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Introduction

Time-varying covariance occurs when a given covariate 

changes over time during the follow-up period, which is a 

common phenomenon in clinical research. For example, in 

a patient with sepsis, the C-reactive protein (CRP) may be 

measured repeatedly to evaluate inflammatory status until 

it returns normal (1). In clinical oncology, the recurrence 

status of a patient is usually checked at a predefined time 

interval. In many cases when studying the relation between 

a survival outcome and covariate(s), investigators will only 

consider the baseline value of the covariate, which however, 

fails to consider the relation of the survival outcome as 

a function of the change of the covariate. For example, 

the effect of smoking on cancer risk has been extensively 

studied. However, the smoking status is ever changing 

during the follow up period (2). Such a covariate can be 

considered as a time-varying covariate. 

Time-varying covariates can be classified as either 

internal, when the path is affected by survival status, 

or external, when the covariate is the fixed/defined  

covariate (3). An internal covariate is typically the output 

of a stochastic process generated by an individual under 

study and observed only as long as the subject survives and 

uncensored. Thus, such data are found in clinical trials 

where records of patients’ general condition are made at 

regular intervals and where failure time occurs when the 

patient dies. 

An external covariate X(⋅), in contrast, may influence 

the rate of failure over time, but its path up to time t > v is 

not affected by the occurrence of failure time at time v. It 

is also a derived or predetermined covariate. Examples of 

external covariates are age of an individual in a trial of long 

duration, or a measure of airborne pollution as a predictor 

of the frequency of asthma attacks. The covariate allows 

incorporation of a time interaction function X(t) or X(g(t)) 

(4,5). Consider the general hazard model for failure time 

proposed by Cox [1972] (6),
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λ(t׀X) = λ0(t)exp (β' • X) [1]

where λ0(t) is the baseline hazard function (possibly non-

distributional) and β' = (β1, β2, ..., βp) is a vector of regression 

coefficients. In the simple form of the Cox model, X is a 

vector of time-fixed covariates. 
One approach for using time-varying covariate data is to 

extend the Cox proportional hazard model to allow time-

varying covariates (7). 

λ(t׀Z(t)) = λ0(t)exp (β'x + γ'Xg(t)) [2]

where β' and γ' are coefficients of time-fixed and time-

varying covariate respectively. Suppose we let Z(t) represent 

the covariate, then

Z(t) = [x1, x2 ... xp, X1g(t), X2g(t) ... , Xqg(t)] [3]

and the hazard ratio is 

 * *

*
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which is a non-constant hazard rate. Such functionality 

can be implemented in many sophisticated software and 

here we will illustrate how to perform such kind of analysis 

with R-program (8). The main approaches for survival 

analysis with time-varying covariates are time-dependent 

Cox models (7) and the joint modeling of longitudinal and 

survival data (9). Time-dependent Cox models are more 

appropriate for external covariates (e.g., external covariates 

vary as a function of time, independent of the failure time) 

and are considered in this paper.

In a slightly comparable situation, a covariate is 

measured at baseline but its effect on the outcome is not 

constant over the follow-up time, which is a violation of 

the proportional hazards assumption (7). In that case a 

time-varying coefficient can be incorporated into the Cox 
regression model to fit such kind of data.  In fact, to check 
the proportional hazards assumption after fitting a Cox 

regression model is the same as identifying time-varying 

coefficients. In this paper, we will also show how to check 
the proportional hazards assumption after fitting a Cox 

regression model, and in case there is a violation to the 

assumption, show how the model should be modified to 

best describe the data. 

In fact, if the time-varying coefficient can be written as 
g(β,t) = βg(t), the model with a time-varying coefficient can 
be expressed as a model with time-varying covariate with a 

constant coefficient (10). The hazard of failure is related to 
the covariate by the equation:

λ(t׀X) = λ0(t) exp {g(β, t)X}

where β is a coefficient related to the covariate X and 

g(β, t) is a specific function of time that can be defined by 
investigators. If g(β, t) is a simple function, it can be written 

as g(β, t) = βg(t). Then the hazard function can be written as:

λ(t׀X) = λ0(t) exp {βg,(t)X} = λ0(t) exp {βX,(t)}

where X(t)= g(t)X. This equation shows that a time-varying 

coefficient (g(β, t)) model can be modelled with a set of 

time-varying covariates (X(t)) (10). 

Verification of proportionality assumption can be done 

by any of the two known approaches, graphical visualization 

and numerical approaches. Later in this work we look at 

Schoenfeld residual scaled plot and log(-log(S(t))) plot. For 

each predictor in the model, Schoenfeld residual are defined 
and the residuals for the predictors are plotted against the 

ranked/transformed failure time.

Working example on time-varying covariates

To show how to estimate a survival model with time-

varying covariates we will construct a simulated dataset. 

To show how to combine such data we will therefore 

simulate two data frames in R, one containing the baseline 

covariates (age and group) and the other a time-varying 

covariate. With the package survsim (11), a dataset of 100 

patients involving continuous and categorical covariates, 

and a time-to-event outcome can be generated. The 

simulated dataset is for illustration purpose only and there 

is no clinical relevance.

 

 > library(survsim)

> N=100 #number of patients

> set.seed(123)

> df.tf<-simple.surv.sim(#baseline time fixed

  n=N, foltime=500, 

  dist.ev=c('llogistic'),

  anc.ev=c(0.68), beta0.ev=c(5.8),

  anc.cens=1.2,

  beta0.cens=7.4,

  z=list(c("unif", 0.8, 1.2)), 

  beta=list(c(-0.4),c(0)), 

  x=list(c("bern", 0.5), 

  c("normal", 70, 13)))

> names(df.tf)[c(1,6,7)]<-c("id","grp","age")
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The above code generates a data frame containing two 

time-fixed variables named “grp” (abbreviated from group) 
and “age”. The age variable is assumed to be normally 

distributed with the mean=70 and standard deviation of 13. 

The grp variable is a factor (categorical or binary) variable 

with two levels 0 and 1. The status variable is the outcome 

status at the corresponding time point. The start and stop 

variables define the start and stop time points of a follow-
up interval for each individual. The underlying mechanisms 

of the data generation is beyond the scope of this paper, but 

interested readers can consult the R document by typing 

“?simple.surv.sim”. Alternatively, survival times with time-
varying covariates can be generated following the methods 

proposed by Austin (12).   

Next, we generate a data frame in a counting process 

data structure (13), in which each individual is represented 

by one or more rows. In such a data frame, each row 

represents a follow up time interval at which the value of a 

covariate is recorded. The following code generates a time-

varying covariate named crp (C-reactive protein) which is 

assumed to have a normal distribution with a mean of 100 

and a standard deviation of 40. In reality, the crp value 

may be skewed. Although a simple binary covariate such as 

transplantation, surgery or starting of medication, could be 

good for demonstrating, we incorporate a numeric variable 

because such kind of variables are common in reality.

> set.seed(123)

> nft<-sample(1:10,

  N,replace=T)#number of follow up time points

crp<-round(abs(rnorm(sum(nft)+N,

  mean=100,sd=40)),1)

time<-NA

id<-NA

i=0

for(n in nft){

 i=i+1

 time.n<-sample(1:500,n)

 time.n<-c(0,sort(time.n))

 time<-c(time,time.n)

 id.n<-rep(i,n+1)

 id<-c(id,id.n)

}

df.td <- cbind(data.frame(id,time)[-1,],crp)

The number of follow up time intervals is randomly 

generated for each subject with a maximum of 10. With a for 

loop function, crp values are assigned to each follow up time 

interval. A variable id is generated in the for loop, which is 

a tag for identification of a distinct subject. Finally, a data 
frame named df.td containing a time-varying covariate crp is 

generated. 

Merging data frames with tmerge() function

Data containing information on time-varying covariates 

is often stored in different format than what is required 

by statistical programs. The first step in analyzing time-

varying covariates in survival analysis is to reshape the 

data frame so that there are multiple rows (time intervals) 

for each subject, along with covariate values that apply 

across these intervals. Such a format is also known as the 

counting process style or (start, stop) form of data. The 

survival package provides a good function tmerge() for 

this purpose (7,14). The function usually runs in multiple 

passes, with the first run defining the basic structure and 
subsequent runs add variables to that structure. This 

run does not change the values of original variables but 

it defines the basic structure of the df object, which is 

essential for subsequent steps.

> df<-tmerge(df.tf,df.tf,id=id,

   endpt=event(stop,status))

> head(round(df))

id status start stop z grp age tstart tstop endpt

1 1 1 0 48 1 0 80 0 48 1

2 2 0 0 121 1 1 86 0 121 0

3 3 1 0 31 1 1 72 0 31 1

4 4 0 0 500 1 0 92 0 500 0

5 5 1 0 70 1 1 77 0 70 1

6 6 1 0 233 1 1 87 0 233 1

In the new data frame df, several variables are added 

including tstart and tstop representing the start and stop of 

the follow up interval. The variable endpt is the same as the 

variable status indicating whether the event is observed. 

The variable z is the individual heterogeneity generated in 

the simple.surv.sim() function according to the specified 

distribution. The value of z is 1 for most observations 

because the use of the round() function. Next, the total 

follow-up time is split into the simulated time intervals 

from dataframe df.td and these intervals are censored by the 

total follow-up time.
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> df <- tmerge(df,df.td,id=id,

  crp=tdc(time,crp))

> head(round(df),10)

id status start stop z grp age tstart tstop endpt crp

1 1 1 0 48 1 0 80 0 48 1 110

2 2 0 0 121 1 1 86 0 27 0 91

3 2 0 0 121 1 1 86 27 31 0 161

4 2 0 0 121 1 1 86 31 114 0 38

5 2 0 0 121 1 1 86 114 116 0 123

6 2 0 0 121 1 1 86 116 118 0 105

7 2 0 0 121 1 1 86 118 121 0 109

8 3 1 0 31 1 1 72 0 31 1 59

9 4 0 0 500 1 0 92 0 44 0 182

10 4 0 0 500 1 0 92 44 80 0 80

The first argument of tmerge() function is the primary 

dataset to which new covariates will be added. The second 

argument is another dataset that contains new covariates. 

The “newname=tdc(y,x)” argument creates a new time-
varying covariate. The argument y is on the scale of start 

and stop time. The second argument x is not mandatory. 

If x is missing the count variable starts at 0 for each subject 

and becomes 1 at the time of the event. In case x is present 

the count is set to the value of x. In the example, a crp value 

is added at each interval. The updated data frame df is in 

the counting process style that each subject can take several 

rows. For example, subject 2 has 6 rows, and crp values are 

different at each row. However, the values of time-fixed 

variables such as age and grp are consistent within each 

subject. 

Fitting the Cox model with a time-varying 

covariate

Next, we will model the survival times as a function of 

group, age and crp values with Cox regression:

> fit.tdc <- coxph(Surv(tstart,tstop,endpt)~

  grp+age+crp+cluster(id),df)

> fit.tdc

Call:

coxph(formula = Surv(tstart, tstop, endpt) ~ grp + age + crp + 

    , data = df)

coef exp(coef) se(coef) robust se z p

grp 0.50277 1.65329 0.25280 0.25647 1.96 0.050

age 0.00316 1.00317 0.00796 0.00728 0.43 0.664

crp -0.00615 0.99386 0.00305 0.00295 -2.08 0.037

Likelihood ratio test=8.21  on 3 df, p=0.0418

n= 365, number of events= 67 

With the reshaped dataset, the fitting of Cox regression 
model is straightforward. The output of the coxph() 

function shows that there is only one hazard ratio (exp(coef)) 

for the variable crp, which is similar for the two time-fixed 
covariates age and grp. In the Cox regression model with 

time-varying covariates, the follow-up time of each subject 

is divided into shorter time intervals. However, we do not 

have to take into account in the analysis that individuals 

may have multiple rows unless there are multiple events per 

individual. The likelihood equations use information on 

only at most one row per an individual at any time point, 

since the time intervals of an individual do not overlap (7).  

Time-varying coefficients 

As noted above, time-varying effect emerges when 

the proportional hazards assumption is not fulfilled. 

So, to identify time-varying coefficients is actually to 

test the proportional hazards assumption after fitting 

a Cox proportional hazard model. The examination of 

proportional hazards assumption can be performed using 

the cox.zph() function shipped with the survival package (14). 

Below, the lung dataset available from the package survival 

is employed to illustrate how to explore the proportional 

assumption.

> fit2 <- coxph(Surv(time, status) ~ 

   age +ph.karno+sex, 

   data=lung)

> zph <- cox.zph(fit2)

> zph

rho chisq p

age 0.00701 0.00871 0.92566

ph.karno 0.23135 8.24167 0.00409

sex 0.12249 2.42336 0.11954

GLOBAL NA 11.54750 0.00911

First, a Cox proportional model is fit by using the coxph() 
function. The left side of the formula is the response 

variable defined by the Surv() function with the follow-

up time and status for each patient. The right side displays 
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covariates age (in years), ph.karno (Karnofsky performance 

score rated by physician) and sex (male =1; female =2). The 

data argument defines the data frame that contains the data 
with the variables from the formula. The cox.zph() function 

is the core to the investigation of proportional hazards 

assumption. The first argument of the function is an object 
returned by coxph() function. 

The output of the function is a table in matrix format 

with each row representing one variable and the last row is 

the Schoenfeld’s global test for the violation of proportional 

assumption (15). Columns of the matrix from left to right 

show the correlation coefficient between transformed 

survival time and the scaled Schoenfeld residuals (rho), a 

chi-square statistic (chisq), and the two-sided P value (p). 

There is no appropriate correlation for the global test, 

so an NA is entered in the rho column. The result shows 

that there is significant deviation from the proportional 

hazards assumption for the variable ph.karno (P=0.00409). 

The result can be visualized with generic plot() function. In 

general, an associated global significant test gives a P value 
(0.00911) which is an indication of lack of fit of the model.

> plot(zph[2],lwd=2)

> abline(0,0, col=1,lty=3,lwd=2)

> abline(h= fit2$coef[2], col=3, lwd=2, lty=2)

> legend("bottomright",

   legend=c('Reference line for null effect',

   "Average hazard over time",

   "Time-varying hazard"),

   lty=c(3,2,1), col=c(1,3,1), lwd=2)

Figure 1 shows the time-varying coefficient for the 

variable ph.karno. Note that the time axis is not in linear 

scale because we used “km” transformation for the time. 
So in this example we have identified a time-varying 

coefficients as there appears to be two turning points 

approximately at values of 180 (the point where the slope 

of the beta reverses) and 350 (the point where the hazard 

of the coefficient exceeds the reference for null effect), at 

which the analysis time can be divided. 

Step function to explore time-varying coefficient

One way to model time-varying coefficients is to use a step 
function, e.g., (g(t) = I(t ≥ to)), where to is a specified value. 
The idea of this method is to split the analysis time into 

several intervals and Cox proportional model is stratified 

for these time intervals. The effect of fixed baseline 

covariates becomes stronger or weaker over time, which 

can be explored via stratification by time. As illustrated in  
Figure 2, the effect of the baseline risk factor ph_karno 

varies over time, resulting in a series of HRs. With 

the survSplit() function one can split each record into 

subrecords at prespecified cut time points in the counting 
process style as we have seen before.

> lung.split <- survSplit(Surv(time, status) ~ ., 

   data= lung, cut=c(180, 350),

B
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Figure 1 The effect of the covariate ph.karno on mortality outcome 

varies over time. The horizontal time axis is in “km” transformed 
scale, which is the default setting in the cox.zph() function. The 

dashed lines are lower and upper limits of confidence interval of 
the effect of ph.karno. It is noted that the effect of ph.karno is not 

time constant.

HR1  HR2  HR3       HR4

6 months
6 months5 months2 m

Figure 2 Time stratified effect of fixed baseline covariate on 

survival. Note that the effects of baseline covariate for different 

time windows are different, resulting in a series of hazard ratios. 
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   episode= "tgroup", id="id")   

> head(lung.split[-c(1,4,6:8)])

age sex ph.karno id tstart time status tgroup

1 74 1 90 1 0 180 0 1

2 74 1 90 1 180 306 1 2

3 68 1 90 2 0 180 0 1

4 68 1 90 2 180 350 0 2

5 68 1 90 2 350 455 1 3

6 56 1 90 3 0 180 0 1

The first argument of the survSplit() function is a 

model formula where the model of the survival data can 

be specified as we have seen before. The cut argument is 

a vector of cutoff time points. In the example, we cut the 

analysis time at 180 and 350. The episode option defines a 
new variable name that will appear in the new data frame. 

Here, it is “tgroup”. The resulting data frame is in a 
counting process form so that each subject is split and takes 

several rows. For example, patient 2 takes three rows. The 

original row of (0, 455] with a cut vector of (180, 350) will 

be split into intervals of (0, 180], (180, 350] and (350, 455]. 

The newly defined variable tgroup identifies which interval 
each row belongs to. To explain, tgroup=1 identifies the first 
time interval (0, 180], and tgroup=2 identifies the second 

time interval (180, 350]. 

> fit.split <- coxph(Surv(tstart, time, status) ~ 

   age + ph.karno:strata(tgroup)+ 

   sex, 

   data=lung.split)  

> fit.split

Call:

coxph(formula = Surv(tstart, time, status) ~ age + 

ph.karno:strata(tgroup) + 

    sex, data = lung.split)

coef exp(coef) se(coef) z p

age 0.01305 1.01314 0.00947 1.38 0.16811

sex -0.51552 0.59719 0.16762 -3.08 0.00210

ph.karno:strata(tgroup)

tgroup=1

-0.03501 0.96559 0.00962 -3.64 0.00028

ph.karno:strata(tgroup)

tgroup=2

-0.00999 0.99006 0.01105 -0.90 0.36636

ph.karno:strata(tgroup)

tgroup=3

0.00397 1.00398 0.00987 0.40 0.68734

Likelihood ratio test=27.2  on 5 df, p=5.21e-05

n= 460, number of events= 164 

   (1 observation deleted due to missingness)

Now the Cox regression model is fit as usual, except 

that it is stratified by the tgroup variable. From the 

output, it appears that the variable ph.karno only has a 

significant effect in the first time interval (tgroup=1). The 
corresponding HR was 0.97 (P=0.00028). The effects 

of ph.karno on the remaining two time-windows are not 

statistically significant. Next, we can take a look at the 

proportional hazards assumption of this stratified Cox 

regression model.

> cox.zph(fit.split)

rho chisq p

age 0.00904 0.0146 0.904

sex 0.12329 2.4386 0.118

ph.karno:strata(tgroup)

tgroup=1

-0.02829 0.1401 0.708

ph.karno:strata(tgroup)

tgroup=2

0.05258 0.2763 0.599

ph.karno:strata(tgroup)

tgroup=3

0.01795 0.0433 0.835

GLOBAL NA 2.9162 0.713

The result shows now that there is no correlation 

between transformed survival time and the scaled 

Schoenfeld residuals, indicating that the proportional 

hazards assumption is not violated with the stratified 

analysis, and judging by the global p-value, the model is fit.

Continuous function to describe the time-varying 

coefficient

An alternative method to describe the time-varying 

coefficient is with a parametric continuous function that 

is specified by the user. Here we illustrate how to perform 
such an analysis. 

>fit.tt <-  coxph(Surv(time, status) ~ 

  age + ph.karno + tt(ph.karno)+ sex,

  data=lung,

  tt = function(x, t, ...) x * log(t+20))

In the coxph() function, there is a tt argument to specify 

the specific transformation of time. In our example, the tt 
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function is defined as “tt = function(x, t, ...) x * log(t+20)”, 
where x is a fixed covariate with time-varying effect, and t is 
the analysis time. The tt() function is applied to the variable 

ph.karno in the model formula as “tt(ph.karno)”. The 
outcomes of the analysis are:

> fit.tt

Call:

coxph(formula = Surv(time, status) ~ age + ph.karno + tt(ph.

karno) + 

    sex, data = lung, tt = function(x, t, ...) x * log(t + 20))

coef exp(coef) se(coef) z p

age 0.01305 1.01313 0.00945 1.38 0.1675

ph.karno -0.09793 0.90671 0.03863 -2.53 0.0112

tt(ph.karno) 0.01524 1.01535 0.00692 2.20 0.0276

sex -0.51320 0.59858 0.16765 -3.06 0.0022

Likelihood ratio test=23.7  on 4 df, p=9.24e-05

n= 227, number of events= 164 

   (1 observation deleted due to missingness)

Both the coefficients for ph.karno and tt(ph.karno) are 

statistically significant, implying that the effect of ph.karno 
varies with time. The time-varying effect of ph.karno can be 

written as β(t) = −0.098+0.015×log(t + 20). We can add a line 

to the cox.zph plot of the time-varying effect of ph.karno on 

survival by using the abline() function.  

> zph.tt <- cox.zph(fit2, 

  transform=function(t) log(t+20))

> plot(zph.tt[2])

> abline(coef(fit.tt)[2:3], col=2)

The result is shown in Figure 3. The slope of the red line 

is 0.015, which is significantly different from the horizontal 
line (slope=0). The black line shows the time-varying 

coefficient for the variable ph.karno. 

Investigating time-varying coefficient with 

timereg package

The t imecox()  function shipped with the t imereg  

package (16) is able to fit a Cox model with both time-fixed 
and time-varying coefficients. In this case the time-varying 
effect is tested by resampling method (17). Specification 

of the models is similar to the way it is done in the survival 

package. 

> library(timereg)

> fit.out <- timecox(Surv(time,status)~

  age+sex+ph.karno,

  data=lung,n.sim=500,

  max.time=700)

Cox regression model is fit similarly as in the survival 

package with the only difference that resampling methods 

are used for the statistical inference and therefore, the 

number of simulations has to be specified (n.sim=500). The 

max.time argument specifies the end of observation period 
where estimates are computed. The returned results are 

shown below:

> summary(fit.out)

Multiplicative Hazard Model 

Test for nonparametric terms 

Test for non-significant effects 

Supremum-test 

of significance

p-value H_0:B(t)=0

(Intercept) 5.76 0.000

age 2.87 0.098

sex 4.54 0.002

ph.karno 4.87 0.000

0.15

0.10
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Figure 3 A parametric time function is assigned to ph.karno. If 

the time axis is transformed by the function log(t+20), the effect is 

linear with the slope of 0.015 (red line). 
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Test for time invariant effects 

Kolmogorov-Smirnov 

test

p-value H_0: constant 

effect

(Intercept) 922.00 0.186

age 7.83 0.450

sex 67.20 0.970

ph.karno 7.00 0.048

Cramer von Mises test p-value H_0: constant 

effect

(Intercept) 1.69e+08 0.142

age 9.82e+03 0.380

sex 6.45e+05 0.930

ph.karno 9.55e+03 0.056

Call: 

timecox(formula = Surv(time, status) ~ age + sex + ph.karno, 

    data = lung, max.time = 700, n.sim = 500)

The first table of the output shows the results of the test 
for non-significant effect (e.g., the null hypothesis states 

that the coefficients under test are not significantly different 
from 0), which shows that both sex and ph.karno have 

significant effect on survival outcome (P=0.002 and <0.001). 
The second table shows the test for the time invariant 

effect. Both the Kolmogorov-Smirnov test and the Cramer 

von Mises test are used for testing time invariant effects. It 

appears that the effect of ph.karno is not time-fixed. The 

effects of all variables over time are visualized in Figure 4.

> par(mfrow=c(2,2))

> plot(fit.out)

It is noted from figure 4 that the effect of ph.karno 

is steep at the beginning and then flattens out after 

approximately 180. The variable age has no significant effect 
because the confidence interval intersects with the null 

effect reference line. The variable sex has significant effect 
but the null hypothesis of time invariance effect cannot be 

rejected. Therefore, we will proceed to set sex and age as 

time-fixed effect variables by fixing them with the const() 

function. 

Figure 4 Estimated cumulative coefficients with 95% pointwise confidence intervals for intercept, age, sex and ph.karno.
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The const() function applied to the covariates age and sex 

specifies them to have constant effects. The age and sex have 

constant effects of 0.0135 and −0.6210, respectively. 

Discussion

When time-varying covariates or coefficients are present, an 
analyst should consider taking them into account in survival 

modeling in order to improve the estimation. In this paper, 

we presented some ways to do this using the R-program. 

Time-varying covariate was handled with a time-dependent 

Cox model and time-varying coefficient was described using 
a step function and a continuous function.

In this article, we only presented some methods dealing 

with time-varying covariates or coefficients, but other 

approaches are available. Sometimes the model fit may also 
be improved by using derived variables from longitudinal 

measurements. For example, averages of the most recent 

and all the previous measurements may be used to better 

describe the cumulative nature of the time-varying covariate 

or differences of the latest two measurements to model the 

effects of changes (18). Also the standard deviation of the 

longitudinal measurements (19) and lagged observations (20) 

has been used.

With internal time-varying covariates, one could also 

consider using joint modeling of longitudinal and survival 

data (9) which was not presented in this article. The idea 

is to assign a model for a continuously changing covariate 

which is measured longitudinally in time and possibly with 

error. This longitudinal model is related to survival times by 

modeling the joint distribution of longitudinal and survival 

data. Recent developments and issues in this topic are 

considered by, e.g., Hickey et al. (21).
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