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Abstract
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asymptotic distribution is derived. The limiting law is a chi-square.
We apply our test to the purchasing power parity hypothesis of in-
ternational prices and nominal exchange rates, and find evidence of
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1 Introduction

The literature growth on cointegration has been impressive, especially since
Engel and Granger’s (1987) and Johansen’s (1988) seminal papers. In their
standard approach, it is assumed that the cointegrating vector(s) do not
change over time. As in the structural break literature, the assumption of
fixed cointegrating vector(s) is quite restrictive.
Researchers became concerned with the effects that structural changes

may have on econometric models. Previous literature on structural change
and cointegration has focused on developing procedures to detect breaks or
to estimate the temporal location of eventual shifts. Papers addressing these
issues in a single-equation framework include Hansen (1992); Quintos and
Phillips (1993); Hao (1996); Andrews et al. (1996); Bai et al. (1998); and
Kuo (1998), among others (see also Maddala and Kim 1998 for a general sur-
vey). In the context of a system of equations, which is the focus of our analy-
sis, the main contributions are those by Seo (1998), which extended the tests
of Hansen (1992). Hansen and Johansen (1999) and Quintos (1997) propose
fluctuation tests (based on recursive sequences of eigenvalues and cointegrat-
ing vectors) for parameter constancy in cointegrated VAR’s, but they do not
parameterize the shifts. Regarding time-varying ECM’s, Hansen (2003) gen-
eralizes reduced-rank methods to cointegration under sudden regime shifts
with a known number of break points. Andrade et al. (2005) study a similar
model to Hansen (2003) and develop tests on the cointegration rank and on
the cointegration space under known and unknown break dates. Structural
breaks are also the concern of Lütkepohl et al. (2003); Inoue (1999); and
Johansen et al. (2000), who analyze the effects of breaks in the deterministic
trend.
Unlike previous studies, we explicitly model the changes in the long run

component of a time varying vector error-correction model and discuss its
estimation by maximum likelihood. In order to allow for more flexibility in
the specification of this long-run economic relationship, we must take into
account the possibility that the cointegration vectors may be unknown vector-
valued functions of time. Because we are dealing with long-term concepts
such as equilibrium and cointegration, we argue that the cointegration vector
may be subject to a smooth and gradual change over time instead of a sudden
jump (as in Hansen 2003). In this context, structural change is associated
with smooth time variations of the cointegrating vector.
A cointegrating regression, in the spirit of Engle and Granger (1987), with
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parameters that vary with time was proposed by Park and Hahn (1999). The
cointegration vector is modeled as a smooth function and semi-nonparametric-
ally parameterized by a Fourier expansion. Based on this model, they derive
the asymptotic properties of the estimator and of several residual-based spec-
ification test statistics. This type of approach is also related to recent papers
that specify the long run relationship to be non-linear, such as threshold coin-
tegration of Blake and Fomby (1997) and hidden cointegration of Granger and
Yoon (2002). In Blake and Fomby, the equilibrium error follows a thresh-
old autoregression that is mean-reverting outside a given range and has a
unit root inside the range. In Granger and Yoon, there are hitherto unno-
ticed cointegrating relationships among integrated variables. Moreover, De
Jong (2001) extends Engle and Granger’s approach by specifying a nonlinear
model in the second step; Harris et al. (2002) present the idea of stochastic
cointegration in which some or all of the variables are heteroskedastistically
integrated; and Juhl and Xiao (2005) propose a semiparametric ECM (par-
tially linear) in which the nonparametric term is a function of stationary
covariates.
Also, the Markov-switching approach of Hall et al. (1997), and the

smooth transition model of Saikkonen and Choi (2004) provide an inter-
esting way of modeling shifts in the cointegration vector. The first authors
considering sudden shifts between two states, while the latter authors per-
mits a gradual shift between regimes. Lütkepohl et al. (1999) and Terasvirta
and Eliasson (2001) propose money demand functions modeled by single-
equation ECM’s in which a smooth transition stationary term is added. The
transition function is driven by one of the processes of the long-run relation-
ship. Our approach offers more flexibility, in the sense that the cointegrating
relationship is not confined to regimes and is allowed to take different values
at each point in time.
We explicitly model the changes in the long run relationship. The ECM is

specified with a cointegrating vector indexed by time and we approximate this
vector by a linear combination of orthogonal Chebyshev time polynomials so
that the resulting ECM only has time invariant coefficients. This way, we
can apply the usual ML technique and define a LR statistic that tests for
standard cointegration. This test is a simple hypothesis test on parameters
of our model. We show that its limiting law is a chi-square. The novelty
of our approach is that the limiting random variables are blocks of weighted
Wiener processes where the weights are trigonometric functions on the [0, 1]
support.
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The remainder of the paper is organized as follows. In Section 2 we intro-
duce the time varying ECM using Chebyshev time polynomials. In Section 3
we propose a likelihood ratio test to distinguishes Johansen’s standard coin-
tegration from our time-varying alternative, for the case without drift, and
show that the asymptotic null distribution is chi-square. In Section 4 the
asymptotic power of the test is derived analytically and via Monte Carlo
simulations. In Section 5 we show that our results carry over to the drift
case. In Section 6 we illustrate the merits of our approach by testing for TV
cointegration of international prices and nominal exchange rates. In Section
7 we make concluding remarks. The proofs of the lemmas and theorems
can be found in either the appendix at the end, or in the separate appendix
Bierens and Martins (2009).

As to some notations, ”⇒” denotes weak convergence, ” d→” denotes con-
vergence in distribution, and 1 (.) is the indicator function.

2 Definitions and Representations

For the k× 1 vector time series Yt we assume that for some t there are fixed
r < k linearly independent columns of the time-varying (TV) k × r matrix
βt = (β1t,β2t, ..., βrt). The columns form the basis of the time-varying space
of cointegrating vectors, Sct = span(β1t, β2t, ...,βrt) ⊂ Rk, t = 1, 2, ... . In this
context, the cointegration space ”wiggles” over time according to a certain
law. The remaining k−r orthogonal vectors, expressed in the k×(k − r) ma-
trix βt⊥, are such that β

0

t⊥Yt−1 does not represent a cointegrating relationship.
The matrices βt will be modeled using Chebyshev time polynomials.

2.1 Time Varying VECM Representation

Consider the time-varying VECM(p) with Gaussian errors, without inter-
cepts and time trends,

4Yt = Π
0

tYt−1 +
p−1X

j=1

Γj 4 Yt−j + εt, t = 1, ..., T, (1)

where Yt ∈ Rk, εt ∼ i.i.d. Nk [0,Ω] and T is the number of observations. Our
objective is to test the null hypothesis of time-invariant (TI) cointegration,
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Π
0

t = Π
0

= αβ
0

, rank
¡
Π
0

t

¢
= r < k, where α and β are fixed k × r matrices,

against time varying (TV) cointegration of the type

Π
0

t = αβ
0

t,

with rank
¡
Π
0

t

¢
= r < k for t = 1, ..., T, under the maintained hypothesis that

the cointegration rank is r < k, where α is a fixed k×r matrix, but now the
βt’s are time-varying k × r matrices of cointegrating vectors. In both cases
Ω and the Γj’s are fixed k × k matrices.
Admittedly, this form of TV cointegration is quite restrictive, as only

the βt’s are assumed to be time dependent. A more general form of TV
cointegration is the case Yt = CtZt, where Ct is a sequence of nonsingular
k × k matrices and Zt ∈ Rk is a time-invariant cointegrated I(1) process
with a VECM(p) representation. Then Yt has a VECM(p) representation,
but where all the parameters are functions of t.

2.2 Chebyshev Time Polynomials

Chebyshev time polynomials Pi,T (t) are defined by

P0,T (t) = 1, Pi,T (t) =
√
2 cos (iπ (t− 0.5) /T ) , (2)

t = 1, 2, ..., T, i = 1, 2, 3, ...

See for example Hamming (1973). Bierens (1997) used them in his unit root
test against nonlinear trend stationarity. Chebyshev time polynomials are
orthonormal, in the sense that for all integers i, j, 1

T

PT
t=1 Pi,T (t)Pj,T (t) =

1(i = j). Due to this orthonormality property, any function g (t) of discrete
time, t = 1, ..., T can be represented by

g (t) =
T−1X

i=0

ξi,TPi,T (t) , where ξi,T =
1

T

TX

t=1

g (t)Pi,T (t) . (3)

In the expression (3), g (t) is decomposed linearly in components ξi,TPi,T (t)
of decreasing smoothness, as illustrated Figure 1, where we present the plots
of cos [iπ (t− 0.5) /T ] , T = 100, for i = 1, 3, 5. Therefore, if g (t) is smooth
(to be made more precise in Lemma 1 below), it can be approximated quite
well by

gm,T (t) =
mX

i=0

ξi,TPi,T (t) (4)
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for some fixed natural number m < T − 1.
In the following lemma we set forth conditions such that for real valued

functions g (t) ,

lim
T→∞

1

T

TX

t=1

(g (t)− gm,T (t))2 → 0 for m→∞, (5)

and we determine the rate of convergence involved.

Figure 1. Thin (i = 1) ; medium (i = 3) ; thick (i = 5) .

Lemma 1. Let g (t) = ϕ (t/T ) , where ϕ (x) is continuous function on [0, 1].1

Then (5) holds. Moreover, if ϕ(x) is q ≥ 2 times differentiable, where q is
even, with ϕ(q)(x) = dqϕ(x)/ (dx)q satisfying

R 1
0

¡
ϕ(q)(x)

¢2
dx <∞, then for

m ≥ 1,

lim
T→∞

1

T

TX

t=1

(g (t)− gm,T (t))2 ≤
R 1
0

¡
ϕ(q)(x)

¢2
dx

π2q (m+ 1)2q
, (6)

1Therefore, β(x) is uniformly continuous on [0, 1].
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Proof : Appendix
Consequently, we may without loss of generality write βt for t = 1, ..., T as

βt =
PT−1

i=0 ξi,TPi,T (t) , where the Pi,T (t)’s are Chebyshev time polynomials

and ξi,T =
1
T

PT
t=1 βtPi,T (t) , i = 0, ..., T − 1, are unknown k × r matrices.

Then the null hypothesis of TI cointegration corresponds to ξi,T = Ok×r
for i = 1, ..., T − 1, and the alternative of TV cointegration corresponds to
limT→∞ ξi,T 6= Ok×r for some i ≥ 1. To make the latter operational, we will
confine our analysis to TV alternatives for which limT→∞ ξi,T 6= Ok×r for
some i = 1, ...,m, and ξi,T = Ok×r for all i > m, where m is chosen in
advance. Effectively this means that under the alternative βt is specified as

βt = βm (t/T ) =
mX

i=0

ξi,TPi,T (t) (7)

for some fixed m. Because low-order Chebyshev polynomials are rather
smooth functions of t, we allow βt to change gradually over time under the
alternative of TV cointegration, contrary to Hansen’s (2003) sudden change
assumption.
Assuming that the elements of βm(x) are square-integrable on [0, 1] we

have for x ∈ [0, 1],

βm(x) = lim
T→∞

β[xT ] = ξ0 +
mX

i=1

ξi
√
2 cos (iπx)

where ξ0 =
R 1
0
βm (x) dx, ξi =

R 1
0

√
2 cos (iπx) βm (x) dx for i ≥ 1. More gen-

erally, βm(x) can be interpreted as an approximation of a square-integrable
vector or matrix valued function β(x) on [0, 1] of the type

β(x) = ξ0 +
∞X

i=1

ξi
√
2 cos (iπx)

where ξ0 =
R 1
0
β (x) dx, ξi =

R 1
0

√
2 cos (iπx) β (x) dx for i ≥ 1. However,

we will not use this interpretation. We will derive our results under the
assumption that (7) holds exactly.
This specification of the matrix of time varying cointegrating vectors is

related to the approach of Park and Hahn (1999). They consider a time
varying cointegrating relationship of the form

Zt = α0tXt + Ut
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where Zt ∈ R, Xt is a k-variate I(1) process and Ut is a stationary process.
Thus, with Yt = (Zt,X

0
t)
0 and and βt = (1,−α0t)0, β 0tYt = Ut is stationary.

Park and Hahn (1999) assume that the elements of αt are of the form ϕ (t/T ) ,
where ϕ (x) has a Fourier flexible functional form. In particular,

lim
m→∞

Z 1

0

(ϕ (x)− ϕm (x))
2 dx = 0 (8)

where

ϕm (x) = ϕ+
mX

i=1

ςi
√
2 cos (2iπx) +

mX

j=1

ηj
√
2 sin (2jπx) , (9)

with Fourier coefficients

ϕ =

Z 1

0

ϕ (x) dx, ςi =

Z 1

0

ϕ (x)
√
2 cos (2iπx) dx,

ηj =

Z 1

0

ϕ (x)
√
2 sin (2jπx) dx.

Moreover, they assume that ϕ (x) is q ≥ 1 times differentiable, with uniformly
bounded q-th derivative, sup0≤x≤1

¯̄
ϕ(q)(x)

¯̄
<∞.

As is well-known,2 the functions
√
2 cos (2iπx) ,

√
2 sin (2jπx) for i, j =

1, 2, 3, ..., together with the constant 1, form a complete orthonormal se-
quence in the Hilbert space L2[0, 1] of square-integrable real functions on
[0, 1]. However, the functions

√
2 cos (iπx) for i = 1, 2, 3, .... together with

the constant 1 also form a complete orthonormal sequence in L2[0, 1], so that
for any function ϕ (x) ∈ L2[0, 1],

lim
m→∞

Z 1

0

(ϕ (x)− ϕm (x))
2 dx = 0, (10)

where

ϕm (x) = ξ0 +
mX

j=1

ξj
√
2 cos (jπx) (11)

with Fourier coefficients ξ0 =
R 1
0
ϕ (x) dx, ξi =

R 1
0
ϕ (x)

√
2 cos (iπx) dx, i =

1, 2, 3, ... See the proof of Lemma 1 in the Appendix.

2See for example Young (1988).
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On the other hand, Park and Hahn (1999) allow m to converge to infinity
with T , whereas we only consider the fixed m case. The latter does not
matter under the null hypothesis of time invariant cointegration, but it may
affect the power of our test. This power issue will be addressed in section 4.3
via a Monte Carlo analysis.

2.3 Modeling TV Cointegration via Chebyshev Time
Polynomials

Substituting Π
0

t = αβ 0t = α (
Pm

i=0 ξiPi,T (t))
0

in (1) yields

4Yt = α

Ã
mX

i=0

ξiPi,T (t)

!0

Yt−1 +
p−1X

j=1

Γj 4 Yt−j + εt

for some k × r matrices ξi, which can be written more conveniently as

4Yt = αξ
0

Y
(m)
t−1 + ΓXt + εt, (12)

where ξ
0

=
¡
ξ
0

0, ξ
0

1, ..., ξ
0

m

¢
is an r× (m+1)k matrix of rank r, Y

(m)
t−1 is defined

by
Y
(m)
t−1 =

¡
Y 0t−1, P1,T (t)Y

0
t−1, P2,T (t)Y

0
t−1, ..., Pm,T (t)Y

0
t−1
¢0

(13)

and

Xt =
³
4Y

0

t−1, ...,4Y
0

t−p+1

´0
. (14)

The null hypothesis of TI cointegration corresponds to ξ
0

= (β0, Or,k.m) ,

where β is the k×r matrix of TI cointegrating vectors, so that then ξ
0

Y
(m)
t−1 =

β0Y
(0)
t−1, with

Y (0)t−1 = Yt−1. (15)

This suggests to test the null hypothesis via a likelihood ratio test LRtvc =

−2
h
blT (r, 0)− blT (r,m)

i
, where blT (r, 0) is the log-likelihood of the VECM(p)

(12) in the casem = 0, so that Y
(m)
t−1 = Yt−1, and blT (r,m) is the log-likelihood

of the VECM(p) (12) in the case where Y
(m)
t−1 is given by (13), where in both

cases r is the cointegration rank.
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3 Testing TI Cointegration Against TVCoin-

tegration

3.1 ML Estimation and the LR Test

Similar to Johansen (1988), the log-likelihood blT (r,m) , given r and m takes
the form

blT (r,m) = −0.5T.
rX

j=1

ln
³
1− bλm,j

´
− 0.5T. ln (det (S00,T ))

plus a constant, where 1 > bλm,1 ≥ bλm,2 ≥ ... ≥ bλm,r ≥ ... ≥ bλm,(m+1)k are the
ordered solutions of the generalized eigenvalue problem

det
h
λS

(m)
11,T − S

(m)
10,TS

−1
00,TS

(m)
01,T

i
= 0 (16)

with

S00,T =
1

T

TX

t=1

4Yt4 Y
0

t (17)

−
Ã
1

T

TX

t=1

4YtX
0

t

!Ã
1

T

TX

t=1

XtX
0

t

!−1Ã
1

T

TX

t=1

Xt4 Y
0

t

!
,

S(m)11,T =
1

T

TX

t=1

Y (m)t−1 Y
(m)0

t−1 (18)

−
Ã
1

T

TX

t=1

Y
(m)
t−1 X

0

t

!Ã
1

T

TX

t=1

XtX
0

t

!−1Ã
1

T

TX

t=1

XtY
(m)0

t−1

!
,

S
(m)
01,T =

1

T

TX

t=1

4YtY
(m)0

t−1 (19)

−
Ã
1

T

TX

t=1

4YtX
0

t

!Ã
1

T

TX

t=1

XtX
0

t

!−1Ã
1

T

TX

t=1

XtY
(m)0

t−1

!
,

S
(m)
10,T =

³
S
(m)
01,T

´0
. (20)
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Note that bλm,k+1 = ... = bλm,(m+1)k ≡ 0, because the rank of bS(m)10
bS−100 bS(m)01

is k.
Similar to Johansen (1988) it can be shown that, given r and m, the

normalized maximum likelihood estimator bξ of ξ is bξ = (bq1, ..., bqr) ,where
bq1, ..., bqr are the r columns of the matrix of generalized eigenvectors associated
with the r largest solutions for λ of (16).

As is well-known, in the TI case m = 0, the log-likelihood blT (r, 0) takes
the form

blT (r, 0) = −0.5T.
rX

j=1

ln
³
1− bλ0,j

´
− 0.5T. ln (det (S00,T ))

plus the same constant as before, where 1 > bλ0,1 ≥ bλ0,2 ≥ ... ≥ bλ0,r are the r
largest solutions of the generalized eigenvalue problem

det
h
λS(0)11,T − S(0)10,TS−100,TS(0)01,T

i
= 0.

The matrices S
(0)
11,T , S

(0)
01,T and S

(0)
10,T are defined by (18), (19) and (20), re-

spectively, with Y
(m)
t−1 replaced by Y

(0)
t−1 = Yt−1. Therefore, given m and r,

the LR test of the null hypothesis of standard (TI) cointegration against the
alternative of TV cointegration takes the form

LRtvcT = −2
h
blT (r, 0)− blT (r,m)

i
= T

rX

j=1

ln

Ã
1− bλ0,j
1− bλm,j

!
. (21)

3.2 Data-Generating Process under the Null Hypoth-
esis

For m = 0 we have the standard cointegration case:

Assumption 1. 4Yt = C (L)Ut =
P∞

j=0CjUt−j, where Ut ∼ i.i.d. Nk[0, Ik].
The elements of the k × k matrices Cj decrease exponentially to zero as
j →∞.

We can write 4Yt as

4Yt = C(1)Ut + (1− L)D(L)Ut (22)
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where

D(L) =
C(L)− C(1)

1− L . (23)

This is the well-known Beveridge-Nelson decomposition, which implies that

Yt = C(1)
tX

j=1

Uj + Vt + Y0 − V0 (24)

where Vt = D(L)Ut is a zero-mean stationary Gaussian process.

Assumption 2. The matrix C (1) is singular, with rank 1 ≤ r < k: There
exists a k× r matrix β such that β 0C (1) = Or,k. Moreover, the r× k matrix
β0D(1) has rank r.

For the time being we will also assume that

Assumption 3. Ut = 0 for t < 1,

so that Y0 = V0 = 0 in (24).
Admittedly, Assumption 3 is too restrictive, but is made to focus on the

main issues. For the same reason we do not yet consider the more realistic
case of drift in Yt. Once we have completed the asymptotic analysis for the
case under review, we will show what happens if there is drift in Yt and
Assumption 3 is dropped.

Assumption 4. Under Assumptions 1-3, Yt has the VECM (p) representa-
tion

4Yt = αβ0Yt−1 +
p−1X

j=1

Γj 4 Yt−j + εt, t ≥ 1, (25)

where εt ∼ i.i.d. Nk[0,Ω], with Ω non-singular.

Due to Assumption 3, there is no vector of constants in this model. Moreover,
note that εt = C0Ut, so that Ω = C0C

0
0.

Similar to (12), model (25) can be written more conveniently as

4Yt = αβ 0Yt−1 + ΓXt + C0Ut, t ≥ 1, (26)

12



and replacing εt by C0Ut in (12) the time-varying VECM(p) model becomes

4Yt = αξ
0

Y
(m)
t−1 + ΓXt + C0Ut, (27)

where under the null hypothesis,

ξ =

µ
β
Om.k×r

¶
(28)

To exclude the case that β0Yt−1 and Xt are multicollinear, we need to
assume that

Assumption 5. Var

µ
β
0

Yt−1
Xt

¶
is nonsingular.

3.3 Asymptotic Null Distribution

The asymptotic results in the standard cointegration case hinge on the fol-
lowing well-known convergence results. Under Assumptions 1-2,

1

T

TX

t=1

UtY
0
t−1

d→
Z 1

0

(dW )W 0C(1)0.

1

T

TX

t=1

(4Yt−`)Y
0
t−1

d→ C(1)

µZ 1

0

(dW )W 0

¶
C(1)0 +M`, ` ≥ 0,

1

T 2

TX

t=1

YtY
0
t−1

d→ C(1)

µZ 1

0

(W (x))W 0(x)dx

¶
C(1)0

where W is a k-variate standard Wiener process, and the M`’s are non-
random k× k matrices. See Phillips and Durlauf (1986) and Phillips (1988).
We need to generalize these results to the case where Yt−1 is replaced by

Y
(m)
t−1 :

Lemma 2. Under Assumptions 1-2,

1

T

TX

t=1

Ut
³
Y
(m)
t−1

´0 d→
Z 1

0

(dW )fW 0
m (C(1)

0 ⊗ Im+1) . (29)
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1

T

TX

t=1

(4Yt−`)
³
Y
(m)
t−1

´0 d→ C(1)

Z 1

0

(dW )fW 0
m (C(1)

0 ⊗ Im+1) (30)

+M∗
` , ` ≥ 0 ,

1

T 2

TX

t=1

³
Y
(m)
t−1

´³
Y
(m)
t−1

´0 d→ (31)

(C(1)⊗ Im+1)
Z 1

0

fWm(x)fW 0
m(x)dx (C(1)

0 ⊗ Im+1)

where W is a k-variate standard Wiener process,

fWm (x) =
³
W 0 (x) ,

√
2 cos(πx)W 0 (x) , ...,

√
2 cos(mπx)W 0 (x)

´0
,

and the M∗
` ’s are k × k(m+ 1) non-random matrices.

Proof : Appendix.

The result (30) implies that (1/T )
PT

t=1 (4Yt−`)
³
Y
(m)
t−1

´0
= Op(1). The

latter is what is needed for our analysis. Therefore, the question how the
matrices M∗

` look like is not relevant.
Note that
Z 1

0

(dW )fW 0
m =

µZ 1

0

(dW (x))W 0(x),
√
2

Z 1

0

cos (1πx) dW (x)W
0

(x),

√
2

Z 1

0

cos (2πx) dW (x)W
0

(x), ...,
√
2

Z 1

0

cos (mπx) dW (x)W
0

(x)

¶

In the Appendix we define the proper meaning of the random matrices

Z 1

0

cos (`πx) dW (x)W
0

(x) (32)

for ` = 1, 2, 3, .... In particular, if W (x) is univariate then

Z 1

0

cos (`πx)W (x)dW (x) =
(−1)`
2

W 2 (1) +
`π

2

Z 1

0

sin (`πx)W 2(x)dx.

Using Lemma 2 (together with rather long list of auxiliary lemmas), the
following results can be shown.
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Lemma 3. Under Assumptions 1-5 the r largest ordered solutions bλm,1 ≥
bλm,2 ≥ ... ≥ bλm,r of generalized eigenvalue problem (16) converge in proba-
bility to constants 1 > λ1 ≥ ... ≥ λr > 0, which do not depend on m. Thus,
these probability limits are the same as in the standard TI cointegration case.

Proof : Appendix.

As is well-known (see Johansen 1988), in the standard TI cointegration

case m = 0 and under Assumptions 1-5, T
³
bλ0,r+1, bλ0,r+2, ..., bλ0,k

´0
converges

in distribution to the vector or ordered solutions ρ0,1 ≥ ρ0,2 ≥ .... ≥ ρ0,k−r of

det

∙
ρ

Z 1

0

Wk−r(x)W
0
k−r(x)dx−

Z 1

0

Wk−rdW
0
k−r

Z 1

0

(dWk−r)W
0
k−r

¸
= 0,

(33)
where

Wk−r(x) = (α
0
⊥Ωα⊥)

−1/2
α0⊥C0W (x) (34)

is a k − r variate standard Wiener process.3 This result is based on the fact
that one can choose an orthogonal complement β⊥ of β such that

1

T
β0⊥S

(0)
11,Tβ⊥

d→
Z 1

0

Wk−r(x)W
0
k−r(x)dx

(α0⊥Ωα⊥)
−1/2

α0⊥C0S
(0)
01,Tβ⊥

d→
µZ 1

0

(dWk−r)W
0
k−r

¶

One would therefore expect that this result can be generalized to the TV
cointegration case simply by replacing Wk−r(x) in (33) with

fWk−r,m (x) =
³
W 0
k−r (x) ,

√
2 cos(πx)W 0

k−r (x) , ...,
√
2 cos(mπx)W 0

k−r (x)
´0

=
³
(α0⊥Ωα⊥)

−1/2
α0⊥C0 ⊗ Im+1

´
fWm(x) (35)

while leaving dWk−r as is. However, that is not the case!

Lemma 4. Under Assumptions 1-5,

T
³
bλm,r+1, bλm,r+2, ..., bλm,k

´0 d→ (ρm,1, ..., ρm,k−r)
0 ,

3Because α0⊥C0C
0
0α⊥ = α0⊥Ωα⊥.
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where ρm,1 ≥ ρm,2 ≥ .... ≥ ρm,k−r are the k−r largest solutions of generalized
eigenvalue problem

0 = det

∙
ρ

µ R 1
0
fWk−r,m(x)fW 0

k−r,m(x)dx O(k−r)(m+1),r.m
Or.m,(k−r)(m+1) Ir.m

¶
(36)

−
µ R 1

0
fWk−r,mdW 0

k−r
V

¶µZ 1

0

(dWk−r)fW 0
k−r,m, V

0

¶¸

with V is an r.m × (k − r) random matrix with i.i.d. N [0, 1] elements.

Moreover, V is independent of Wk−r and fWk−r,m.

Proof : Appendix.

The reason for this unexpected result is the following. Under the null
hypothesis (28), any orthogonal complement of the matrix ξ of TV cointe-
grating vectors takes the form

ξ⊥ =

µ
β⊥ ⊗ Im+1,

µ
Ok,m.r
β ⊗ Im

¶¶
×R

where R is a nonsingular (k (m+ 1)− r)× (k (m+ 1)− r) matrix. We need
to choose R such that 1

T
ξ0⊥S

(m)
11,T ξ⊥ converges in distribution to a nonsingular

matrix.4 A suitable version of ξ⊥ that delivers this result is

ξ⊥,T =

Ã
β⊥ ⊗ Im+1,

Ã
Ok,m.r√
T
³
βΣ

−1/2
ββ ⊗ Im

´
!!

(37)

where Σββ = p limT→∞(1/T )
PT

t=1 β
0Yt−1Y 0t−1β. Then

1
T
ξ0⊥,TS

(m)
11,T ξ⊥,T con-

verges in distribution to the first matrix in (36). The matrix V involved
is now due to

(α0⊥Ωα⊥)
−1/2

α0⊥C0S
(m)
01,T

Ã
Ok,m.r√
T
³
βΣ

−1/2
ββ ⊗ Im

´
!

d→ V 0.

Under standard cointegration, the ML estimator bβ of β, normalized as
eβ = bβ

³
β
0bβ
´−1

β
0

β, satisfies

T
³
eβ − β

´
d→ β⊥

µZ 1

0

Wk−rW
0
k−r

¶−1µZ 1

0

Wk−rdW
0
α

¶¡
α0Ω−1α

¢−1/2

4So that Lemma 2 in Andersson et al. (1983) can be applied.
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where W α is an r-variate standard Wiener process which is independent of
Wk−r. See Johansen (1988). In our case, however, the corresponding result
is again quite different:

Lemma 5 Let bξ be the ML estimator of ξ, and denote eξ = bξ
³
ξ
0bξ
´−1

ξ
0

ξ.

Let ξ⊥,T be the orthogonal complement of ξ defined by (37). We can always

write eξ − ξ = ξ⊥,TUm,T , where

Um,T =
¡
ξ0⊥,T ξ⊥,T

¢−1 ³
ξ0⊥,Tbξ

´³
ξ0bξ
´−1

(ξ0ξ) .

Under Assumptions 1-5,

T.Um,T
d→
Ã ³R 1

0
fWk−r,m(x)fW 0

k−r,m(x)dx
´−1 R 1

0
fWk−r,mdW

0
α

V α

!
(38)

×
¡
α0Ω−1α

¢−1/2

where W α is an r-variate standard Wiener process, V α is a k.m× r matrix

with independent N [0, 1] distributed elements, and V α, W α and
fWk−r,m are

independent. Consequently,

µ
T.Ik Ok,k.m
Ok.m,k

√
TIk.m

¶³
eξ − ξ

´

d→

⎛
⎝ (β⊥, Ok,k.m)

³R 1
0
fWk−r,m(x)fW 0

k−r,m(x)dx
´−1 R 1

0
fWk−r,mdW

0
α³

βΣ
−1/2
ββ ⊗ Im

´
V α

⎞
⎠

×
¡
α0Ω−1α

¢−1/2
,

Proof : Appendix.
The test for standard cointegration is based on a simple hypothesis, ξ

0

=¡
β
0

, Ok.m,r
¢
. The chi-square asymptotic distribution of the likelihood ratio

statistic, derived in the Appendix, follows from the previous four Lemmas
and the Taylor expansion around the MLE of a function of the type

fm,T (x) = T. ln

⎛
⎝
det

³
x
0

³
S
(m)
11,T − S

(m)
10,TS

−1
00,TS

(m)
01,T

´
x
´

det
³
x0S

(m)
11,Tx

´

⎞
⎠ .
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Then, we simply apply the Taylor expansion, derived in Johansen (1988), to
the decomposition of the LR statistic LRtvcT

fm,T (eξ)− f0,T (eβ) =
³
fm,T (eξ)− f0,T (β)

´
−
³
f0,T (eβ)− f0,T (β)

´
,

where similar to eξ defined in Lemma 5, eβ = bβ
³
β
0bβ
´−1

β
0

β. It follows then

from Lemma 5 that under the null hypothesis,

fm,T (bξ)− f0,T (β) d→ trace
¡
V 0αV α

¢

+trace

"µZ 1

0

dW α
fW 0
k−r,m

¶µZ 1

0

fWk−r,m(x)fW 0
k−r,m(x)dx

¶−1

×

µZ 1

0

fWk−r,mdW
0
α

¶¸
∼ χ2r.m.r + χ2r(m+1)(k−r),

where the two chi-square distribution are independent, whereas it has been
shown by Johansen (1988) that

T
³
bf0
³
eβ
´
− bf0 (β)

´

d→ trace

"µZ 1

0

dW αW
0
k−r

¶µZ 1

0

Wk−r(x)W
0
k−r(x)dx

¶−1

×

µZ 1

0

Wk−rdW
0
α

¶¸
∼ χ2r(k−r).

It follows now straightforwardly that:

Theorem 1 Given m ≥ 1 and r ≥ 1, under the null hypothesis of stan-
dard cointegration the LR statistics LRtvcT defined in (21) is asymptotically
χ2mkr distributed.

The limiting law is, not surprisingly, chi-square in which m, r and of
course k are not allowed to be zero. Moreover, for a given pair (k, r) , the
distribution becomes less skewed as m increases. The optimal choice for
m can be compared to the optimal choice of the order of an autoregressive
process. With respect to the AR process researchers usually employ some
sort of information criteria on model selection such as the Akaike (1974),
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Hannan-Quinn (1979) or Schwarz (1978) information criteria. The results in
section 4 suggest that the Hannan-Quinn and Schwarz information criteria
can be used to estimate m consistently if m is finite, but a formal proof is
beyond the scope of this paper.

3.4 Empirical Size

To check how close the asymptotic critical values based on the χ2 distribution
are to the ones based on the small sample null distribution, we have applied
our test to 10,000 replications of the bivariate cointegrated vector time series
process Yt = (Y1,t, Y2,t)

0, where Y1,t = Y2,t + U1,t, Y2,t = Y2,t−1 + U2,t with
Ut = (U1,t, U2,t)

0 drawn independently from the bivariate standard normal
distribution, for various values of T and m. The results are given in Table 1.
In each entry, q1−α stands for the empirical 1 − α quantile. Thus, they are
the empirical critical values. The values in parenthesis are the acceptance
frequencies based on the χ2 critical values. The case T = 324 is included
because this the sample size of the empirical application in section 6.
For large T and small m the right tail of the distribution is very well

approximated by the asymptotic one. For smaller T the test suffers from size
distortion. For example, for T = 100 and 5% asymptotic size the nominal
size is of 3% for m = 1; 2% for m = 3 and 1.3% for m = 5. Thus, by
using the asymptotic critical values the test tends to over-reject the correct
null hypothesis of standard cointegration. As expected, for T = 500, the
empirical and the asymptotic distributions almost coincide.

4 The LR Test under the Alternative of TV

Cointegration

4.1 The Data Generating Process under TV Cointe-
gration

A time-varying cointegrated data generating process Yt with VECM(p) rep-
resentation (1) can be constructed, for example, as follows. Let

Yt = AZt = αZ1,t + γZ2,t
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Table 1: Empirical Distribution of the LR TVC Statistic

m = 1 m = 2 m = 3 m = 4 m = 5 m = 10 m = 15 m = 25
q0.90 5.320

(0.930)
9.195
(0.943)

12.787
(0.953)

16.320
(0.961)

19.854
(0.969)

38.759
(0.992)

60.610
(0.999)

119.797
(0.999)

T = 100 q0.95 7.027
(0.970)

11.159
(0.975)

15.111
(0.980)

18.829
(0.984)

22.643
(0.987)

42.543
(0.997)

65.650
(0.999)

127.696
(0.999)

q0.99 10.426
(0.994)

15.271
(0.995)

19.973
(0.997)

24.160
(0.997)

28.643
(0.998)

49.833
(0.999)

76.269
(0.999)

143.749
(0.999)

q0.9 4.880
(0.912)

8.313
(0.919)

11.607
(0.928)

14.693
(0.934)

17.792
(0.941)

33.273
(0.968)

49.068
(0.984)

85.794
(0.998)

T = 200 q0.95 6.406
(0.959)

10.065
(0.960)

13.595
(0.965)

16.896
(0.968)

20.395
(0.974)

37.000
(0.988)

53.424
(0.994)

91.731
(0.999)

q0.99 9.666
(0.992)

14.188
(0.993)

17.834
(0.993)

21.993
(0.995)

25.364
(0.995)

43.754
(0.998)

62.006
(0.999)

102.433
(0.999)

q0.90 4.790
(0.908)

8.149
(0.913)

11.181
(0.917)

14.059
(0.919)

17.050
(0.926)

31.247
(0.947)

45.621
(0.966)

76.331
(0.990)

T = 324 q0.95 6.275
(0.956)

10.015
(0.959)

13.197
(0.959)

16.400
(0.963)

19.452
(0.965)

34.608
(0.977)

49.515
(0.986)

81.177
(0.996)

q0.99 9.530
(0.991)

14.173
(0.993)

18.042
(0.993)

21.193
(0.993)

24.749
(0.994)

40.850
(0.996)

56.899
(0.997)

91.638
(0.999)

q0.90 4.658
(0.902)

7.945
(0.906)

10.952
(0.910)

13.861
(0.914)

16.616
(0.916)

30.083
(0.931)

43.651
(0.948)

71.478
(0.975)

T = 500 q0.95 6.088
(0.952)

9.709
(0.954)

13.119
(0.958)

16.138
(0.959)

19.075
(0.960)

33.377
(0.969)

47.753
(0.979)

76.213
(0.990)

q0.99 9.092
(0.989)

13.898
(0.992)

17.313
(0.991)

20.767
(0.992)

24.063
(0.992)

39.983
(0.994)

55.072
(0.996)

84.851
(0.998)
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where A = (α, γ) is a nonsingular k × k matrix, with α the matrix of the
first r columns of A and γ the matrix of the remaining k − r columns of A,
with Z1,t ∈ Rr and Z2,t ∈ Rk−r I(1) processes generated by

Z1,t =

pX

j=1

DjZ1,t−j +B2 (t/T )Z2,t−1 +
p−1X

j=1

C12,j∆Z2,t−j + U1,t (39)

∆Z2,t =

p−1X

j=1

C22,j∆Z2,t−j + U2,t (40)

where

Assumption 6. Ut = (U
0
1,t, U

0
2,t)

0 ∼ i.i.d. Nk [0, Vu] . The matrix valued lag

polynomials D(L) = Ir −
Pp

j=1DjL
j and C22(L) = Ik−r −

Pp−1
j=1 C22,jL

j are

invertible, with inverses D(L)−1 =
P∞

j=0ΠjL
j and C22(L)

−1 =
P∞

j=0 ΓjL
j

satisfying Πj → O, Γj → O exponentially as j →∞. The elements of B2 (τ )
are continuously differentiable function on an open interval containing [0, 1]
with bounded derivatives, and

B2 (τ) = B2 (0) for τ < 0, B2 (τ) = B2 (1) for τ > 1 (41)

Note that the nonstationarity of Z1,t is due to the dependence of Z1,t on
B2 (t/T )Z2,t−1.
As is well-known, we can rewrite model (39) as

∆Z1,t = B1Z1,t−1+B2 (t/T )Z2,t−1+
p−1X

j=1

C11,j∆Z1,t−j+
p−1X

j=1

C12,j∆Z2,t−j+U1,t

(42)
where B1 =

Pp
j=1Dj − Ir is nonsingular, 5 hence

∆Zt =

µ
B1 B2 (t/T )
Ok−r,r Ok−r,k−r

¶
Zt−1 +

p−1X

j=1

Cj∆Zt−j + Ut (43)

5Because the invertibility of D(L) implies that all the roots of the polynomial

det
³
Ir −

Pp

j=1Djx
j
´
lie outside the complex unit circle.
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where

Cj =

µ
C11,j C12,j
Ok−r,r C22,j

¶
,

and thus

∆Yt = A∆Zt

= A

µ
B1 B2 (t/T )
Ok−r,r Ok−r,k−r

¶
A−1Yt−1 +

p−1X

j=1

ACjA
−1∆Yt−j +AUt

= αβ0tYt−1 +
p−1X

j=1

Γj∆Yt−j +AUt (44)

say, where
β 0t = (B1,B2 (t/T ))A

−1, Γj = ACjA
−1. (45)

A more general TV model can be formulated by allowing B1 to be a
function of t/T as well, and by including lagged ∆Z1,t’s in the equation for
∆Z2,t. However, that will make the power analysis too complicated.
Under Assumption 6 the process Yt is time-varying cointegrated, in the

sense that with βt define in (45),

β 0tYt−1 = εt +Op (1) ,

where εt is a strictly stationary zero-mean Gaussian process, and the Op (1)
term is uniform in t = 1, 2, ..., T. This follows from the result (48) in the
following lemma.

Lemma 6. Under Assumption 6 we can write

∆Z1,t =
t−1X

j=0

Πj (B2 ((t− j)/T )−B2 (0))∆Z2,t−1−j+Vt+Op
³
1/
√
T
´
, (46)

uniformly in t = 1, ..., T, where Vt is a strictly stationary zero-mean Gaussian
process. Moreover, denote

P∞
j=0QjL

j = D(L)−1C11(L), where C11(L) =

Ir −
Pp−1

j=1 C11,jL
j . Then

B1Z1,t−1 +B2 (t/T )Z2,t−1 =
t−1X

j=0

Qj (B2 ((t− j)/T )−B2 (0))∆Z2,t−1−j

+Rt +Op
³
1/
√
T
´

(47)
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uniformly in t = 1, ..., T, where Rt is a strictly stationary zero-mean Gaussian
process. Consequently,

B1Z1,t−1 +B2 (t/T )Z2,t−1 = Rt +Op (1) (48)

uniformly in t = 1, ..., T.

Proof : Appendix

4.2 Power of the LR test

To study the power of our test, we will adopt the VECM(p) model (44)
with βt defined by (7) as the data generating process. Moreover, to keep the
power analysis tractable we will focus on the case p = 1, k = 2, r = 1, Vu =
I2, A = I2. Thus,

Yt = Zt = (Z1,t, Z2,t)
0

where Z1,t ∈ R and Z2,t ∈ R are assumed to be generated by

∆Z1,t = b1Z1,t−1 + b2 (t/T )Z2,t−1 + U1,t (49)

∆Z2,t = U2,t

Ut = (U1,t, U2,t)
0 ∼ i.i.d. N2 [0, I2] ,

Next, suppose that for some m > 0,

b−11 b2 (t/T ) =
mX

j=0

ρjPj,T (t) , ρ
0 = (ρ0, ρ1, ...., ρm)

Then

(b1, b2 (t/T )) = b1

mX

j=0

ς 0jPj,T (t) ,

where ς 00 = (1, ρ0) , and ς
0
j = (0, ρj) for j ≥ 1. Hence,

∆Z1,t = b1

Ã
Z1,t−1 +

mX

j=0

ρjPj,T (t)Z2,t−1

!
+ U1,t

= b1

mX

j=0

ς 0jPj,T (t)Zt−1 + U1,t = b1ς
0Z
(m)
t−1 + U1,t

∆Z2,t = U2,t

23



where
ς 0 = (1, ρ0, 0, ρ1, 0, ρ2, . . . , 0, ρm) (50)

and

Z
(m)
t−1 =

Ã
Z
(m)
1,t−1
Z
(m)
2,t−1

!
= Zt−1 ⊗ bpm (t/T ) (51)

with

Z
(m)
i,t−1 =

¡
Z 0i,t−1, P1,T (t)Z

0
i,t−1, P2,T (t)Z

0
i,t−1, ..., Pm,T (t)Zi,t−1

¢0
, i = 1, 2,

and
bpm (t/T ) = (1, P1,T (t) , ..., Pm,T (t))0

We can now write the model in VECM(1) form as

∆Zt = δς 0Z
(m)
t−1 + Ut (52)

where

δ =

µ
b1
0

¶
(53)

In the sequel we will refer to this model, together with the applicable
parts of Assumptions 1-2, as H

(m)
1 (p = 1).

Under H
(m)
1 (p = 1) the matrices S00,T , S

(m)
11,T and S

(m)
01,T become

S00,T =
1

T

TX

t=1

4Zt4 Z
0

t (54)

S(m)11,T =
1

T

TX

t=1

Z(m)t−1Z
(m)0

t−1 (55)

S
(m)
01,T =

1

T

TX

t=1

4ZtZ
(m)0

t−1 (56)

respectively. The maximum log-likelihood in the standard case with r = 1 is

blT (1, 0) = −1
2
T. ln

Ã
1−max

β

β 0S
(0)
10,TS

−1
00,TS

(0)
01,Tβ

β 0S
(0)
11,Tβ

!

−1
2
T. ln (det (S00,T ))− T.k ln

³√
2π
´
− 1
2
kT
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and in the TV case

blT (1,m) = −1
2
T. ln

Ã
1−max

ξ

ξ0S
(m)
10,TS

−1
00,TS

(m)
01,T ξ

ξ0S
(m)
11,T ξ

!

−1
2
T. ln (det (S00,T ))− T.k ln

³√
2π
´
− 1
2
kT

Thus,

p lim
T→∞

T−1
³
blT (1,m)− blT (1, 0)

´
> 0 (57)

if p limT→∞ bλ
(0)

max < p limT→∞ bλ
(m)

max, where

bλ(0)max = max
β

β 0S
(0)
10,TS

−1
00,TS

(0)
01,Tβ

β 0S
(0)
11,Tβ

, bλ(m)max = max
ξ

ξ0S
(m)
10,TS

−1
00,TS

(m)
01,T ξ

ξ0S
(m)
11,T ξ

.

Note that λ
(m)
max is the maximal solution of (16). Because

p lim
T→∞

bλ(m)max = p lim
T→∞

ς 0S
(m)
10,TS

−1
00,TS

(m)
01,T ς

ς 0S
(m)
11,T ς

where ς is defined by (50), the consistency of our test against the alternative

H
(m)
1 (p = 1) follows from the following theorem.

Theorem 2. Under H
(m)
1 (p = 1),

p lim
T→∞

ς 0S
(m)
10,TS

−1
00,TS

(m)
01,T ς

ς 0S
(m)
11,T ς

∈ (0, 1) , p lim
T→∞

β 0S
(0)
10,TS

−1
00,TS

(0)
01,Tβ

β0S
(0)
11,Tβ

= 0

for all nonzero vectors β ∈ R2, hence (57) holds.

The proof of Theorem 2 is not too difficult but tedious and lengthy. This
proof is therefore given in a separate appendix to this paper, Bierens and
Martins (2009). It is our conjecture that the result of Theorem 2 carry over
to more general alternatives, but verifying this analytically proved to be too
tedious an exercise. The same applies to the local power of the test. It is our
conjecture that along the lines of the proof of Theorem 2 it can be shown
that the test has nontrivial local power.

25



4.3 Empirical Power

The assumption that the time varying cointegrating vector can be exactly
represented by a fixed number of Chebyshev polynomials is quite restrictive.
Therefore, in this subsection we check via a limited Monte Carlo study how
the test performs if this assumption is not true, and we compare our results
with the tests of Park and Hahn (1999).
The data generating process we have used is

Z1,t = 0.75Z1,t−1 − 0.5f (t/T )Z2,t−1 − 0.25Z1,t−2 + U1,t
∆Z2,t = U2,t, t = 1, ..., T

where Z1,t ∈ R, Z2,t ∈ R and the error vectors (U1,t, U2,t)0 are independently
N2 [0, I2] distributed. The number of replications is 10, 000. For the function
f we have chosen the following S-shaped function on [0, 1]:

f (x) = 12

Z x

0

y (1− y) dy − 1 = 6x2 − 4x3 − 1.

Note that f (t/T ) cannot be represented by a fixed number m of Chebyshev
polynomials.
The results are presented in Table 2. In this table, αasy indicates the

asymptotic size, so that the rejection rates involved are with respect to the
asymptotic critical values, whereas αreal is the empirical size, so that rejection
rates involved are with respect to the empirical critical values in Table 1.
These results suggests that the choice of m is not critical for the power.
Park and Hahn (1999) propose two types of test for TV cointegration,

with statistics given by

bτ 1 =
PT

t=1 bu2t −
PT

t=1 bs2t
bω2Tκ

, bτ2 =
PT

t=1

¡Pt
i=1 bui

¢2

T 2bω2Tκ
,

where the but’s are the residuals of the regression of Z1,t on Z2,t, the bst’s
are the residuals of the regression of Z1,t on Z2,t and t, t

2, .., ts, and bω2Tκ =
1
T

P
|k|<`T

g (k/`T )
PT

t=k+1 buκ,tbuκ,t−k is a long-run variance estimator, where
the buκ,t’s are the residuals of the regression of Z1,t on ϕi (t/T )Z2,t for i =
1, ...,K, with the ϕi’s Fourier and other functions. As to the latter, we
consider two cases, indicated by c:

c = 1 : ϕ1(r) = cos(2πr), ϕ2(r) = sin(2πr), ϕ3(r) = 1, ϕ4(r) = r

c = 2 : ϕ1(r) = cos(2πr), ϕ2(r) = sin(2πr), ϕ3(r) = cos(4πr),

ϕ4(r) = sin(4πr), ϕ5(r) = 1, ϕ6(r) = r, ϕ7(r) = r
2
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Table 2: Power of the LR TVC test

T = 100 αasy = 0.10 αasy = 0.05 αasy = 0.01 αreal = 0.05
m = 1 0.999 0.999 0.997 0.999
m = 3 0.998 0.997 0.992 0.997
m = 5 0.998 0.997 0.986 0.996
m = 10 0.998 0.997 0.987 0.994
m = 15 0.999 0.998 0.994 0.995
T = 200 αasy = 0.10 αasy = 0.05 αasy = 0.01 αreal = 0.05
m = 1 1.000 1.000 1.000 1.000
m = 3 1.000 1.000 1.000 1.000
m = 5 1.000 1.000 1.000 1.000
m = 10 1.000 1.000 1.000 1.000
m = 15 1.000 1.000 1.000 1.000

Table 3: Power of the Park-Hahn tests

bτ 1,αasy = 0.05 T = 100 T = 200
s = 4, c = 2 0.993 0.998
s = 1, c = 2 0.877 0.936
s = 4, c = 1 0.991 0.998

bτ 2,αasy = 0.05 T = 100 T = 200
c = 2 0.999 1.000
c = 1 0.998 1.000
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The statistic bτ 1 also depends on the polynomial order s. We consider the
cases s = 1 and s = 4. Note that the test bτ 2 is in essence the well-known
KPSS test. See Kwiatkowski et al. (1992). Finally, we use for g the Barlett
kernel, the truncation lag is `T = [T

1/3], the number of replications is 10, 000,
and T = 100, 200. The results are presented in Table 3.
These results show that all three tests perform very well.

5 The Drift Case

The Assumptions 1-2 imply that ∆Yt and β 0Yt are zero-mean stationary
processes. However, for most cointegrated macroeconomic time series ∆Yt
and β 0Yt are nonzero-mean stationary processes, which correspond to the
following modification of Assumption 1:

Assumption 1∗. 4Yt = C (L) (Ut + µ) =
P∞

j=0Cj (Ut−j + µ), where µ 6= 0
is a vector of imbedded drift parameters, and Ut and C (L) are the same as
in Assumption 1.

Then similar to (24) we can write

Yt = C(1)
tX

j=1

Uj + C(1)µ.t+ Vt + Y0 − V0 (58)

Under Assumption 2,

β0Yt = β 0Vt + β0 (Y0 − V0) .

Thus, Assumption 2 can be adopted without modifications, but Assumption
3 needs to be dropped as otherwise β 0 (Y0 − V0) = 0. However, due to the
drift we now need to include a vector of intercepts in VECM (25), as in
Johansen (1991):

Assumption 4∗. ∆Yt has the VECM (p) representation

4Yt = γ0 + αβ 0Yt−1 +
p−1X

j=1

Γj 4 Yt−j + C0Ut (59)
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Moreover, withXt = (4Yt−1, ...,4Yt−p+1)
0 ,Assumption 5 still applies. These

modified Assumptions 1-5 will be referred to as ”the drift case”.
The corresponding time-varying VECM(p) is now

4Yt = γ0 + αξ0Y (m)t−1 +
p−1X

j=1

Γj 4 Yt−j + C0Ut (60)

To re-derive our previous results for this drift case, we need some addi-
tional notation. First, let

µ =
³
µ0C0α⊥ (α

0
⊥Ωα⊥)

−1
α0⊥C

0
0µ
´−1/2

(α0⊥Ωα⊥)
−1/2

α0⊥C
0
0µ

which is a vector in Rk−r. Note that µ0µ = 1 by normalization. Let µ⊥ be an
orthogonal complement of µ, normalized such that µ0⊥µ⊥ = Ik−r−1. Then

Lemma 7. In the drift case,

(µ0⊥ ⊗ Im+1) (β0⊥ ⊗ Im+1)
1√
T
Y
(m)
[xT ] ⇒ p(x)⊗W k−r−1(x)

(µ0 ⊗ Im+1) (β 0⊥ ⊗ Im+1)
1

T
Y
(m)
[x.T ] ⇒ p(x)⊗ x

for x ∈ [0, 1], where p(x) =
¡
1,
√
2 cos(πx), ....,

√
2 cos(mπx)

¢0
and

W k−r−1 = µ
0
⊥ (α

0
⊥Ωα⊥)

−1/2
α0⊥C

0
0W (61)

is a (k − r − 1)-variate standard Wiener process.

Next, let
MT =

¡
T−1/2µ, µ⊥

¢
.

Redefine the orthogonal complement ξ⊥,T of ξ in (37) as

ξ⊥,T =

Ã
(β⊥ ⊗ Im+1) (MT ⊗ Im+1) ,

Ã
Ok,m.r√
T
³
βΣ

−1/2
ββ ⊗ Im

´
!!

(62)

and redefine fWk−r,m in (35) as

fWk−r,m(x) = p(x)⊗
µ
W k−r−1(x)
x

¶

−
Z 1

0

p(y)⊗
µ
W k−r−1(y)
y

¶
dy, (63)
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where W k−r−1 is defined by (61). Then

Theorem 3. With ξ⊥,T in (37) replaced by (62) and fWk−r,m in (35) replaced
by (63) the results of Lemmas 3-5 and Theorem 1 carry over.

The proofs of Lemma 7 and Theorem 3 are not too difficult but rather
lengthy. These proofs are therefore given in a separate appendix to this
paper, Bierens and Martins (2009).

6 An Empirical Application

The validity of the PPP hypothesis has generated a great deal of controversy,
intimately related to the type of method applied. Recently, Falk and Wang
(2003) found that PPP hypothesis holds against some economies but not for
all. Their work is based on Caner’s (1998) concept of cointegration where
the VECM errors follow a stable distribution.
A reason why linear VECMmodels may be unable to detect long run PPP

is the presence of transaction costs in equilibrium models of real exchange
rate determination, which imply a nonlinear adjustment process in the PPP
relationship. Michael et al. (1997) successfully fit an exponential smooth
transition autoregressive model, thus capturing the implied nonlinearities.
We propose an alternative framework where the cointegrating vectors

fluctuate over the sample. We test the constant cointegration hypothesis
against the time varying cointegration, for

Yt =
³
lnSft , lnP

n
t , lnP

f
t

´0
,

where Pnt and P
f
t are the price indices in the domestic and foreign economies,

respectively, and Sft is the nominal exchange rate in home currency per unit
of the foreign currency. Since the log-prices are unit root with drift processes
the tests will be conducted under the ”drift-case” assumptions. The time-
varying cointegrating relation is β 0tYt = et, where the process et represents
the short run deviations from the PPP due to disturbances in the economic
system (real or monetary shocks), and βt is a 3 × 1 unknown deterministic
function of time. Using Chebyshev time polynomials, Pi,T (t) , βt will be
approximated by βt(m) =

Pm
i=0 ξiPi,T (t) , where the ξi’s are the Fourier

coefficients.
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We use the same data as Falk and Wang (2003), downloaded from the
Journal of Applied Econometrics data archive website. The domestic country
is the US and the bilateral relationship of study is with Canada, France,
Germany, Italy, Japan, and the U.K.. The data are monthly and cover the
period from January 1973 to December 1999, so that the time series involved
have length 324. Falk and Wang (2003) find support for the presence of
unit roots in all series. By means of the standard Johansen’s approach, they
find support of the PPP hypothesis at the 5% level in eight of the twelve
cases. With one cointegrating vector, Belgium, Denmark, France, Japan,
Netherlands, Norway, Spain, and UK are found to have PPP with the US.
At the 10% level, Italy and Sweden were added to the list. Therefore, Canada
and Germany were the only countries for which US has not had price parity
according to the standard approach.
The asymptotic p-values6 of our test are presented in Table 4, for different

combinations of the order m of the Chebyshev polynomial and the lag order
p. Because the results did not vary much with p we only report the results
for p = 1, p = 6, p = 10 (Falk and Wang’s lag), and p = 18. Moreover, we
have computed the p-values for m ranging from 1 to 25, although we only
present the nonzero p-values.
We find that, regardless of the lag order, the p-values are zero for any

m larger than four. Hence, there is strong evidence of a time varying type
of cointegration between international prices and nominal exchange rates for
all cases. Thus, our results refute Falk and Wang’s findings of standard PPP
for all countries except Canada and Germany.
The plots of the time-varying coefficients β1t, β2t and β3t in the cointe-

grating PPP relation β
0

tYt = β1t lnS
f
t + β2t lnP

n
t + β3t lnP

f
t are presented in

the separate appendix Bierens and Martins (2009). The patterns of these
parameters suggest that, approximately, β2t + β3t = δ for some constant δ.
This is related to the symmetry assumption in the standard PPP theory,
where β3 + β2 = 0. However, δ seems to be positive for Canada and the
UK, and negative for the other countries. Moreover, the variation of β1t is
minor compared with the variation of β2t and β3t, suggesting that β1t may
be constant.

6P
³
χ2(mrk) ≥ LRtvc

´
.
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Table 4: LR TVC Standard Cointegration Tests: Asymptotic p-values

m p = 1 p = 6 p = 10 p = 18
Can ≥ 1 0.000 0.000 0.000 0.000

Fra ≥ 1 0.000 0.000 0.000 0.000

Ger
1
≥ 2

0.158
0.000

0.461
0.000

0.033
0.000

0.010
0.000

Ita ≥ 1 0.000 0.000 0.000 0.000

Jap

1
2
3
4
≥ 5

0.662
0.102
0.029
0.037
0.000

0.383
0.457
0.013
0.014
0.000

0.001
0.001
0.000
0.000
0.000

0.019
0.004
0.000
0.000
0.000

U.K.

1
2
3
≥ 4

0.119
0.194
0.004
0.000

0.053
0.039
0.000
0.000

0.242
0.011
0.000
0.000

0.023
0.001
0.000
0.000

7 Conclusion

In Johansen’s standard approach it is assumed that the cointegrating vector
is constant over time. This assumption may be restrictive in practice due
to changes in taste, technology, or economic policies. We propose a gener-
alization of the standard approach by allowing the cointegration vector to
be time-varying and we approximate it using orthogonal Chebyshev time
polynomials. In time-varying cointegration, the long run relationship is a
dependent, heterogeneously distributed process.
We propose a cointegration model that captures smooth time transitions

on the cointegrating vector - the time varying error correction model - and
estimate it by maximum likelihood. To distinguish our model from the time
invariant Johansen’s specification, we construct a likelihood ratio test for the
null hypothesis of standard cointegration. The limiting law appears to be
chi-square. To illustrate the practical relevancy of our approach we applied
out test to international prices and nominal exchange rates. We find evidence
of time-varying cointegration between these series.
There are issues that merit further research. In particular, the analytical

32



study of the power of the test against local alternatives deserves attention.
Moreover, a natural extension of our approach is to include deterministic
components such time trends and/or seasonal dummy variables, and to allow
for other time varying parameters.

References
Akaike, H. (1974), A New Look at the Statistical Model Identification,

I.E.E.E. Transactions on Automatic Control 19, 716-723.
Andersson, S. A., H. K. Brons and S. T. Jensen (1983), Distribution of

Eigenvalues in Multivariate Statistical Analysis. Annals of Statistics 11,
392-415.
Andrade, P., C. Bruneau and S. Gregoir (2005), Testing for the Cointe-

gration Rank when some Cointegrating Directions are Changing. Journal of
Econometrics 124, 269-310.
Andrews, D. W. K., I. Lee andW. Ploberger (1996), Optimal changepoint

tests for normal linear regression. Journal of Econometrics 70, 9-38.
Bai, J., R. L. Lumsdaine and J. H.Stock (1998), Testing for and Dating

Breaks in Multivariate Time Series. Review of Economic Studies 65, 395-
432.
Bierens, H. J. (1994), Topics in Advanced Econometrics: Estimation,

Testing and Specification of Cross-Section and Time Series Models. Cam-
bridge University Press.
Bierens, H. J. (1997), Testing the Unit Root with Drift Hypothesis Against

Nonlinear Trend Stationarity, with an Application to the US Price Level and
Interest Rate. Journal of Econometrics 81, 29-64.
Bierens, H. J. (2007), Weak Convergence to the Matrix Stochastic IntegralR 1

0
BdB0 in the Gaussian Case, with Application to Likelihood-Based Cointe-

gration Analysis. Lecture notes, downloadable from http://econ.la.psu.edu/
~hbierens/LECNOTES.HTM
Bierens, H. J. and L. Martins (2009), Separate Appendix to ”Time Vary-

ing Cointegration”, downloadable from http://econ.la.psu.edu/~hbierens/
TVCOINT_APPENDIX.PDF
Blake, N. S. and T. B. Fomby (1997), Threshold Cointegration. Interna-

tional Economic Review 38, 627-645.
Caner, M. (1998), Tests for Cointegration with Infinite Variance Errors.

Journal of Econometrics 86, 155-175.

33



De Jong, R. M. (2001), Nonlinear Estimation Using Estimated Cointe-
grating Relations. Journal of Econometrics 101, 109-122.
Engle, R. F., and C. W. J. Granger (1987), Cointegration and Error

Correction: Representations, Estimation and Testing. Econometrica 55, 251-
276.
Falk, B. and C. Wang (2003), Testing Long Run PPP with Infinite Vari-

ance Returns. Journal of Applied Econometrics 18, 471-484.
Granger, C.W. J. and G. Yoon (2002), Hidden Cointegration. Working

Paper, Department of Economics, UCSD.
Hall, S. G., Z. Psaradakis and M. Sola (1997), Cointegration and Changes

in Regime: the Japanese Consumption Function. Journal of Applied Econo-
metrics 12, 151-168.
Hamming, R.W. (1973), Numerical Methods for Scientists and Engineers.

Dover, New York.
Hannan, E. J., and B. G. Quinn (1979), The Determination of the Order

of an Autoregression, Journal of the Royal Statistical Society B 41, 190-195.
Hansen, B. E. (1992), Tests for Parameter Instability in Regressions with

I(1) Processes. Journal of Business and Economic Statistics 10, 321-335.
Hansen, P. R. (2003), Structural Changes in the Cointegrated Vector

Autoregressive Model. Journal of Econometrics 114, 261-295.
Hansen, H. and S. Johansen (1999), Some Tests for Parameter Constancy

in Cointegrated VAR-models. Econometrics Journal 2, 306-333.
Hao, K. (1996), Testing for Structural Change in Cointegrated Regression

Models: Some Comparisons and Generalizations. Econometric Reviews 15,
401-429.
Harris, D., B. McCabe and S. Leybourne (2002), Stochastic Cointegra-

tione: Estimation and Inference. Journal of Econometrics 111, 363-384.
Inoue, A. (1999), Tests of Cointegration Rank with a Trend Break. Jour-

nal of Econometrics 90, 215-237.
Johansen, S. (1988), Statistical Analysis of Cointegration Vectors. Jour-

nal of Economic Dynamics and Control 12, 231-254.
Johansen, S. (1991), Estimation and Hypothesis Testing of Cointegration

Vectors in Gaussian Vector Autoregressive Models. Econometrica 59, 1551-
1580.
Johansen, S. (1995), Likelihood-Based Inference in Cointegrated Vector

Autoregressive Models. Oxford University Press.
Johansen, S., R. Mosconi and B. Nielsen (2000), Cointegration Analysis in

the Presence of Structural Breaks in the Deterministic Trend. Econometrics

34



Journal 3, 216-249.
Juhl, T. and Z. Xiao (2005), Testing for Cointegration using Partially

Linear Models. Journal of Econometrics 124, 363-394.
Kronmal, R. and M. Tarter (1968), The Estimation of Densities and

Cumulatives by Fourier Series Methods. Journal of the Americal Statistical
Association 63, 925-952.
Kuo, B. S. (1998), Test for Partial Parameter Instability in Regressions

with I(1) processes. Journal of Econometrics 86, 337-368.
Kwiatkowski, D., P. Phillips, P. Schmidt, and Y. Shin (1992), Testing

the Null of Stationarity Against the Alternative of a Unit Root. Journal of
Econometrics 54, 159-178.
Lütkepohl, H., P. Saikkonen and C. Trenkler (2003), Comparison of Tests

for the Cointegrating Rank of a VAR Process with a Structural Shift. Journal
of Econometrics 113, 201-229.
Lütkepohl, H., T. Terasvirta and J.Wolters (1999), Investigating Stability

and Linearity of a German M1 Money Demand Function. Journal of Applied
Econometrics 14, 511-525.
Maddala, G. S. and I-M. Kim (1998), Unit Roots, Cointegration and

Structural Change. Cambridge University Press.
Martins, L. F. (2005), Structural Changes in Nonstationary Time Series

Econometrics. Ph.D. Dissertation, Pennsylvania State University, download-
able from http://etda.libraries.psu.edu/theses/approved/WorldWideFiles/
ETD-794/LuisPhDThesisFinal.pdf.
McLeish, D. L. (1974), Dependent Central Limit Theorems and Invari-

ance Principles. Annals of Probability 2, 620-628.
Michael, P., A. R. Nobay and D. A. Peel (1997), Transactions Costs and

Nonlinear Adjustment in Real Exchange Rates: An Empirical Investigation.
Journal of Political Economy 105, 862-879.
Oksendal, B. (2003), Stochastic Differential Equations. Springer-Verlag.
Park, J. Y. and S. B. Hahn (1999), Cointegrating Regressions with Time

Varying Coefficients. Econometric Theory 15, 664—703.
Phillips, P.C.B. (1988), Weak Convergence to the Matrix Stochastic In-

tegral
R 1
0
BdB0. Journal of Multivariate Time Series Analysis 24, 252-264.

Phillips, P. C. B. and S. N. Durlauf (1986), Multiple Time Series Regres-
sion with Integrated Processes. Review of Economic Studies 53, 473-496.
Quintos, C. E. (1997), Stability Tests in Error CorrectionModels. Journal

of Econometrics 82, 289-315.

35



Quintos, C. E. and P. C. B. Phillips (1993), Parameter Constancy in
Cointegrating Regressions. Empirical Economics 18, 675-706.
Saikkonen, P. and I. Choi (2004), Cointegrating Smooth Transition Re-

gressions. Econometric Theory 20, 301—340.
Seo, B. (1998), Tests for Structural Change in Cointegrated Systems.

Econometric Theory 14, 222-259.
Schwarz, G. (1978), Estimating the Dimension of a Model, Annals of

Statistics 6, 461-464.
Terasvirta, T. and A. C. Eliasson (2001), Non-Linear Error Correction

and the UK Demand for Broad Money, 1878-1993. Journal of Applied Econo-
metrics 16, 277-288.
Young, N. (1988), An Introduction to Hilbert Space. Cambridge Univer-

sity Press.

36



8 Appendix: Proofs

8.1 Proof of Lemma 1

The continuity of ϕ (x) on [0, 1] implies that ϕ (x) is uniformly continuous on
[0, 1] and therefore bounded on [0, 1]: max0≤x≤1 |ϕ (x)| < ∞. Consequently,
ϕ (x) is square integrable on [0, 1], and thus is an element of the Hilbert
space L2[0, 1] of square integrable real functions on [0, 1], with inner product

hf, gi =
R 1
0
f(x)g(x)dx and associated norm ||f || =

p
hf, fi and metric ||f −

g||.
We first show that the sequence

κj(x) =

½
1 for j = 0,√
2 cos (jπx) for j = 1, 2, 3, ....

(64)

is a complete orthonormal sequence in L2[0, 1]. This result is well-known in
the statistics literature (see for example Kronmal and Tarter 1968), but to
the best of our knowledge has not been used in the econometrics literature.
Therefore, we will prove it here, as follows.
Recall7 that the functions

1,
√
2 cos (iπx) ,

√
2 sin (jπx) , i, j = 1, 2, 3, ...., x ∈ [−1, 1],

form a complete orthonormal sequence in L2 [−1, 1] with respect to the uni-
form density on [−1, 1], hence every real function ψ ∈ L2 [−1, 1] satisfies

lim
m→∞
n→∞

1

2

Z 1

−1
(ψ (x)− ψm,n (x))

2 dx (65)

where

ψm,n (x) = ω0 +
mX

i=1

ωi
√
2 cos (iπx) +

nX

j=1

$j
√
2 sin (jπx) (66)

with Fourier coefficients ω0 =
1
2

R 1
−1 ψ (x) dx, ωk =

1
2

R 1
−1
√
2 cos (kπx)ψ (x) dx

and $k =
1
2

R 1
−1
√
2 sin (kπx)ψ (x) dx. Now let ϕ (u) ∈ L2 [0, 1] be arbitrary,

7See for example Young (1988)
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and let ψ (x) = ϕ (|x|) . Then ψ (x) ∈ L2 (−1, 1), with Fourier coefficients

ω0 =
1

2

Z 1

−1
ϕ (|x|) dx =

Z 1

0

ϕ (u) du

ωk =
1

2

Z 1

−1

√
2 cos (kπx)ϕ (|x|) dx =

Z 1

0

√
2 cos (kπu)ϕ (u) du

$k =
1

2

Z 1

−1

√
2 sin (kπx)ϕ (|x|) dx = 0

Hence it follows from (65) and (66) that

lim
n→∞

Z 1

0

Ã
ϕ (u)− ω0 −

nX

k=1

ωk
√
2 cos (kπu)

!2
du (67)

=
1

2
lim
n→∞

Z 1

−1

Ã
ϕ (|x|)− ω0 −

nX

k=1

ωk
√
2 cos (kπx)

!2
dx

= 0

This proves the completeness of (64).
Next, let tx = [xT ] + 1 for an x ∈ [0, 1), where [xT ] is the largest integer

≤ xT. Then

gm(tx) = gm ([xT ] + 1) = ξ0,T +
√
2

mX

i=1

ξi,T cos

∙
iπ

µ
[xT ] + 1

T
− 1

2T

¶¸

where

ξ0,T =
1

T

TX

t=1

ϕ(t/T ) =

Z 1

0

ϕ

µ
[yT ] + 1

T

¶
dy

ξi,T =
1

T

TX

t=1

ϕ(t/T )
√
2 cos [iπ (t− 0.5) /T ]

=

Z 1

0

ϕ

µ
[yT ] + 1

T

¶√
2 cos

∙
iπ

µ
[yT ] + 1

T
− 1

2T

¶¸
dy

Hence by bounded convergence,

ϕm(x) = lim
T→∞

gm ([xT ] + 1) = ξ0 +
mX

i=1

ξi
√
2 cos (iπx) , where

38



ξ0 = lim
T→∞

ξ0,T =

Z 1

0

ϕ (y) dy,

ξi = lim
T→∞

ξi,T =

Z 1

0

ϕ(y)
√
2 cos(iπy)dy, i ≥ 1.

It is now easy to verify that

lim
T→∞

1

T

TX

t=1

(g (t)− gm,T (t))2 =
Z 1

0

(ϕ (x)− ϕm(x))
2 dx (68)

Note that

Z 1

0

(ϕm(x)− ϕ (x))2 dx =

Z 1

0

ϕ (x)2 dx−
mX

i=1

ξ2i > 0,

hence
P∞

i=1 ξ
2
i ≤

R 1
0
ϕ (x)2 dx <∞. However, due to the completeness of (64),

we also have
P∞

i=1 ξ
2
i =

R 1
0
ϕ (x)2 dx. See for example Young (1988, Theorem

4.15, p.37). Thus,

lim
m→∞

Z 1

0

(ϕ(x)− ϕm(x))
2 dx = 0. (69)

Combining (68) and (69), the first part of Lemma 1 follows.
To prove the second part of Lemma 1, suppose that ϕ(x) is q times

differentiable, where q ≥ 2 is even, and that ϕ(q)(x) = dqϕ(x)/ (dx)q is
square-integrable. Then ϕ(q)(x) ∈ L2 [0, 1]:

lim
m→∞

Z 1

0

Ã
ϕ(q)(x)−

mX

i=1

(−1)q/2πqiqξi
√
2 cos (iπx)

!2
dx,

where
R 1
0

¡
ϕ(q)(x)

¢2
dx = π2q

P∞
i=1 i

2qξ2i <∞. Now for m ≥ 1,

Z 1

0

(ϕm(x)− ϕ (x))2 dx =
∞X

i=m+1

ξ2i ≤
∞X

i=m+1

ξ2i

µ
i

m+ 1

¶2q

≤ 1

π2q (m+ 1)2q
π2q

∞X

i=1

ξ2i i
2q =

R 1
0

¡
ϕ(q)(x)

¢2
dx

π2q (m+ 1)2q
.
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8.2 Proof of Lemma 2

To prove Lemma 2 we need two auxiliary lemmas:

Lemma A.1. Under Assumptions 1-2,

1

T

TX

t=1

(4Yt−`)Y
0
t−1

d→ C(1)

µZ 1

0

(dW )W 0

¶
C(1)0 +M`, ` ≥ 0,

1

T

[xT ]X

t=1

(4Yt)Y
0
t−1

d→ C(1)

µZ x

0

(dW )W 0

¶
C(1)0 + xM0,

1

T

TX

t=1

UtY
0
t−1

d→
Z 1

0

(dW )W 0C(1)0.

where W is a k-variate standard Wiener process, and the M`’s are non-

random k × k matrices.

Proof : Phillips and Durlauf (1986) and Phillips (1988).

Lemma A.2. Let ηt be an arbitrary sequence in R
n, and let F (x) be an

arbitrary differentiable function on [0, 1], with derivative f(x). Then

TX

t=1

ηtF (t/T ) =
TX

t=1

ηtF (1)−
Z 1

0

f(x)

⎛
⎝
[xT ]X

t=1

ηt

⎞
⎠ dx

Proof : Bierens (1994), Lemma 9.6.3, page 200.

Proof of Lemma 2: It follows from (22) and (23) that

Yt = Y0 − V0 + C(1)
tX

j=1

Uj + Vt

Assumption 3 implies that Y0 − V0 = 0, but there is no need to impose this
restriction here. Now

1

T

TX

t=1

Pj,T (t)UtY
0
t−1 =

√
2
1

T

TX

t=1

cos (j.π (t− 0.5) /T )U 0tYt−1 (70)
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=
√
2
1

T

TX

t=1

cos (j.π (t− 0.5) /T )Ut
t−1X

j=1

U 0jC(1)
0

+
√
2
1

T

TX

t=1

cos (j.π (t− 0.5) /T )UtV 0t−1

+
√
2
1

T

TX

t=1

cos (j.π (t− 0.5) /T )Ut (Y0 − V0)0

It is easy to verify that the last two terms are of order Op
³
1/
√
T
´
.Moreover,

it follows from Lemma A.2 that

1

T

TX

t=1

cos (j.π (t/T − 0.5/T ))Ut
t−1X

j=1

U 0j

= cos (j.π (1− 0.5/T )) 1
T

TX

t=1

Ut

t−1X

j=1

U 0j

+ j.π

Z 1

0

sin (j.π (x− 0.5/T ))

⎛
⎝ 1

T

[xT ]X

t=1

Ut

t−1X

j=1

U 0j

⎞
⎠ dx

which by Lemma A.1 and the continuous mapping theorem converges in
distribution to

cos [j.π]

Z 1

0

(dW )W 0 + j.π

Z 1

0

sin (j.πx)

µZ x

0

(dW )W 0

¶
dx

= cos [j.π]

Z 1

0

(dW )W 0 −
Z 1

0

d cos (j.πx)

dx

µZ x

0

(dW )W 0

¶
dx

=

Z 1

0

(dW (x)) cos (j.πx)W (x)0

The latter follows via integration by parts. Part (29) now follows easily from
these results.
To prove (30), observe that

1

T

TX

t=1

cos (j.π (t− 0.5) /T ) (4Yt−`)Y 0t−1
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=
1

T

TX

t=1

cos (j.π (t− 0.5) /T ) (4Yt−`) (Yt−1 − Yt−1−`)0

+
1

T

TX

t=1

cos (j.π (t− 0.5) /T ) (4Yt−`)Y 0t−1−`

Again, it follows from Lemmas A.1-A.2 that

1

T

TX

t=1

cos (j.π (t− 0.5) /T ) (4Yt−`)Yt−`−1

= cos (j.π (1− 0.5/T )) 1
T

TX

t=1

(4Yt−`)Yt−`−1

+ j.π

Z 1

0

sin (j.π (x− 0.5/T ))

⎛
⎝ 1

T

[xT ]X

t=1

(4Yt−`)Yt−1

⎞
⎠ dx

d→ cos (j.π)

µ
C(1)

µZ 1

0

(dW )W 0

¶
C(1)0 +M0

¶

+ j.π

Z 1

0

sin (j.πx)

µ
C(1)

µZ x

0

(dW )W 0

¶
C(1)0 + xM0

¶
dx

= C(1)

µZ 1

0

(dW ) cos (j.π.x)W 0

¶
C(1)0 +

Z 1

0

cos (j.π.x) dxM0

= C(1)

µZ 1

0

(dW ) cos (j.π.x)W 0

¶
C(1)0

Moreover, by stationarity,

1

T

TX

t=1

cos (j.π (t− 0.5) /T ) (4Yt−`) (Yt−1 − Yt−1−`)0

converges in probability to a matrix Mj,`. The result (30) follows now easily.
Finally, it follows from Lemma A.2 that

1

T 2

TX

t=1

Pi,T (t)Pj,T (t)Yt−1Y
0
t−1 (71)

= 2
1

T 2

TX

t=1

cos (i.π (t− 0.5) /T ) cos (j.π (t− 0.5) /T )Yt−1Y 0t−1
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= 2 cos (i.π (1− 0.5/T )) cos (j.π (1− 0.5/T )) 1
T 2

TX

t=1

Yt−1Y
0
t−1

− 2
Z 1

0

d

dx
(cos (i.π (x− 0.5/T )) cos (j.π (x− 0.5/T )))

×

⎛
⎝ 1

T 2

[xT ]X

t=1

Yt−1Y
0
t−1

⎞
⎠ dx

As is well known, under Assumption 1,

1

T 2

[xT ]X

t=1

Yt−1Y
0
t−1 ⇒ C(1)

Z x

0

W (y)W (y)0dyC(1)0

hence by the continuous mapping theorem,

1

T 2

TX

t=1

Pi,T (t)Yt−1Pj,T (t)Y
0
t−1

d→ 2 cos (i.π) cos (j.π)C(1)

Z 1

0

W (x)W (x)0dxC(1)0

− 2C(1)
Z 1

0

d

dx
(cos (i.πx) cos (j.πx))

Z x

0

W (y)W (y)0dyC(1)0

= 2C(1)

Z 1

0

cos (i.πx)W (x) cos (j.πx)W (x)0dxC(1)0

where again the equality follows via integration by parts. This proves (31).

8.3 The Stochastic Integral
R 1
0 cos (`πx)W (x)dW

0

(x)

The matrix
R 1
0
cos (`πx)W (x)dW

0

(x), ` = 1, 2, ..., is a k×k matrix of random

variables whose (i, j)-th element is the scalar integral
R 1
0
cos (`πx)Wi(x)dWj(x).

We first claim that for an arbitrary entry (i, j),

C(x,ω) = cos (`πx)W (x,ω) ∈ Vk×1(0, s) for s = 1,

where Vk×1(0, s) is the class of integrand functions V for which the Ito inte-
gral

R s
0
V dW 0 is defined: (x,ω) → C(x,ω) is B × F measurable, C(x,ω) is

43



Fx adapted, and

E

∙Z s

0

C(x)2dx

¸
=

1

4
s2 +

sin (2`πs)

4`π
s+

[cos (2`πs)− 1]
2 (2`π)2

<∞
µ
=
1

4
, if s = 1, ` ≥ 1

¶
.

Therefore, because C ∈ V(0, S), the Ito stochastic integral of C from 0 to s
is defined as

I[C](ω) =

Z s

0

C(x,ω)dW (x,ω) = lim
n→∞

Z s

0

φn(x,ω)dW (x,ω),

with limit in L2(P ), where {φn} is a sequence of simple functions such that

lim
n→∞

E

∙Z s

0

(C(x)− φn(x))
2 dx

¸
= 0.

This condition is satisfied by taking

φn(x,ω) =
nX

j=0

cos (`πsj)W (sj ,ω).1 (sj ≤ x < sj+1) (72)

and
0 = s0 ≤ s1 ≤ ... ≤ sn−1 ≤ sn = s.

For the chosen {φn} in (72),

I[C](ω) = lim
sj+1−sj→0

nX

j=0

cos (`πsj)W (sj ,ω) (W (sj+1,ω)−W (sj,ω)) .

Moreover, by the one-dimensional Ito formula (see Oksendal 2003, page 44)8

we have

I[C](ω) =
cos (`πs)

2
W 2 (s)− sin (`πs)

2`π
+
`π

2

Z s

0

sin (`πx)W 2(x)dx

where
R s
0
sin (`πx)W 2(x)dx is a random variable with expectation

E

µZ s

0

sin (`πx)W 2(x)dx

¶
=
sin (`πs)

(`π)2
− cos (`πs)

`π
s.

8In Oksendal’s (2003) notation, Xt ≡ Bt; g(t, x) = cos(`πt)x2/2; Yt = cos(`πt)B2t /2.
The result follows after some manipulations.
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Therefore,

E

µZ 1

0

cos (`πx)W (x,ω)dW (x,ω)

¶
= 0.

The quadratic variation process of

C(t) =

Z t

0

cos (`πx)W (x) dW 0 (x) ,

a k× k matrix-valued martingale in continuous time with respect to F
(k)
t , is

now

hCi (t) =

Z t

0

Var
h
cos (`πx)W (x) d

0

W (x)
¯̄
¯Fx

i

=

Z t

0

cos2 (`πx)W (x)W (x)
0

dx⊗ Ik.

8.4 Proof of Lemmas 3 and 4

8.4.1 Auxiliary Results

The proofs of Lemmas 3 and 4 share the following auxiliary results.

Lemma A.3. Under Assumptions 1-2 the following probability limits exist :

Σββ = p lim
T→∞

1

T

TX

t=1

β
0

Yt−1Y
0
t−1β,

ΣXβ = p lim
T→∞

1

T

TX

t=1

XtY
0
t−1β,

ΣXX = p lim
T→∞

1

T

TX

t=1

XtX
0

t

Moreover, under the additional Assumption 5, ΣXX is nonsingular and the
matrix

Σ∗ββ = Σββ −Σ0XβΣ−1XXΣXβ
is nonsingular. Furthermore, under Assumptions 1,2 and 5,
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Σβ⊗Im+1,β⊗Im+1 = p lim
T→∞

1

T

TX

t=1

(β 0 ⊗ Im+1)Y (m)t−1 Y
(m)0

t−1 (β ⊗ Im+1)

= Σββ ⊗ Im+1,

Σβ,β⊗Im+1 = p lim
T→∞

1

T

TX

t=1

β
0

Yt−1Y
(m)0

t−1 (β ⊗ Im+1)

= (Σββ, Or,r.m) ,

ΣX,β⊗Im+1 = p lim
T→∞

1

T

TX

t=1

XtY
(m)0

t−1 (β ⊗ Im+1)

=
¡
ΣXβ, Ok(p−1),r.m

¢
.

Consequently,

Σβ,β⊗Im+1 − ΣβXΣ−1XXΣX,β⊗Im+1 =
¡
Σ∗ββ, Or,r.m

¢

and

Σ∗β⊗Im+1,β⊗Im+1 = Σβ⊗Im+1,β⊗Im+1 − Σ0X,β⊗Im+1Σ−1XXΣβ⊗Im+1,X

=

µ
Σ∗ββ Or,r.m
Or.m,r Σββ ⊗ Im

¶
,

The latter is a nonsingular matrix.

Proof : The existence of the probability limits Σββ, ΣXβ and ΣXX fol-
lows straightforwardly from Assumptions 1-2, and the nonsingularity of ΣXX
follows straightforwardly from Assumption 5. Note that Σ∗ββ is the vari-

ance matrix of the residual ςt of the linear projection of β
0

Yt−1 on Xt:
β
0

Yt−1 = Π0Xt + ςt, say. Therefore, if this variance matrix were singular
then there exists a vector δ such that δ0β

0

Yt−1 = δ0Π0Xt a.s. Assumption 5
excludes this.
As to the probability limit Σβ⊗Im+1,β⊗Im+1, observe that similar to (71),

1

T

TX

t=1

Pi,T (t)Pj,T (t) β
0Yt−1Y

0
t−1β

46



= 2
1

T

TX

t=1

cos (i.π (t− 0.5) /T ) cos (j.π (t− 0.5) /T )β 0Yt−1Y 0t−1β

= 2 cos (i.π (1− 0.5/T )) cos (j.π (1− 0.5/T )) 1
T

TX

t=1

β0Yt−1Y
0
t−1β

−2
Z 1

0

d

dx
(cos (i.π (x− 0.5/T )) cos (j.π (x− 0.5/T )))

×

⎛
⎝ 1

T

[xT ]X

t=1

β0Yt−1Y
0
t−1β

⎞
⎠ dx

for i, j ≥ 1. We have already established that 1
T

PT
t=1 β

0Yt−1Y 0t−1β = Σββ +
op(1). Moreover, it is not hard to verify that

p lim
T→∞

1

T

[xT ]X

t=1

β0Yt−1Y
0
t−1β = x.Σββ

pointwise in x ∈ [0, 1]. It follows therefore by bounded convergence and
integration by parts that

p lim
T→∞

1

T

TX

t=1

Pi,T (t)Pj,T (t) β
0Yt−1Y

0
t−1β

= 2

µ
cos (i.π) cos (j.π)−

Z 1

0

x
d

dx
(cos (i.πx) cos (j.πx)) dx

¶
Σββ

= 2

Z 1

0

(cos (i.πx) cos (j.πx)) dx.Σββ

=

µZ 1

0

cos ((i+ j)πx) dx+

Z 1

0

cos ((i− j) πx) dx
¶
Σββ

=

µ
sin ((i+ j) π)

(i+ j) π
+
sin ((i− j) π)
(i− j)π

¶
Σββ

=

½
Σββ if i = j,
Or,r if i 6= j.

Similarly, for i = 0 and j ≥ 1,

p lim
T→∞

1

T

TX

t=1

Pj,T (t)P0,T (t) β
0Yt−1Y

0
t−1β (73)
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=
√
2

µ
cos (j.π)−

Z 1

0

x
d

dx
(cos (j.πx)) dx

¶
Σββ

=
√
2

Z 1

0

cos (j.πx) dx.Σββ =
√
2
sin (jπ)

jπ
Σββ = Or,r.m

Hence, Σβ⊗Im+1,β⊗Im+1 = Σββ ⊗ Im+1. Moreover, note that Σβ,β⊗Im+1 is the
matrix formed by the first r rows of Σβ⊗Im+1,β⊗Im+1. Thus, Σβ,β⊗Im+1 =
(Σββ, Or,r.m) . The result for ΣX,β⊗Im+1 follows by replacing P0,T (t) β

0Yt−1 in
(73) by Xt.
Finally, since Σ∗ββ is nonsingular, so is Σββ, and therefore Σ

∗
β⊗Im+1,β⊗Im+1

is nonsingular.

Lemma A.4. Let α⊥ be an orthogonal complement of α. Then under As-
sumptions 1-5,

S−100,T =

Ã
(α0⊥Ωα⊥)

−1/2 α0⊥
(α0Ω−1α)−1 α0Ω−1

!0Ã Ik−r Ok−r,r

Or,k−r
³
(α0Ω−1α)

−1
+ Σ∗ββ

´−1
!

×

Ã
(α0⊥Ωα⊥)

−1/2 α0⊥
(α0Ω−1α)

−1
α0Ω−1

!
+ op(1).

Proof : This is a standard result. See for example Johansen (1995).

Lemma A.5. Let ξ be given by (28). Under Assumptions 1-5,

NT = S−100,T − S−100,TS
(m)
01,T ξ

³
ξ0S

(m)
10,TS

−1
00,TS

(m)
01,T ξ

´−1
ξ0S

(m)
10,TS

−1
00,T

= S−100,T − S−100,TS
(0)
01,Tβ

³
β0S

(0)
10,TS

−1
00,TS

(0)
01,Tβ

´−1
β 0S

(0)
10,TS

−1
00,T

= α⊥ (α
0
⊥Ωα⊥)

−1
α0⊥ + op(1)

Proof : Johansen (1995, Lemma 10.1).

Lemma A.6. There exists an orthogonal complement β0⊥ of β such that

β0⊥C(1) = (α
0
⊥Ωα⊥)

−1/2
α0⊥C

0
0.
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Proof : This is a standard result. See Johansen (1995), or Lemma 2 in
Bierens (2007).

Lemma A.7. Let β⊥ be the orthogonal complement of β defined in Lemma
A.6. Let Assumptions 1-5 hold. Then

(α0⊥Ωα⊥)
−1/2

α0⊥S
(m)
01,T (β

0
⊥ ⊗ Im+1)

d→
Z 1

0

(dWk−r)fW 0
k−r,m (74)

and √
T (α0⊥Ωα⊥)

−1/2
α0⊥S

(m)
01,T (β ⊗ Im+1)

d→ Z (75)

jointly, where Z is a (k − r) × r(m + 1) random matrix. In particular, the

k − r columns of Z 0 are independent

Nr(m+1)

∙
0,

µ
Σ∗ββ Or,r.m
Or.m,r Σββ ⊗ Im

¶¸
(76)

distributed. Moreover,

¡
α0Ω−1α

¢−1
α0Ω−1S(m)01,T (β

0
⊥ ⊗ Im+1)

d→M (77)

where M is a r × (k − r)(m+ 1) random matrix, and

¡
α0Ω−1α

¢−1
α0Ω−1S(m)01,T (β ⊗ Im+1) = (Σββ, Or,r.m) + op(1) (78)

Proof : Substituting (59) in the expression for S
(m)
01,T yields

S(m)01,T = α
1

T

TX

t=1

β
0

Yt−1Y
(m)0

t−1 (79)

−α
Ã
1

T

TX

t=1

β
0

Yt−1X
0

t

!Ã
1

T

TX

t=1

XtX
0

t

!−1Ã
1

T

TX

t=1

XtY
(m)0

t−1

!

+C0
1

T

TX

t=1

UtY
(m)0

t−1

−C0
Ã
1

T

TX

t=1

UtX
0

t

!Ã
1

T

TX

t=1

XtX
0

t

!−1Ã
1

T

TX

t=1

XtY
(m)0

t−1

!
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hence

(α0⊥Ωα⊥)
−1/2

α0⊥S
(m)
01,T = (α

0
⊥Ωα⊥)

−1/2
α0⊥C0

1

T

TX

t=1

UtY
(m)0

t−1 (80)

− (α0⊥Ωα⊥)−1/2 α0⊥C0
Ã
1

T

TX

t=1

UtX
0

t

!Ã
1

T

TX

t=1

XtX
0

t

!−1

×

Ã
1

T

TX

t=1

XtY
(m)0

t−1

!
.

Proof of (74). It follows now straightforwardly from (80) and Lemma
A.1 that

(α0⊥Ωα⊥)
−1/2

α0⊥S
(m)
01,T = α0⊥C0

1

T

TX

t=1

UtY
(m)0

t−1 + op(1)

d→ (α0⊥Ωα⊥)
−1/2

α0⊥C0

Z 1

0

(dW )fW 0
m (C(1)⊗ Im+1) ,

hence

(α0⊥Ωα⊥)
−1/2

α0⊥S
(m)
01,T (β

0
⊥ ⊗ Im+1)

d→ (α0⊥Ωα⊥)
−1/2

α0⊥C0

Z 1

0

(dW )fW 0
m

³³
C 00α⊥ (α

0
⊥Ωα⊥)

−1/2
´
⊗ Im+1

´

=

Z 1

0

(dWk−r)fW 0
k−r,m

where Wk−r and fWk−r,m are defined by (34) and (35), respectively.
Proof of (75). It follows from (80),

1√
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UtY
(m)0

t−1 (β ⊗ Im+1) = Op(1),
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TX
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and Lemma A.3 that
√
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α0⊥S

(m)
01,T (β ⊗ Im+1) (81)
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= (α0⊥Ωα⊥)
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α0⊥C0
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− (α0⊥Ωα⊥)−1/2 α0⊥C0
Ã
1√
T

TX

t=1

UtX
0

t

!Ã
1

T

TX

t=1

XtX
0

t

!−1
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tΣ
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XXΣXβ, 0

0
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where ϑt = (α
0
⊥Ωα⊥)

−1/2 α0⊥C0Ut ∼ i.i.d. Nk−r [0, Ik−r] . The result (75) fol-
lows now from McLeish’s (1974) martingale difference central limit theorem.
The joint convergence of (74) and (75) is obvious.
Proof of (76). Let ϑi,t be component i of ϑt. Then

1√
T
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t=1

ϑit

µ
(β 0 ⊗ Im+1)Y (m)t−1 −

µ
Σ0XβΣ

−1
XXXt

Or.m,1

¶¶

converges in distribution to column i of Z 0. The result (76) then follows from
McLeish’s (1974) central limit theorem and Lemma A.3, and the indepen-
dence of the columns of Z 0 follows from the independence of the components
of ϑt.
Proof of (77) and (78). It follows from (79) and Lemmas A.4-A.3 that
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=
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β
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Now (77) follows straightforwardly from (82) and Lemma A.4, and (78) fol-
lows straightforwardly from (82) and Lemma A.3.

Lemma A.8. Under Assumptions 1-5,

¡
β0 ⊗ Im+1, T−1/2β 0⊥ ⊗ Im+1

¢
S
(m)
10,TS

−1
00,TS

(m)
01,T

¡
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!
.

Proof : This result follows straightforwardly from Lemmas A.4 and A.7.

Lemma A.9. Under Assumptions 1-5,

¡
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¢
S
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11,T
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Proof : It follows from Lemmas A.1 and A.3 that

S
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!
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+op(1)

=
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T

TX

t=1

Y
(m)
t−1 Y

(m)0

t−1 +Op(1)

Moreover, it follows from Lemma A.1, part (31), that

1

T
(β0⊥ ⊗ Im+1)S(m)11,T (β

0
⊥ ⊗ Im+1)

d→
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Furthermore, it is not hard to verify from Lemma 2 that

S
(m)
11,T (β ⊗ Im+1) = Op(1)

hence

p lim
T→∞

1√
T
(β0⊥ ⊗ Im+1)S(m)11,T (β ⊗ Im+1) = Ok−r,r

Finally, it follows from Lemma A.3 that
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−
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1
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!

= Σβ⊗Im+1,β⊗Im+1 − Σβ⊗Im+1XΣ−1XXΣX,β⊗Im+1
=

µ
Σ∗ββ Or,r.m
Or.m,r Σββ ⊗ Im

¶

With these results at hand we are now able to prove our main results.
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8.4.2 Proof of Lemma 3

Combining the results of Lemmas A.8 and A.9 it follows from Lemma 2 in
Andersson et al. (1983) that

Lemma A.10. Under Assumptions 1-5 the ordered solutions λ1,T ≥ λ2,T ≥
... ≥ λ(m+1)k,T of generalized eigenvalue problem

det
³
λS

(m)
11,T − S

(m)
10,TS

−1
00,TS

(m)
01,T

´
= 0

converge in distribution to the ordered solutions λ1 ≥ λ2 ≥ ... ≥ λ(m+1)k of
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⎛
⎝
µ
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´−1
Σ∗ββ Or,k(m+1)−r

Ok(m+1)−r,r Ok(m+1)−r,k(m+1)−r

!#
= 0

Obviously, all but r solutions are zero, and the non-zero solutions are the
solutions of eigenvalue problem

det

µ
λΣ∗ββ − Σ∗ββ

³¡
α0Ω−1α

¢−1
+ Σ∗ββ

´−1
Σ∗ββ

¶
= 0

This is the same result as in the standard TI cointegration case!

8.4.3 Proof of Lemma 4

To derive the limiting distribution of T (λr+1,T ,λr+2,T , ...,λk,T )
0 , we follow a

similar procedure as in Johansen (1995, p.159). Let

S (λ) = λS
(m)
11,T − S

(m)
10,TS

−1
00,TS

(m)
01,T

ξ⊥,T =

Ã
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βΣ
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!!

(84)

ρ = T.λ = Op(1)

The reason for the factor
√
T in (84) is to prevent T−1ξ0⊥,TS

(m)
11,T ξ⊥,T from

converging to a singular matrix, because otherwise we cannot apply Lemma
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2 in Andersson et al. (1983), and the reason for the normalization of β by

Σ
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ββ will become clear below. Then
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Combining these results it follows that
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where NT is defined in Lemma A.5. Since by Lemma A.7, S
(m)
01,T ξ⊥,T = Op(1),

it follows now from Lemmas A.5-A.7 that
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Next, observe from Lemma A.9 that
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Moreover, it follows from Lemma A.7 that
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where

Z2 = Z

µ
Or,r.m
Ir.m

¶
(88)

with Z defined in Lemma A.7. It follows now from (76) that the columns of
Z 02 are independently Nr.m [0,Σββ ⊗ Im] distributed. Thus, the columns of

V =
³
Σ
−1/2
ββ ⊗ Im

´
Z 02 (89)

are independent Nr.m [0, Ir.m] distributed, and it follows from (86) and (87)
that
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Lemma 4 now follows from (85), (90), Lemma 2 in Anderson et al. (1983),
and the next lemma:

Lemma A.11. Under Assumptions 1-5, V is independent of Wk−r and
fWk−r,m.

Proof : It follows from (81), (88) and (89) that
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Moreover, note that
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independent, consider the empirical process
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Clearly, eVi ⇒ V i, where V i(.) is a r.m variate standard Wiener process, and
Vi = V i(1). It suffices to show that for all x, y ∈ [0, 1] and i, j = 1, ...., k − r,
E
h
eVi(x)cWj,k−r(y)

i
→ 0. This is trivial for i 6= j. For i = j,
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because by Assumptions 1-3, E
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¤
= 0. This proves the independence

of V and Wk−r. The proof of the independence of V and fWk−r,m is similar.

8.5 Proof of Lemma 5

Let bξ =
³
bξ1, ...,bξr

´
be the ML estimator of ξ, where bξi, i = 1, ..., r, are the

eigenvectors associated with the r largest eigenvalues bλm,i,
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If we normalize bξ as
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then similar to Johansen (1988) we can write
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Similar to Johansen (1988) we can expand T.UT as
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and by Lemma A.3,

√
T (β 0 ⊗ Im+1)

³
bS(m)10,T − bS(m)11,T ξα

0
´
=

1√
T

TX

t=1

(β 0 ⊗ Im+1)Y (m)t−1 U
0
tC

0
0

−
µ
Σ0XβΣ

−1
XX

Or.m,k(p−1)

¶
1√
T

TX

t=1

XtU
0
tC

0
0 + op(1)

Hence,

ξ0⊥,T

³
bS(m)10,T − bS

(m)
11,T ξα

0
´

=

⎛
⎝ (β0⊥ ⊗ Im+1)

³
bS(m)10,T − bS

(m)
11,T ξα

0
´

³
Om.r,k,

√
T
³
Σ
−1/2
ββ β 0 ⊗ Im

´´³
bS(m)10,T − bS

(m)
11,T ξα

0
´
⎞
⎠

=

Ã
1
T

PT
t=1 (β

0
⊥ ⊗ Im+1)Y (m)t−1 U

0
tC

0
0

(Om.r,k, Ir.m)
1√
T

PT
t=1

³
Σ
−1/2
ββ β 0 ⊗ Im+1

´
Y
(m)
t−1 U

0
tC

0
0

!
+ op(1)

+ op(1)

59



Similar to Johansen (1988) it follows now that
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is an r-variate standard Wiener process, which is independent of fWk−r,m.
Moreover, similar to parts (75) and (76) of Lemma A.7 it follows that
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where V α is an r.m×r matrix with independent N [0, 1] distributed elements,

which is also independent of fWk−r,m. However, similar to Lemma A.11 it can

be shown that V α, W α and fWk−r,m are independent. Therefore, it follows
from Lemma A.9 that (38) holds.

Denoting eξ =
³
eξ00,eξ

0

m

´
, where eξ0 is a k × r matrix and eξm a k.m × r

matrix, it follows now from (84), (92) and (38) that jointly,

T
³
bξ0 − β

´
d→ (β⊥, Ok,k.m)

µZ 1

0

fWk−r,m(x)fW 0
k−r,m(x)dx

¶−1

×

Z 1

0

fWk−r,mdW
0
α

¡
α0Ω−1α

¢−1/2

√
Teξm

d→
³
βΣ

−1/2
ββ ⊗ Im

´
V α

¡
α0Ω−1α

¢−1/2
.

8.6 Proof of Theorem 1

Consider the likelihood-ratio statistic fm,T
³
eξ
´
−f0,T

³
eβ
´
,whereeξ = bξ

³
ξ
0bξ
´−1

ξ
0

ξ,

eβ = bβ
³
β
0bβ
´−1

β
0

β and

f0,T (β) = T. ln

⎛
⎝
det

³
β
0

³
S
(0)
11,T − S

(0)
10,TS

−1
00,TS

(0)
01,T

´
β
´

det
³
β 0S

(0)
11,Tβ

´

⎞
⎠ ,
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fm,T (ξ) = T. ln

⎛
⎝
det

³
ξ
0

³
S
(m)
11,T − S

(m)
10,TS

−1
00,TS

(m)
01,T

´
ξ
´

det
³
ξ0S

(m)
11,T ξ

´

⎞
⎠ ,

Recall from Lemma 5 that eξ = ξ + ξ⊥,TUm,T , where Um,T = Op (T
−1) . It

follows from Lemma 7 in Johansen (1988), page 2499 that under the null
hypothesis ξ = (β 0, Or,k.m)

0 ,

fm,T
³
eξ
´
= fm,T (ξ + ξ⊥,TUm,T )

= f0,T (β) + T.trace

½³
β
0

³
S
(0)
11,T − S

(0)
10,TS

−1
00,TS

(0)
01,T

´
β
´−1

×
³
U 0m,T ξ

0
⊥,T

³
S
(m)
11,T − S

(m)
10,TS

−1
00,TS

(m)
01,T

´
ξ⊥,TUT

−U 0m,T ξ0⊥,T
³
S
(m)
11,T − S

(m)
10,TS

−1
00,TS

(m)
01,T

´
ξ

×
³
β
0

³
S
(0)
11,T − S

(0)
10,TS

−1
00,TS

(0)
01,T

´
β
´−1

×ξ
0

³
S
(m)
11,T − S

(m)
10,TS

−1
00,TS

(m)
01,T

´
ξ⊥,TUm,T

´o

−T.trace
½³

β
0

S
(0)
11,Tβ

´−1 ³
U 0T ξ

0
⊥,TS

(m)
11,T ξ⊥,TUm,T

−U 0m,T ξ0⊥,TS(m)11,T ξ
³
β
0

S
(0)
11,Tβ

´−1
ξ
0

S
(m)
11,T ξ⊥,TUm,T

¾

+O
¡
T. kξ⊥,TUm,Tk

3¢

where for a matrix,k.k denotes the maximum absolute value of its elements.
Since

Um,T = Op
¡
T−1

¢
, ξ⊥,TUm,T = Op

¡
T−1/2

¢
,

ξ0⊥,T

³
S(m)11,T − S(m)10,TS

−1
00,TS

(m)
01,T

´
ξ = Op(1)

ξ0⊥,TS
(m)
11,T ξ = Op(1)

and by Johansen (1995, Lemma 10.1),

³
β
0

S
(0)
11,Tβ

´−1
−
³
β
0

³
S
(0)
11,T − S

(0)
10,TS

−1
00,TS

(0)
01,T

´
β
´−1

= −α0Ω−1α+ op(1)
9See also Johansen (1995), equation A.11 on page 224.
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it follows now from (85) and Lemma 5 that

fm,T

³
eξ
´
− f0,T (β)

= trace

∙¡
α0Ω−1α

¢ ¡
T.U 0m,T

¢
ξ0⊥,T

µ
1

T
S
(m)
11,T

¶
ξ⊥,T (T.Um,T )

¸
+ op(1)

d→ trace
¡
V 0αV α

¢

+trace

"µZ 1

0

dW α
fW 0
k−r,m

¶µZ 1

0

fWk−r,m(x)fW 0
k−r,m(x)dx

¶−1

×

µZ 1

0

fWk−r,mdW
0
α

¶¸

and similarly,

f0,T

³
eβ
´
− f0,T (β)

d→ trace

"µZ 1

0

dW αW
0
k−r

¶µZ 1

0

Wk−r(x)W
0
k−r(x)dx

¶−1µZ 1

0

Wk−rdW
0
α

¶#

Johansen (1995, page 192) has shown that, with Vα = (α
0Ω−1α)

−1
α0Ω−1/2W,

trace

"
¡
α0Ω−1α

¢µZ 1

0

dVαW
0
k−r

¶µZ 1

0

Wk−r(x)W
0
k−r(x)dx

¶−1

×

µZ 1

0

Wk−rdV
0

α

¶¸
∼ χ2r(k−r)

In our notation, W α = (α0Ω−1α)
−1/2

α0Ω−1C0W is a r-variate standard

Wiener process, which is distributed as (α0Ω−1α)
1/2
Vα with Vα as in Jo-

hansen(1995). Thus,

trace

"µZ 1

0

dW αW
0
k−r

¶µZ 1

0

Wk−r(x)W
0
k−r(x)dx

¶−1
(93)

×

µZ 1

0

Wk−rdW
0
α

¶¸
∼ χ2r(k−r).

Similarly, it follows that

trace

"µZ 1

0

dW α
fW 0
k−r,m

¶µZ 1

0

fWk−r,m(x)fW 0
k−r,m(x)dx

¶−1
(94)
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×

µZ 1

0

fWk−r,mdW
0
α

¶¸
∼ χ2r(m+1)(k−r)

because W α and fWk−r,m are independent. Then the difference of (94) and
(93) is χ2r.m.(k−r) distributed, which follows from the following easy result:

If Z =

µ
Y
X

¶
∼ Np+q [0,Σ] , where Y ∈ Rp, X ∈ Rq and

Σ =

µ
ΣY Y ΣY X
ΣXY ΣXX

¶
, then Z 0Σ−1Z −X 0Σ−1XXX ∼ χ2p.

Moreover, since V α is a r.m× r matrix with independent N [0, 1] distributed
elements, it follows that

trace
¡
V 0αV α

¢
∼ χ2r.m.r. (95)

Furthermore, since V α and W α are independent, (95) is independent of

(93) and (94), conditional on fWk−r,m. Hence, the likelihood-ratio statistic

T
³
bf1
³
eξ
´
− bf0 (β)

´
− T

³
bf0
³
eβ
´
− bf0 (β)

´
converges in distribution to (95)

plus (94) minus (93), resulting in a χ2mkr distribution.

8.7 Proof of Lemma 6

To prove (46), let b2,i,j(τ ) be element (i, j) of B2 (t/T ) with derivative b
0
2,i,j(τ )

and let Z2,j,t−1 be component j of Z2,t−1. Then by the mean value theorem,

∆ (b2,i,j(t/T )Z2,j,t−1)

= (b2,i,j(t/T )− b2,i,j((t− 1)/T ))Z2,j,t−1 + b2,i,j((t− 1)/T )∆Z2,j,t−1
= b02,i,j((t− λt,i,j,T )/T )Z2,j,t−1/T + b2,i,j((t− 1)/T )∆Z2,j,t−1

for some λt,i,j,T ∈ [0, 1]. Denote by Ψt,T be the matrix with elements Ψi,j,t,T =
b02,i,j((t− λt,i,j,T )/T ). Then

∆ (B2(t/T )Z2,t−1) = Ψt,TZ2,t−1/T +B2(t/T )∆Z2,t−1

= B2(t/T )∆Z2,t−1 +Op
³
1/
√
T
´

(96)

where the latter follows from the fact that Ψt,T is uniformly bounded and
that Z2,t−1/

√
T = Op(1).
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Next, observe from (39) and (96) that

∆Z1,t =

pX

j=1

Dj∆Z1,t−j +∆ (B2 (t/T )Z2,t−1) +
p−1X

j=1

C12,j∆
2Z2,t−j +∆U1,t

=
t−1X

j=0

Πj∆ (B2 ((t− j)/T )Z2,t−1−j) +
∞X

j=t

ΠjB2 (0)∆Z2,t−1−j

+

p−1X

i=1

C12,i

∞X

j=0

Πj∆
2Z2,t−i−j +

∞X

j=0

Πj∆U1,t−j

=
t−1X

j=0

Πj (B2 ((t− j)/T )−B2 (0))∆Z2,t−1−j

+Vt +Op

³
1/
√
T
´

(97)

where

Vt =
∞X

j=0

ΠjB2 (0)∆Z2,t−1−j +
p−1X

i=1

C12,i

∞X

j=0

Πj∆
2Z2,t−i−j +

∞X

j=0

Πj∆U1,t−j

This proves (46).
Finally, it follows from (42) and (97) that
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= ∆Z1,t −
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C11,iVt−i −
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³
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√
T
´

=
t−1X

j=0

Qj (B2 ((t− j)/T )−B2 (0))∆Z2,t−1−j +Rt +Op
³
1/
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T
´
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say, where

Rt = Vt −
p−1X

i=1

C11,iVt−i −
p−1X

j=1

C12,j∆Z2,t−j − U1,t.
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