Rt�t � rt) (12)

where �t is a (q⇥1) vector that contains the Lagrange multipliers. Let us denote

by �̂R
t and b�R

t the solution to the constrained optimization problem

(�̂R
t ,
b�R
t ) ⌘ argminβt,λt

SR(�t,�t). (13)

A closed expression for the vector containing the coefficient estimators will be
obtained from the first order conditions in (13) as

�̂R
t =�̂t � Ĝ�1

t RT
t

h
RtĜ

�1
t RT

t

i�1

(Rt�̂t � rt) (14)

where �̂t is the unconstrained tv-SURE estimator derived in (3), that is, the one
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obtained when no restrictions are imposed (i.e. �t = 0), and Ĝt is the matrix
in Assumption A.6.

The estimator for the time-varying Lagrange multiplier is also derived from
the first order conditions,

�̂t =
⇥
RtMtR

T
t

⇤�1
(Rt�̂t � rt) (15)

which measures the cost of imposing non-true restrictions. Thus, its value in-
creases in the same direction as the difference Rt�̂t � rt. The sufficient condi-
tions for a unique solution of the optimization problem in (13) are guaranteed
by assumptions A.1, A.5 and A.6. Nevertheless, in the restricted tv-SURE,
assumption A.6 may be substituted by Assumption A.6’ below.
Assumption A.6’ At each time t, matrix

Ĝt +RT
t Rt (16)

is positive definite and uniformly bounded from above and below.
The main asymptotic results of the restricted tv-SURE are the following

stated.

Theorem 4 Under assumptions A.1–A.7, the asymptotic bias and variance for
the restricted estimator are

Bias(�̂R
t ) =

dk
2
(I �QtRt)G

�1
t HGt (�

00
t + 2G0

t�
0
t)+

Qt(rt �RtQ�t) + o
�
h2
�

(17)

and

V (�̂R
t ) =

ck
T
(I �QtRt)(HGt)

�1(I �QtRt)
T +O((Th)�1) (18)

where Qt = G�1
t RT

t

�
RtG

�1
t RT

t

��1

The estimator is not consistent when the restriction does not hold, since
the bias remains as a nonzero constant, even for large T . The next corollary
provides the differences in bias and variance between the tv-SURE and the
restricted tv-SURE.

Corollary 5 Given the assumptions in Theorem 4,

Bias(�̂t)�Bias(�̂R
t ) =

dk
2
QtRtG

�1
t H

✓
@2�t

@t@t
Gt + 2(G0

t)
@�t

@t

◆

if and only if the restriction is fulfilled, Rt�t = rt. For the variances,

V (�̂t)� V (�̂R
t ) =

ck
T

⇥
(HGt)

�1 � (I �QtRt)(HGt)
�1(I �QtRt)

T
⇤
,
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Remark 6 There is no clear advantage in employing the restricted estimator
when using different bandwidths for each equation. The gain of the restricted
tv-SURE over the unrestricted tv-SURE is only comparable for a common band-
width. Similarly to the comparison of the tv-SRE and the tv-SURE which was
only possible for a common bandwidth. The following corollary summarizes this
result.

Corollary 7 Given the assumptions in Theorem 4, and if a common h is used,

V (�̂t)� V (�̂R
t ) =

ck
Th

⇥
G�1

t � (I �QtRt)(HGt)
�1(I �QtRt)

T
⇤
,

is a positive semidefinite matrix.

5.1 Testing

In general, restrictions may be justified by a theoretical model and/or the need
to test it. For instance, it may be of interest to analyse the statistical equality
of the sensitivities related to a given risk factor across different regions. The
confidence intervals in Figure 8 show that it is not always clear when betas for
two different regions are equal for the whole sample period. To account for the
whole curve of betas, we propose the Kolmogorv-Smirnov-type test developed
in Ferreira and Gil-Bazo (2004).

Assume, without loss of generality, a system of two equations and two re-
gressors per equation,

y1t =�11tx11t + �12tx12t + u1t, V ar(u1t) = �2
1t

y2t =�21tx21t + �22tx22t + u2t.

Consider testing for the restriction with null hypothesis H0 : �11t = �21t,
for all t versus the alternative hypothesis Ha : �11t > �21t for some t. This is
equivalent to Ha : �11t = �21t + ↵t, with ↵t > 0 for some t.

Under the null (�11t = �21t) and assuming that the coefficients are known,

the distribution of the partial sums of length n defined as Sn(s) =
p
T

�1PTs
t=1{y1t�

�21tx11t � �12tx12t} =
p
T

�1PTs
t=1{u1t} is known. In the previous formula, T

is the length of the our series and s 2 [0, 1] is a fraction of it. Using Donsker’s
theorem in Billingsley (1968), Sn(s) ⇠D B(V (s)) where B is a Brownian motion
with variance V (s) =

R s

0
�2
1(u)du. Kolmogorov-Smirnov type statistics for the

–greater than– and –two sided– alternatives are defined as,

KS1 = max
0s1

Sn(s) ⇠D

p
V (1) max

0v1
B(v), (19)

KS2 = max
0s1

|Sn(s)| ⇠D

p
V (1) max

0v1
|B(v)| (20)
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Figure 8: Time-varying five-factor model estimates for different markets and
risk factors.
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This figure shows a representation of some evolutions analysed for different coefficients in dif-

ferent regions. Time-varying pointwise estimates for the coefficients of RMW corresponding to

portfolios Small/Low compare the North American and Japanese markets (top left), HML for

Small/High portfolios in the Japanese and European markets (top right), CMA for Big/Low

Asia in the Pacific and European markets (bottom left), and SMB corresponding to Big/High

portfolios of the North American and European markets (bottom right). The bands represent

the bootstrap 95% pointwise confidence interval.

respectively. The asymptotic distributions of the first statistic is known. Pro-
vided by the reflection principle of Wiener processes,

P

 
1p
V (1)

max
0v1

B(v) > 1

!
= 2P

 
1p
V (1)

B(1) > 1

!
= 2P (Z > 1)

for Z a standard normal random variable. The distribution of KS2 can be easily
tabulated.

Since the time-varying coefficients are unknown, the distribution of esti-

mated partial sums Ŝn(s) =
p
T

�1PTs
t=1{û1t} is distorted from the true distri-

bution of Sn(s). To overcome this caveat, as in Ferreira and Gil-Bazo (2004), a
uniformly subsample from the û1t is drawn to calculate Ŝn(s).

Table 5 shows the p-values of the described test when applied to pairs of be-
tas from the application in Section 4. The null hypothesis is H0 : �ji,t = �jm,t 8t
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and the alternative hypothesis is Ha : �ij,t 6= �im,t, where j refers to the risk
factor, i 6= m refers to the region and t is time. Only p-values below 0.05
are shown. The first thing to notice is that differences between regions occur
mainly for portfolios Small/Low and Big/High. Often, the sensitivities from the
Japanese market are statistically different to those from the Asia Pacific and
European markets. In addition, for the Big/High portfolio the North America
market is different from the other three. Figure 8 presents the evolution of sev-
eral coefficients with the 95% confidence interval and provides a way to compare
the coefficients graphically.

The formal KS test may answer the question of whether there is any period
in which two markets behave differently. A further study of the power of the
test to be a better support for investment decisions will be relegated to further
research.

Table 5: Results of a two sided KS-type test. The p-values of the test are
displayed in brackets.

Small/Low Smal/High Big/Low Big/High
RM-RF JP 6= AP (0.03) NA 6= JP (0.03)

JP 6= EU (0.02) NA 6= AP (0.03)
JP 6= AP (0.05)

SMB JP 6= AP (0.006) JP 6= AP (0.02) JP 6= AP (0.02) NA 6= AP (0.01)
JP 6= EU (0.03) NA 6= EU (0.05)

JP 6= AP (0.008)
HML JP 6= AP (0.03) NA 6= AP (0.02)

JP 6= EU (0.02) JP 6= AP (0.008)
JP 6= EU (0.03)

RMW NA 6= AP (0.01) NA 6= JP (0.002)
NA 6= AP (0.006)
NA 6= EU (0.004)

CMA NA 6= JP (0.05) JP 6= AP (0.03) JP 6= AP (0.03) NA 6= AP (0.004)
NA 6= AP (0.05) AP 6= EU (0.03) AP 6= EU (0.02) JP 6= AP (0.03)
JP 6= AP (0.03) JP 6= EU (0.03)
JP 6= EU (0.03)

Results from testing pairwise betas from different markets and equal factors.

6 Conclusion

We have proposed a nonparametric estimator to account for time-varying co-
efficients in a Seemingly Unrelated Regression Equations model (tv-SURE es-
timator). We have proved that, in general, Zellner’s results can be extended
to this framework when using a common bandwidth for all equations. At first
glance, this might be a shocking result, since the selection of one bandwidth
for each equation provides more flexibility in the estimation procedure. How-
ever, the theoretical and the simulation studies show how a multiple selection
leads to worse results. Roughly speaking, the use of one different bandwidth for
each equation seems to distort the way in which the tv-SURE estimator binds
the whole system of equations. The asymptotic results show the role of the
bandwidth and where the gain in variance comes from. The simulation study
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supports the advantage of using a tv-SURE over a tv-SRE when the covariates
are not closely related and there is correlation among the errors.

We have applied this methodology to the five factors model considered in
Fama and French (2015) and Fama and French (2017) with portfolio data from
four international markets: North America, Europe, Asia Pacific and Japan.
The results describe the dynamics of the excess returns sensitivity to each risk
factor across different portfolios and markets. Generally speaking, portfolios
classified as Big/High and Small/Low show the greatest changes over time and
portfolio, while Big/Low portfolios seem to have the more stable sensitivities to
the risk factors.

Finally, the tv-SURE provides the possibility to estimate models with linear
cross-restrictions, as well as their testing. As general results, we find that 1) the
returns in the North American market respond to changes in the five risk factors
very differently to returns in the other markets, when investing in Big/High
portfolios; 2) the Japanese returns respond differently than the Asia Pacific
and European returns to all risk factors, except for the RMW, when investing
in Small/Low portfolios; and 3) not many differences have been found among
markets on the other two portfolios, Small/High and Big/Low.
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APPENDIX

Proof of Theorem 1
This theorem is a generalization of Theorem 1 in Ferreira et al. (2011). The

main differences lie in: 1) the data matrix Xs which in this proof is a diagonal
matrix of the matrices of each equation; and 2) the smoothing parameter H,
which is a diagonal matrix (one value for each equation). The rest of the vari-
ables and parameters have the same structure so we just reproduce the main
different steps.

We need the following lemma.

Lemma 8

TX
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XT
s K

1/2
H,tsΣ

�1
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1/2
H,tsXs �! (a.s.) Gt
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�1
s KH,tsXs �! (a.s.) cKGt

Recall KH,ts = diag(Kh1,ts . . .KhM ,ts), where Khm,ts = h�1
m K( t�s

Thm
).

First, the error committed in the estimation is given by the following ex-
pression,

b�t � �t =
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To overcome the issue of having a random denominator, we redefine the bias

and variance expressions substituting Wt = G�1
t

PT
s=1 X

T
s K

1/2
H,tsΣ

�1
s K

1/2
H,tsXs.

Hence, the redefined bias is Bias⇤(b�t) = Bias(Wt
b�t). For technical reasons, we

use different bandwidths for W ⇤
t and for b�t, say h⇤ and h respectively, such that

the following condition holds,

E k W ⇤
t � I k2

E k b�t � �t k2
= o(1), (21)

as T goes to infinity. This condition establishes that W ⇤
t goes to the identity

at a faster rate than the mean squared error goes to zero. The proof continues
using G�1

t instead of the random denominator.
i) The Bias
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Bias⇤(b�t) = G�1
t
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1/2
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since E(XT
s K

1/2
H,tsΣ

�1
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1/2
H,tsus|Xs) = 0.

Consider the P ⇥ 1 order vector

Zt =
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1/2
H,tsΣ
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1/2
H,tsXs)(�s � �t) (25)

Define �ijt as the generic term of Γt = E(XT
s Xs), �ijt a generic term of Σt

and �
ij
t for Σ�1

t .

We can write X⇤
Mt = K

1/2
H,tsXMt

2
6664
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(�Ms � �Mt)

3
75 .

Note that the kernel matrix weight KH(t � s) is block diagonal, the matrix
containing the moments of the explanatory variables is a kind of weighted cross
matrix of variables corresponding to different equations and the final vector
stacks subvectors containing the coefficients of different equations. Given the
mentioned structure it is easy to obtain that the ith element of equation m is
given by,
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From (22) and taking into account (26)
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Using the Taylor expansion with t � s = Thm⌘m, and writing �mi,m0j,t =
E(XmitXm0jt),
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Thus,
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and � denotes the Hadamard product.
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and the result follows.
ii) Variance
The variance term is given by
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and using the redefined variance term, V ar⇤(b�t) = V ar(W ⇤
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b�t), it follows
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As proved in Ferreira et al. (2011), the leading term is
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and following similar arguments as there,
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given results from Lemma 6.1.
Thus taking into account expression (27), the asymptotic variance is given

by,
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Proof of Theorem 3
Consider the sequence of variables Zt defined as

Zt =
TX

s=1

XT
s K

1/2
H,tsΣ

�1
s K

1/2
H,tsus

Theorem 2.4 in White and Domowitz (1984) applies and, since the bias is
negligible with respect to the variance, the result is straightforward.

Proof of Theorem 4
Note that b�R

t can be written as (I�Q̂tRt)�̂t�Q̂trt, where Q̂t = Ĝ�1
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Then, we can write b�R
t = (I�Q̂tRt)�̂t�Q̂trt, and the result follows straight-

forward from Theorem 1.

36



Research Papers 
2017 

 
 

 

 

 

2017-16: Davide Delle Monache, Stefano Grassi and Paolo Santucci de Magistris: Does 
the ARFIMA really shift? 

2017-17: Massimo Franchi and Søren Johansen: Improved inference on cointegrating 
vectors in the presence of a near unit root using adjusted quantiles 

2017-18: Matias D. Cattaneo, Michael Jansson and Kenichi Nagasawa: Bootstrap-Based 
Inference for Cube Root Consistent Estimators 

2017-19: Daniel Borup and Martin Thyrsgaard: Statistical tests for equal predictive 
ability across multiple forecasting methods 

2017-20: Tommaso Proietti and Alessandro Giovannelli: A Durbin-Levinson Regularized 
Estimator of High Dimensional Autocovariance Matrices 

2017-21: Jeroen V.K. Rombouts, Lars Stentoft and Francesco Violante: Variance swap 
payoffs, risk premia and extreme market conditions 

2017-22: Jakob Guldbæk Mikkelsen: Testing for time-varying loadings in dynamic 
factor models 

2017-23: Roman Frydman, Søren Johansen, Anders Rahbek and Morten Nyboe Tabor: 
The Qualitative Expectations Hypothesis: Model Ambiguity, Concistent 
Representations of Market Forecasts, and Sentiment 

2017-24: Giorgio Mirone: Inference from the futures: ranking the noise cancelling 
accuracy of realized measures 

2017-25: Massimiliano Caporin, Gisle J. Natvik, Francesco Ravazzolo and Paolo 
Santucci de Magistris: The Bank-Sovereign Nexus: Evidence from a non-
Bailout Episode 

2017-26: Mikkel Bennedsen, Asger Lunde and Mikko S. Pakkanen: Decoupling the short- 
and long-term behavior of stochastic volatility 

2017-27: Martin M. Andreasen, Jens H.E. Christensen and Simon Riddell: The TIPS 
Liquidity Premium 

2017-28: Annastiina Silvennoinen and Timo Teräsvirta: Consistency and asymptotic 
normality of maximum likelihood estimators of a multiplicative time-varying 
smooth transition correlation GARCH model 

2017-29: Cristina Amado, Annastiina Silvennoinen and Timo Teräsvirta: Modelling and 
forecasting WIG20 daily returns 

2017-30: Kim Christensen, Ulrich Hounyo  and Mark Podolskij: Is the diurnal pattern 
sufficient to explain the intraday variation in volatility? A nonparametric 
assessment 

2017-31: Martin M. Andreasen, Jens H.E. Christensen and Glenn D. Rudebusch: Term 
Structure Analysis with Big Data 

2017-32: Timo Teräsvirta: Nonlinear models in macroeconometrics 

2017-33: Isabel Casas, Eva Ferreira and Susan Orbe: Time-varying coefficient 
estimation in SURE models. Application to portfolio management 

 


