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Time-varying effect models for ordinal
responses with applications in substance
abuse research
John J. Dziak,a Runze Li,b Marc A. Zimmermanc and Anne Buud*†

Ordinal responses are very common in longitudinal data collected from substance abuse research or other
behavioral research. This study develops a new statistical model with free SAS macros that can be applied to
characterize time-varying effects on ordinal responses. Our simulation study shows that the ordinal-scale time-
varying effects model has very low estimation bias and sometimes offers considerably better performance when
fitting data with ordinal responses than a model that treats the response as continuous. Contrary to a common
assumption that an ordinal scale with several levels can be treated as continuous, our results indicate that it is
not so much the number of levels on the ordinal scale but rather the skewness of the distribution that makes a
difference on relative performance of linear versus ordinal models. We use longitudinal data from a well-known
study on youth at high risk for substance abuse as a motivating example to demonstrate that the proposed model
can characterize the time-varying effect of negative peer influences on alcohol use in a way that is more consistent
with the developmental theory and existing literature, in comparison with the linear time-varying effect model.
Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Substance use outcomes are often ordinal in nature with participants classified in terms of degrees of
use [1]. For example, a well-known annual survey of US high school seniors, Monitoring The Future
[2], asked the participants to report their alcohol or other substance use in their lifetime, during the last
12 months, or during the last 30 days on an ordinal scale: (1) 0 occasions; (2) 1–2; (3) 3–5; (4) 6–9; (5)
10–19; (6) 20–39; (7) 40 or more. An important feature of this type of data is that they tend to be skewed
to the right due to high frequencies at the lower end. Although it is common practice to use linear models
(for continuous responses) to analyze ordinal responses with several categories, such practice has been
shown to produce misleading results, especially when the data contain excess minimum values [3].

Bauer and Sterba [4] investigated the common practice of analyzing longitudinal data with ordinal
outcomes and pointed out the main reasons why researchers may be reluctant to fit an ordinal rather than
linear mixed model [5], including familiarity with linear models and lack of existing studies that expressly
examined the consequences of fitting a linear mixed model to ordinal outcomes. To fill in the important
knowledge gap, they conducted a simulation study and found that when the longitudinal response was
ordinal, the performance of the linear mixed model was acceptable (i.e. with bias < 10%) only if the
response had seven or more categories and was distributed like a bell shape; the generalized linear mixed
model [6] with a cumulative logit link, on the other hand, performed well across different numbers of
categories (3, 5, 7) and distribution shapes (bell shaped, polarized, and skewed).

Linear mixed models [5] and generalized linear mixed models [6] have been applied mostly in the
settings involving time-invariant effects (i.e. assuming that the association between an outcome of interest
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and a covariate is constant over time). This convention, however, has been challenged in recent years
because there are many practical settings where the phenomenon of time-varying associations exists
[7]. For example, a smoking-cessation study found that the effect of negative affect on urge to smoke
changed in a complex and dynamic way during various stages of the smoking-cessation process [8]. Tan
and colleagues [9] introduced a time-varying effect model (TVEM) for longitudinal data with continuous
responses to social and behavioral science researchers. They also developed an SAS macro to implement
a P-spline approach to estimating TVEM using SAS PROC MIXED. This macro was later extended to
handle binary, count, and zero-inflated count responses [10]. Yet, the TVEM for ordinal responses has
not become available. Furthermore, it is unclear if the consequences of fitting a linear mixed model to
ordinal outcomes found in the previous study [4] can be generalized to the case of TVEM.

This paper aims to fill in the current knowledge gap by extending the TVEM to handle ordinal responses
and conducting a simulation study to examine the consequences of fitting the linear TVEM to ordinal
responses. We also evaluate the performance of the proposed proportional odds TVEM when the number
of levels on the ordinal scale, the sample size, the number of waves, and the distribution shape were
varied. We organize the paper as follows. In Section 2, we specify the ordinal TVEM and propose the
procedures to practically implement the estimation. In Section 3, we present a motivational example using
longitudinal data from the Flint Adolescent Study (FAS). In Section 4, we conduct a simulation study
to assess the performance of the ordinal TVEM relative to the linear TVEM under different situations.
Discussion and concluding remarks are presented in Section 5. Example SAS codes are given in the
appendix to demonstrate how to use the SAS macro’s developed in this study.

2. The statistical model

Consider the following proportional odds model for time-varying effects on an ordinal response Y . Label
the categories on Y as 0, 1,… ,K − 1. Let X1,… ,XP be the covariates whose relationships with Y are
assumed to vary over time, and U1,… ,UQ be the covariates whose relationships with Y are assumed to
be constant at each time. For observation j on subject i, taken at time tij, we define a continuous latent
variable Y̆ij as follows:

Y̆ij = 𝛽0(tij) +
P∑

p=1

𝛽p(tij)Xpij +
Q∑

q=1

𝛾qUqij + ai + eij

where ai is a random effect for subject i (assumed normal with a variance of 𝜏2) and eij is a standard
logistic error term (hence, has a variance of 𝜋2∕3 ≈ 3.29). We then assume that the ordinal variable is
defined by the following thresholding rule:

Yij =
⎧⎪⎨⎪⎩

0 if Y̆ij ⩽ 𝜃1

k if 𝜃k < Y̆ij ⩽ 𝜃k+1, k = 1,… ,K − 2

K − 1 if 𝜃K−1 < Y̆ij

where 𝜃1 < … < 𝜃K−1. Thus,

logit
[
Pr

(
Yij ⩾ k

)]
= logit

[
Pr

(
Y̆ij > 𝜃k

)]

= 𝛽0(tij) +
P∑

p=1

𝛽p(tij)Xpij +
Q∑

q=1

𝛾qUqij + ai − 𝜃k

(1)

for k = 1,… ,K − 1.
As in much previous work (e.g., [9, 11]), we represent the time-varying coefficients using basis

expansions. Thus, the nonparametric function 𝛽p(t) is treated as a linear combination of several known
parametric functions𝜙1(t),…,𝜙D(t). We chose to use a spline basis to represent 𝛽p(t) as a piecewise cubic
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function. On each of several intervals defined by knots, the spline function is cubic. At a knot, the spline
function is continuous and has continuous first and second derivatives, although the third derivative may
be discontinuous at the knots. This allows any smooth shape to be approximated well if enough knots
are used. Specifically, we use a B-spline basis (see [12] for technical details and the recursive formula
for computing 𝜙d(t)), which can be automatically generated by most commonly used statistical software
packages such as SAS and R, for a given set of knots. The basis functions are always nonnegative, and
each is zero over most of the interval, so that each knot’s basis function is orthogonal to the other basis
functions except for its closest knot neighbors. This is more favorable from a numerical standpoint than
alternatives such as a polynomial regression basis or a truncated power spline basis ([13]), because those
functions tend to be highly intercorrelated and thus can potentially lead to a poorly conditioned regres-
sion matrix. Nevertheless, overfitting may still occur with a B-spline basis if too many knots are used.
For simplicity, in this paper, we follow Shiyko and colleagues [14] in using a small number of equally
spaced knots and treat the selection of the number of basis functions D as a model selection problem.

After defining the basis functions using the B-spline formula, the problem can be treated as parametric
with (P + 1)D + Q scalar regression coefficients 𝜁 , with K − 1 scalar threshold coefficients 𝜃, and with
one variance component 𝜏2. Specifically, Equation (1) becomes

logit
(
Pr

(
Yij ⩾ k

))
=

D∑
d=1

𝜁d𝜙d(tij) +
P∑

p=1

D∑
d=1

𝜁(pD+d)𝜙d(tij)Xpij +
Q∑

q=1

𝜁((P+1)D+q)Uqij + ai − 𝜃k (2)

where 𝜙1,… , 𝜙D are known functions of time defined using the recursive B-spline formulas. One could
use different numbers of knots for different parameters, but we use the same D for each here for simplicity.
The parameters are estimated by maximum likelihood.

Because Equation(2) is a generalized linear mixed model (GLMM), the log-likelihood is complex,
and dealing with it directly would involve difficult numerical integration. Standard software such as SAS
PROC GLIMMIX handles this problem using successive approximation. The default approach in GLIM-
MIX is a doubly iterative method in which the nonlinear model is successively locally approximated as
a linear mixed model that is estimated using the Newton-Raphson algorithm. Specifically, it involves the
residual pseudo-likelihood with subject-specific linear approximation (see the technical details in [15]
and Pages 2829, 2945–2950 in [16]). An alternative approach, also available in GLIMMIX, is to fit the
GLMM model directly, but approximate the likelihood function using Gaussian quadrature (see the tech-
nical details in [17] and Pages 2831, 2953–2954 in [16]). The quadrature approach may offer reduced
small-sample bias (see [18] and Pages 2957–2958 in [16]). Based on our preliminary simulations employ-
ing both approaches, the quadrature approach tends to be superior in terms of bias, so we adopt it in
our simulation study. As a caveat, it is possible that the subject-specific linear approximation approach
might work better in other conditions differing from those in the simulation study (perhaps with fewer
subjects and more observations per subject). Future research might clarify this further. In this study, we
have developed a SAS macro that offers both approaches as options (see the Appendix). In either case,
we also include a small ridge penalty to facilitate convergence of the Newton-Raphson algorithm (this is
available as an option in GLIMMIX and has been recommended [19]).

The maximum likelihood procedure used by SAS provides an estimate for the 𝜁 , 𝜃, and 𝜏2 parameters,
and the covariance matrix of the 𝜁 parameters. The estimated 𝛽p(t) function is then reconstructed as
𝛽p(t) =

∑D
d=1 𝜁(pD+d)𝜙d(t) and can be plotted as a function of t across the interval of interest. Cramér’s

delta method [20] can then be used in a straightforward way to estimate the variance of 𝛽p(t) at any time t
of interest, and thus provides approximate pointwise confidence intervals for fitted values of 𝛽p(t). These
calculations are carried out automatically in the macro we developed.

3. A motivating example: the Flint Adolescent Study (FAS)

3.1. Description of the study and data

The FAS is an ongoing longitudinal study that aims to investigate both risk and protective factors for
health risk behaviors including substance use, violence, and HIV risk sexual behaviors from adolescence
to adulthood [21]. The study recruited ninth-grade students with a GPA of 3.0 and below from the four
public high schools in an economically disadvantaged school district in Midwest. The grade cutoff was
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used to select the youth who were at high risk for many deleterious outcomes. The high percentage (over
80%) of Blacks makes the sample unique because the few large scale longitudinal studies of the risk
and protective factors include predominantly White samples. We know relatively little about these issues
among Black youth. A face-to-face interview was conducted annually from adolescence to adulthood
in school or a location that participants identified as convenient for them and that provided adequate
privacy with no interruptions. In addition, a questionnaire on substance use related behaviors was self-
administered at the end of the interview to avoid under-report.

In this study, we analyzed longitudinal data from a sample of 698 participants (about 50% males) who
completed at least four waves of assessment during the critical developmental period of substance use
(ages 15–25 years). The impact of peer factors is, in general, hypothesized to become stronger during
the course of adolescence and into early adulthood, as the youth gradually establishes his/her own social
network outside the home. However, few studies have found that the developmental change in this effect
may be nonlinear with the effect being nonsignificant at some points of time [22–24]. Our investigation,
thus, aims to characterize the time-varying effect of negative peer influences (NPI) on alcohol use across
this critical period of human development. The outcome variable is alcohol use in past 30 days with a 0–6
ordinal scale (0 = 0 occasions; 1 = 1− 2 occasions; 2 = 3− 5 occasions; 3 = 6− 9 occasions; 4 = 10− 19
occasions; 5 = 20 − 39 occasions; 6 = 40 or more occasions). The risk factor, NPI, was measured by
the mean score of the following 13 items about how many of the participant’s friends were involved in
delinquent or violent behaviors:

(1) Drink beer or wine at least once a month?
(2) Drink hard liquor (gin, whiskey, etc.) at least once a month?
(3) Have a drug or alcohol problem?
(4) Smoke marijuana at least once a month?
(5) Have used cocaine?
(6) Have been busted for selling drugs?
(7) Have been busted for having drugs?
(8) Get into fights?
(9) Have carried a knife or razor?

(10) Have carried a gun?

(11) Shoplift from stores?

(12) Have been busted for burglary or robbery?

(13) Have dropped out of high school

Each item was coded as a 1–5 ordinal scale (1 = none; 2 = some; 3 = many; 4 = most; 5 = all). Thus,
the scale of NPI was continuous with the range of 1–5. This measure had high internal consistency with
Cronbach’s 𝛼 = 0.88 − 0.90 across waves [25].

3.2. Fitting TVEM on the data

For observation j on participant i, let tij be his/her age, Xij be the score of NPI (centered by subtracting
the grand mean for all included observations), and Yij be alcohol use in past 30 days. We consider two
TVEM models for modeling Yij, conditional on tij and Xij.

• Normal linear TVEM with random subject effects:
Yij = 𝛽0(tij) + 𝛽1(tij)Xij + ai + eij, with ai ∼ N(0, 𝜏2), eij ∼ N(0, 𝜎2).

• Proportional odds TVEM with random subject effects:
logit

(
Pr

(
Yij ⩾ k

))
= 𝛽0(tij) + 𝛽1(tij)Xij + ai − 𝜃k, for 𝜃1 < … < 𝜃6.

For each model, we estimated the coefficients by an unpenalized B-spline basis expansion, using AIC
[26], to choose the optimal number of knots ( 0 to 10) and the optimal function order (linear, quadratic,
or cubic) between knots, as Shiyko and colleagues [14] did for linear TVEM models. For simplicity, we
assume the same number of knots and function order for 𝛽0(t) as for 𝛽1(t), and equal knot spacing. For
the linear TVEM model, a cubic spline with three knots was chosen. For the proportional odds TVEM
model, a cubic spline with two knots was selected.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 5126–5137
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Figure 1. The fitted time-varying effect models on the Flint Adolescent Study data.

The fitted functions for the linear TVEM are plotted in the upper two panels of Figure 1. Dotted
lines represent estimated 95% pointwise confidence intervals. Times past age 24 years are not shown
because sparse data there caused an edge effect (wide confidence intervals and difficult-to-interpret local
parameter values for the linear TVEM model). 𝛽0(t) here can be interpreted as the estimated mean
drinking level for all population members having age t and the sample average level of NPI (because NPI
was centered to have average 0). 𝛽1(t) can be interpreted as the estimated difference in mean drinking
levels between population members at age t differing by 1 unit on the NPI scale. A disadvantage of this
interpretation is that it is difficult to define what an average or difference represents on an ordinal scale,
which is simply being represented by integers, or to imagine how this would have a linear form. The esti-
mated variance components are 𝜏2 = .4404 and 𝜎2 = 1.0566. Thus, the estimated intraclass correlation
within persons is 𝜏2∕(𝜏2 + 𝜎2) = .2942 [27].

The fitted functions for proportional odds TVEM are plotted in the lower two panels of Figure 1. 𝛽0(t)
in this model is not well identified in isolation, because one could obtain the same probability model by
adding a constant to 𝛽0(t) and also adding the same constant to each threshold 𝜃k. Therefore, 𝛽0(t) − 𝜃k is
plotted instead. 𝛽0(t) − 𝜃k represents the log odds of a drinking response greater than or equal to k, for a
person with an average level of NPI (hence, Xij = 0) and the average value of the random effect (hence,
ai = 0). By contrast, 𝛽1(t) is easier to interpret. It represents the log odds ratio for higher drinking levels
between population members at age t having the same value on the random effect and differing by 1 unit
on the NPI scale. The estimated random effects variance is 𝜏2 = 2.2156. Thus, the estimated intraclass
correlation within persons for the latent Y̌ is 𝜏2∕(𝜏2 + 𝜋2∕3) ≈ .4024 [27].

Comparison between Figure 1(b) and Figure 1(d) demonstrates different time-varying effects of NPI on
drinking as characterized by the two models. The different magnitudes of the coefficients is not inherently
of interest because they represent different models. However, the shapes of the coefficients differ. In
particular, the linear TVEM suggests that the time of greatest peer influence is around age 22 years,
whereas the proportional odds TVEM suggests that the time of greatest peer influence is around age
17 years. The later result is more consistent with the findings of existing studies [22–24]. Thus, this fitted
proportional odds TVEM model was adopted as the true model to generate data in the simulation study.
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4. Simulation

We adopted the fitted proportional odds TVEM model in the motivating example as the true model to
generate simulated data that closely represent the structure of real data so that the results can be more
generalizable to the substance abuse field [28]. The true 𝛽0(t) and true 𝛽1(t) functions were taken from the
estimates based on the empirical data as a cubic spline with 2 equally spaced interior knots. We examined
the effects of four factors on the performance of the proportional odds TVEM model, and on the relative
performance of the linear TVEM model when it was used to fit on the ordinal data. The following factors
were varied:

• The distribution of the ordinal response y had five levels (0 through 4), seven levels (0 through 6),
or nine levels (0 through 8).

• The number of subjects n was 300, 500, or 700.
• The number of observations (waves) per subject was J = 5, 7, or 9.
• The marginal distribution of y was bell-shaped (roughly as in the simulations of Bauer and Sterba

[4]), somewhat skewed, or highly skewed. The highly skewed distribution was based on the marginal
distribution observed in the FAS data.

For each of these 3 × 3 × 3 × 3 = 81 conditions, 1000 random data sets were simulated.
The observation times tij (considered as the age of simulated participants at each observation) was

random but roughly equally spaced: specifically, for the jth wave in a J-wave scenario, subject i was
sampled at age 13.25 + 11 j

J
+ uij where uij comes from a standard uniform distribution between 0 and 1.

For each subject i, the values of xij were generated as follows. A latent normal value of zij was gener-
ated from a N(0,1) distribution with intraclass correlation 0.5, and then transformed to have a marginal
Beta(1,4) distribution. Denoting the resulting variate as zij, we let xij = 4zij + 1. This procedure, thus,
produced correlated skewed data with a marginal distribution very similar to the observed values of NPI
in the empirical data. For simplicity, we set the marginal probability distribution of x to be independent
of time, because x did not appear to have much systematic change over time in the empirical data.

Figure 2. The distribution shapes by response levels manipulated in the simulations.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 5126–5137
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The response values yij were then generated from a proportional odds TVEM model with the same 𝛽0(t)
and 𝛽1(t) as the estimates based on the FAS data, and with 𝜃 parameters chosen to give approximately
the marginal distributions (across time and subjects) shown in Figure 2. The estimated 𝜏2 parameter
from the FAS data, 2.2156, was taken as the true value here. This leads to an ICC for the latent Y̌|X
of 0.4024 [27], or an estimated ICC for Y|X in the linear TVEM model of 0.29 to 0.40, depending on
the condition.

Both the linear TVEM model and the proportional odds TVEM model were fit to each simulated
data set. For simplicity, the number and location of knots were considered known and set to those of
the data-generating model. The relative predictive accuracy of the two methods was compared as fol-
lows. For each observation Yij, the fitted value ŷij from the linear model was defined as the best linear
unbiased prediction from the linear mixed model. For the proportional odds model, the best linear unbi-
ased prediction for the subject-specific probability of each response level was obtained and then used to
calculate ŷij as

∑
yij Pr(yij). The fitted value ŷij was compared with the subject-specific expected value

𝜇ij = E(Yij|tij, xij, aij) based on the true model, and the sum of squared error
∑

i

∑
j

(
ŷij − 𝜇ij

)2
and the

prediction bias n−1J−1 ∑n
i=1

∑J
j=1

(
ŷij − 𝜇ij

)
were calculated for each method. The relative efficiency for

the proportional odds model was defined as the average across simulations of the ratio of the sum squared
error of the linear model to that of the proportional odds model. Thus, a relative efficiency greater than
one implies that the proportional odds model does a better job at predicting the expected value than the
linear model.

For prediction, both the linear TVEM and proportional odds TVEM had very little bias in all conditions.
Mean absolute prediction bias was always less than 0.003 for the linear TVEM model, and ranged from
0.002 to 0.030 for the proportional odds TVEM model, depending on the condition. The bias associated
with the proportional odds TVEM model sometimes tended to represent a slight underestimate of the

Table I. Relative efficiency of proportional odds time-varying effect model
(TVEM) versus linear TVEM.

Relative Efficiency

#Levels #Subjects #Waves (Bell-shaped) (Some skew) (High skew)

5 300 5 1.0257 1.0761 1.1880
5 300 7 1.0395 1.1140 1.2793
5 300 9 1.0505 1.1506 1.3627
5 500 5 1.0272 1.0795 1.1991
5 500 7 1.0397 1.1186 1.2890
5 500 9 1.0518 1.1546 1.3732
5 700 5 1.0275 1.0813 1.2036
5 700 7 1.0411 1.1194 1.2924
5 700 9 1.0524 1.1557 1.3797
7 300 5 1.0261 1.0876 1.2201
7 300 7 1.0372 1.1241 1.3141
7 300 9 1.0438 1.1586 1.4019
7 500 5 1.0283 1.0890 1.2270
7 500 7 1.0370 1.1260 1.3223
7 500 9 1.0454 1.1625 1.4099
7 700 5 1.0282 1.0910 1.2325
7 700 7 1.0379 1.1272 1.3250
7 700 9 1.0459 1.1623 1.4137
9 300 5 1.0290 1.0963 1.2157
9 300 7 1.0381 1.1351 1.3043
9 300 9 1.0426 1.1694 1.3882
9 500 5 1.0288 1.0989 1.2251
9 500 7 1.0378 1.1388 1.3165
9 500 9 1.0445 1.1716 1.3985
9 700 5 1.0284 1.1015 1.2306
9 700 7 1.0377 1.1396 1.3170
9 700 9 1.0443 1.1754 1.4035
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mean in scenarios with moderate or high skewness; it may have been related to the fact that the predicted
response mean had to be estimated indirectly from the predicted response probabilities.

The relative efficiencies of proportional odds TVEM versus linear TVEM for prediction are shown
in Table I. The proportional odds TVEM model always performed better than the linear TVEM model
(relative efficiency > 1). Thus, although the linear TVEM estimate of the response was unbiased, it still
had higher overall error than the proportional odds TVEM estimate because it did not take the true nature
of the response distribution into account. In general, the number of subjects, the number of waves, or the
number of levels of the ordinal scale had very little effect on relative efficiency. When the distribution
of the ordinal responses was a bell shape, the two models performed at about the same level. However,
when skewness was involved, the linear model’s performance was worse. This is particularly salient in
the case of high skewness, which is very common in data on substance abuse.

For the proportional odds model, it is also of interest to compare the true and estimated 𝛽1(t) function.
We omit this for the linear model, because the 𝛽1(t) function there requires different interpretations for
the true (proportional odds) and fitted (linear) models, and therefore direct comparisons are less mean-
ingful. In all conditions, the average bias for proportional odds TVEM in estimating 𝛽1(t) was essentially
zero (between −0.002 and 0.002). In addition to the bias, we calculated the mean squared error (MSE)
in estimating 𝛽1(t) averaging over observation times t for the proportional odds TVEM. The results
for MSE are summarized in Table II. The MSE tended to be higher in scenarios where skewness was
greater, or when the number of subjects, waves, or response levels was smaller. Pointwise coverage for
95% nominal confidence intervals for 𝛽(t) was also assessed. On average, across replications and sam-
pling times, this coverage was very close to nominal (94.4% to 95.7%). The Monte Carlo error rate
for 1000 simulations is ±1.96 ×

√
0.05 × 0.95 ÷ 1000 = ±1.35%. Thus, the confidence intervals have

excellent coverage.

Table II. Mean squared error in coefficient function estimation for proportional
odds time-varying effect model.

MSE for 𝛽1(t)

#Levels #Subjects #Waves (Bell-shaped) (Some skew) (High skew)

5 300 5 0.0453 0.0453 0.0638
5 300 7 0.0306 0.0312 0.0432
5 300 9 0.0245 0.0241 0.0309
5 500 5 0.0261 0.0271 0.0355
5 500 7 0.0183 0.0186 0.0255
5 500 9 0.0138 0.0144 0.0185
5 700 5 0.0189 0.0186 0.0250
5 700 7 0.0127 0.0132 0.0174
5 700 9 0.0100 0.0103 0.0127
7 300 5 0.0422 0.0417 0.0522
7 300 7 0.0277 0.0297 0.0355
7 300 9 0.0214 0.0216 0.0278
7 500 5 0.0247 0.0250 0.0315
7 500 7 0.0171 0.0167 0.0211
7 500 9 0.0129 0.0135 0.0165
7 700 5 0.0178 0.0178 0.0225
7 700 7 0.0121 0.0123 0.0151
7 700 9 0.0093 0.0094 0.0119
9 300 5 0.0405 0.0419 0.0515
9 300 7 0.0284 0.0286 0.0342
9 300 9 0.0212 0.0211 0.0270
9 500 5 0.0239 0.0246 0.0296
9 500 7 0.0161 0.0170 0.0206
9 500 9 0.0124 0.0130 0.0162
9 700 5 0.0170 0.0172 0.0213
9 700 7 0.0116 0.0121 0.0141
9 700 9 0.0091 0.0093 0.0110
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5133



J. J. DZIAK ET AL.

5. Discussion

This study developed a new statistical model with free SAS macro’s that can be applied to characterize
time-varying effects of risk factors on ordinal outcomes, which are very common in longitudinal data
collected from substance abuse research. We also examined the consequences of fitting the linear TVEM
to ordinal responses through simulations. The design of our simulation study is unique because it repre-
sents the special features of a well-known longitudinal study on youth at high risk for substance abuse
so that the results can inform future applications of the methodology to the substance abuse field.

The proposed model, in general, produced very small biases across different numbers of levels on the
ordinal scale, sample sizes, numbers of waves, and distribution shapes, although there was a tendency for
some slight bias to be found in more skewed distributions with fewer levels. Further, the MSE tended to
be higher in scenarios where skewness was greater, or when the number of subjects, waves, or response
levels was smaller. Our simulation also shows that fitting the linear TVEM to ordinal responses was
particularly problematic when the ordinal scale was highly skewed. Contrary to a common assumption
that an ordinal scale with several levels can be treated as a continuous scale, our results indicate that it
is not so much the number of levels on the ordinal scale but rather the skewness of the distribution that
makes a difference on relative performance of linear versus ordinal models.

The motivating example in this study demonstrates that the proposed model that was designed for
longitudinal ordinal responses can characterize the time-varying effect of negative peer influences on
alcohol use in a way that is more consistent with the developmental theory and existing literature in
comparison to the linear TVEM model. Furthermore, Bauer and Sterba [4] provided some arguments
against the use of linear models with ordinal outcomes, such as the possibility of generating impossible
predicted values outside the range of the ordinal scale and the concern of dealing with heteroscedasticity.
There is also another important practical advantage to modeling ordinal responses as they are: we can
use the regression coefficients to calculate probabilities or odds ratios (e.g. the probability of engaging
in binge drinking). A linear model is not adapted for this purpose.

Our approach to model selection in this paper and the accompanying macro is a rather simple one. We
assumed that each coefficient function could be represented as a spline with the same number of knots,
and used the BIC penalized fit statistic to choose the best number of knots. It would be beneficial in the
future to make the process more flexible. This can be carried out in one of two ways. The easiest way is
to allow different numbers of knots for different functions (so that 𝛽0(t) might have a complicated shape
while 𝛽1(t) had a simple one, or vice versa). However, a fit statistic would still have to be used to loop
through each possible number of knots for each coefficient, and to choose the best combination, which
may become time-consuming. A more automatic approach would use many knots but then implement a
complexity penalty function (e.g. [29]) to regulate the magnitude of the change in the function that may
occur at each knot. However, in our experience, it was computationally difficult to estimate a model which
included both a complexity penalty and a random effect in a generalized linear model using standard
software. Therefore, more research here is needed.

The proposed model was built upon the assumption of proportional odds, which has the advantages
of ensuring the proper order among the cumulative probabilities and providing simple interpretation of
the effects of covariates. In some practical settings, however, this assumption may need to be relaxed.
Interested readers may refer to [30] for a comprehensive review of alternative approaches. Particularly,
in substance abuse research where the shift from no use to any use may be qualitatively different from
shifts in level of use, the zero-inflated proportional odds model [31] may be considered.

Model (1) accounts for subject-specific effects only through a random intercept at the latent level.
Thus, latent values y̆ij and y̆ij′ are treated as equally correlated regardless of the size of the time difference
between tij and tij′ , and this may not be realistic in some settings. Popular longitudinal models assum-
ing autocorrelation for the residuals eij (such as AR-1), on the other hand, treat the lag between each
consecutive pair of measurements tij and ti,j+1 as equivalent. This assumption may not apply to those set-
tings that involve random or inconsistent measurement times. A more straightforward way to incorporate
longitudinal correlation, therefore, is to add a random subject-level slope bi alongside ai. That is, one
can add a new term bitij to the right-hand side of Equation (1). This approach of adding a simple para-
metric random effects structure to a rich nonparametric fixed effects structure can work well and in fact
has some precedent in the literature [32]. We adopted this approach to re-analyze the empirical data but
found that the estimated curves are not noticeably different from those in Figure 1. We also attempted
to repeat the simulations as well to include a random slope, but we found that the GLIMMIX proce-
dure sometimes failed to converge when faced with a proportional odds model with two random effects.
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Further research is, thus, warranted regarding how best to implement more complex random effect struc-
tures while still allowing the time-varying effects to be easily estimated and interpreted with standard
software. Another option, besides random effects, could have been to take a marginal (GEE) approach
with sandwich standard errors [33]. This is, however, beyond the scope of this paper.

Appendix. SAS program example for using macro’s OrdinalTvem &
OrdinalTvemLoop

In this study, we have developed two SAS macro’s that can be downloaded from the web
site of the Methodology Center at the Pennsylvania State University (http://methodology.psu.edu/
OrdinalTvemPropOdds). The principal macro is OrdinalTvem, which fits either a linear or propor-
tional odds TVEM model with one or more covariates and an ordinal response. The macro optionally
includes (1) no random effects; (2) a random intercept alone; or (3) a random intercept and random slope,
in the model. The second macro, OrdinalTvemLoop, calls OrdinalTvem in a loop in order to facil-
itate the choice of the degree of spline and the number of knots. The input data format requires one row
for each wave (see an example in [10]).

The code shown in the succeeding text runs an analysis similar to the one included in the paper, but with
an addition of two covariates, family history of alcoholism, and depression, which are assumed to have
time-invariant effects on alcohol use. Note that whether a covariate’s value is time-varying is independent
of whether its effect is time-varying. All four combinations are possible. For example, family history
of alcoholism is time-invariant but may have different effects on alcohol use at different developmental
stages. On the other hand, a time-varying covariate such as depression can be given a constant coefficient
for the sake of parsimony if its estimated coefficient function appears flat. Although it is not necessary
to tell the macro whether the value of a covariate is time-varying, covariates with time-invariant effects
are indicated with cov and covariates with time-varying effects are specified under tcov.

%INCLUDE "C:\Documents\OrdinalTvem.sas";
/* substitute here the location at which the macro is stored */
%OrdinalTvem(dataset=usable, /*data set name*/

id=ID, /* ID variable */
t=age, /* time variable */
cov=FamHistory Depression, /* name of the covariate(s) with time-invariant
effect */
tcov=NegPeer, /* name of the covariate(s) with time-varying effect */
y=Drink30day, /* response variable name */
UsePropOdds=1,/* use a proportional odds TVEM;

specify "UsePropOdds=0" if using a linear TVEM */
UseRandom=1, /* 0 indicates no random effects;

1 indicates a random intercept;
2 indicates a random intercept and slope */

deg=3, /* the degree of the spline */
MinTToPlot=15, /* lower end of plot */
MaxTToPlot=25, /* upper end of plot */
NumInteriorKnots=3 /* the number of interior knots, assumed evenly spaced */);

The calculations for the macro mainly involve SAS PROC GLIMMIX (see the details in Section 2),
so SAS version 9.2 or higher is required. In addition to the time-varying coefficients for the covariates
specified under tcov (it is permissible to specify none at all), the macro automatically fits a time-varying
intercept using B-splines without a penalty. When calling PROC GLIMMIX for proportional odds regres-
sion, we use the DESCENDING option and then reverse the signs of the resulting intercept constants
[16]. This is needed because the default approach to proportional odds regression in SAS would model
the probability of getting a lower, not higher value, which would make the interpretation of the 𝛽 func-
tions less intuitive. We reverse the signs of the intercept constants (so that 𝜃1 < … < 𝜃K−1 instead of
𝜃K−1 < … < 𝜃1 ) to make them more easily interpretable as thresholds which the latent variable must
exceed in order for the observed variable to pass to the next level.

Three different approaches to doing the internal calculations can be specified in
OrdinalTvem or OrdinalTvemLoop, using the optional keyword ComputationOption. If
ComputationOption=1 is specified, then doubly iterative pseudolikelihood is used, with no nonneg-
ativity constraint on the subject-level covariance parameter. If ComputationOption=2 is specified,
then doubly iterative pseudolikelihood is used, but with a nonnegativity constraint on the subject-level
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covariance parameter. IfComputationOption=3 is specified, then approximate maximum likelihood
by Gaussian quadrature is used. Based on our preliminary simulations, Option 3 is recommended.

Besides plots, several useful data files are created. The most useful are the following:

DataWithFitted The input dataset, merged with the fitted values and confidence intervals for the
beta function of each covariate at each observed time point.
DataWithFittedByLevel Fitted values at the logit scale for each observation, for each level (in
the proportional odds model).
Covparms Estimate for the random effects variance, if any.
ParameterEstimates Estimates for the regression parameters corresponding to the terms in the
spline basis. Also, estimates for the level-specific cutoff parameters 𝜃.
InvariantEffects Estimates and standard errors for the regression parameters, if any, specified
by the user to have constant regression coefficients.
TheseFitStats Fit statistics for the model (e.g., AIC, BIC)

The second macro developed from this study is OrdinalTvemLoop, which calls OrdinalTvem
in a loop in order to facilitate the choice of the degree of spline and the number of knots. This macro
creates an output data set called FitStats, which contains fit statistics including AIC and BIC for each
of many combinations of choices for degree and number of knots. These fit statistics come from PROC
GLIMMIX via OrdinalTvem. The following is sample code for this macro.

%OrdinalTvemLoop(dataset=usable,
id=ID,
t=age,
cov=FamHistory Depression,
tcov=NegPeer,
y=Drink30day,
UsePropOdds=1,
UseRandom=1,
ComputationOption=3);

PROC PRINT DATA=FitStats;
VAR degNumInteriorKnots

AIC___smaller_is_better_ BIC___smaller_is_better_;
RUN;
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