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Extremal dependence between international stock markets is of particu-
lar interest in today’s global financial landscape. However, previous studies
have shown this dependence is not necessarily stationary over time. We con-
cern ourselves with modeling extreme value dependence when that depen-
dence is changing over time, or other suitable covariate. Working within a
framework of asymptotic dependence, we introduce a regression model for
the angular density of a bivariate extreme value distribution that allows us to
assess how extremal dependence evolves over a covariate. We apply the pro-
posed model to assess the dynamics governing extremal dependence of some
leading European stock markets over the last three decades, and find evidence
of an increase in extremal dependence over recent years.

1. Introduction. In recent years, international stock markets have been reg-
istering unprecedented levels of turbulence. Episodes such as the subprime crisis
and the Greek debt crisis may have boosted this turbulence a little further, and led
many to fear a financial doomsday. The situation has been extraordinarily delicate
in Europe, where evidence of increasing extremal dependence was found by Poon,
Rockinger and Tawn (2003, 2004) before the most recent financial crisis. We look
to update suitable parts of their analysis and in particular analyze the time-varying
extremal dependence in a more complete manner than has been done before. To
achieve this goal, we propose an approach for modeling nonstationarity in the ex-
treme value dependence structure.

Statistical modeling of univariate extreme values has been in development since
the 1970s [Natural Environment Research Council (1975)]. Fundamental to practi-
cal application to complex problems has been the development of methodology to
account for nonstationarity in the distributions of interest, which was first strongly
advocated by Davison and Smith (1990). Typical approaches to this problem are
based around the generalized linear modeling idea of allowing the parameters of a
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marginal distribution to depend on covariates; more flexible approaches involving
generalized additive modeling were introduced by Chavez-Demoulin and Davison
(2005). Eastoe and Tawn (2009) present related ideas where data are preprocessed
according to their dependence on covariates.

Statistical methods for modeling multivariate extreme values were introduced
by Tawn (1988), and developed in Tawn (1990) and Coles and Tawn (1991). Since
this time, much work has been done on developing dependence modeling frame-
works for extremes, yet surprisingly little has focused on how to incorporate non-
stationarity into the (extremal) dependence structure. Exceptions include Eastoe
(2009), who introduces a conditionally independent hierarchical model, Jonathan,
Ewans and Randell (2014), who develop methodology for including covariates in
the model of Heffernan and Tawn (2004), and de Carvalho and Davison (2014),
who develop a semiparametric model for settings where several multivariate ex-
tremal distributions are linked through the action of a covariate on an unspecified
baseline distribution. In addition, Huser and Genton (2016) developed nonstation-
ary models for spatial extremes where covariates can be included. In this work, we
add to the literature on modeling nonstationarity in the dependence structure by
proposing flexible methodology for a simple set-up. Working within a tail depen-
dence framework known as asymptotic dependence, we suppose that the relevant
bivariate extreme value distribution evolves over a certain covariate of interest.
The approach that we take is fully nonparametric, which is advantageous since
neither the form of the bivariate distribution at a given covariate, nor the form of
dependence on the covariate can be parametrically specified.

Our methodology is particularly tailored for assessing temporal changes in ex-
tremal dependence, which is the situation that we would like to investigate in our
motivating example. Poon, Rockinger and Tawn (2003, 2004) studied the depen-
dence between stock market returns in the US, UK, France, Germany, and Japan.
The main focus of their works was to highlight that not all markets exhibit a suf-
ficient strength of tail dependence to be asymptotically dependent, and to propose
alternative dependence summaries. However, considering only the European mar-
kets, they noted that there was evidence for relatively strong left-tail dependence,
and we also find evidence for asymptotic dependence in the left tails of these major
European markets. As noted by Poon, Rockinger and Tawn (2003), the dependence
is not stationary in time, and a main focus of this work is to explore this nonsta-
tionarity using a full model for the time-varying dependence structure, rather than
simply summary statistics.

In the next section, we provide a background on dependence modeling for ex-
treme values, and introduce our proposed framework for incorporating nonstation-
arity. In Section 3, we introduce our estimation and inference methods; numerical
illustrations follow in Section 4. The focus of Section 5 is on applying the pro-
posed methods to returns from three major European stock markets—using CAC,
DAX, and FTSE—to assess the evolution of their extremal dependence structure
over time. We conclude in Section 6.
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2. Conditional modeling for bivariate extremes.

2.1. Bivariate statistics of extremes. Let {(Yi,1, Yi,2)}
N
i=1 be a collection of in-

dependent and identically distributed random vectors with continuous marginal
distributions FY1 and FY2 . We are concerned with assessments of the extremal
dependence between the components of the vectors, and thus without loss of
generality we shall suppose that they have standard Fréchet margins, that is,
P(Yj > y) = exp(−1/y), for y > 0 and j = 1,2. Let

(MN,1,MN,2) =
1

N

(
max

1≤i≤N
{Yi,1}, max

1≤i≤N
{Yi,2}

)

be the standardized vector of componentwise maxima. Then if

P(MN,1 ≤ y1,MN,2 ≤ y2) → G(y1, y2), as N → ∞,(2.1)

where G is a nondegenerate distribution function, G has the form:

(2.2) G(y1, y2) = exp
{
−2

∫

[0,1]
max

(
w

y1
,

1 − w

y2

)
H(dw)

}
, y1, y2 > 0.

Here, G(y1, y2) is the so-called bivariate extreme value distribution and H is a
probability measure—known as the angular measure. A consequence of Pickands’
(1981) representation theorem is that the angular measure needs to obey the fol-
lowing marginal moment constraint

∫

[0,1]
wH(dw) = 1/2;(2.3)

see, for example, Coles (2001), Theorem 8.1. Let R = Y1 +Y2 and W = Y1/(Y1 +

Y2). de Haan and Resnick (1977) have shown that the convergence in (2.1) is equiv-
alent to

P(W ∈ · | R > u) → H(·), u → ∞.(2.4)

In practice, convergence (2.4) is more often useful than (2.1) and tells us that
when the “radius” R is large, the “pseudo-angles” W are approximately dis-
tributed according to H , and approximately independent of R. The distribution
of mass of H on [0,1] describes the extremal dependence structure of the ran-
dom vector (Y1, Y2). The extreme cases of this distribution are given by asymp-

totic independence, whereby all mass is placed at the vertices of [0,1], giving
G(y1, y2) = exp{−(y−1

1 + y−1
2 )}, and by complete dependence, whereby all mass

is placed at the center of the interval, yielding G(y1, y2) = exp{−max(y−1
1 , y−1

2 )}.
We refer to situations where H has mass away from the vertices as asymptotic

dependence and this will be the framework of our modeling. Nevertheless, asymp-
totic independence is a relatively common situation in practice, and can be detected
when R and W are not found to be independent for any values of R, with the mass
of W moving closer to 0 and 1 as events become more extreme. In this situation, no
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models for H will provide useful information on the extremal dependence struc-
ture. Finally, a standard assumption for statistical modeling is that H is absolutely
continuous with angular density h = dH/dw, and this will be our framework.

Functionals of interest of the angular measure include the bivariate extreme
value distribution (2.2), which also represents the extreme value copula, CEV,
[e.g., Gudendorf and Segers (2010)] in Fréchet margins, that is, G(y1, y2) =

CEV(e−1/y1, e−1/y2). Other functionals include the Pickands (1981) dependence
function A(w) = 1 − w + 2

∫ w
0 H(u)du, and the extremal coefficient C =

2A(1/2). Extreme value independence corresponds to A(w) = 1, whereas perfect
dependence corresponds to A(w) = max(w,1 − w).

2.2. Conditional modeling framework. We define the conditional bivariate ex-
treme value (BEV) distribution as

Gx(y1, y2) ≡ G(y1, y2 | X = x)
(2.5)

= exp
{
−2

∫

[0,1]
max

(
w

y1
,

1 − w

y2

)
H(dw | X = x)

}
,

for x ∈X ⊆ R, and y1, y2 > 0. Here, Hx(·) ≡ H(· | X = x) are conditional proba-
bility measures satisfying

(2.6)
∫

[0,1]
wHx(dw) = 1/2, x ∈X .

If Hx(w) ≡ Hx[0,w] is absolutely continuous, its conditional angular density is
hx = dHx/dw. Further aspects of conditional angular measures are discussed in
de Carvalho (2017).

Our main modeling object of interest will be the set of conditional angular den-
sities {hx(w) : w ∈ [0,1], x ∈ X }, which we will refer to as the angular surface.
A simple angular surface can be obtained with the conditional angular density
hx(w) = β(w;μx,μx), where μ : X �→ (0,∞), and β(·;p,q) denotes the beta
density with shape parameters p,q > 0. In Figure 1(a), we represent an angular
surface based on this model, with μx = x, for x ∈ X = [0.5,50]. As can be seen,
larger values of the predictor x lead to stronger levels of extremal dependence.
Other angular surfaces can be readily constructed from parametric models for the
angular density.

EXAMPLE 1 (Conditional logistic model). The logistic angular surface is a
covariate-adjusted extension of the logistic model [Coles (2001), page 146], and it
is based on the conditional angular density

hx(w) =
1

2

(
1

αx

− 1
){

w(1 − w)
}−1−1/αx

(2.7)
×

{
w−1/αx + (1 − w)−1/αx

}αx−2
,
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FIG. 1. (a) Angular surface from a conditional beta family, with μx = x, for x ∈X = [0.5,50]. (b)
Angular surface from a conditional logistic family, with αx = �(x2), for x ∈X = [−3,3].

for w ∈ (0,1), where α : X �→ (0,1]. The closer αx is to 0, the higher the level of
extremal dependence, while the closer αx is to 1, the closer we get to independence.
Angular surfaces with simple “shapes” can be obtained by modeling αx with either
a distribution function, F(x), or a survivor function, 1 −F(x). More sophisticated
shapes can be obtained with αx = (F ◦G)(x), for a certain continuous function G :

X �→R. In Figure 1(b), we represent the logistic angular surface in (2.7) with αx =

�(x2), for x ∈ X = [−3,3], where � denotes the standard normal distribution
function.

EXAMPLE 2 (Conditional Dirichlet model). The Dirichlet angular surface is a
covariate-adjusted extension of the Dirichlet model [Coles and Tawn (1991)], and
it is based on the conditional angular density

(2.8) hx(w) =
axbxŴ(ax + bx + 1)(axw)ax−1{bx(1 − w)}bx−1

2Ŵ(ax)Ŵ(bx){axw + bx(1 − w)}ax+bx+1
, w ∈ (0,1),

where a : X �→ (0,∞) and b : X �→ (0,∞). Angular surfaces with simple shapes
can be obtained with ax = bx = exp(x), while if more complex dynamics are de-
sirable, can be based on ax = exp{A(x)}, bx = exp{B(x)}, where A : X �→ R and
B : X �→R are continuous functions.

The basic idea of a conditional angular measure is not especially complicated,
and inference for such would be simple if: (i) we knew our data conform to a partic-
ular parametric family, and (ii) we knew precisely how that family depended on x.
However, since we do not have knowledge of either of these things, the natural ap-
proach to take is a nonparametric one. We assume that hx varies smoothly with x,
and thus kernel smoothing becomes a natural option. We describe our estimation
strategy in Section 3.
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2.3. Related conditional objects of interest. Our estimation target {hx(w) :

w ∈ [0,1], x ∈ X } can be used for constructing other objects of interest when mod-
eling bivariate extremes. For example, a conditional version of Pickands (1981)
dependence function can be defined as

Ax(w) = 1 − w + 2
∫ w

0
Hx(u)du, x ∈ X ,w ∈ [0,1],

leading to the conditional extremal coefficient Cx = 2Ax(1/2). A covariate-
adjusted extreme value copula can be readily constructed from (2.5). Although
much theoretical and applied work has been devoted to time-dependent copulas
[Patton (2006), Veraverbeke, Omelka and Gijbels (2011), Acar, Craiu and Yao
(2011), Fermanian and Wegkamp (2012)], the amount of work dedicated to time-
varying extreme value copulas is by comparison fairly reduced, but of obvious
relevance in a wealth of contexts of applied interest. The latter setup is the one of
interest in the current manuscript.

EXAMPLE 3. Using the conditional angular density from Example 1, we ob-
tain Ax(w) = {(1 − w)1/αx + w1/αx }αx and Cx = 2αx , while the logistic angular
surface is based on the conditional BEV distribution,

Gx(y1, y2) = exp
{
−

(
y

−1/αx

1 + y
−1/αx

2

)αx
}
, x ∈ X , y1, y2 > 0.

3. Estimation and inference.

3.1. Derivation of pseudo-angles. Consider equation (2.4). We are now sup-
posing nonstationarity in the dependence structure such that

P(W ∈ · | R > u,X = x) → Hx(·), u → ∞.(3.1)

Note that we still assume that R and W are derived from Y1, Y2 with standard
Fréchet margins. Typically, when stationarity in the extremal dependence structure
is assumed, one searches for a high threshold in R, such that W and R are approx-
imately independent above the threshold, and uses all W associated to threshold
exceedances of R for inference. Supposing that x does not impact upon the rate
of convergence in the limit (3.1), a similar approach is justified here. However, for
prudence, we assess the dependence of R on x using quantile regression [Koenker
(2005)]. To be consistent with the nonparametric nature of our approach, we fit
a nonparametric quantile regression using regression splines. This method flexi-
bly fits a piecewise cubic polynomial to estimate the 95% quantile of R. If any
relationship between R and x is detected, then we take the W associated to ex-
ceedances of the fitted threshold by R for inference. Below we use n = o(N) to de-
note the number of pseudo-angles that resulted from thresholding Ri = Yi,1 +Yi,2,
for i = 1, . . . ,N . Further details on the derivation of pseudo-angles for our data
application can be found in Section 5.3.



TIME-VARYING EXTREME VALUE DEPENDENCE 289

We note that we are not allowing for the margins to change over the predictor.
This is however a sensible modeling assumption for our data application, because
(filtered) returns are known to be approximately stationary. Indeed, as posed by
Resnick (2007), page 7, “Returns have more attractive statistical properties than
prices such as stationarity”. See Section 5.2 for details on the filtering methods
used in our data application.

3.2. Conditional angular density estimation. Here, we outline our estima-
tor for the family of densities {hx(w) : w ∈ [0,1], x ∈ X }. Assume observa-
tions {(Xi,Wi)}

n
i=1, where the covariates Xi are continuous and in X ⊆ R. Let

Kb(x) = (1/b)K(x/b) be a kernel with bandwidth b > 0. For any x ∈ X , we de-
fine the estimator

ĥx(w) =

n∑

i=1

πb,i(x)β
(
w;νWiθb(x) + τ, ν

{
1 − Wiθb(x)

}
+ τ

)
,(3.2)

for w ∈ (0,1), where

θb(x) =
1/2

∑n
i=1 πb,i(x)Wi

, πb,i(x) =
Kb(x − Xi)∑n

j=1 Kb(x − Xj )
, i = 1, . . . , n.

The moment constraint (2.6) is satisfied, since
∫ 1

0
wĥx(w)dw =

∑n
i=1 Kb(x − Xi){νWiθb(x) + τ }

(ν + 2τ)
∑n

i=1 Kb(x − Xi)
=

ν/2 + τ

ν + 2τ
= 1/2,

for all valid τ ≥ 0, upon substitution of θb(x).
The two kernels (Kb and β) and the three parameters involved in our estima-

tor can be interpreted as follows. The bandwidth b > 0 is the scale parameter
of the kernel Kb and controls the amount of smoothing in the x-direction. The
choice of the kernel Kb is subject to the typical considerations. In principle, Kb

should be symmetric and unimodal, since there is a sense in which density es-
timators based on kernels that do not satisfy these requirements are inadmissi-
ble [Cline (1988)]. While there are many kernel functions that do satisfy these
basic requirements, it is well known that the choice of the kernel has little im-
pact on the corresponding estimators; see Wand and Jones (1995), Chapter 2,
and references therein. The parameter ν > 0 is asymptotically inversely propor-
tional to the variance of the kernel β and has the main role of controlling the
amount of smoothing in the w-direction. The additional parameter τ ≥ 0 has the
role of adjusting slightly the center of the kernel, allowing more flexible esti-
mation, whilst not affecting the imposition of the moment constraint. Note that
τ = 0 yields a kernel with mean equal to Wi , whilst τ = 1 yields a kernel with
mode Wi . In addition, θb(x) assesses by how much we deviate from the mo-
ment constraint (2.6). To see this, note that θb(x) = (1/2)/Ê(W | X = x), where
Ê(W | X = x) =

∑n
i=1 πb,i(x)Wi is the Nadaraya–Watson estimator [Nadaraya

(1964), Watson (1964)] of E(W | X = x) =
∫
[0,1] wHx(dw) = 1/2, for all x ∈ X .
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Plug-in estimators for the related conditional objects of interest discussed in
Section 2.3 can be readily obtained; particularly

Ĥx(w) =

n∑

i=1

πb,i(x)B
(
w;νWiθb(x) + τ, ν

{
1 − Wiθb(x)

}
+ τ

)
, w ∈ (0,1),

where B(w;p,q) is the regularized incomplete beta function, with p,q > 0; in
addition, the plug-in estimators for the conditional Pickands dependence function,
extremal coefficient, and bivariate extreme value distribution can be written as

Âx(w) = 1 − w

+ 2
n∑

i=1

πb,i(x)

∫ w

0
B

(
u;νWiθb(x) + τ, ν

{
1 − Wiθb(x)

}
+ τ

)
du,

Ĉx = 2Âx(1/2) = 1
(3.3)

+ 4
n∑

i=1

πb,i(x)

∫ 1/2

0
B

(
u;νWiθb(x) + τ, ν

{
1 − Wiθb(x)

}
+ τ

)
du,

Ĝx(y1, y2) = exp

{
−2

∫ 1

0
max

(
u

y1
,

1 − u

y2

)

×

n∑

i=1

πb,i(x)β
(
u;νWiθb(x) + τ, ν

{
1 − Wiθb(x)

}
+ τ

)
du

}
,

for x ∈ X , and y1, y2 > 0.

3.3. Connections to smoothing on the unit interval. Kernel density estimation
on the unit interval is a challenging problem; see Chen (1999), Jones and Hender-
son (2007), de Carvalho et al. (2013), Geenens (2014), and the references therein.
In this section, we contrast a stationary version of our estimator (3.2) with that of
Chen (1999), and comment on the connections with the smooth Euclidean likeli-
hood angular density of de Carvalho et al. (2013). The latter can be regarded as a
moment constrained kernel density estimator on the unit interval, in the sense that
it obeys (2.3).

If all covariates x take the same value, so that the estimation problem reduces to
one of estimating the angular density for an identically distributed set of pseudo-
angles {Wi}

n
i=1, then (3.2) becomes

(3.4) ĥ(w) =
1

n

n∑

i=1

β

(
w;ν

Wi

2W
+ τ, ν

{
1 −

Wi

2W

}
+ τ

)
, w ∈ (0,1).

The version of our estimator in equation (3.4) differs from Chen’s beta kernel
[Chen (1999)]:

(3.5) h⋆(w) =
1

n

n∑

i=1

β

(
Wi;

w

s
+ 1,

1 − w

s
+ 1

)
,
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where s > 0 is a bandwidth. Indeed, (3.5) puts the mode of the kernel at Wi and
so does our estimator in (3.4), if we set τ = 1. Yet, in (3.4) w is the argument
of β(·), whereas in (3.5), Wi is the argument of β(·). Estimator (3.4) has closer
connections with the smooth Euclidean angular density estimator in de Carvalho
et al. (2013), page 1190, and which is given by

h̃(w) =
1

n

n∑

i=1

{
1 − (W − 1/2)S−2(Wi − W)

}
β

{
w;νWi, ν(1 − Wi)

}

=
1

n

n∑

i=1

β
{
w;νWi, ν(1 − Wi)

}
(3.6)

−
1

n

n∑

i=1

(W − 1/2)S−2(Wi − W)β
{
w;νWi, ν(1 − Wi)

}
,

for w ∈ (0,1); here, W and S2 are the sample mean and sample variance of
W1, . . . ,Wn, that is,

W =
1

n

n∑

i=1

Wi, S2 =
1

n

n∑

i=1

(Wi − W)2.

A heuristic argument can be used to see this, by focusing on the case τ = 0.
The right-hand term in (3.6) enforces the moment constraint, and hence it is
asymptotically negligible, so that for large n, we have h̃(w) ≈ (1/n)

∑n
i=1 β{w;

νWi, ν(1 − Wi)}; on the other hand, we also have that for large n, ĥ(w) ≈

(1/n)
∑n

i=1 β{w;νWi, ν(1−Wi)}, since W = 1/2+op(1), as n → ∞. While both
(3.4) and (3.6) obey the moment constraint (2.6), they impose it through different
approaches: our estimator enforces (2.3) by rescaling the pseudo-angles with a
factor of (2W)−1; the smooth Euclidean angular density enforces (2.3) additively,
through the right-hand term in (3.6). To our knowledge, it is not straightforward to
impose the moment constraint on Chen’s kernel in (3.5).

3.4. Tuning parameter selection and bootstrap. We select the tuning parame-
ters via maximum likelihood K-fold cross-validation (MLCV) [Hastie, Tibshirani
and Friedman (2001), Section 7.10.1]. Specifically, let {W1, . . . ,WK} be the full
sample of pseudo-angles split into K blocks. In the analyses in Sections 4 and 5,
we split the blocks according to the values of the accompanying covariate x, so
that each Wk = (Wk,1, . . . ,Wk,nk

) is in a similar part of the covariate space. Let-
ting ĥx(−k) denote the estimator leaving out the kth sample, Wk , of length nk , we
select

(b̂, ν̂, τ̂ ) = arg min
(b,ν,τ )∈RX ,n

K∑

k=1

nk∑

j=1

− log ĥXk,j (−k)(Wk,j ),(3.7)
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with

RX ,n =
{
(b, ν, τ ) ∈ (0,∞)3 : νWiθb(x) + τ > 0,

ν
{
1 − Wiθb(x)

}
+ τ > 0, for i = 1, . . . , n;x ∈ X

}
(3.8)

=
{
(b, ν, τ ) ∈ (0,∞)3 : ν

{
1 − Wiθb(x)

}
+ τ > 0, for i = 1, . . . , n;x ∈ X

}
.

The constrained optimization yields well-defined estimates, since it guarantees the
positivity of the beta parameters in our estimator. The latter equality in (3.8) fol-
lows from noticing that νWiθb(x) + τ > 0, for all x ∈ X ; further details on prac-
tical implementation of tuning parameter selection are given in Section 4.2. It is
known that for density estimation, MLCV can produce estimates with subopti-
mal performance leading to undersmoothed density estimates, especially when the
true density has unbounded support [DasGupta (2008), Section 32.10.1]. Compu-
tational experiments in the supplementary materials [Castro-Camilo, de Carvalho
and Wadsworth (2018)] show that the main findings in Section 5 are very simi-
lar regardless of whether we use MLCV or least-squares cross-validation (LSCV)
[DasGupta (2008), Section 32.10.2]. Better results than the ones in Section 4 are to
be expected if LSCV is used. However, LSCV would not be theoretically grounded
for nonsquare integrable densities [e.g., hx(w) = β(w;x, x), for x ∈ (0,1/2)].

An uncertainty assessment can be performed by simulating from kernel density
estimates themselves—in the spirit of the so-called smoothed bootstrap [Silverman
and Young (1987)]. The procedure detailed below, allows us to generate B boot-
strap angular surfaces. For r ∈ {1, . . . ,B}:

1. Sample j ⋆ from a discrete uniform distribution over {1, . . . , n}.
2. Sample Xr

j ∼ Kb̂(· − Xj⋆).

3. Sample W r
j ∼ ĥXr

j
with

ĥXr
j
(w) =

n∑

i=1

πb̂,i

(
Xr

j

)
β

(
w; ν̂Wiθb̂

(
Xr

j

)
+ τ̂ , ν̂

{
1 − Wiθb̂

(
Xr

j

)}
+ τ̂

)
,

for w ∈ (0,1), and where for i = 1, . . . , n:

θb̂

(
Xr

j

)
=

1/2
∑n

i=1 πb̂,i(X
r
j )Wi

, πb̂,i

(
Xr

j

)
=

Kb̂(X
r
j − Xi)

∑n
k=1 Kb̂(X

r
j − Xk)

.

4. Repeat Steps 1–3 n times to obtain the r th bootstrap sample (Xr ,Wr), with

Xr =
(
Xr

1, . . . ,X
r
n

)T
, Wr =

(
W r

1 , . . . ,W r
n

)T
.

5. Use (Xr ,Wr) and (3.7) to obtain bootstrap estimates (b̂r , ν̂r , τ̂ r).

Using the bootstrap samples {(Xr ,Wr)}Br=1, the bootstrap estimates {(b̂r , ν̂r ,

τ̂ r)}Br=1, and (3.2), we can construct B bootstrap angular surfaces ĥ1
x, . . . , ĥ

B
x . For

computational convenience, Step 2 considers only a single bandwidth, b̂, but it is
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known [see, e.g., Polansky (2001)] that smoothed bootstrap resamples need not
be generated from the kernel density estimate with the same bandwidth. Indeed,
the so-called calibration methods are known to perform well, but they require one
to construct a resample over a sequence of bandwidths, and thus are computa-
tionally costlier. Visualizing uncertainty of angular surfaces can be awkward, but
cross sections of the angular surface (i.e., conditional angular density estimates at
fixed values of x) can be easily summarized using, for example, functional box-
plots [Sun and Genton (2011)]. Details on constructing functional boxplots for
angular densities are given in Section 4.2.

3.5. A local-linear version of the estimator. A local linear version of our es-
timator can be readily constructed by replacing the Nadaraya–Watson weights
in (3.2) with

(3.9) πb,i(x) =
1

n

{̂s2(x;b) − ŝ1(x;b)(Xi − x)}Kb(Xi − x)

ŝ2(x;b)̂s0(x;b) − ŝ2
1(x;b)

,

where ŝm(x;b) = n−1 ∑n
i=1(Xi − x)mKb(Xi − x), for m = 0,1,2. Local linear

regression is often presented as a solution to mitigate boundary bias issues of the
Nadaraya–Watson estimator [Wand and Jones (1995), Section 5.5]. Throughout,
we consider both Nadaraya–Watson and local linear weights to illustrate their rel-
ative performance.

4. Simulation study.

4.1. Data-generating configurations and preliminary experiments. We study
the performance of our methods under the logistic and Dirichlet conditional mod-
els introduced in Examples 1 and 2. Regarding the logistic conditional model, we
take αx = �(x) and consider x ∈ Xlogistic = [�−1(0.2),�−1(0.4)]. For the Dirich-
let conditional model, we consider two scenarios: a symmetric Dirichlet angular
surface with (ax, bx) = (x, x), for x ∈ XsDir = [0.8,4] and an asymmetric Dirich-
let angular surface with (ax, bx) = (x,100), for x ∈ XaDir = [0.5,2]. In Figure 2,
we plot the true and estimated angular surfaces for the three cases described above
on a single experiment with n = 500. The top panel of Figure 2 corresponds to
the logistic angular surface, where extremal dependence decreases as a function
of the predictor. The center panel shows the symmetric Dirichlet angular surface,
where we observe weaker dependence for lower values of the covariate, whereas
stronger dependence prevails for higher values. Finally, an increasing asymmetric
dependence dynamic is displayed in the bottom panel, where we have plotted the
asymmetric Dirichlet angular surface.

The single run experiment in Figure 2 allows us to illustrate strengths and lim-
itations with the methods. Even though there is a good fit—which is discussed
in further detail in Section 4.2—we can anticipate from this figure that our esti-
mator suffers from limitations inherent to kernel-based estimators. For example,
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FIG. 2. True angular surfaces (left) and corresponding estimates using Nadaraya–Watson weights

(middle) and local linear weights (right). Top panel: conditional logistic model with αx = �(x), for

x ∈ Xlogistic = [�−1(0.2),�−1(0.4)]. Center panel: conditional Symmetric Dirichlet model with

(ax , bx) = (x, x), for x ∈ XsDir = [0.8,4]. Bottom panel: conditional Asymmetric Dirichlet model

with (ax , bx) = (x,100), for x ∈ XaDir ∈ [0.5,2]. The simulated pseudo-angles based on which the

estimates are produced are overlaid on the bottom of the boxes.

pointwise estimation using the Nadaraya–Watson weights (middle column of Fig-
ure 2) underperforms when the angular surface peaks, but this is mostly due to the
boundary bias of Kb which is a drawback of kernel-based estimators on bounded
domains; see Härdle (1990), Section 4.4, and references therein. To mitigate this
issue, we also compute our estimator using local linear weights, as described in
Section 3.5 (right column of Figure 2). We see that the performance in the upper
boundaries of the covariate space is slightly improved for both Dirichlet angular



TIME-VARYING EXTREME VALUE DEPENDENCE 295

TABLE 1
Mean integrated absolute error estimates computed over 1000 samples for the data-generating

configurations discussed in Section 4.1 for the Nadaraya–Watson (N–W)
and the local lineal (L–L) weights

MIAE

n Conditional model Specification N–W weights L–L weights

300 Logistic αx = �(x) 0.09 0.92
Symmetric Dirichlet (ax , bx) = (x, x) 0.42 0.60
Asymmetric Dirichlet (ax , bx) = (x,100) 0.63 0.59

500 Logistic αx = �(x) 0.08 0.14
Symmetric Dirichlet (ax , bx) = (x, x) 0.39 0.55
Asymmetric Dirichlet (ax , bx) = (x,100) 0.62 0.55

surfaces, but it remains almost the same for the logistic angular surface. The es-
timator using local linear weights seems to produce smoother estimates for the
asymmetric Dirichlet model. This relative improvement is corroborated in Table 1,
where we assess the mean performance of both estimators. Estimates for the other
two models tend to be better (in terms of mean performance) using the Nadaraya–
Watson weights. In terms of computations, the runtime of the estimator using the
Nadaraya–Watson weights outperforms its local linear counterpart by at least a
factor of 10. In spite of these limitations, both estimators successfully recover the
shape of the true angular surface, and thus are able to reproduce accurately the
evolution of extremal dependence over the covariate.

4.2. Simulation results. To construct the simulation studies, we took 1000
samples of sizes 300 and 500 for the three conditional models presented in Sec-
tion 4.1. For the samples of size 500, Figure 3 displays functional boxplots [Sun
and Genton (2011)] of cross sections of the angular surface (conditional angular
density estimates at fixed values of x) along with their Monte Carlo means. Func-
tional boxplots are constructed introducing measures to define functional quantiles
and the centrality or outlyingness of a curve. Specifically, Sun and Genton (2011)
use band depths to order a sample of curves from the center outwards, defining
100α% central regions (0 < α < 1). These central regions can be estimated using
the α proportion of deepest curves; a formal definition of these regions can be
found in Sun and Genton (2011), Section 3. The gray areas in Figure 3 show the
sample 50%, 75%, and 95% central regions of the sampled curves. These plots al-
low us to illustrate the performance of our estimator in terms of variability, under
different dependence dynamics. For example, the logistic model estimates pre-
sented in the top panel of Figure 3 turn out to be the most dispersed over all three
scenarios. We argue that there are two related reasons for this: the limitations due
to boundary bias that were discussed in Section 4.1, and the fact that the range
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FIG. 3. Functional boxplots (gray shadow) showing the 50%, 75%, and 95% central regions [as

defined by Sun and Genton (2011)] of 1000 samples of size 500 for the conditional models presented

in Section 4.1, as well as their corresponding true values (solid blue line) and Monte Carlo means

(dashed red line).
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of extremal dependence in the logistic conditional surface is greater compared to
the two other scenarios. Both estimators seems to perform similarly, although the
local-linear estimator is more variable when the extremal dependence is stronger.
The center panel corresponds to the symmetric Dirichlet angular model, which dis-
plays a good mean performance in the last two cases, but some bias when the true
angular density is U-shaped. Estimates using the Nadaraya–Watson weights seem
to be slightly more variable than the ones using the local linear weights. Finally,
the asymmetric Dirichlet angular model presented in the bottom panel, displays
more dispersed estimates than its symmetric counterpart for both estimators (and
between them it seems that the Nadaraya–Watson estimates are again more vari-
able than the ones using local linear weights), although the Monte Carlo mean
produces suitable approximations. The asymmetry does not seem to be a major
issue. Overall, estimates for the three models display reasonable performance in
recovering the different shapes of the densities, and Monte Carlo means produce
reliable estimates. Monte Carlo mean surfaces for the three models and the two
estimators can be found in the supplementary material.

We assess the performance of our estimator using the mean integrated absolute
error (MIAE),

MIAE = E

(∫

X

∫ 1

0

∣∣ĥx(w) − hx(w)
∣∣ dw dx

)
,(4.1)

and report the results in Table 1. As mentioned before, we can see that the esti-
mator using the Nadaraya–Watson weights outperforms the one using local linear
weights in the logistic and symmetric Dirichlet models, but the local linear weights
seem to be a better choice for the asymmetric Dirichlet model. In any case and
except for the logistic model with sample size 300, the improvements of one es-
timator over the other are fairly modest. As we should expect, the results show
that performance increases with sample size. Overall, simulations confirm that our
methods produce acceptably accurate estimates of the angular surface.

We conclude this section providing some comments on implementation of the
tuning parameter selection [Section (3.4)]. Since in some cases optimization over
RX ,n [defined in equation (3.8)] can be computationally expensive, our experi-
ments suggest that optimization over Rn defined as

Rn =
{
(b, ν, τ ) ∈ (0,∞)3 : ν

{
1 − Wiθb(Xj )

}
+ τ > 0, for i, j = 1, . . . , n

}
,

performs reasonably well. Note that Rn is a version of RX ,n determined only
by the observed covariate values, and not by the entire covariate space X . Further-
more, for large n, unconstrained optimization over (0,∞)3 typically also performs
well. We thus recommend the user to initially try unconstrained optimization for
large n, or optimization over Rn for moderate n. Only if the resulting parameter
values do not yield a valid estimator over the study region of interest does one then
need to implement the constrained optimization over RX ,n.
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5. Dynamics of joint extremal losses in leading European stock markets.

5.1. Background and motivation for empirical analysis. In 1999, 11 European
Union (EU) countries formed the Economic and Monetary Union (EMU), which
led them to adopt a common currency and monetary policy as well as the conduc-
tion of coordinated economic policies.

The process of creation of the EMU was the outcome of three stages of de-
velopment, further details of which can be found on the European Central Bank
website:

https://www.ecb.europa.eu/ecb/history

See also James (2012). To join the Eurozone (countries who adopted the Euro as
their common currency) member states had to qualify by meeting the criteria of
the Maastricht Treaty in terms of budget deficits, inflation, interest rates, and other
monetary requirements. At the moment the Euro is the single currency shared by
19 of the 28 EU members. The remaining 9 countries, including the UK, are en-
dowed with “opt-out” clauses which exempts them from using the Euro as their
currency. In recent years, there have been several studies providing evidence for
an increased integration of European stock markets, and the EMU has been fre-
quently put forward as the causal driver for this increase, along with some other
determinants [Büttner and Hayo (2011), Fratzscher (2002), Kim, Moshirian and
Wu (2005), Hardouvelis, Malliaropulos and Priestley (2006), and the references
therein]. Hardouvelis, Malliaropulos and Priestley (2006) found however that the
UK, who chose not to enter the eurozone, showed no increase in stock market
integration by that time.

Although there is a wealth of studies analyzing stock market integration over
time, few attempts have been made to ascertain the dynamics governing extreme
value dependence of stock market returns over time. The huge literature look-
ing into dependence of financial markets [see, e.g., Forbes and Rigobon (2002),
Brooks and Del Negro (2004, 2005), Karolyi and Stulz (1996), King, Sentana and
Sushil (1994), Longin and Solnik (1995, 2001), Rua and Nunes (2009)] has col-
lected evidence compatible with the hypothesis that the comovement of returns has
not remained constant over time. Yet, none of these papers has focused on tracking
the dynamics of extremal dependence of returns, which is the object of the current
inquiry. An exception in this respect is the seminal paper of Poon, Rockinger and
Tawn (2003), which provides evidence of increasing levels of extremal dependence
for three major stock markets within Europe [CAC (France), DAX (Germany), and
FTSE (UK)]. The subperiod analysis of Poon, Rockinger and Tawn (2003), Sec-
tion 3.3.2, is however exploratory, in the sense that they arbitrarily partitioned the
sample period into three periods, and thus estimation of extremal dependence on
each period only takes data from that period into account.

https://www.ecb.europa.eu/ecb/history
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Below, we apply our methods to address a similar question to that of Poon,
Rockinger and Tawn (2003, 2004). Specifically, one of our main interests is disen-
tangling the dynamics governing the dependence of extreme losses on three lead-
ing European stock markets—using CAC, DAX, and FTSE—in recent years. The
motivation for choosing these markets is twofold: these are the stock markets of
the European members of G5; these are also the same European stock markets
considered by Poon, Rockinger and Tawn (2003, 2004). Moreover, they display a
stronger type of extremal dependence than some of the other markets studied by
Poon, Rockinger and Tawn (2003, 2004), that is, asymptotic dependence as defined
in Section 2.1.

5.2. Data description, preprocessing, and exploratory considerations. Our
data were gathered from Datastream and consist of daily closing stock index levels
of three leading European stock markets: CAC 40, DAX 30, and FTSE 100 (hence-
forth CAC, DAX, and FTSE). The sample period spans from January 1, 1988, to
January 1, 2014 (N = 6784 observations), and hence it includes the Great Moder-
ation and Great Recession which are by all standards challenging modeling issues.
Since we want to focus on extreme losses, we use daily negative returns as a unit
of analysis. Daily negative returns are computed by taking the negative of the first
differences of the logarithmic indices. Following the bivariate analysis in Poon,
Rockinger and Tawn (2004), both observations of a particular day are removed if
at least one of the two observations is a zero return (plots of the data and sum-
mary statistics can be found in the supplementary material). The Engle (1) statistic
of Engle (1982) (not reported here) is large and significant for all three stock re-
turn series, indicating strong heteroskedasticity which can be removed by fitting
volatility filters. In the spirit of Poon, Rockinger and Tawn (2004), we fit three
different filters: GARCH(1,1) assuming t-distributed errors for CAC and normal
for FTSE and DAX, NGARCH (also known as nonlinear asymmetric GARCH)
with normal innovations, and the stochastic volatility model (SV) of Kim, Shep-
hard and Chib (1998) with hyperparameters chosen according to the latter paper.
Diagnostic plots (not shown here) suggest that the GARCH fits are superior than
the NGARCH fits for the three stock markets, and heteroskedasticity is success-
fully removed with the GARCH and NGARCH filters, but not with the SV filter.
The results shown below correspond to the GARCH-filtered residuals, but similar
conclusions can be drawn using the NGARCH filter (angular surfaces based on the
NGARCH-filtered residuals can be found in the supplementary material). Scatter-
plots of possible combinations of pairs of filtered residual series are displayed in
Figure 4, depicted using a time-varying color palette which allows us to uncover
the nonstationary nature of joint extremes. This is in line with the findings of Poon,
Rockinger and Tawn (2003, 2004).

To verify that our methods are a sensible approach for modeling these data,
we need to assess whether the filtered residuals are asymptotically dependent. As
mentioned in Section 2.1, in the modeling of extreme events two different classes
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FIG. 4. Scatterplots using a time-varying color palette for GARCH-filtered residuals for CAC 40
(FR), DAX 30 (DE) and FTSE 100 (UK) spanning the period from January 1, 1988, to January 1,
2014.

of extreme value dependence can arise: asymptotic dependence and asymptotic
independence. Dependence between moderately large values can arise in both
cases, but the very largest values from each variable can occur together only un-
der asymptotic dependence. To make ideas concrete, let Y1 and Y2 be any two
filtered residuals of interest, transformed to have unit Fréchet margins. Under an
exploratory setting, two measures of tail dependence can be obtained to summarize
the strength of extremal dependence:

χ = lim
u→∞

P(Y1 > u | Y2 > u), χ = lim
u→∞

2 log P(Y1 > u)

log P(Y1 > u,Y2 > u)
− 1.

Here, χ ∈ [0,1] measures the strength of dependence within the class of asymp-
totically dependent variables, whereas χ ∈ [−1,1] is often used to measure the
strength of dependence within the class of asymptotically independent variables.
Taken together, the pair (χ,χ) provides a summary of extremal dependence for
the vector (Y1, Y2). For asymptotically dependent variables, we have χ = 1 and
the value of χ > 0 increases with the strength of dependence at extreme levels.
For asymptotically independent variables, we have χ = 0 and χ ≤ 1 increases with
the strength of dependence at extreme levels. Roughly speaking, if χ > 0 then we
often speak about “positive extremal dependence”, whereas if χ < 0 we use the
expression “negative extremal dependence”. Indeed, for the bivariate normal de-
pendence structure χ corresponds to Pearson correlation; see Heffernan (2000) for
further examples.

In Figure 5, we present rolling window estimates of χ and χ with approxi-
mate 95% confidence intervals, which is tantamount to the subperiod analysis of
Poon, Rockinger and Tawn (2003), Section 3.3.2. The rolling window estimates
were computed using the empirical estimators of χ and χ [Beirlant et al. (2004),
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FIG. 5. Rolling window estimates of χ (top) and χ (bottom) at the 95% quantile using moving

windows of size 600, applied to the three pairs under study.

page 348] at the 95% quantile for moving windows of 600 observations. Given
the large uncertainty entailed in the estimation of χ , interpretation of these plots
is far from straightforward. Nevertheless, pointwise estimation for χ seems rea-
sonably different from 0 for the three pairs under study, and despite some drops
around 1992 and 2000, there seems to be an increasing trend for the three cases.
Moreover, values for χ are closer to 1 as time passes. This combined information
indicates that the assumption of asymptotic dependence is certainly plausible for
the later years, and might be adequate for earlier years. We discuss the asymptotic
independence issue again in Section 6.

5.3. Modeling time-varying extremal dependence. The time-varying color
palette scatterplots in Figure 4 and the rolling window estimates in Figure 5 pro-
vide evidence of nonstationary extremal dependence, but they are only exploratory.
In this section, we complete the analysis from Section 5.2 by applying our con-
ditional modeling approach to assess how the dependence structure of bivariate
extreme losses in the three pairs has been evolving over recent years. Before
we proceed any further, some comments regarding implementation are in order.
As mentioned in Section 2, the data were transformed to have standard Fréchet
margins. This was done as follows. Given a sample of pairs of filtered residu-
als (r1,1, r1,2), . . . , (rN,1, rN,2), we construct proxies for the unobservable pseudo-
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angles Wi by setting

Wi = Ŷi,1/(Ŷi,1 + Ŷi,2), Ri = Ŷi,1 + Ŷi,2,

where Ŷi,1 = −1/ log{F̂r1(ri,1)} and Ŷi,2 = −1/ log{F̂r2(ri,2)} and where F̂r1 and
F̂r2 are estimates of the marginal distribution functions Fr1 and Fr2 . A robust
choice for F̂r1 and F̂r2 is the pair of univariate empirical distribution functions,
normalized by N + 1 rather than by N to avoid division by zero. Following Sec-
tion 3.1, after fitting a spline-based nonparametric quantile regression we found
evidence of dependence of the pseudo-radii {R1, . . . ,RN } on time, and so we
proceed under a nonstationary assumption. Specifically, we model the 95% quan-
tile of the pseudo-radii through nonparametric quantile regression and threshold
the pseudo-radii according to the fit. The tail region to study the extreme losses
is therefore defined through the pseudo-angles associated with the threshold ex-
ceedances of the pseudo-radii. After thresholding, the number of pseudo-angles is
312 for CAC–DAX and FTSE–CAC and 314 for FTSE–DAX. The pseudo-angles
corresponding to these observations are plotted in the two-dimensional bottom
plane in Figure 7. The tuning parameters (b, ν, τ ) were computed as discussed in
Sections 3.4 and 4.2.

In Figure 6, we plot cross sections of the angular surface estimate, using both
Nadaraya–Watson and local linear weights as described in Section 3, at three im-
portant periods on the EU agenda: (I) Beginning of stage one of EMU (1 July,
1990); (II) beginning of stage three of EMU (1 January, 1999); (III) activation
of the assistance package for Greece (2 May, 2010), the first country to be shut
out of the bond market, which fostered the European sovereign debt crisis [Lane
(2012)]. The choice of landmarks (I)–(III) is arbitrary, but recall that our main
interest is in describing how extremal dependence may change, by comparing pe-
riods sufficiently apart in time. As can be observed from the first column in Fig-
ure 6, at around 1990 the dependence between extreme losses for the three pairs
were similar, exhibiting some evidence of extremal independence, that is also re-
flected in Figure 5. The second column in Figure 6 reveals that about a decade
later this dynamic changed, and that extreme losses started to show some mild
signs of extremal dependence. These signs become stronger, and 11 years later
(third column in Figure 6) we can clearly see evidence of extremal dependence
of joint losses. Our findings may seem to contradict Hardouvelis, Malliaropulos
and Priestley (2006)—who claimed that the UK showed no increase in stock mar-
ket integration—however we note that Hardouvelis, Malliaropulos and Priestley
(2006) did not assess extremal dependence. The functional boxplots in Figure 6
were obtained following the bootstrap procedure detailed in Section 3.4, with
B = 1000 samples. We can clearly see some differences between the two types
of estimators among the three pairs, but overall they report similar information in
terms of the extremal dependence.
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FIG. 6. Cross sections of angular surface estimates for CAC–DAX (top), FTSE–CAC (center), and

FTSE–DAX (bottom) for Nadaraya–Watson and local linear weights (solid blue lines). The first col-

umn corresponds to the beginning of stage one of EMU (1 July 1990), the second column corresponds

to the beginning of stage three of EMU (1 January 1999), and the third column corresponds to the

time of activation of the assistance package for Greece (2 May 2010). Functional boxplots (gray

shadows) show the 50%, 75%, and 95% central regions [as defined by Sun and Genton (2011)]
based on 1000 bootstrap samples.
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FIG. 7. Angular surface estimates for CAC–DAX, FTSE–CAC and FTSE–DAX using

Nadaraya–Watson (top) and local linear (bottom) weights, with pseudo-angles overlaid on the bot-

tom of the box.

Figure 6 provides only a few snapshots corresponding to landmarks (I)–(III).
A more complete portrait of the temporal changes in extremal dependence is pro-
vided by the angular surface estimate in Figure 7, from which the cross-sections in
Figure 6 are derived.

All in all, we can clearly see the change from weaker dependence around 1990
to strong dependence starting from 2005, thus suggesting that in recent decades
there has been an increase in the extremal dependence in the losses for these lead-
ing European stock markets. The pair CAC–DAX is the one where extremal de-
pendence peaks the most, thus suggesting a high level of synchronization and co-
movement of extreme losses in those markets over recent years.

Similar conclusions can be drawn from Figure 8, where we plot the conditional
extremal coefficient, as defined in Section 2.3. The extremal coefficient is equal to
2−χ , and as such is equal to 2 under asymptotic independence, and takes values in
[1,2) under asymptotic dependence. Figure 8 permits comparison with the results
of Poon, Rockinger and Tawn (2004), who calculated χ over subperiods. The red
lines in Figure 8 represent the values from the analysis of Poon et al. for the sub-
period November 1990–November 2001 [cf. Poon, Rockinger and Tawn (2004),
Table 3]. Specifically, Poon et al. report the following values of χ for: CAC–DAX,
0.517 (0.037); FTSE–CAC, 0.532 (0.035) and FTSE–DAX, 0.459 (0.039), with
standard errors in parentheses. As can be seen from Figure 8, the magnitudes of
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FIG. 8. Conditional extremal coefficients (solid blue lines) and functional boxplots (gray shadows)
showing the 50%, 75%, and 95% central regions [as defined by Sun and Genton (2011)] based on

1000 bootstrap samples. The red lines represent the values from the analysis of Poon et al. for the

subperiod November 1990–November 2001 [cf. Poon, Rockinger and Tawn (2004), Table 3].

the extremal coefficients estimated by Poon et al. are in reasonable agreement with
the ones computed with our methods when uncertainty is taken into account.

6. Final comments. This paper develops methods for modeling nonstationary
extremal dependence structures, motivated by the need to assess the comovement
of extreme losses in some leading European stock markets over recent years. Al-
though there are many studies analyzing stock market integration over time [see,
e.g., Brooks and Del Negro (2004, 2005), Forbes and Rigobon (2002), Karolyi and
Stulz (1996), King, Sentana and Sushil (1994), Longin and Solnik (1995, 2001),
Rua and Nunes (2009)], few attempts have been made to assess the dynamics of
extreme value dependence of stock market returns over time. An exception in this
regard is the paper of Poon, Rockinger and Tawn (2003), which provides evidence
suggesting increasing levels of extremal dependence for CAC, DAX, and FTSE,
although their analysis is essentially exploratory. The analysis performed in this
paper reveals a more complete picture of this temporally-changing dependence.

Two related approaches to the current work are the so-called spectral density
ratio model of de Carvalho and Davison (2014) and the spectral density regression
model of Castro-Camilo and de Carvalho (2017). While flexible, these approaches
only apply to the setting where there are several pseudo-angles corresponding to
the same value of the predictor—and thus they are inappropriate for our applied
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setting of interest. Our methods are more resilient in the sense that they do not
require a sample of pseudo-angles for each value of the covariate, but apply more
generally to a regression setting where each covariate value may only have a single
corresponding pseudo-angle. Recent preprints of Escobar-Bach, Goegebeur and
Guillou (2016) and Mhalla, Chavez-Demoulin and Naveau (2017) suggest meth-
ods for estimating Pickands dependence function under covariate dependence, of-
fering alternative approaches to those presented herein.

Computational experiments suggest that U-shaped angular surfaces are much
more difficult to fit. Whilst absolute errors may become large at the boundaries
when we have an unbounded density, when this is translated to other quantities
(Hx or Ax ), the errors will be much less noticeable. Our methods have been de-
veloped with the setting of asymptotic dependence in mind, but certainly there is
room for developing methodology for conditional modeling under asymptotic in-
dependence. Indeed, in common with any approach based on multivariate extreme
value distributions, a limitation with our methods is that they will overestimate risk
if data are asymptotically independent. Figure 5 gave some indication of possible
asymptotic independence near the beginning of the analysis period. As such, the
need for developing conditional models able to cope with both asymptotic depen-
dence and asymptotic independence is of utmost importance.
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SUPPLEMENTARY MATERIAL

Supplementary Monte Carlo evidence and empirical reports.

(DOI: 10.1214/17-AOAS1089SUPP; .pdf). The supplement includes additional
simulation results, descriptive statistics for daily stock index negative returns, and
further empirical analysis using the NGARCH-filtered residuals and LSCV band-
widths.
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