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Time-Varying Feedback Laws for 
Decentralized Control 

Abstract-Decentralized control schemes are considered for time- 
invariant, finite dimensional,  linear systems with known state equations. It 
is assumed that the systems are  reachable  and  observable  at  a fictitious 
centralized  control station, and  that  there is strong connectivity  between 
the decentralized  control stations via the system where  necessary. It is 
shown  that  whether or not there  are  decentralized fixed modes  in  the 
open-loop system, periodically varying feedback gains at all but one of  the 
control stations permit  the  remaining  control station to obsene and  control 
the system given knowledge  of  the  control  laws  implemented at the other 
control stations. 

Certain  time-invariant systems which cannot be stabilized  by  decentral- 
ized  time-invariant  controllers,  namely those with unstable  decentralized 
fixed modes,  can  thus be stabilized by decentralized time-vaqing con- 
trollers. 

I. INTRODUCTION 

C ONSIDER the time invariant,  finite-dimensional,  lin- 
earpchannel decentralized control system 

S 

x = A x ( t ) +  2 B,ui ( t )  ( 1  .la) 

y i ( t ) = c i x ( t )  i= 1,2; - -,s (1.lb) 

with states x( -) E R", inputs ui( e )  E Rml and  outputs yi( a )  E 
R P i .  The ith control  station is assumed to have access only 
to  the  past  measurements { yi( .  )} and past  controls { ui(. I}, 
and the  control laws. implemented at the  other  control 
stations. 

To avoid trivial situations, we assume that  the system is 
completely controllable  and  observable  at  a  fictitious 
centralized  control  and measurement station, i.e., { A ,  [ B ,  
. . . B,]} is controllable  and { A ,  [ C; C; . - Cs']'} is 

observable. We term this centralized controllability  and 
observability. Moreover, to obtain  an  interesting  problem 
it is generally assumed that  the system is not  both com- 
pletely controllable  and observable on any one of the s 
channels. 

As noted  in [l], such decentralized systems are useful 
models  for power systems with each control  and measure- 
ment being associated with a power station,  or  for eco- 
nomic systems where, for example, each control  and mea- 
surement  station is associated with a government depart- 
ment.  In  such systems, the  implementation of a centralized 
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control  station with access to all controls and measure- 
ments may be prohibitively complex. 

For simplicity of implementation,  it may often be ac- 
ceptable to achieve control via a  time-invariant  output 
feedback law on all  but  one  channel 

u ; ( t ) = K j y i ( l )  (1 .2) 

so as  to achieve reachability and observability at the re- 
maining control/measurement  station.  (Then  standard  state 
estimation  and  control  techniques can be  applied to achieve 
pole assignability or  at least some suitable  control of the 
system.) The  theory of  [2],  [3], building  on [4],  [5], for  such 
control systems exposes two requirements  for this capabil- 
ity.  First, the system must have a  connectivity  property 
termed strong connectivity. Roughly, if arbitrary  feedbacks 
of the  form (1.2) are employed, then between control 
station i and measurement station j for every i# j ,  there 
must  be  (after  feedback)  a  nonzero  transfer  function  ma- 
trix;  for  more  details, see  [2],  [3] and  the  Appendix. Sec- 
ond,  there must be no fixed modes, i.e., if feedback laws of 
the  form (1.2) are  implemented  for every i, then  the closed- 
loop system matrix, A + 2 Bi K,Ci. must not have any eigen- 

values which are  independent of the K,.  
The fixed modes associated with a  decentralized  control 

system arise when, as is .  commonly the case, there  are 
patterns  in  elements of the system matrices,  such as  when 
certain elements are equal or  are simply multiples of one 
another,  or  are zero. A simple rank test to  detect  decentral- 
ized fixed modes is given in [6]. This reference also clarifies 
the  connection between the  definition of decentralized 
fixed modes in [4], [ 5 ]  and their  appearance in the 
decentralized  control  problem of [2], [3]. 

Decentralized fixed modes are  a  generalization of a 
familiar  concept  in centralized control. If the system i = A x  
+ Bu, y = Cx has  the  property  that  among  the closed-loop 
eigenvalues of A + BKC, associated with use of the  control 
u=Ky, there  are  one  or more which are  independent of K ,  
then such eigenvalues are termed (centralized) fixed modes 
such fixed modes are present if and only if there is failure 
of one of both of complete  controllability  and observabil- 
ity. As a consequence, no  matter what control law is 
used-linear or  nonlinear,  dynamic or nondynamic,  dis- 
tributed or finite-dimensional- the fixed mode will still be 
present  in  the sense that if Ai is such  a  mode,  the closed-loop 

I 
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response  for  a  suitable  initial  condition will contain  terms 
proportional  to exp hit. 

The  question arises as to whether decentralized fixed 
modes remain when controllers  other  than those of the 
form (1.2) are used. By analogy with the  centralized  case, 
one might expect so, and indeed in [5] it is shown that 
when the  controllers defined in (1.2) are replaced by arbi- 
trary  linear,  time-invariant,  finite-dimensional  controllers, 
the fixed modes remain. In [6] ,  the  finite-dimensionality 
constraint is removed. Despite this parallel with the 
centralized fixed mode ideas however, the analogy has  a 
definite  limitation.  For it turns  out  that more general 
controllers 

u,(r)=F{yi(7), u i ( 7 ) ,  4 0 ,  t 3 )  (1.3) 

can be used to eliminate  the fixed  modes as  pointed  out in 
[7], in the sense that  such  decentralized  controllers  for  a 
particular class of systems with fixed modes can  bring an 
arbitrary  initial  state to the zero state by an open-loop 
control  approach. 

This observation  then raises the issue of whether a 
decentralized feedback controller could be designed, even 
in  the presence of decentralized fixed  modes.  Such a  con- 
troller must sacrifice one of the  properties of linearity  and 
time-invariance. We choose to sacrifice the  latter.  Our first 
result is for two channel systems: if u2(t)=K2(t)y2(t)  
where K 2 ( t )  is periodic  and piecewise constant,  taking 
p a  1 +max(dimu,,dim y2)  values, then  strong connectiv- 
ity [3], even  when a fixed mode is  present, is enough to 
ensure  that the system is uniformly controllable  from u1 
and uniformly observable from y,. (Centralized  controlla- 
bility and observability  are of course assumed.) Thus,  fixed 
modes only present  a  problem when there is a  restriction  to 
time-invariant  controllers. 

Put  another way, the results of this paper show that 
time-varying controllers may be necessary to control cer- 
tain  time-invariant systems, namely those with fixed modes. 
Moreover, to achieve satisfactory  control  in systems close 
in some sense to  ones with fixed modes, there could well be 
advantages  in employing time-varying controllers. 

In the next section,  the  results for the two channel  case 
are derived. These are  then generalized in section three  to 
the  multichannel  situation. 

11. THE CASE OF Two CONTROL SYSTEMS 

Consider  the  decentralized system with two control  and 
measurement stations with associated matrices { A ,  [ B ,  
B 2 ] ,  [C; C;]’}. Suppose also that  the second station im- 
plements the  control law u,(t>=K,(r)y,(r). Then  the 
system viewed from  the first control and measurement 
stations  can be represented by the  triple { A  + 
B2K2(t)C2,  B,,  C,}. In this section, we  seek conditions for 
the  uniform  controllability  and  observabdity of this triple. 
Satisfaction of these conditions means that we can design 
an  observer/linear  state feedback pair, possibly by linear- 
quadratic  optimization, which a stabilize  the system. 

Let +,it, s) denote  the  transition  matrix associated with 
A+B2K;<t)C2. We denote  the  observabihty  Grammian by 

In case [A ,   C , ]  is observable, it is trivial to secure the 
desired observability- one simply takes K2(  t )  r 0. In the 
main, we shall therefore  concentrate  on  the case when 
[ A ,  C,] is not observable. Then in order to achieve observa- 
bility of the  pair [A+B2K2(t)C,,  C,], it makes sense, as we 
shall argue, to make two assumptions. 

Centralized Obsemability Assumption: 

{ A ,  [ C; C;] ’ }  is observable. (2.2) 

Connectivity Assumption: 

C I ( ~ l - A ) - ’ B 2  E O .  (2.3) 

If the first assumption  fails,  then  for all K2(t) ,  { A +  
B2K2(t)C2, [C; Ci]’} is  unobservable  and so, a  fortiori, is 

The second assumption (2.3)  is only important  in case 
[ A ,  C,] is not observable. To see its  importance, we argue 
first algebraically, and  then heuristically. By noting  that 
+,,(t, s) is the  solution of 

{ A  +B,K,(t)C*,C,). 

X=AX+BU 

where X ( s ) = I ,  U(t)=K2(t)C2(t)@,,(t, s), we  see that 

If  (2.3) fails, i.e., if CleA‘B2 =O, we see from (2.4) that 

The observability Grammian (2.1)  becomes the  same  as 
that associated with [ A ,  C,] and if this pair is unobservable, 
(2.1) cannot then be  nonsingular. 

The need  for  (2.3) is also in accord with intuition. If 
[ A ,  C,] is not observable, observation station  one needs to 
find  out something about what observation  station two 
observes, as well as  to use its own direct  observation  to 
deduce  the  state.  The idea is that some of what observation 
station two observes, viz. C2x, is fed back to  control  station 
two as K2( t )C2x ,  and shows  up at observation  station  one 
through  the nonzero transmission path with transfer func- 
tion matrix C , ( s l - A ) - ’ B 2 .  In this way, observation  sta- 
tion  one  acquires  information “originally” possessed only 
by observation  station two. 

We  now state  the following. 
Lemma 2.1: With notation as above and assumptions 

(2.2)  and (2.3)  in force, suppose K 2 ( r ) = 0  in [s,s,) and 
K2(t )=K,  E O  in [s,. s+ T )  for arbitrary s, E(s, s+ T ) .  
Suppose  further  that u 2 ,  y, are  scalar.  Then Ws+T,s is 
nonsingular. 
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Proof (Case I ) :  C,(sI-A)- lB,  is  a  scalar  transfer 
function.  Suppose  that Ws+T,sy=O for some y P 0 .  We 
shall deduce  a  contradiction;  in  fact we shall show that 
C, A'y = 0, C2A'y = 0 for all y ,  contradicting (2.2). Now use 
of (2.1) yields 

C , e A ( f - S ) y = O  t E  [s, s,] 

C , ~ ( A + B ~ K Z C ~ ) ( I - S I ) ~ A S I ~ = O  t ~ [ s , ,  s+ T ]  

or, with 6= eASly ,  

C,A'S=O (2.6a) 

C1(A+B2K2C2)'S=0 (2.6b) 

for  all  integer i. Let q be  the least nonnegative  integer for 
which C,AqB2 f-0, existing by  (2.3). This  definition  and 
(2.6a) imply that (2.6b) holds trivially for i<q. Writing 
(2.6b) for i= q, q+ 1, . . with the aid of (2.6a)  gives 

I 

L 

(Entries below the  diagonal  are irrelevant.) 
Now (2.7) implies that GA'S = 0 for all  i. With C, A'S = 0 

for all i, the complete observability of { A , [ C ;  Ci]'} is 
contradicted. 

Case 2: C,(sI-A)-'B, is a vector of transfer  functions. 
Let C{ denote thejth row of C, and set 

K<T,s = r + T + k 2 ( t ,  S s)(c:')rC&Kz(t, s) dt. 

Then 
K + T , s  2 K < T , s -  

i 

Suppose y + T , s y = O .  Then y < T , S y = O  for each j .  The 
Case 1 argument yields that C{A'S=O and C2A'6= 0 for all 
i and thosej for which C { ( d - A ) - ' B ,  EO (The set of such 
j is nonempty  by assumption.) Also, if j is such that 
C{(sI-A)-'B, 70, we know that C:~$~2(t,  s )=C{eA(f -S)  
and so we get C{A'S = 0 for all i. Thus, for all j ,  CfA'S = 0, 
i.e., CIA'S= 0, for all i.  Since also C,A'S=O, we obtain  the 
desired contradiction. v v v  

In Lemma 2.1, u2 and y2 were restricted  to being scalars. 
We  now  remove this  restriction.  The  idea  is  to use K2( t )  to 
switch each of the  components of the second output  station 
one  at  a time into a feedback to  any  component of the 
second input  station which is connected via the system to 
the  first  output  station. 

Lemma 2.2: With  notation as above and  assumptions 
(2.2) and (2.3) in force, suppose with Bi thejth column of 
B,, one  has C,(sl-A)-'B,' EO. Suppose  further  that with 
ej  denoting  the  unit vector of appropriate dimension with 1 

in  the ith position  and with p ,  the dimension of y,, 
K2( t )=0  for t ~ [ s ,  s,), K,(t)=kie,e; for t ~ [ s ,  s,), ' .  . 
K2(t)=k$"e,ei2 for ~ E [ S ~ , - ~ , S + T ) ,  where the k i  are 
nonzero  constants  and s<sI < - < s P 2 - ,  Cs+ T. Then 
W,, T, is nonsingular. 

Proof: For convenience, suppose C, has  one row only 
(The Case 2  argument of Lemma 2.1 can be used other- 
wise). Then WS+ T ,  s ~ =  0 implies 

etc. Arguing as  in  the proof of Lemma 2.1, the  first two 
identities  imply  that 

CIA'S, = O  CiA'S, = O  

for all i and -eASly. Set 6 --,(A+B:k:C:Xs2-s1)Sl. It is 
1-  2 -  

trivial  to  conclude  that CIA'S, =0, CdA'S, =O for all i. The 
first of these identities  taken with (2.8~) yields C2AiS2 = O  
for  all i. Proceeding in this fashion, we construct  a vector 
SP2 for which CIA'Sp2 = O  and  CiA'Sp2  for all i and j .  This 
molates the  observability  Assumption (2.2). v v v  

Examination of the  above  argument will show that if a 
matrix c2 obtained from C, bxeliminating  certain rows has 
the  property  that { A ,  [C; G]'} is observable,  then  one 
can  in effect avoid feedback of those entries of y2 corre- 
sponding to the rows of C, omitted  in forming c,, thereby 
allowing K2(t )  to  take fewer values. 

Reviewing to this  point, we know that  to  make WS+T,s 
nonsingular, it is enough 

a)  to have [ A , C , ]  observable, for then K2(t)=0 works, 
b) if [ A , C , ]  is not observable, to have centralized  ob- 

servability (2.2) and connectivity (2.3) and absence of a 
fixed modes in  the sense that [6] 

rank[ c, 0 ] 2 n  
AI-A B2 

for all complex A ,  for  then, as  shown in [2], [SI, almost all 
constant K ,  will suffice, 

c) if [ A ,  C,] is not  observable, to have centralized  ob- 
servability (2.2) and connectivity (2.3). Then  a K2( t )  taking 
p ,  + 1 piecewise constant values in [s, s+ TI suffices. 

Now choosing a K 2 (  t )  for t E (- 00, 00) is easy.  We 
simply choose K 2 ( t )  to be periodic with period T. If 
Ws+T,s is nonsingular,  it  is  a  standard  result  that  the  pair 
[A+B,K, ( t )C, ,C, ]  is uniformly observable (see  [9]). 

It is not  hard to see that if K, ( t )  takes any p differing 
piecewise constant values for any  finite p>p2 + 1, and is 
periodic, this result  still holds. Lack of observability is 
characterized by the  satisfaction of certain  multivariable 
equalities  in  the  entries of K at each of its  set values.  We 
have shown  via  Lemma  2.2 that these equalities need not 
be  satisfied for  one  particular set of values (those where K 
is zero over one  interval  and where certain  equalities 
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among  the p values  exist so that in fact only p2  + 1 are 
different). Therefore, for almost all choices of K ,  the 
equalities will  fail. This is a typical argument of algebraic 
geometry; for an introduction to these ideas (see, e.g., [IO]). 

The  dual result for controllability is  easy to obtain. 
Obviously, we require the following. 

Centralized Controllability Assumption: 

{ A , [  B , ,  B 2 ] }  is controllable. (2.10) 

Connectivity Assumption: 

C , ( s l - A ) - ’ B ,  EO. (2.1 1) 

(The intuitive idea behmd  (2.1 1) is that i t  pernlits the 
feeding  in of signals at control station one whch couple 
through to output  station two, and thus via  feedback to 
input station two, so as to affect states normally  accessible 
only  from input  station two;  the assumption is  unnecessary 
if  [ A ,  B,]  is  completely controllable.) 

In summary, we have  proved the following. 
Theorem 2.1: Consider the decentralized control sys- 

tems (1.1) for the case of two control  and output  stations 
and assume it is controllable and observable in the central- 
ized  sense. Consider periodic feedback  gains K 2 ( t )  from 
output station two to input  station two,  with arbitrary 
period T. Then [ A  +B,K2(  t)C2, B,] is  uniformly controlla- 
ble if the connectivity Assumption (2.11) holds and K2( 2 )  
is  piecewise constant taking at least m2 + 1 distinct values. 
Dual results holds for uniform  observability. 

We  remark that similar results can be obtained for 
discrete time,  save that as a result of the dichotomies 
between constructibihty and observability  between control- 
lability and reachability whch arise  when  singular transi- 
tion matrices are possible, the result  is one involving con- 
trollability and constructibility. Of course, this poses no 
problem for application: controllability and constructibil- 
ity  are what is needed. 

Also, for completeness we remark that the alternative 
known conditions for the desired controllability of [ A  + 
B2K2( t )C2 ,  B , ]  are  that [ A ,  B , ]  is controllable (and  then 
almost all constant K , ,  including K ,  = O  work) or that the 
connectivity assumption (2.11)  holds and 

+ rank[ X I - A  B ,  o ] < n  

for all complex h (and then almost all constant K ,  work). 
Example: A second-order nontrivial example  with  fixed 

modes and the required controllability, observability prop- 
erties does not appear to exist. Consider the third-order 
example 

A = O  1 0  Ib : :I 
r 01 

c;=B,=IoI 

Then there is a fixed mode at X= 1 since 

Consider the closed-loop matrix [ A  +B,K, (  t)C,] where 
K,(t)=[O 11 for rE[2k,2k+l),  and K,(t)=[l 01 for 
tE[2k+1,2k+2)fork=0,1,2,..-.Thentheobservability 
and controllability matrices  (calculated  analytically)  over 
the range [2k,2k+2) for all k=O, 1,. . . are positive  defi- 
nite with condition numbers approximately 100, 6, respec- 
tively. This first trial periodic control gain K,(t)  achieves 
reasonable controllabihty and observability properties. Un- 
doubtedly, a search procedure could provide an improve- 
ment if required. With the above first trial selection K2( .), 
undoubtedly the observability properties are somewhat 
sensitive to small parameter variations in some of the 
entries of the system  matrices; on the other hand, for the 
case when K,( - )  is a constant  and is  used on a perturbation 
of the Bven system, the observability properties will be 
highly  sensitive to the perturbation. Thus, even if there is 
no decentralized fked mode, it may be advisable to use 
periodically  varying  gains. 

An interesting feature of the control/estimation scheme, 
shared with that applicable in  case no decentralized  fixed 
modes exist  (see [2]. [3]). is the asymmetry  in the ultimate 
controller structure. One channel has time-varying  mem- 
oryless  feedback round i t ,  while the other has  an estima- 
tor/control-law combination. Spreading the dynamics 
among the channels is a task  yet to be  tackled. 

111. MORE THAN Two CHANNELS 

To study the problem of time-invariant systems  with 
more than two  channels, it is  necessary to understand  the 
concept of a strongly connected system [3]. A p-channel 
system  is  termed  strongly  connected if for  every partition 
of the channels into disjoint sets A and B,  C‘(sZ-A)-’B, 
EO. Equivalently, there can  be no ordering of the channels 
for whch the system transfer function matrix is  block 
triangular. Equivalently  again, there must be a path be- 
tween  every  two nodes of the system graph (this idea is 
explained  in  the Appendix). 

In [3], it is explained that any time-invariant system can 
be represented as a collection of strongly connected subsys- 
tems whch can have  only  one-way connections between 
them. Moreover, all questions of decentralized control, 
observing,  etc.,  can  be  analyzed  by  considering the individ- 
ual strongly connected subsystems,  each  described by 
minimal state-variable realizations,  together  with any modes 
in  the  overall  system description whch are not included in 
the union of the modes of minimal descriptions of the 
strongly connected subsystems. These conclusions apply 
for all linear time-invariant  feedback controllers, so long as 
the decentralized constraint is maintained. 

We  now consider the variation to these ideas required 
when periodic gains are present. 

The definition of strong connectivity for time-invariant 
systems  requires that certain transfer function matrices be 
nonzero, and  in this sense is  inappropriate for time-varying 
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systems. For  the purposes of this paper only, we extend the 
definition  to encompass a special class of systems  with 
periodically varying, piecewise constant matrices in  the 
system equations. We require that where in the definition 
of connectivity for  the time-invariant case a  transfer func- 
tion matrix is not identically zero, the corresponding col- 
lection of transfer  function matrices computable from all 
the frozen values of the matrices in the system equations 
not be identically zero. For example, if in the time-invariant 
case, there is the connectivity condition C(sZ-A)-'BrO, 
and if A is replaced by a periodically time-varying A ( t ) ,  
taking  just two constant values A ,  and A , ,  then we require 
in this paper  that C(sZ-A,)-'BrO and C(sZ-A , )BrO.  

We shall need the following result, the proof of which is 
contained  in  the Appendix. 

Theorem 3.1: Consider  a p-channel strongly connected 
system, and  suppose  a ( p- 1)-channel system is formed  by 
putting feedback of the  form up = -Kpyp around  the pth 
channel. Here K p  is constant  or piecewise constant.  Then 
the resulting ( p -  1)-channel system  is, for generic Kp,  
strongly connected. 

We  remark that  the result is actually true for more 
complicated (e.g., dynamic) feedback. We shall, however, 
only need the present form. 

It is  straightforward  to verify that if a system  with 
periodic time-varying gains is not strongly connected, it 
can  be decomposed into  a collection of strongly connected 
subsystems  which  can  only  have one way connections 
between them and  that,  as  for  the time-invariant case, 
decentralized control  questions must be analyzed  by  con- 
sidering the individual subsystems.  Accordingly, to explain 
the main ideas of the section, we shall confine  attention  to 
a  three channel, strongly connected system. 

Suppose we aim to use  feedback on  channels two and 
three to provide  (uniform) controllability and observability 
at  input  and  output  one. Temporariliy  consider channels 
one and two together as a single channel A .  It is im- 
mediately clear that unless using  channel A one can ob- 
serve and  control  the system  with a feedback gain around 
channel three, there is no possibility of doing  the  same with 
channel one, given  feedback round channels  two and three. 

Using the ideas of Section 11,  we see observability and 
controllability  from channel A can be achieved  by feed- 
back round channel three; in case there are no fixed 
modes, this feedback round  channel  three  can  be  constant, 
and almost  any constant feedback gain suffices. If, how- 
ever, there is  a h such that 

rank ["'CT" 
or 

a  constant gain will not suffice, but  a piecewise constant 
periodic gain taking at least p, different values [ p 3  = 1 + 
max(dim  #,,dim y,)] will suffice. 

With  this feedback, there now results a two-channel 
system, possibly periodically time-varying, which is uni- 
formly controllable and observable. By virtue of Theorem 
3.1, it is, at least for generic periodic or  constant  gains 
around  channel three, strongly connected. The  question 
arises as to whether we can now apply feedback round 
channel  two to  make  the system  uniformly controllable  and 
observable  from channel one. The answer is yes; we shall 
argue simply the observability. 

If this two-channel  system  is time-invariant, the result is 
immediate by the results of Section 11. So suppose  that it is 
described  by { A ( t ) ,  [ B,  B,],  [C; CJ'} where A ( t )  is 
periodic and piecewise constant. Let  us  assume that A ( t )  in 
fact takes the value 7 in [s,s+Tl), k in [s+Tl, s + T ) .  
Observability means  that if there exists y for which 

then y =O. [This can  be checked  by  examining the observa- 
bility Grammian over (s, s+T)].  Equivalently, (take 6= 
eATly),  the  equations 

imply 6= 0. If the "frozen"  systems {x [ B,   B, ] ,  [ C; 
C;]'} and {A,  [ B, B2] ,  [ C ;  Ci]'} were to have no fixed 
modes (other  than any associated with lack of centralized 
controllability and observability), then constant feedback 
around  channel two  would generically produce  uniform 
controllability and observability at  channel  one. However, 
it  is obvious from  the definition of fixed modes that if the 
original three-channel  system has fixed  modes, so must 
each of the frozen two-channel systems. We  now explain 
what is done in this case. 

For convenience, suppose  that y2 is a scalar. We then 
take u2 = K 2 ( t ) y Z  where K 2 ( t ) = 0 ,  tE[s,sl), K 2 ( t ) = i i 2 ,  
t ~ [ s , , s + ~ , ) ,  K , ( ~ ) = o ,  ~E[S+T'S,), ~ , ( t ) = i , ,  t E [ s , , s  
+ T )  with K 2 ( t )  periodic. If y1 is  a null vector of the 
observability Grammian over [s, s + TI of [ A ( t )  + 
B,K,(t)C,, C'll then - 

Arguing as in the last section, and using the  fact  that 
C,(sZ-J)-'B, E O  in the light of strong connectivity, we 
conclude from  the  first two equations  that 

In  a similar manner  the  last two equations  in (3.1) yield 

CleA'6=0 C,eA'6=0. (3.3) 
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However, as  argued above, the observability of the two- 
channel system implies that  in (3.2) and (3.3)  we have 6=0, 
and thus, y, =0, i.e., the single-channel system is observ- 
able. 

The above analysis applied for scalar y,. The technique 
of Section I1 can  be used to derive the result for vector y2. 

The procedure  for coping  with a  p-channel system  when 
p>3  is  a  straightforward extension of the procedure for  a 
three-channel system. Assuming the  p-channel system  is 
strongly connected and meets a centralized controllability 
and observability condition, one successively applies feed- 
back  round channels p ,  p - 1,. . . ,2. The feedback can  be 
constant only if there are  no fixed modes associated with 
any of the frozen systems  encountered at any stage in the 
procedure.  Otherwise, it must be  periodic and piecewise 
constant,  taking  a certain minimum number of values that 
is readily computable at each stage. The end result is that 
for generic values of all the feedback gains, the one-channel 
system is uniformly controllable and observable. 

Though  we do not show it here, we remark that if there 
are  no decentralized fixed modes for the  p-channel system, 
a generic selection of the  constant feedback  gain round 
channel  p will ensure  that  the resulting ( p- 1)-channel 
system  has no fixed modes.  Conversely, as is obvious from 
the  definition, if the  p-channel system  has decentralized 
fixed modes, the ( p  - 1)-channel system obtained via peri- 
odic feedback round channel p for each  frozen  value of the 
feedback has  a fixed mode. 

IV. CONCLUSIONS 

Results for decentralized control problems  have typically 
relied on centralized controllability and observability, on 
certain  graph theoretic properties such as  strong connectiv- 
ity,  and on freedom  from decentralized fixed  modes. The 
contribution of this paper  has been to show that  the 
presence of fixed  modes  need not prevent  many results 
holding-provided one is prepared  to widen the class of 
controllers considered to being periodically time-varying. 

T h s  means that there are indeed  some linear time- 
invariant system  where satisfactory decentralized control 
can only be achieved  when linear time-varying controllers 
are used. 

APPENDIX 

Graph theoretic discussion of strong connectivit)j. With 
each channel of a p-channel system, associate a  node of a 
p_node graph,  and  draw  a directed arc connecting node i to 
nodej just in case C,(sZ-A)-’B, E O ,  where in the periodi- 
cally varying, piecewise constant  situation, t h s  inequality 
is  understood  to hold for all values of the relevant matrices. 

A parh  from node j ,  to j ,  is a set of nodesj,j2, . . .j, such 
that there is an arc from j ,  to j lT1 ,  i= l l . .   . r - l .  The 
intuition is that if there is feedback  from output  to  input of 
channel j2 ;  . .,Jr- ,, then it will  be possible for signals 
inserted at input j ,  to affect output j,, even in the absence 
of a direct connection. 

A system is termed strongly connected if there exists a 
path between any two  nodes.  Equivalent formulations of 
the  strong connectivity property  can  be  found in [3]. 

Preservation of connectivity  given  feedback  round a chan- 
nel. We  now  prove Theorem 3.1.  Consider  any  two nodes 
j , ,  j ,  of the  graph associated with the ( p - 1)-channel sys- 
tem derived after  introducing feedback to  the original 
p-channel system. Before the  introduction of this feedback, 
these two  nodes,  regarded as nodes of the  graph of the 
p-channel system, define the  end  points of a  path because 
the  p-channel system is strongly connected.  We distinguish 
the following cases. 

Case I: The  path does not include node p .  
Case 2: The  path includes node p. 
Let y ,  denote C,(sZ-A)-’B, (or  the collection of such 

quantities), and qI denote  the corresponding quantity 
resulting after feedback. Under case one, we have 2 
O1. . . , W,,lr- I 2 0. Since - for one specialized feedback, viz. 
up -01 we have y.d, = ydl 5 0, . . . yrJ,- I J , l ~ ~  I = W  . Z O  it 
follows that for almost all feedback, i.e.. generically, we 
must  have yLil r 0,. . . Frj,- I 2 0, i.e., a  path  connects j ,  
to j ,  for the ( p -  1)-channel  system-the  same path in 
effect as in the  p-channel system. 

Under case two,  suppose the path is j , ,  j 2 , .  . - , 
j , ,  p. j k L 2 , - .  .,Jr. Arguing as for case one, we know that 
generically, z 0; . - .  WjAjA- ,  z 0. WJL?JA-2 5 

0, . . q,jr I 5 0 .  We  must  show that generically E O .  
If r 0, we can apply  the case one argument. So 
assume that -0. Then 

- 

- - 

as an easy calculation shows.  Since y.k+zP r 0 . W P j p r O ,  
and K p  are arbitrary: we have for generic K p  that y.k+Lik EO. 
Consequently, in the  graph of the ( p- 1)-channel system, 
there is a pathj,; . ., j,, j k C 2 ; .  . ,Jr connecting nodesj,  to 
j,. This establishes the  strong connectivity result. 
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Continuous State Feedback 
Guaranteeing Uniform  Ultimate 

Boundedness  for  Uncertain Dynamic 
Systems 

MARTIN J. CORLESS,  DENT MEMBER, IEEE, AND GEORGE  LEITMANN 

Abstract- We consider a d-vnamic system  containing  uncertain ele- 
ments. Only the set of possible values of these uncertainties is known. 
Based on this information a class of state feedback controls is proposed  in 
order to guarantee uniform ultimate  boundedness  of  every  system response 
within an arbimrity srnnll neighborhood  of the zero state. These feedback 
controls are continuous functions of the state. 

I. INTRODUCTION 

T HE PROBLEM of designing a  state feedback control 
that guarantees the desired performance of a  dynamic 

system containing  uncertain elements is discussed  in [ 11-[6], 
among  others.  The desired performance is usually uniform 
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asymptotic  stability of an equilibrium  state [1]-[4].  Some- 
times one is content with uniform ultimate  boundedness  in 
some set [5],[6]; in  that case one  can  consider feedback 
based on uncertain  state or output [5]. The  salient  feature 
of the problem is the  fact  that  it is a deterministic treatment 
of uncertainty  in  that  one requires certain performance in 
the presence of uncertain information.  The essential knowl- 
edge about  the  uncertain elements concerns only their 
possible size; that is, only the  sets  in which the values of the 
uncertain  quantities  can  range  are presumed to be known. 

If some conditions  are  satisfied-primary among which 
are  the so-called “matching  conditions”’ (see  [l]-[6])- then 
all uncertain  elements  can  be  “lumped”  and  the system  is 
described by 

‘These can be relaxed  (see [7]). 
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