

Time-varying copula and design life level-based nonstationary risk

analysis of extreme rainfall events

Authors: Pengcheng Xu¹, Dong Wang^{*2}, Vijay P. Singh³, Yuankun Wang², Jichun Wu², Huayu Lu¹, Lachun Wang¹, Jiufu Liu⁴, Jianyun Zhang⁴

¹School of Geographic and Oceanographic Science, Nanjing University,

Nanjing, P.R China

²Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, State Key Laboratory of

Pollution Control and Resource Reuse, Nanjing University, Nanjing, P.R. China

³Department of Biological and Agricultural Engineering, Zachry Department of

Civil Engineering, Texas A & M University, College Station, TX77843, USA; and

National Water Center, UAE University, Al Ain, UAE

⁴Nanjing Hydraulic Research Institute, Nanjing, P.R. China

(*Corresponding author: Dong Wang, <u>wangdong@nju.edu.cn;</u>

Huayu Lu; <u>huayulu@nju.edu.cn</u>)

Key points:

- The time-varying GEV model and copula models are developed for marginal and multivariate frequency analysis, respectively.
- A design life level-based risk analysis is implemented for hydraulic engineering practice.
- A systematic risk analysis incorporating nonstationarity is emphasized in comparison with stationary models.

Abstract: Due to global climate change and urbanization, more attention has been paid to decipher the nonstationary multivariate risk analysis from the perspective of probability distribution establishment. Because of the climate change, the exceedance probability belonging to a certain extreme rainfall event would not be time invariant any more, which impedes the widely-used return period method for the usual hydrological and hydraulic engineering practice, hence calling for a time dependent method. In this study, a multivariate nonstationary risk analysis of annual extreme rainfall events, extracted from daily precipitation data observed at six meteorological stations in Haihe River basin, China, was done in three phases: (1) Several statistical tests, such as Ljung-Box test, and univariate and multivariate Mann-Kendall and Pettist tests were applied to both the marginal distributions and the dependence structures to decipher different forms of nonstationarity; (2) Time-dependent Archimedean and elliptical copulas combined with the Generalized Extreme Value (GEV) distribution were adopted to model the distribution structure from marginal and dependence angles; (3) A design life level-based (DLL-based) risk analysis associated with Kendall's joint return period (JRPken) and AND's joint return period (JRPand) methods was done to compare stationary and nonstationary models. Results showed DLL-based risk analysis through the JRPken method exhibited more sensitivity to the nonstationarity of marginal and bivariate distribution models than that through the JRPand method.

Key words: multivariate risk analysis; time-varying copula; design life level; nonstationarity; Kendall's joint return period

1 1. Introduction

2	Due to climate change and increasing urbanization, heavy rains-induced floods
3	have occurred more frequently all over the world in recent decades, which is becoming
4	a major deterrent to the sustainable development of social economy (Mishra and Singh,
5	2009; Donat et al., 2016; Ali and Mishra, 2018). Various kinds of social activities, such
6	as infrastructure constructions, agricultural irrigation and ecological maintenance
7	would be influenced by hydrometeorological extreme events. A systematic risk analysis
8	of these extreme events would provide sufficient strategies for decision makers.

A multitude of studies have addressed the effect of climate change and 9 10 urbanization on hydrological design to alleviate associated risks. Traditional 11 hydrological frequency analysis or risk analysis is based on the stationary assumption, 12 which recommends that environmental impact indexes, such as climatic factors and land use rate, have a constant mechanism or pattern that affects hydrological variables 13 14 all the time (Madsen et al., 2017; Milly et al., 2015). The feasibility of hydrological 15 frequency and risk analysis based on stationary assumptions is being challenged 16 because of the multiple effects of climate change, urbanization, and heat island effects. 17 Accordingly, water authorities should amend the present planning, design and management strategies to develop nonstationary distribution models based on the 18 19 signals of climate change. Therefore, it is urgent to develop an efficient and systematic 20 risk analysis approach from time dependent side to serve for hydraulic design of 21 hydrological infrastructures to cope with the effect of climate change.

22	In recent years, nonstationary hydrological frequency analysis has received a great
23	deal of attention because of increasing attention to climate change (Chen and Sun, 2017;
24	Call et al., 2017; Ghanbari et al. 2019). The time-varying moment approach is widely
25	used to involve time variant probabilistic parameters for mimicking the changing
26	behavior of extreme hydrometeorological variables. Nonstationarity modeling of
27	probability distribution has been conducted for univariate cases in recent years (Zhang
28	et al., 2015; Ganguli and Coulibaly, 2017; Agilan and Umamahesh, 2018).
29	Du et al. (2015) modelled nonstationary low-flow series in Weihe River basin,
30	China, based on the Generalized Additive Models in Location, Scale and Shape
31	(GAMLSS) framework. Results showed that inappropriately estimated statistical
32	parameters would lead to the overstatement of risk corresponding to a low-flow event.
33	Gu et al. (2016) incorporated time, climate indices, precipitation, and temperature into
34	the GAMLSS model to detect nonstationarity in flood frequency. For the univariate

the GAMLSS model to detect nonstationarity in flood frequency. For the univariate case, nonstationary risk analysis, based on the time-varying moment approach, can be decomposed into four steps: (1) Descriptive and exploratory monitoring of hydrological sequences and monitoring of outliers; (2) implementation of the stationarity hypothesis to verify the nonstationarity of hydrological series; (3) development of a hydrological frequency analysis model and estimation of model parameters using different covariates;

40 and (4) risk assessment based on the selected frequency model.

41 The above studies were conducted under nonstationary conditions for univariate 42 cases, while it is known that natural hydrometeorological extreme events are

43	multivariate, characterized by multi-attribute properties which can be statistically
44	correlated. For instance, floods are characterized by volume, peak, and duration, while
45	extreme rainfall events have the attributes of duration, intensity, total amount. As a
46	result, univariate nonstationary risk analysis cannot fully encompass the dependence
47	structure between hydrological attributes. It is therefore desirable to develop a
48	multivariate model to simulate the probabilistic behavior of two or more properties.
49	Copulas, a useful tool for modelling the structure of dependence between hydrological
50	variables regardless of the types of marginal distributions, have been widely used for
51	multivariate frequency analysis of rainfall extreme events (Zhang and Singh, 2007; Kao
52	and Govindaraju, 2008; Rauf and Zeephongsekul, 2014; Vandenberghe et al., 2010);
53	droughts (De Michele et al., 2013; Serinaldi et al., 2009; Shiau, 2006; Song and Singh,
54	2010; Wong et al., 2010); floods (Grimaldi and Serinaldi, 2006; Zhang and Singh, 2006).
55	However, these studies assumed a time invariant dependence pattern, ignoring the
56	influence of climate change and hence did not consider the impact of nonstationarity
57	on the dependence structure.

Recently, studies on multivariate distribution fitting have addressed the superiority of dynamic copula-based method to model the nonstationary dependence structure, which are generally caused by complex environment and rapid urbanization (Milly et al., 2015). Former studies have detected nonstationarity in dependence structures (Liu et al. 2017; Assia et al., 2014; Yilmaz and Perera, 2014). Chebana et al. (2013) argued that it was necessary to determine a multivariate distribution model quantifying the

64	time-varying dependence structure of various kinds of hydrological variables. Bender
65	et al. (2014) used a bivariate nonstationary multivariate model with a 50-year moving
66	time window to investigate the time-dependent behavior in bivariate case. Their results
67	showed that the joint probability varied significantly over time for different non-
68	stationary models. Jiang et al. (2015) also did a multivariate risk analysis using the
69	time-varying copula method incorporating time and reservoir index as covariates for
70	low-flow series extracted from two neighboring observed stations.

71 Traditional solutions of hydrological extreme events involve return period-based 72 methods, which are usually calculated as the inverse of annual exceedance probability 73 for a given magnitude under stationary conditions in a univariate case. In a multivariate 74 case, the univariate return period can be extended to joint return periods of hydrological 75 variables. There are three kinds of joint return period methods to quantify the 76 exceedance probability of a multivariate extreme event: the OR method that at least one 77 extreme attribute is larger than the specified threshold; the AND method that all the 78 attributes are larger than the specified threshold; and the Kendall method that the 79 univariate value derived from the Kendall distribution function according to a specified 80 value (Jiang et al., 2015; Salvadori and Michele, 2010; Salvadori et al., 2013). While 81 non-stationary distribution models provide flexibility to analyze the variability of a 82 hydrological variable, they are also incongruent with many of the traditional metrics 83 used in water resources planning. For example, the development of drainage standards 84 are vulnerable to the standard of extreme rainfall return period, which means drainage

85	facilities have been designed to withstand the extreme rainfall event of a specified
86	return period. The multivariate hydrologic and hydraulic design can be influenced by
87	the existence of nonstationarity in both the marginal and joint distributions. The
88	exceedance probability of a given extreme event would be different from year to year,
89	leading to a nonconstant and non-unique value of the conventional return period. Thus,
90	the notion of static return period of an extreme rainfall event (e.g., 100-year extreme
91	rainfall event, 200-year extreme rainfall event) is no longer reliable for hydraulic design
92	under nonstationary conditions (Salas and Obeysekera, 2014; Yan et al., 2017). As a
93	result, Rootzén and Katz (2013) first mentioned the concept of design life level (DLL)
94	to quantify the risk of a given extreme rainfall magnitude over the hydrological
95	structure's life time (Note that following the idea of Rootzén and Katz (2013) we regard
96	the term hydrological risk as the possibility of a certain extreme event occurring and
97	not as a quantification of expected losses). It is a logical extension to handle the
98	nonstationarity of the concept of "risk of failure" (Jakob, 2013), which is more
99	frequently used to quantify the risk of hydrologic extremes under stationarity. Read and
100	Vogel (2015) extended the DLL method to average annual reliability (AAR) method to
101	estimate the hydrologic design value considering nonstationarity. In general, these risk-
102	based methods can provide similar results of hydraulic design for hydrological
103	infrastucture (Yan et al., 2017). However, the cases of multivariate hydrologic designs,
104	especially under nonstationary conditions using the time-varying copula, and design
105	life level-based risk methods have great potentiality in future studies.

106	Therefore, the objective of this study is to do risk analysis of multivariate extreme
107	rainfall events involving the following steps. First, a series of statistical tests, such as
108	Ljung-Box test, and univariate and multivariate Mann-Kendall and Pettist tests are used
109	for both the marginal distributions and the dependence structures to determine different
110	forms of nonstationarity (sudden jump, periodicity, and trend). Second, a nonstationary
111	multivariate probability distribution is developed using a time-varying GEV and
112	copula-based model, which can encompass the nonstationarities probably existed in
113	marginal and joint distributions. Finally, design life level-based risk analysis is
114	extended to multivariate cases through Kendall's joint return period and AND's joint
115	return period methods. In this paper, we investigated two kinds of extreme rainfall
116	attributes: (1) annual extreme rainfall volume (Ps: Annual total precipitation of the
117	daily precipitation more than the 95th percentile threshold) and intensity (Im: Annual
118	maximum daily precipitation), through the nonstationary multivariate risk analysis
119	method. The remainder of this paper is organized as follows. The next section presents
120	the methodology adopted in this study. Section 3 discusses the results of proposed
121	model applied to Haihe River basin, China. Section 4 presents the final conclusion
122	through the proposed model.

123 2. Methodology

124 Copulas are tools to build multivariate distribution models of dependence
125 structures between random variables regardless of their marginal distribution types.
126 Detailed information about copulas can be found in Nelson (2007). The present copula-

127	based methods to solve the multivariate risk analysis mostly adopt static parameters for
128	whether the marginal distribution or joint distribution. The changing climate has led to
129	nonstationarity of individual hydrological series or the dependence between
130	hydrological variables. To realize this situation, a time-varying copula-based model can
131	describe the time dependent characteristics for dependence structure of hydrological
132	variables, as inspired by Patton (2006) from the financial field.
133	Let (x, y) represent a hydrological pair. The joint probability distribution of
134	multivariables through time-varying copula model can then be presented as:
135	$F_{X,Y}(x,y) = C[F_X(x \theta_X^t), F_Y(y \theta_Y^t) \theta_C^t] = C(u,v \theta_C^t) $ (1)
136	where $C(\cdot)$ denotes the copula function; $F_{X,Y}(\cdot)$ denotes the joint function; $F_X(\cdot)$
137	and $F_Y(\cdot)$ represent the marginal functions of hydrological variable (<i>Ps</i> and <i>Im</i> in this
138	study); θ_X^t and θ_Y^t represent the time-varying marginal distribution parameters; θ_C^t is
139	the dynamic copula parameter which is a linear function of time; and u and v are the
140	marginal probabilities in the time-varying copula in the hypercube unit.
141	In the framework of multivariate risk analysis (Figure 1), the property of
142	nonstationarity can be determined not only by one or two marginal variables but also
143	in the dependence structure or vice versa. It is however possible that the nonstationary
144	behavior may exist in both the marginal and joint distribution function. To determine
145	the nonstationarity (mutation, cyclicity and trend) in the synthetized extreme rainfall
146	attribute series, statistical tests, such as Ljung-Box test, and univariate and multivariate
147	Mann-Kendall and Pettist tests are used for both the marginals and the dependence

- 148 structure. Details of these tests can be found in the references due to (Serinaldi and
- 149 Kilsby, 2016; Chebana et al., 2013; Rizzo and Székely, 2010).

As shown in **Figure 1**, the time-varying copula-based risk analysis model can be decomposed into three main phases: (1) detection of nonstationarity in the marginal variables and dependence structure through a series of nonparametric tests; (2) estimation of the time-varying parameter for the marginal and joint probabilty distributions; and (3) joint return period and risk analysis by design life level-based risk methodology from the perspectives of Kendall's and AND's return period methods (detailed information can be found in Section 2.3).

- 157
- 158 Insert Figure 1 here.
- 159
- 160 2.1. Time-varying marginal distribution

161 In this part, the Generalized Extreme Value (GEV) distribution was used to 162 establish time-varying marginal distribution model for the extreme rainfall attributes 163 because it is a good aggregation of the Gumbel, Fréchet, and Weibull distributions and 164 is especially suitable for extreme data sets (Cheng and AghaKouchak, 2014). Let F(x)165 be the cumulative probability distribution function (CDF) of the quantity of interest, Ps 166 or Im, in this study. The GEV distribution consists of three control parameters, the 167 location, the scale, and the shape, which describe mean value of the sample series, 168 amplitude near the location, and the tail of the distribution, respectively. The cumulative

169 distribution of GEV model under stationary conditions can be expressed as follows:

170
$$F(x) = \begin{cases} \exp\left\{-\left[1 + \kappa \left(\frac{x-\mu}{\sigma}\right)\right]_{+}^{-\frac{1}{\kappa}}\right\} & \text{if } \kappa \neq 0\\ \exp\left\{-\exp\left(-\frac{x-\mu}{\sigma}\right)_{+}\right\} & \text{if } \kappa \to 0 \end{cases}$$
(2)

- 171 where $z_{+}=\max\{y,0\}$ and
- 172 $x \in [(\mu \sigma)/\kappa, +\infty)$ when $\kappa > 0$,
- 173 $x \in (-\infty, (\mu \sigma)/\kappa]$ when $\kappa < 0$, and
- 174 $x \in (-\infty, +\infty)$ when $\kappa = 0$.

175 where μ denotes the location parameter, σ is the scale parameter and κ is the shape parameter. In this study, two kinds of nonstationary GEV models (GEVns-1 and 176 177 GEVns-2) are developed with the shape parameter being constant. It should be 178 emphasized that modelling the time variance in shape parameter needs long-term 179 observations, which are often not available in practice (Cheng et al., 2014). GEVns-1 180 model considers the time-varying characteristic of the location parameter only, while 181 GEVns-2 model incorporates the time varying features of both location and scale 182 parameter. These two nonstationary models regard significant trends as a linear function 183 of time (in years): 184 $\mu(t) = \mu_o + \mu_1 t$ (3) 185

186 $\sigma(t) = \exp(\sigma_o + \sigma_1 t) \tag{4}$

187 where the scale parameter is always positive throughout, it is usually calculated on the188 basis of a log link function.

189 In this study, the Bayesian method through the Markov chain Monte Carlo

190	(MCMC) approach (Cheng et al., 2014) was used to estimate the nonstationary GEV
191	model. Simultaneously, the Deviance Information Criterion (DIC) and Bayes factors
192	(BF) for different stationary and nonstationary models were calculated to select the best
193	fitted marginal model. The minimum DIC value yielded the best performance, while
194	BF smaller than 1 indicated the best fitting.
195	2.2. Time-varying Copula
196	To model the dependence structure between annual total precipitation (Ps) and
197	annual daily maximum precipitation (Im) under nonstationary conditions, a time-
198	varying copula was developed. In multivariate hydrological frequency analysis, two
199	kinds of copulas, named elliptical and Archimedean copulas are widely used in
200	hydrological applications. In this study, time-varying elliptical copulas, Student t (St)
201	copula, as well as the widely-used time-varying Archimedean copulas, time-varying
202	Clayton, Gumbel and Frank copula, were selected as candidate models to simulate the
203	time-varying dependence between two extreme rainfall attributes. The Gaussian copula
204	was not used in this study because of its deficiency in describing dependencies of
205	extremes (Renard and Lang, 2007).
206	The copula parameter θ_c^t can be assumed as a linear function of the time ("year")
207	in this study) and can be defined as follows:
208	$\theta_{C}^{t} = \begin{cases} \exp(\beta_{o} + \beta_{1}t) & \theta_{c} > 0\\ \beta_{o} + \beta_{1}t & \theta_{c} \in R \end{cases} $ (5)

209 where $\theta_c > 0$ denotes the Student t (St), Clayton and Gumbel copula, while $\theta_c \in R$ 210 represents the Frank copula.

211	The maximum pseudo-likelihood (MPL) method was adopted to estimate the time-
212	varying copula parameter (Genest et al., 1995). The Corrected Akaike Information
213	Criterion (AICc; Hurvich and Tsai, 1989) was employed to make a goodness-of-fit,
214	which is a modified version of AIC for small samples. Obviously, the presence of
215	nonstationarity in the copula parameter was determined by comparison of the AICc
216	value.

217 2.3. Joint return period and risk analysis based on KEN's and AND's methods

For hydrological management, engineering administrators focus more on the return period and risk of failure during the design life of hydraulic structures (Condon et al., 2015). Inspired by design life level (DLL) method to present the risk proposed by Rootzén and Katzs (2013), we would like to expand the DLL-based risk to the multivariate case.

Let F(X) be the cumulative probability distribution function (CDF) of the quantity of interest, in this study, maximum daily precipitation in a year (*Im*). Conventionally, the *T*-year return level for certain daily precipitation x_T is equal to the (1-1/*T*)-th quantile of the marginal distribution of *Im* (The probability distribution is the same for all years in a stationary situation.). Equivalently, on average, one out of *T* years has at least one daily rainfall that exceeds x_T , so that $T(1 - F(x_T)) = 1$ (Serinaldi and Kilsby, 2015), and the probability of annual maximum daily rainfall exceeds x_T is 1/*T*.

230 Then, the hydrological risk *R* (i.e. risk of failure) of a certain hydraulic structure

for a design life of *n* years can be expressed as the probability that at least one rainfall

extreme exceeds the design level x_T in a period of *n* years. Under stationary conditions,

233 the probability of annual maximum daily rainfall exceeding x_T in every year is the 234 same as 1/T. In a univariate context, hydrological stationary risk can be defined as 235 (Fernandez and Salas, 1999; Serinaldi and Kilsby, 2015):

236
$$R_s = 1 - F(x_T)^n = 1 - (1 - 1/T)^n$$
 (6)

237 Considering time-varying exceedance probabilities, the probability of annual 238 maximum daily rainfall exceeding x_T in each year is different. So here we use $F_t(x_T)$ 239 to represent the probability of daily rainfall exceeding design level x_T in the *t*-th year. 240 So the design life level-based nonstationary risk for the univariate case is:

241
$$R_{ns} = 1 - \prod_{t=1}^{n} F_t(x_T)$$
 (7)

242 From the perspective of bivariate case, the joint return period (JRP) of extreme 243 rainfall events can be calculated through three methods in a stationary situation 244 (Salvadori et al., 2011). They are AND method corresponding to the probability of 245 $P(X \ge x \cap Y \ge y)$, OR method corresponding to $P(X \ge x \cup Y \ge y)$, and Kendall 246 return period method (KEN). Details of the Kendall return period can be found in 247 Salvadori and De Michele (2004). Since the AND method is widely used and the 248 Kendall method is of great potentiality, we expanded the AND method and the Kendall 249 return period method to the nonstationary case here. Let JRP_{s-and} and JRP_{s-ken} 250 represent the three types of return period in the stationary case; they can be calculated 251 as follows:

252
$$JRP_{s-and} = \frac{1}{P((X \ge x \cap Y \ge y))} = \frac{1}{1 - F_X(x) - F_Y(y) + C[F_X(x), F_Y(y)]}$$
 (8)

253
$$JRP_{s-ken} = \frac{1}{P\{C[F_X(x), F_Y(y)] \ge p_{ken}\}} = \frac{1}{1 - K_c(p_{ken})}$$
 (9)

254 where $K_c(\cdot)$ is the Kendall distribution function which can be defined as:

255
$$K_c(p_{ken}) = P\{C[F_X(x), F_Y(y)] \le p_{ken}\}$$
 (10)

Here, $F_X(x)$ and $F_Y(y)$ are the marginal cumulative probability distribution functions (CDF) for *Ps* and *Im*, respectively, while $C[F_X(x), F_Y(y)]$ is the bivariate copula function connecting these two extreme attributes. p_{ken} is just the critical probability level corresponding to $K_c(p_{ken})$.

262
$$JRP_{ns-and} = \frac{1}{1 - F_X(x|\theta_X^t) - F_Y(y|\theta_Y^t) + C[F_X(x), F_Y(y)|\theta_C^t]}$$
(11)

263
$$JRP_{ns-ken} = \frac{1}{1 - K_c^t(p_{ken})}$$
 (12)

where θ_X^t , θ_Y^t and θ_C^t represent the time variant parameters of the marginal and copula distributions; and $K_c^t(p_{ken})$ is the time-varying Kendall distribution function corresponding to the time-varying copula.

267 Multivariate extreme value analysis should be focused on the most likely extreme 268 event with the largest copula density. The most likely event at the T_0 -year level can be 269 calculated as (Graler et al., 2013):

270
$$(u_m, v_m) = \underset{T_0}{\operatorname{argmax}} c(u, v)$$
 (13)

The most likely design combinations (x_m, y_m) can be computed according to the inverse of marginal cumulative distribution function:

273
$$x_m = F_X^{-1}(u_m)$$
 and $y_m = F_Y^{-1}(v_m)$ (14)

where *u*, *v* are the marginal distribution functions of *X* and *Y*. Let two pairs of extreme rainfall attributes $(x_{m_1}, y_{m_1})_{T_0^{and}}$ and $(x_{m_2}, y_{m_2})_{T_0^{ken}}$ be the most likely design combinations of *Ps* and *Im* at the *T*₀-year level for *JRP_{s-and}* and *JRP_{s-ken}*. Similar to the nonstationary risk calculation in the univariate case, the hydrological nonstationary DLL-based risk in the bivariate case can be calculated from two circumstances:

280
$$R_{ns-and} = 1 - \prod_{t=1}^{n} \{F_X(x_{m_1}|\theta_X^t) + F_Y(y_{m_1}|\theta_Y^t) - C[F_X(x_{m_1}), F_Y(y_{m_1})|\theta_C^t]\}$$
(15)

281
$$R_{ns-ken} = 1 - \prod_{t=1}^{n} K_c^t(p_{ken})_{(x_{m_2}, y_{m_2})}$$
(16)

where R_{ns-and} , R_{ns-ken} indicate the nonstationary risk for a design life level of *n* years in the bivariate case corresponding to two types of joint return period. The stationary risk can be calculated in the same way with marginal and copula distribution parameters being constant.

In this study, comparison of hydrological risk for the bivariate case between stationary and nonstationary models can be quantified by the risk changing rate $\Delta R_{T_0}^n$ which can be calculated as:

289
$$\Delta R_{T_0}^n = \frac{1}{n} \sum_{i=1}^n \frac{|R_i^{ns} - R_i^s|}{R_i^s}$$
(17)

where R_i^{ns} and R_i^s are nonstationary risk and stationary risk of a certain hydraulic structure for a design life of *i* years. $\Delta R_{T_0}^n$ helps quantify the difference in risk between stationary and nonstationary models.

293 **3.** Application

294 3.1. Study area and data collection

295 The area selected for the study is Haihe River basin, China, which belongs to the 296 temperate East Asian monsoon climate zone (Figure 2). In summer, heavy rains take 297 place and temperature and humidity are high caused by marine air masses. The annual 298 rainfall has a great spatial and temporal variability across the basin due to the inconsistency of intensity, retreat time and influence of the Pacific subtropical high over 299 300 the years. Natural disasters, such as urban floods and mountain torrents induced by 301 extreme rainfall events in the basin have caused huge losses to the social economy and 302 people's lives and property, and have been highly valued by decision-making authorities. 303 As a result, time-varying copula-based multivariate risk analysis of this basin is 304 conducive to providing reliable strategies and alternative options for water resources 305 risk-based decision making.

306 Daily rainfall data from Haihe River basin observed at Wutaishan, Fengning,
307 Zhangjiakou, Beijing, Tianjin, and Nangon were analyzed for the proposed
308 nonstationary model. Detailed information on these six gauges is presented in Table 1.
309 According to various data ranges shown in **Table 1**, the rainfall series from 1958-2017
310 was selected as the final version.

311

312 Insert Figure 2 Here.

313 Insert **Table 1** Here.

18

314

315 4.2. Preprocessing Analysis

316 Before developing a nonstationary frequency analysis model, it is essential to 317 examine nonstationarities of extreme precipitation attributes (Ps and Im) as well as the 318 structure of dependence between these two attributes. A series of statistical tests (i.e. 319 Ljung-Box test, univariate and multivariate Man-Kendall tests, and univariate and 320 multivariate Pettitt tests) were performed to detect the nonstationarity in extreme 321 precipitation time series. Trends in the time series can be evaluated using various tests 322 (Lima et al., 2016; Yilmaz et al., 2017; Sarhadi and Soulis, 2017). Table 2 shows results 323 of tests detecting nonstationarity, while Figure 3 shows the spatial distribution of trends 324 and change points for two attributes of rainfall extremes (Ps and Im) as well as the 325 dependence structure between them. First, time series of these two rainfall extremes (Ps 326 and Im) for all 6 stations can pass the Ljung-Box test with 20 lags (p.value>0.05 in 327 Table 2). Extreme observations are mutually independent with no serial autocorrelation, 328 so it is appropriate to apply the standardized Mann-Kendall test to evaluate the 329 statistical significance of trend without any modification (Serinaldi and Kilsby, 2016). As shown in Figure 3, concurrences of univariate and bivariate trends, the 330 331 nonstationarities in rainfall extremes can be detected at several stations (stations 2, 3, 332 and 4). Station 1 exhibits a significant nonstationarity for extreme attribute Ps, while 333 extreme attribute Im and dependence structure show an insignificant decreasing trend. 334 On the other hand, stations 5 and 6 show a weak decreasing trend. The above tests

335	totally recommend the presence of nonstationarities in extreme series as well as the
336	dependence pattern across three out of 6 sites. According to Porporato and Ridolfi
337	(1998), an insignificant trend should not be ignored because of its effect on the results
338	of hydrological risk analysis. Hence, even if precipitation extremes at a certain station
339	may recommend statistically weak trends, both the nonstationary and stationary models
340	are established for each station in the following section.
341	
342	Insert Table 2 Here.
343	Insert Figure 3 Here.
344	
345	4.3. Marginal distribution fitting
346	The nonstationarity can appear either in univariate variables or in dependence
347	structure in the multivariate framework (Bender et al., 2014). Results of trend and
348	change point tests performed in Section 4.1 pointed out the necessity to take the
349	nonstationarity of marginal distributions into consideration. In this study, the
350	Generalized Extreme Value (GEV) distribution which is a good hybrid of the Gumbel,

351 Fréchet, and Weibull distributions fits the block or annual maximum time series better

- 352 (Cheng et al., 2014). **Table 3(a)-(b)** shows performances of nonstationary vs. stationary
- models for these six stations. The location parameter (μ) and scale parameter (σ) are regarded as time variant, while the shape parameter κ is time invariant; it should be
- 355 noted that modeling of time-varying κ requires a sufficiently long record of

356	observations (Cheng et al., 2014). Despite the exception of Im for station 4, the shape
357	parameter κ for most fitted models was in the interval of [-0.3,0.3] which is in
358	accordance with the previous study (Martins and Stedinger, 2000; Ganguli and
359	Coulibaly, 2017). The best fitted model was selected by performing the minimum <i>DIC</i>
360	criterion combined with the Bayes factor (BF) test. For instance, the GEV _{ns} -2 model
361	(nonstationary GEV model with time varying location and scale parameters) was the
362	best selected model for the extreme attribute Im extracted from station 1. That was
363	because the BF values of $\text{GEV}_{ns}\mbox{-}2$ and $\text{GEV}_{ns}\mbox{-}1$ were both smaller than 1 which meant
364	that these two nonstationary models passed the BF test. Then, the best fitted
365	nonstationary model GEV_{ns} -2 for <i>Im</i> of station 1 was achieved following the <i>DIC</i> test.
366	Similarly, the best fitted marginal distribution of two extreme rainfall attributes for all
367	these six stations was selected. Except for stations 4 and 5, the best distributions for the
368	other stations were parallel for nonstationarity tests shown in Section 4.1.

369

370 Insert **Table 3(a)-(b)** here.

371

372 4.4. Copula fitting

Elliptical and Archimedean (Clayton, Gumbel, and Frank) copulas have been
widely applied in hydrological practice. In this study, time-varying elliptical copulas,
Student t (St) copula, as well as Clayton, Gumbel and Frank copulas were selected as
alternative models to simulate the dependence structures of extreme attributes. The

377	Gaussian copula was not used in this study because of its deficiency in describing
378	dependencies of extremes (Renard and Lang, 2007). Once a marginal distribution was
379	estimated based on test statistics, the dependence structure for Im and Ps was described
380	by the time-varying or time invariant copula functions. Table 4(a)-(b) illustrates the
381	results of best fitted copula, based on the minimum AICc and maximum log-likelihood
382	value (LL). The time-varying Student t (St) copula exhibited the best performance
383	among the eight candidate copulas (four stationary copulas as well as the corresponding
384	nonstationary copulas) for stations 1, 2, 3, 4, and 6, while the stationary St copula was
385	the best one for station 5 which meant that results of dependence structure modelling
386	for station 5 did not indicate any nonstationarity signal which was reasonable, according
387	to multivariate MK and Pettit tests of station 5 (Table 2). Contrary to station 5, the
388	nonstationary St copula fitted better than did the stationary model for stations 1 and 6
389	which was not in accordance with the nonstationarity tests for these two stations (Table
390	2). Based on the above results, an insignificant trend or weak change point would lead
391	to a nonstationary probability function of dependence patterns to some extent
392	(Porporato and Ridolfi, 1998) which should be dealt with cautiously.
393	With the best fitted marginal distributions and the best copula, the quantiles of

With the best fitted marginal distributions and the best copula, the quantiles of extreme rainfall attributes (*Ps* and *Im*) were derived from the pseudo-observations ranging from 0 to 1 in order to provide a benchmark for return period and risk analysis for hydrological and hydraulic design. The method of analysis is presented in the following section.

398

399	Insert Table 4(a)-(b) here

400

401 *4.5. Nonstationary return period and risk analysis for univariate and bivariate cases*

402 (1) Univariate return period: Once parameters of the best fitted models for 403 univariate and bivariate cases have been estimated, the extreme rainfall quantiles for certain return levels (T) can be simulated. In this section, return period and risk analysis 404 was performed by comparing stationary and nonstationary models. The estimated 405 406 rainfall quantiles (Ps and Im) versus time in the univariate case are shown in Figures 4 407 for the six stations of Haihe River. Im and Ps for stations 4 and 6 are not provided, 408 because the best marginal model for the extreme attributes of these two stations was the 409 stationary GEV model (Table 3). In the case of Ps for station 1 shown in Figure 3, a 100-year Ps quantile under stationary circumstances (GEVs model with dashed red line 410 411 in Figure 3) (355 mm) corresponded to a 35-year Ps under nonstationary conditions 412 (GEV_{ns-2}) in the year 1960 and a 60-year Ps in the year 1970. In other words, an 413 exceedance probability of 0.01 increased to 0.028 and 0.017. On the other hand, the 414 return period associated with a given quantile decreased from 1960 to 2020 for Im of 415 station 4 and Ps of station 5, while the return period increased for extreme attributes of 416 other stations. Interestingly, the temporal variability between different stations 417 corresponding to the best selected nonstationary model exhibited a significant 418 difference. For example, the nonstationary GEV_{ns-2} model fitted to Ps of stations 1, 2,

419	3, and 5 showed a significant upward or downward trend of extreme quantiles with
420	years. Compared to the temporal variability, the attributes of stations 4 and 6 with
421	$\mathrm{GEV}_{ns\mathchar`l}$ model showed a weaker trend which demonstrated the time variability of scale
422	parameter of the GEV distribution. Finally, it is noteworthy that nonstationary isolines
423	were over stationary isolines for <i>Ps</i> of stations 1 and 5 as well as <i>Im</i> of station 3 (marked
424	in blue star in Figure 4) which meant that the stationary model would underestimate the
425	risk for a certain return period.
426	Insert Figure 3 here.
427	Insert Figure 4 here.
428	
429	(2) Joint return period (JRP) based on AND and KEN method:
430	After the nonstationary copula and GEV distribution models were selected
431	according to several goodness-of-fit tests, the design values characterizing annual
432	extreme rainfall events were determined through Kendall's (JRPken) or AND's joint
433	return period (JRP_{and}) expressed by Equations (8)-(10). Although the copula model for
434	station 5 was stationary, it was regarded as a nonstationary model because of the
435	marginal nonstationary GEV_{ns-2} model for <i>Ps</i> or <i>Im</i> , which existed at other stations.
436	Since events with lower exceedance probabilities are of interest for hydrological
437	practice and the joint return period of 50-year level is able to minimize the uncertainties
438	of extrapolation. In this study we focused typically on events with a joint return period
439	of JRP_{ken} (JRP_{and})=50 which means the exceedance probability was equal to 0.02.

440	Figure 5 shows isolines of Kendall return period and AND-based return period at the
441	50-year level for both stationary and nonstationary models. Since the number of isolines
442	of the nonstationary model were 60 (sample size) which might show certain
443	overlapping areas in the isoline map, four isolines corresponding to the year 1960, 1980,
444	2000, and 2020 are presented for simplicity. For comparison, the $JRP_{ken}(JRP_{and})$ -
445	isolines derived from the corresponding stationary model, which was composed of
446	stationary GEV and stationary copula model, are also shown. Observations belonging
447	to each station are also presented. Although the plots for all the years are not shown,
448	the variability of design quantiles over time showed the nonstationary behavior of the
449	dependence structure.

450 From Figure 5, JRP_{ken} was larger than JRP_{and} for the dependence structure of 451 the same extreme rainfall attributes, which was caused by Kendall's return period 452 method of generating the same dangerous region, regardless of different realizations 453 (Salvadori et al. 2011). Focusing on JRPken and JRPand for station 1, the design 454 values of Ps varied over time, while the design values of Im did not vary with time. From the horizontal direction, both the JRP_{ken}-isolines and JRP_{and}-isolines exhibited 455 456 a left-moving trend, recommending a descending trend for Ps. The maximum Ps values for the year 1960 were measured as 341.6 mm and 371.5 mm corresponding to JRP_{ken} 457 458 and JRPand=50, respectively, while 246.4 mm and 264.8 mm is calculated as the 459 minimum marginal values. The gap between them reached 100 mm. On the other hand, none of the JRP_{ken} and JRP_{and} -isolines exhibited a variation trend of Im values for 460

461	station 1 from the vertical perspective, which can be attributed to the stationary GEV
462	model for Im of station 1 (Table 3). Due to sudden changes in the magnitudes of
463	marginal values, the Kendall isolines also crossed each other. In a similar way, the
464	nonstationary behavior of the variables was detected from the variation of design values
465	of extreme attributes at the other five stations compared to the isolines derived from the
466	stationary model (denoted as black line). Figure 5). It is noteworthy that the stationary
467	copula model for station 5 also exhibited the variation of design values derived from
468	both JRP_{ken} and JRP_{and} . A weak variation of 22.3 mm for Ps and 4.9 mm for Im was
469	detected because of the corresponding nonstationary GEV model (Table 3).
470	
471	Insert Figure 5 here.
472	

473 (3) Univariate risk

474 The hydrological risk of a certain design extreme attribute quantile x_{T_0} can be 475 computed using Equations. (6) and (7) on the basis of the initial return period T_0 and 476 design life n. The best marginal distribution model for Im of station 1 as well as Ps of 477 stations 4 and 6 were the stationary GEV model, so these three scenarios were not taken into consideration in this part. Except for the results of Ps of station 5, the risk results 478 479 of extreme attributes of other five stations were very similar (Figure 6). Here, we 480 considered the risk result of the attribute Im of station 2 for detailed illustration. 481 Comparing the risk of stationary and nonstationary models, a definite conclusion can

482	be addressed: risk can increase from the stationary condition to nonstationary condition.
483	For example, when T_0 = 50 and n=20, the risks for the stationary and nonstationary
484	conditions were 33.24% and 46.8%, respectively. That is to say an unjustified
485	assumption would lead to an overestimation of the risk under a certain return period
486	and design life. For Im of station 2, the nonstationary risk was higher than the stationary
487	risk when $n \leq 53$. On the other hand, the nonstationary risk was smaller than the
488	stationary risk when $n \ge 53$. This conclusion can be detected from the <i>Ps</i> of station 1.
489	Once T_0 was decided, the risk changing rate was calculated by equation (17).
490	Here, T_0 was set as 50 for illustration. For attribute <i>Im</i> , the risk changing rate $\Delta R_{T_0}^n$
491	corresponding to $T_0=50$ was 45.93%, 5.31%, 18.25%, 39.44% and 37.10% for stations
492	2, 3, 4, 5 and 6, respectively. For attribute <i>Ps</i> , $\Delta R_{T_0}^n$ was 61.26%, 22.47%, 59.51% and
493	20.53% for stations 1, 2, 3 and 5. Generally, Im of station 2 and Ps of station 1 should
494	be paid more attention with the highest risk changing rate in hydrological practice.
495	
496	Insert Figures 6 here.
497	
100	(3) Pivariata risk based on IPP and IPP

498 (3) Bivariate risk based on JRP_{ken} and JRP_{and}

The hydrological nonstationary risk in the bivariate case cannot be calculated until the most likely event at T_0 -year level is generated. In this part, we first focused on the development of the most likely design events where the joint probability density functions had their maximum values on the 50-year level. **Figures 7(a)** and **(b)** illustrate

503	the time dependent development of both variables Ps (upper panel) and Im (lower panel)
504	through the JRP_{ken} and JRP_{and} methods. The attribute Ps for stations 1, 2, and 3
505	showed a positive trend, while attribute Im for stations 4 and 5 exhibited a negative
506	trend through the JRP_{ken} and JRP_{and} methods. On the other hand, the trend of the
507	design value of Im was not significant.
508	The hydrological nonstationary risk based on JRP_{ken} and JRP_{and} was
509	computed using equations (15)-(16). Figures 8(a) and (b) show the nonstationary risk
510	R of the most likely design combinations of Ps and Im at the T_0 -year level. The risk
511	results of extreme attributes of stations 1, 3, 4, and 6 were very similar, while the results
512	of stations 2 and 5 exhibited a similar pattern. For stations 1, 3, 4, and 6, the risk
513	increased with design life n under both stationary and nonstationary conditions, but for
514	any T_0 , the nonstationary risk was higher than stationary risk from both JRP_{ken} and
515	JRP_{and} methods. For stations 2 and 5, the nonstationary risk was lower than stationary
516	risk from both the JRP_{ken} and JRP_{and} methods. The corresponding changing rate to
517	quantify the differences in hydrological risk for the bivariate case between stationary
518	and nonstationary models was also calculated by equation (17). Whether it was
519	calculated through the JRP_{ken} and JRP_{and} methods, the changing risk rate increased
520	as T_0 increased, which meant that nonstationarity influenced the risk of lower
521	exceedance probabilities more than that of higher exceedance probabilities.
522	Since a 50-year level with lower exceedance probabilities (0.02) is of great interest

522 Since a 50-year level with lower exceedance probabilities (0.02) is of great interest
523 in hydrological practice and necessary to control the uncertainties of extrapolation

524	(Bender et al., 2014), in this part, we focused on the risk changing rate under the 50
525	year-level for each station. For JRP_{and} , the risk changing rate $\Delta R_{T_0}^n$ corresponding to
526	T_0 =50 was 41.83%, 7.96%, 24.27%, 6.94%, 9.21%, and 70.63% for stations 1, 2, 3, 4,
527	5, and 6, respectively. For JRP_{ken} , the risk changing rate $\Delta R_{T_0}^n$ corresponding to
528	T_0 =50 was 59.93%, 8.44%, 44.19%, 10.69%, 11.96%, and 75.29% for stations 1, 2, 3,
529	4, 5, and 6, respectively. According to the above results of risk changing rate, changing
530	risk rates based on the JRP_{ken} method were higher than those through the JRP_{and}
531	method, which indicated that the JRP_{ken} -based risk was more sensitive to the
532	nonstationarity of marginal and bivariate distribution models.
533	
534	Insert Figures 7(a)-(b) here.
	Insert Figures 7(a)-(b) here. Insert Figures 8(a)-(b) here.
534	
534 535	
534 535 536	Insert Figures 8(a)-(b) here.
534 535 536 537	Insert Figures 8(a)-(b) here. 4.6. Further discussion
534 535 536 537 538	Insert Figures 8(a)-(b) here. 4.6. <i>Further discussion</i> Based on the above analysis, the nonstationary risk analysis over extreme rainfall
534 535 536 537 538 539	Insert Figures 8(a)-(b) here. 4.6. Further discussion Based on the above analysis, the nonstationary risk analysis over extreme rainfall events using the time-varying GEV and copula-based distribution models were

- 543 cases. There were also certain differences between the results using Kendall's joint
- return period method and AND's return period method. Im of station 2 and Ps of station

545	1 should be concerned with the highest risk changing rate from the perspective of
546	univariate case, while the dependence structure of station 6 should be paid more
547	attention with the highest risk changing rate from the perspective of bivariate case.
548	According to the results performed by the proposed time-varying models, the
549	following points should be emphasized:
550	\checkmark It is necessary to use statistical tests, such as the Ljung-Box test, univariate
551	and multivariate Mann-Kendall test, and univariate and multivariate Pettitt
552	test to evaluate nonstationarities of extreme rainfall attributes (Ps and Im) as
553	well as the dependence between these two attributes. These two attributes
554	corresponding to six stations showed no serial correlation which rationalized
555	the implementation of traditional multivariate Mann-Kandall tests without
556	any modification.
557	\checkmark Nonstationarity in the dependence structure and marginal variable was non-
558	ignorable. The nonstationary (time-varying) GEV and copula-based model
559	not only addressed the abrupt changes and significant trends existed in the
560	marginal variables, but also evaluated the dependence of multivariate
561	hydrological series, which led to the reliable estimation of hydraulic design
562	quantiles.
563	\checkmark The traditional hydrological risk under nonstationary conditions in the
564	univariate case was expanded to the bivariate case through the Kendall joint
565	return period method and AND return period method. According to the return

566	period analysis in the univariate case, the scale parameter of the nonstationary
567	GEV distribution demonstrated a significant time variability for uncertainty.
568	The joint return period and risk analysis also showed that the JRP_{ken} -based
569	risk was more sensitive to the nonstationarity of marginal and bivariate
570	distribution models.

571 Moreover, the two indexes used in this study, revealing the characteristics of 572 extreme rainfall events, i.e., Ps and Im, representing rainfall volume and intensity, respectively were extracted from observed daily precipitation datasets. Risk 573 analysis based on these two attributes helped understand extreme rainfall patterns, 574 575 especially storm events lasting several days, which would be devastating to urban 576 infrastructure and farmlands. In addition, the duration which is another meaningful 577 extreme rainfall attribute should also be incorporated into multivariate risk 578 analysis.

579 5. Conclusions

In this paper, a nonstationary risk analysis through the time-varying Generalized Extreme Value (GEV) and copula-based distribution model is performed over the extreme rainfall events in Haihe River Basin. The time-dependent copula and GEV models are applied to these two attributes (*Ps* and *Im*) extracted from daily rainfall data of six stations in Haihe River basin, China. Nonstationarity and trends in the attribute series were investigated through multivariate Mann-Kendall test and multivariate Pettist test. The best nonstationary GEV model was selected for the attribute of each

587	station through the minimum DIC criterion combined with the Bayes factor (BF) test,
588	while the best-fitted time-varying copula was selected through the minimum Corrected
589	Akaike Information Criterion (AICc). Based on frequency analysis by the Kendall joint
590	return period method and the AND return period method, the design values of the two
591	indexes were computed and shown by the JRP_{ken} -isolines and JRP_{and} -isolines. The
592	extended bivariate nonstationary DLL-based risk was calculated through the estimated
593	most likely event (combinations of <i>Ps</i> and <i>Im</i>) to quantify the risk of each station under
594	nonstationary conditions. Analysis of extreme rainfall occurrence risk based on the
595	observed index series demonstrated that station 6 should be paid more attention with
596	the highest risk changing rate. The following conclusions can be drawn from this study:
597	1. A 100-year Ps quantile under stationary conditions (355 mm) can correspond to a
598	35-year Ps under nonstationary conditions. In other words, an exceedance probability
599	of 0.01 can increase to 0.028 and 0.017. On the other hand, the return period associated
600	with a given quantile can decrease for Im of some stations but can increase for other
601	stations.
602	2. The stationary model would underestimate the risk for a certain return period.
603	3. From the marginal return period to the joint return period, there can be a significant
604	upward or downward trend in extreme quantiles in the univariate case which can
605	change into a weak trend in the joint return period.
606	4. Nonstationarity influences the risk of lower exceedance probabilities more than that
607	of higher exceedance probabilities.

- 6085. Changing risk rates based on the JRP_{ken} are higher than those based on the609 JRP_{and} method, which indicated that the JRP_{ken} -based risk is more sensitive to610the nonstationarity of marginal and bivariate distribution models.611This study emphasizes the significance of incorporating nonstationarity into612multivariate risk analysis through the investigation of univariate and multivariate trend613and change points in the attribute series. The Kendall return period is justified as more614practical method for hydraulic design than the AND return period method according to
- 615 the calculation of the design quantiles for the extreme rainfall. The extended bivariate
- 616 nonstationary DLL-based risk method was applied to both stationary and nonstationary
- 617 conditions.
- 618

619 Acknowledgments

This study was supported by the National Key Research and Development Program of
China (2017YFC1502704, 2016YFC0401501), and the National Natural Science Fund
of China (41571017, 51679118 and 91647203), and Jiangsu Province"333 Project"
(BRA2018060).

References

- Agilan, V., and Umamahesh, N.V.: Covariate and parameter uncertainty in nonstationary rainfall IDF curve, Int. J. Climatol., 38, 365-383, <u>https://doi.org/10.1002/joc.5181</u>, 2018.
- Ali, H., and Mishra, V.: Increase in subdaily precipitation extremes in India under 1.5 and 2.0 °C warming worlds. Geophys, Res. Lett., 45, 6972–6982, https://doi.org/10.1029/2018GL078689, 2018.
- Aissia, M.A.B., Chebana, F., Ouarda, T.B.M.J., Roy, L., Bruneau, P., and Barbet, M.: Dependence evolution of hydrological characteristics, applied to floods in a climatechange context in Quebec, J. Hydrol., 519, 148–163, <u>https://doi.org/10.1016/j.jhydrol.2014.06.042</u>, 2014
- Bender, J., Wahl, T., and Jensen, J.: Multivariate design in the presence of nonstationarity, J. Hydrol., 514, 123–130, <u>https://doi.org/10.1016/j.jhydrol.2014.04.017</u>, 2014.
- Call, B.C., Belmont, P. Schmidt, J.C., and Wilcock, P.R.: Changes in floodplain inundation under nonstationary hydrology for an adjustable, alluvial river channel, Water Resour. Res., 53(5), 3811-3834, https://doi.org/10.1002/2016WR020277, 2017.
- Chebana, F., Ouarda, T.B., and Duong, T.C.: Testing for multivariate trends in hydrologic frequency analysis, J. Hydrol., 486, 519–530, https://doi.org/10.1016/j.jhydrol.2013.01.007, 2013.

Chen, H., and Sun, J.: Contribution of human influence to increased daily precipitation

extremes over china, Geophys. Res. Lett., 44(5), 2436-2444, https://doi.org/10.1002/2016GL072439.2017.

- Cheng, L., and AghaKouchak, A.: Nonstationary precipitation intensity-durationfrequency curves for infrastructure design in a changing climate, Sci. Rep., 4, 7093, <u>https://doi.org/10.1038/srep07093,</u> 2014.
- Cheng, L., AghaKouchak, A., Gilleland, E., and Katz, R.W.: Nonstationary extreme value analysis in a changing climate, Clim. Change, 127, 353–369, https://doi.org/10.1007/s10584-014-1254-5, 2014.
- Condon, L.E., Gangopadhyay, S., and Pruitt, T.: Climate change and non-stationary flood risk for the upper Truckee River basin, Hydrol. Earth Syst. Sci., 19, 159–175, https://doi.org/10.5194/hess-19-159-2015, 2015.
- De Michele, C., Salvadori, G., Vezzoli, R., and Pecora, S.: Multivariate assessment of droughts: frequency analysis and dynamic return period, Water Resour. Res., 49(10), 6985–6994, https://doi.org/10.1002/wrcr.20551, 2013.
- Donat, M.G., Lowry, A.L., Alexander, L.V., O'Gorman, P.A., and Maher, N.: More extreme precipitation in the world's dry and wet regions, Nat. Clim. Change, 6, 508– 513, <u>https://doi.org/10.1038/nclimate2941</u>, 2016.
- Du, T., Xiong, L.H., Xu, C.Y., Gippel C.J., Guo, S.L., and Liu, P.: Return period and risk analysis of nonstationary low-flow series under climate change, J. Hydrol., 527, 234-250, <u>https://doi.org/10.1016/j.jhydrol.2015.04.041</u>, 2015.
- Ganguli, P., and Coulibaly, P.: Does nonstationarity in rainfall requires nonstationary intensity-duration-frequency curves? Hydrol. Earth Syst. Sci., 21(12), 1-31,

https://doi.org/10.5194/hess-21-6461-2017, 2017.

- Ghanbari, M., M. Arabi, J. Obeysekera, and Sweet, W.: A coherent statistical model for coastal flood frequency analysis under nonstationary sea level conditions, Earth's Future, 7, 162-177, <u>https://doi.org/10.1029/2018EF001089</u>, 2017.
- Gräler, B., van den Berg, M.J., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets,
 B., and Verhoest, N.E.C.: Multivariate return periods in hydrology: a critical and
 practical review focusing on synthetic design hydrograph estimation, Hydrol. Earth
 Syst. Sci., 17, 1281-1296, <u>https://doi.org/10.5194/hess-17-1281-2013</u>, 2013.
- Grimaldi, S., and Serinaldi, F.: Asymmetric copula in multivariate flood frequency analysis, Adv. Water Resour., 29(8), 1155–1167, https://doi.org/10.1029/2018EF001089, 2006.
- Gu, X., Zhang, Q., Singh, V.P., Chen, X., and Liu, L.: Nonstationarity in the occurrence rate of floods in the Tarim River Basin, China, and related impacts of climate indices, Global Planet. Change, 142, 1-13, <u>https://doi.org/10.1016/j.gloplacha.2016.04.004</u>, 2016.
- Jakob, D., AghaKouchak, A. Easterling, D., Hsu, K., Schubert, S., and Sorooshian, S. (Eds.): Nonstationarity in extremes and engineering design, Springer, New York, 2013.
- Jiang, C., Xiong, L., Xu, C.Y., and Guo, S.: Bivariate frequency analysis of nonstationary low-flow series based on the time-varying copula, Hydrol. Process., 29(6), 1521-1534, <u>https://doi.org/10.1002/hyp.10288</u>, 2015.
- Kao, S., and Govindaraju, R.S.: Trivariate statistical analysis of extreme rainfall events

via the Plackett family of copulas, Water Resour. Res., 44 (2), 333–341, https://doi.org/10.1029/2007WR006261, 2008.

- Lima, C.H.R., Kwon, H.H., and Kim, J.Y.: A bayesian beta distribution model for estimating rainfall idf curves in a changing climate, J. Hydrol., 540, 744-756, <u>https://doi.org/10.1016/j.jhydrol.2016.06.062</u>, 2016.
- Liu, J., Zhang, Q., Singh, V.P., Gu, X., and Shi, P.: Nonstationarity and clustering of flood characteristics and relations with the climate indices in the Poyang Lake Basin, China, Hydrolog. Sci. J., 62 (11), 1809–1824, https://doi.org/10.1080/02626667.2017.1349909, 2017.
- Madsen, H., Gregersen, I.B., Rosbjerg D., and Arnbjerg-Nielsen, K.: Regional frequency analysis of short duration rainfall extremes using gridded daily rainfall data as co-variate, Water Sci. Technol., 75(8),1971-1981, https://doi.org/10.2166/wst.2017.089, 2017.
- Martins, E.S., and Stedinger, J.R.: Generalized maximum likelihood generalized extreme-value quantile estimators for hydrologic data, Water Resour. Res., 36, 737–744, https://doi.org/10.1029/1999wr900330, 2000.
- Milly, P.C.D., Betancourt J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., and Lettenmaier, D.P.: On critiques of "stationarity is dead: whither water management?", Water Resour. Res., 51(9), 7785-7789, <u>https://doi.org/10.1002/2015wr017408</u>, 2015.
- Mishra, A. K., and Singh, V. P.: Analysis of drought severity-area-frequency curves using a general circulation model and scenario uncertainty, J. Geophys. Res. Atmos.,

114(D6), https://doi.org/10.1029/2008JD010986, 2009.

Nelsen, R.B.: An introduction to copulas, Springer, New York, 2007.

Patton, A.J.: Modelling asymmetric exchange rate dependence, Int. Econ. Rev., 47(2),

527-556, https://doi.org/10.2307/3663514, 2006.

- Porporato, A., and Ridolfi, L.: Influence of weak trends on exceedance probability, Stoch. Hydrol. Hydraul., 12, 1–14, <u>https://doi.org/10.1007/s004770050006</u>,1998.
- Rauf, U.F.A., and Zeephongsekul, P.: Copula based analysis of rainfall severity and duration: a case study, Theor. Appl. Climatol., 115(1–2), 153–166, <u>https://doi.org/10.1007/s00704-013-0877-1</u>, 2014.
- Rizzo, M.L., and Székely, G.J: Disco analysis: a nonparametric extension of analysis of variance, Ann. Appl. Stat., 4(2), 1034-1055, <u>https://doi.org/10.1214/09-AOAS245</u>, 2010.
- Renard, B., and Lang, M.: Use of a gaussian copula for multivariate extreme value analysis: some case studies in hydrology, Adv. Water Resour., 30(4), 897-912, <u>https://doi.org/10.1016/j.advwatres.2006.08.001</u>, 2007.
- Rootzén, H., and Katz, R.W.: Design Life Level: Quantifying risk in a changing climate, Water Resour. Res., 49(9), 5964-5972, <u>https://doi.org/10.1002/wrcr.20425</u>,2013.
- Sarhadi, A., and Soulis, E.D.: Time-varying extreme rainfall intensity-durationfrequency curves in a changing climate, Geophys, Res. Lett., 44(5), 2454-2463, <u>https://doi.org/10.1002/2016GL072201</u>, 2017.
- Salvadori, G., and De Michele, C.: Frequency analysis via copulas: theoretical aspects and applications to hydrological events, Water Resour. Res., 40(12), 229–244,

https://doi.org/10.1029/2004wr003133, 2004.

- Salvadori, G., and De Michele, C.: Multivariate multiparameter extreme value models and return periods: A copula approach, Water Resour. Res., 46, W10501, <u>https://doi.org/10.1029/2009WR009040</u>, 2010.
- Salvadori, G., De Michele, C., and Durante, F.: On the return period and design in a multivariate framework, Hydrol. Earth Syst. Sci., 15(11), 3293–3305, https://doi.org/10.5194/hess-15-3293-2011, 2011.
- Salvadori, G., Durante, F., and De Michele, C.: Multivariate return period calculation via survival functions, Water Resour. Res., 49(4), 2308-2311, <u>https://doi.org/10.1002/wrcr.20204</u>, 2013.
- Salas, J.D., and Obeysekera, J.: Revisiting the concepts of return period and risk for non-stationary hydrologic extreme events, J. Hydrol. Eng., 19, 554–568, https://doi.org/110.1061/(ASCE)HE.1943-5584.0000820, 2014.
- Serinaldi, F., Bonaccorso, B., Cancelliere, A., and Grimaldi, S.: Probabilistic characterization of drought properties through copulas, Phys. .Chem. Earth, 34(10– 12),596–605, <u>https://doi.org/10.1016/j.pce.2008.09.004</u>, 2009.
- Serinaldi, F., and Kilsby, C.G.: Stationarity is undead: uncertainty dominates the distribution of extremes, Adv. Water Resour., 77, 17-36, <u>https://doi.org/10.1016/j.advwatres.2014.12.013</u>, 2015.
- Serinaldi, F., and Kilsby, C.G.: The importance of prewhitening in change point analysis under persistence, Stoch. Env. Res. Risk A., 30(2), 763-777, https://doi.org/10.1007/s00477-015-1041-5, 2016.

Shiau, J.T.: Fitting drought duration and severity with two-dimensional copulas, Water Resour. Manag., 20(5), 795–815, <u>https://doi.org/10.1007/s11269-005-9008-9</u>, 2006.

- Song, S., and Singh, V.P.: Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data, Stoch. Env. Res. Risk A., 24(3), 425–444, <u>https://doi.org/10.1007/s00477-009-0331-1</u>, 2010.
- Vandenberghe, S., Verhoest, N.E.C., and Baets, B.D.: Fitting bivariate copulas to the dependence structure between storm characteristics: a detailed analysis based on 105 year 10 min rainfall, Water Resour. Res.,46 (1), 489–496, <u>https://doi.org/10.1029/2009WR007857</u>,2010.
- Wong, G., Lambert, M.F., Leonard, M., and Metcalfe, A.V.: Drought analysis using trivariate copulas conditional on climatic states, J. Hydrol. Eng., 15(2), 129–141, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000169, 2010.
- Zhang, Q., Gu, X., Singh, V. P., and Chen, X.: Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations, J. Hydrol., 529, 711-722, <u>https://doi.org/10.1016/j.jhydrol.2015.08.066</u>, 2015.
- Yan, L., Xiong, L., Guo, S., Xu, C.-Y., Xia, J., and Du, T.: Comparison of four nonstationary hydrologic design methods for changing environment, J. Hydrol., 551, 132–150, https://doi.org/10.1016/j.jhydrol.2017.06.001, 2017.
- Yilmaz, A. G., Imteaz, M. A., and Perera, B.J.C.: Investigation of non-stationarity of extreme rainfalls and spatial variability of rainfall intensity-frequency-duration relationships: a case study of Victoria, Australia, Int. J. Climatol., 37, 430–442, https://doi.org/10.1002/joc.4716, 2017.

Yilmaz, A.G., and Perera, B.J.C.: Extreme rainfall nonstationarity investigation and intensity-frequency-duration relationship, J. Hydrol. Eng., 19(6), 1160–1172, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000878,2014.

Zhang, L., and Singh, V.P.: Bivariate flood frequency analysis using the copula method,

J. Hydrol. Eng., 11(2), 150–164, <u>https://doi.org/10.1061/(ASCE)1084-</u> 0699(2006)11:2(150), 2006.

Zhang, L., and Singh, V.P.: Bivariate rainfall frequency distributions using Archimedean copulas, J. Hydrol., 332(1), 93–109, <u>https://doi.org/10.1016/j.jhydrol.2006.06.033</u>, 2007.

Lists of Tables

Table 1. Information on meteorological gauges of Haihe River basin

Table 2. Detection of trends and change points of extreme rainfall attributes collected

from six stations

Table 3(a) Performance of stationary and nonstationary GEV models fitted to marginal

distribution corresponding to each attribute (Station 1-3)

Table 3(b) Performance of stationary and nonstationary GEV models fitted to marginal

distribution corresponding to each attribute (Station 2-6)

Table 4(a) Performance of stationary and nonstationary copula models fitted to the

dependence structure of two attributes (Station 1-3)

Table 4(b) Performance of stationary and nonstationary copula models fitted to the

dependence structure of two attributes (Station 2-6)

Lists of Figures

Figure 1. Flowchart of this study

Figure 2. Selected meteorological stations in Haihe River basin

Figure 3. Spatial distribution of trend and changing points according to univariate and multivariate Mann-Kendall and Pettitt tests shown in Table 2; All above tests were performed at a significance level of 10%, i.e. p value< 0.10.

Figure 4. Estimated extreme rainfall attribute (*Ps* and *Im*) quantiles for stationary and selected nonstationary model at six stations.

Figure 5. Isolines of Kendall return period and AND-based return period at the 50 year level for both stationary and nonstationary models. (1)-(6) represent the station number. Figure 6(a). The most likely design event of Ps and Im with $JRP_{and} = 50$ for six stations

Figure 6(b). The most likely design event of Ps and Im with $JRP_{ken} = 50$ for six stations

Figure 7. Nonstationary risk *R* of the Haihe River design extreme rainfall quantile x_{T_0} under univariate case. The nonstationary design life level-based hydrological risk *R* is regarded as a function of design life *n* for x_{T_0} with an initial return period T_0 .

Figure 8(a). Nonstationary risk *R* of the most likely design combinations of *Ps* and *Im* at T_0 -year level based on JRP_{s-and} and JRP_{s-ken} .

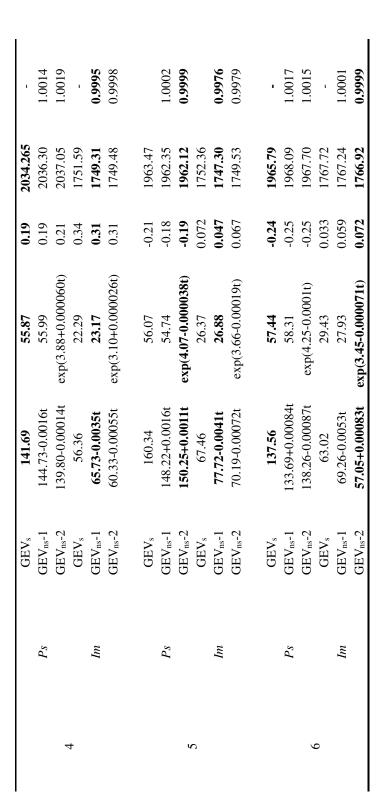
Figure 8(b). Nonstationary risk *R* of the most likely design combinations of *Ps* and *Im* at T_0 -year level based on JRP_{s-and} and JRP_{s-ken} .

	Station ID	Station name	Location		Data ranga
	Station ID	Station name	Longtitude	Latitude	Data range
1	53588	Wutaishan	113°32′	39°02′	1952-2017
2	54308	Fengning	116°32′	41°12′	1957-2017
3	54401	Zhangjiakou	115°11′	40°50′	1958-2017
4	54511	Beijing	116°19′	39°57′	1958-2017
5	54527	Tianjin	117°10′	39°06′	1958-2017
6	54705	Nangon	115°23′	37°22′	1956-2017

Table 1. Information on meteorological gauges of Haihe River basin

Univariate MK Univariate MK Univariate MK $P.value$ Z $P.value$ Z tatistics $P.value$ statistics $P.value$ $P.value$ Z tatistics 0.063 -1.856^{*} 0.048 $P.value$ Z tatistics 0.063 -1.856^{*} 0.048 0.450 -0.755 0.105 -1.652^{*} 0.089 0.450 -0.755 0.132 -1.649^{*} 0.091 0.098 -1.645^{*} 0.132 -1.649^{*} 0.012 0.099^{*} -1.645^{*} 0.132 -1.649^{*} 0.012 0.099^{*} -1.645^{*} 0.345 -0.944 0.131 0.099^{*} -1.645^{*} 0.072 -1.963^{**} 0.0122 -1.926^{*} 0.025 -1.922^{*} 0.054 -1.244 0.606 0.516 0.516 0.226 -1.212 0.454 0.115 -1.575 0.067 -1.831^{*} 0.024	Station At No.								
p.valueZ statisticsp.valueZ p.valueZ tatistics 0.927 0.063 -1.856° 0.048 0.450 0.755 0.798 0.063 -1.856° 0.048 0.450 -0.755 0.798 0.674 0.421 0.708 0.450 -0.755 0.307 0.105 -1.652° 0.089 0.450 -0.755 0.307 0.105 -1.649° 0.091 0.098 -1.645^{\ast} 0.386 0.345 -0.944 0.131 0.099° -1.645^{\ast} 0.986 0.345 -0.944 0.131 0.099° -1.645° 0.981 0.072 $-1.963^{\ast\ast}$ 0.012 0.099° -1.645° 0.981 0.072 -1.926° 0.098 0.055° -1.922° 0.971 0.072 -1.926° 0.0801 0.055° -1.922° 0.971 0.054 -1.226° 0.0801 0.606° 0.516° 0.747 0.214 -1.244 0.678 0.115° -1.575° 0.923 0.067 -1.831° 0.024° 0.115° -1.575° 0.923 0.067 -1.831° 0.024° 0.115° -1.575°	No. Att		L-jung-Box Test	Univari	ate MK	Univariate Pettitt Test	Multivar	riate MK	Multivariate Pettitt Test
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		tribute	p.value	p.value	Z statistics	p.value	p.value	Z tatistics	p.value
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-	$\mathbf{P}_{\mathbf{S}}$	0.927	0.063	-1.856*	0.048	0 460	0 755	080.0
$\begin{array}{lcccccccccccccccccccccccccccccccccccc$	I	Im	0.798	0.674	0.421	0.708	0.420	cc/.n-	0.009
$\begin{array}{lcccccccccccccccccccccccccccccccccccc$	c	$\mathbf{P}_{\mathbf{S}}$	0.307	0.105	-1.652*	0.089	0000	1 6154	0,005
$\begin{array}{lcccccccccccccccccccccccccccccccccccc$	7	Im	0.462	0.132	-1.649^{*}	0.091	0.00	÷C+0.1-	C60.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ç	$\mathbf{P}_{\mathbf{S}}$	0.986	0.345	-0.944	0.131	*0000	1 7 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n	Im	0.575	0.051	-1.963**	0.012	660.0	-1.041	0.0/8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~	$\mathbf{P}_{\mathbf{S}}$	0.981	0.072	-1.799^{*}	0.098	0.055		020 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Im	0.971	0.054	-1.926^{*}	0.089	CCN.N	.776.1-	600.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ų	$\mathbf{P}_{\mathbf{S}}$	0.051	0.524	-0.638	0.801	7U7 U	0 516	0 500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	Im	0.747	0.214	-1.244	0.678	0.000	010.0	600.0
0.923 0.067 -1.831 [*] 0.024 0.110 -1.83	,	$\mathbf{P}_{\mathbf{S}}$	0.815	0.226	-1.212	0.454	0 115	363 1	036.0
	D	Im	0.923	0.067	-1.831^{*}	0.024	C11.U	C/C.1-	600.0

Station	Attribute	Model	ц	a	х	DIC	BF
		GEV_{s}	144.37	45.32	0.058	1944.47	ı
	P_S	GEV _{ns} -1	147.82+0.0014t	46.67	0.033	1943.03	0.9999
-		GEV _{ns} -2	151.85-0.00042t	exp(3.92-0.000038t)	0.019	1942.08	19991
-		GEVs	50.64	18.13	0.012	1593.71	•
	Im	GEV _{ns} -1	46.69+0.0013t	17.81	0.035	1597.58	1.0011
		GEV _{ns} -2	51.7-0.00062t	exp(2.96-0.000037t)	0.019	1596.53	1.004
		GEV_{s}	106.25	28.84	-0.12	1740.92	ı
	P_S	GEV _{ns} -1	104.08-0.00018t	28.83	-0.12	1742.66	0.998
Ċ		GEV _{ns} -2	99.92+0.0028t	exp(3.25+0.000057t)	-0.13	1742.29	0.996
7		GEV_{s}	40.71	14.01	-0.053	1497.533	ı
	Im	GEV _{ns-1}	42.02+0.00026t	14.30	-0.099	1493.47	0.997
		GEV _{ns} -2	42.90-0.00031t	exp(2.39+0.00012t)	-0.082	1492.82	0.996
		GEV_{s}	86.92	26.92	-0.077	1724.35	ı
	P_S	GEV _{ns} -1	88.48+0.000096t	27.16	-0.085	1724.306	1.0002
ç		GEV _{ns} -2	85.78+0.0014t	exp(3.57-0.00014t)	-0.091	1723.76	0.999
C		GEVs	34.31	11.00	0.13	1455.2	
	Im	GEV _{ns} -1	37.51-0.00067t	11.38	0.10	1448.41	0.995
		GEV _{ns} -2	41.76-0.0030t	exp(2.37+0.000019t)	0.11	1449.82	0.996



Station	Model	Copula	θ	LL	AICc
		<u>St</u> ^c	0.8066	28.83	-55.59
	S ^a	Clayton	1.9725	23.81	-45.55
	2	Gumbel	2.2677	25.08	-48.08
		Frank	8.2702	24.88	-46.55
1					
		St	exp(0.2998-0.0002t)	31.42	-58.71
	NS ^b	Clayton	exp(-4.8096+0.0023t)	22.73	-43.39
	IN S	Gumbel	exp(-5.268+0.0256t)	23.63	-46.49
		Frank	7.677+0.00028t	21.14	-42.45
		St	0.9000	51.55	-101.05
	S	Clayton	3.7056	42.85	-83.63
	5	Gumbel	<u>3.4208</u>	<u>52.42</u>	<u>-102.77</u>
		Frank	13.592	45.88	-89.68
2					
		St	exp(0.4247-0.0003t)	53.46	-102.786
	NS	Clayton	exp(-3.289+0.0017t)	41.38	-80.59
	145	Gumbel	exp(-4.344+0.0356t)	45.57	-88.57
		Frank	10.592+0.0018t	46.07	-93.09
		<u>St</u>	<u>0.8491</u>	<u>38.25</u>	<u>-74.44</u>
	S	Clayton	3.0403	35.57	-69.06
		Gumbel	2.6696	33.21	-64.35
		Frank	9.4212	34.89	-67.15
3					
		St	exp(-1.6982+0.0008t)	41.49	-78.84
	NS	Clayton	NaN	NaN	NaN
	110	Gumbel	NaN	NaN	NaN
		Frank	11.385-0.0011t	35.18	-68.59

Table 4(a) Performance of stationary and nonstationary copula models fitted to the
dependence structure of two attributes (stations 1-3)

^aS is stationary copula model; ^bNS represents the time-varying copula model; ^cSt represents Student's t copula.

Station	Model	Copula	$\frac{1}{\theta}$	LL	AICc
Station	withut	St	0.9001	43.10	-87.13
			2.944	36.68	-71.30
	S	Clayton <u>Gumbel</u>			
		Frank	<u>3.273</u>	<u>46.82</u> 44.68	<u>-91.57</u> 97.67
4		гганк	11.462	44.08	-87.67
4		C 4	aum(1, (1, 101, 0, 00094))	51 70	00.46
		St	exp(-1.6101+0.0008t)	51.79	-99.46 -75.89
	NS	Clayton	exp(-3.369+0.0027t)	38.97	
		Gumbel	exp(-4.564+0.0289t)	44.68	-85.98
		Frank	12.398-0.00081t	44.68	-87.67
		St	0.9000	47.977	-93.886
		Clayton	3.2678	40.62	-79.17
	S	Gumbel	3.1054	42.94	-83.82
		Frank	11.023	44.68	-87.67
5		TTalik	11.025	 00	-07.07
5		St	exp(0.5868-0.0003t)	46.00	-91.359
		Clayton	exp(-2.987+0.0037t)	42.56	-82.69
	NS	Gumbel	exp(-3.898+0.0252t)	41.69	-81.59
		Frank	12.589-0.00036t	42.57	-83.79
		St	0.8889	43.85	-83.55
	C	Clayton	<u>3.4955</u>	44.77	-84.47
	S	Gumbel	2.8959	37.84	-73.61
		Frank	11.227	41.89	-81.79
6					
		St	exp(0.7846-0.0005t)	46.02	-87.90
	NS	Clayton	exp(-3.876+0.071t)	39.59	-78.89
	142	Gumbel	NaN	NaN	NaN
		Frank	11.462	44.68	-87.67

Table 4(b) Performance of stationary and nonstationary copula models fitted to the dependence structure of two attributes (stations 2-6)

Inf: infinite number, or out of scope of computation

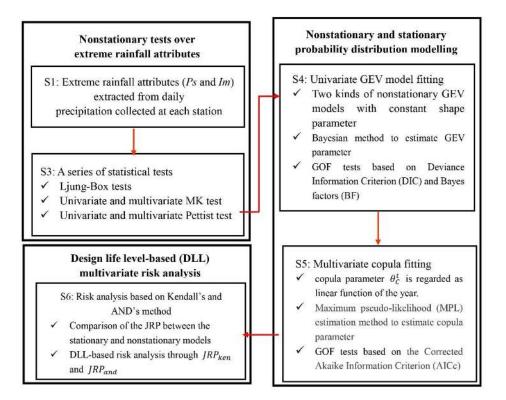
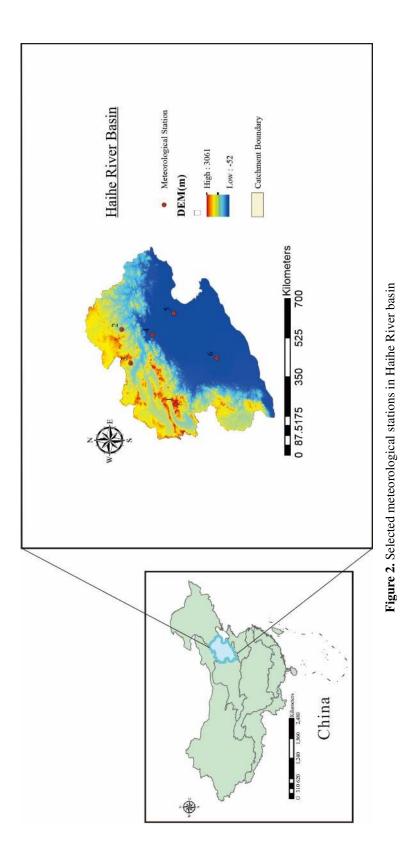


Figure 1. Flowchart of this study



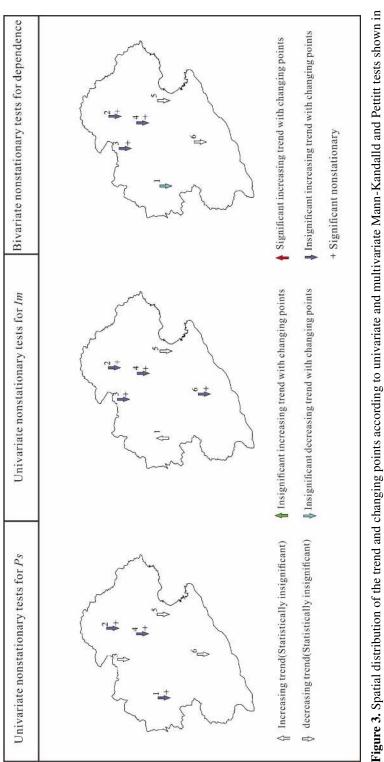


Table 2: All above tests are performed at a significance level of 10%, i.e. p value< 0.10.

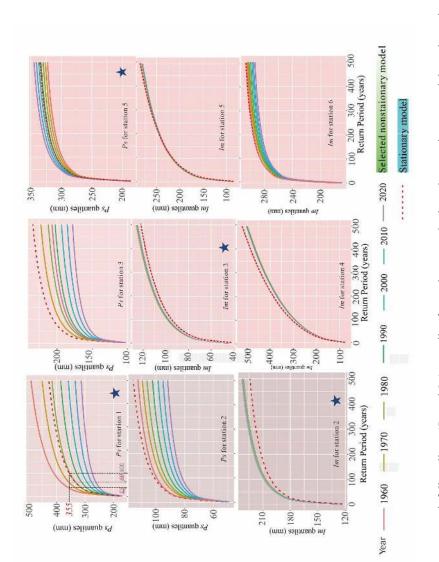


Figure 4. Estimated extreme rainfall attribute (Ps and Im) quantiles for stationary and selected nonstationary models at six stations.

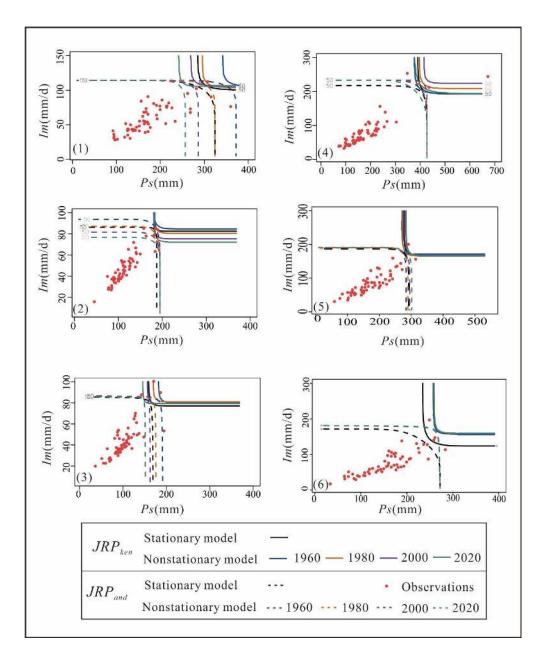


Figure 5. Isolines of Kendall return period and AND-based return period at the 50-year level for both stationary and nonstationary models. (1)-(6) represent the station number.

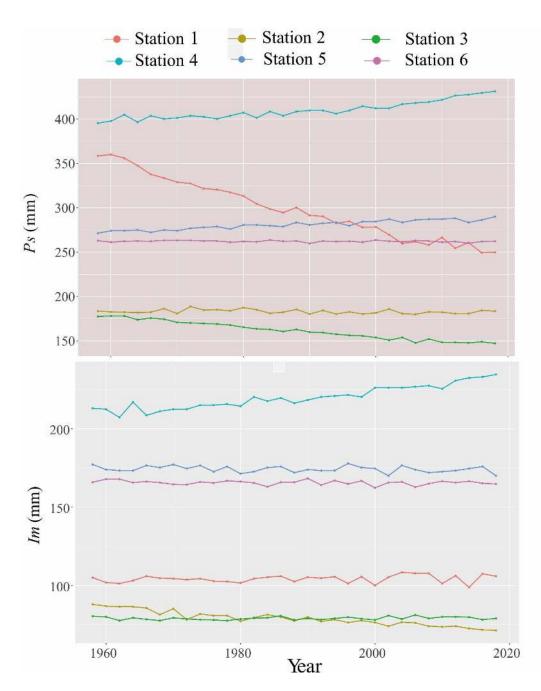


Figure 6(a). The most likely design event of Ps and Im with $JRP_{and} = 50$ for six stations

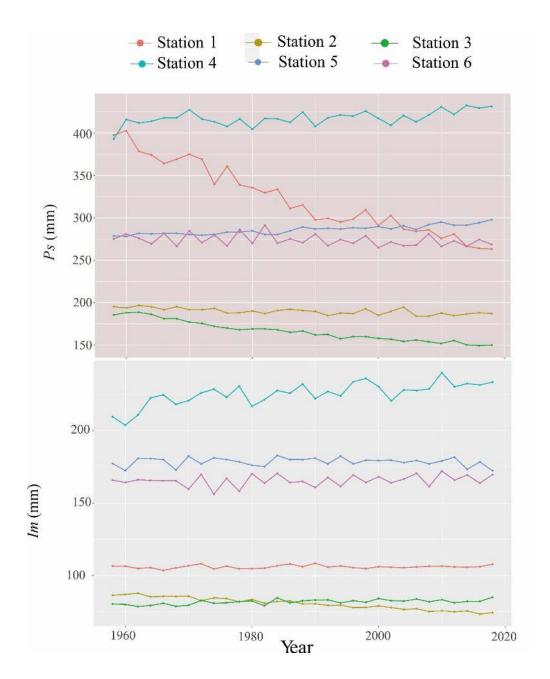


Figure 6(b). The most likely design event of Ps and Im with $JRP_{ken} = 50$ for six stations

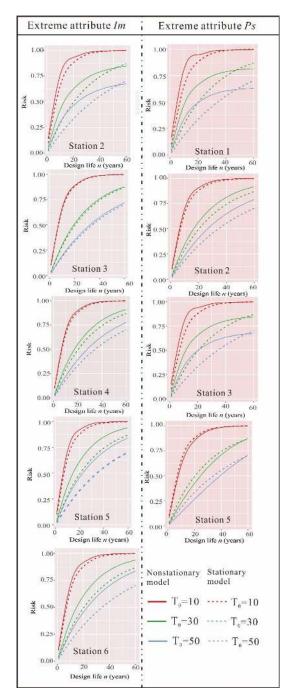


Figure 7. Nonstationary risk *R* of the Haihe River design extreme rainfall quantile x_{T_0} under the univariate case. The nonstationary design life level-based hydrological risk *R* is regarded as a function of design life *n* for x_{T_0} with an initial return period T_0 .

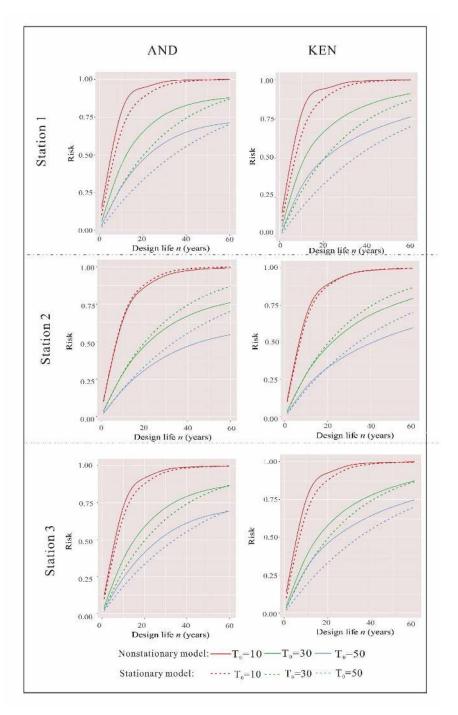


Figure 8(a). Nonstationary risk *R* of the most likely design combinations of *Ps* and *Im* at T_0 -year level based on JRP_{s-and} and JRP_{s-ken} .

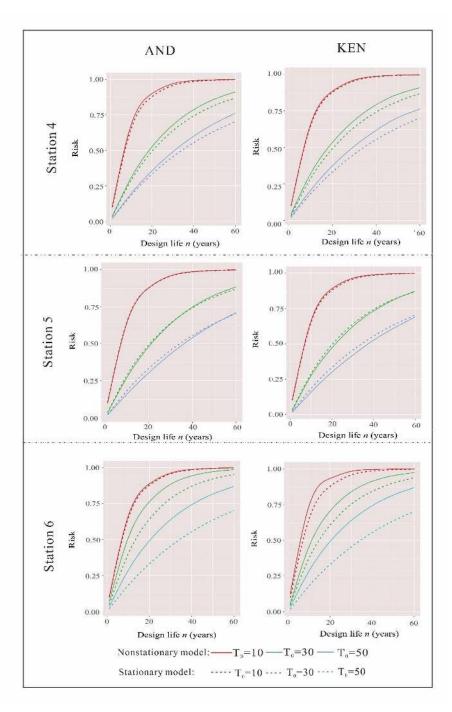


Figure 8(b). Nonstationary risk *R* of the most likely design combinations of *Ps* and *Im* at T_0 -year level based on JRP_{s-and} and JRP_{s-ken} .