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Abstract

Financial1 market price formation and exchange activity can be inves-

tigated by means of ultra-high frequency data. In this paper we investigate

an extension of the Autoregressive Conditional Duration (ACD) model of

Engle and Russell (1998) by adopting a mixture of distribution approach

with time varying weights. Empirical estimation of the Mixture ACD model

shows that the limitations of the standard base model and its inadequacy of

modelling the behavior in the tail of the distribution are suitably solved by

our model. When the weights are made dependent on some market activity

data, the model lends itself to some structural interpretation related to price

formation and information diffusion in the market.

1Thanks are due to Estela Bee Dagum, Silvano Bordignon and Tommaso Proietti for their sup-

port and encouragement throughout this research project. Various conference participants in the

Conference Statistical Inference on Linear and Nonlinear Dynamics in Time Series in Bressanone,

June 9-11, 2005, and in the International Conference on Finance in Copenhagen, September 2-4,

2005 provided useful comments. Without implicating we mention especially Nikolaus Hautsch,

Sren Johansen and Timo Tersvirta who helped us focus more on the statistical issues and eco-

nomic interpretation of what is being presented here. Financial support from the Italian MIUR

(under PRIN and FISR grants) is gratefully acknowledged.
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1 Introduction

The availability of financial ultra-high frequency data has allowed a great num-

ber of studies aimed at investigating different theories about the dynamics of ex-

changes and the mechanics of price formation, in the presence of institutional

arrangements and asymmetric information. In this respect, heterogeneity plays

an important role in determining the size of price movements, the amount being

exchanged, the frequency at which orders are presented and executed, and so on.

Trades occur at different times measured along a calendar clock, but they are

accompanied by many pieces of information about the trade itself, for example,

at what price it occurred and what volume was involved in the trade. Tick-by-tick

data, irregularly spaced in themselves, can be translated into time series which can

be fed to appropriately defined models and econometric techniques to estimate

their parameters. Time duration elapsed between events observable when trades

occur is a positive valued process which shows a striking persistence (clustering)

similarity with other positive valued financial series such as absolute returns and

volumes exchanged. This clustering is the result of market activity intensifying

in certain periods of the day and thinning out in others with the result that short

durations tend to be followed by short durations. The seminal paper by Engle

and Russell (1998) introduced a model, named Autoregressive Conditional Du-

ration (ACD), where durations are the result of the product between a positive

valued innovation process (exponential, in the original paper) and a conditional

term which has the same autoregressive behavior as in the GARCH-type models

for conditional variances.
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In the basic formulation, these models consider that all heterogeneity is cap-

tured by the conditional expectation term which is linear in lagged duration and

exhibits persistence decaying at an exponential rate. Whether with an exponen-

tial assumption or with other distributions inserted for the innovation process, the

basic formulation fails to capture the behavior of the process in the tails. We will

start from this undesirable empirical feature of the model to suggest a modification

in the distributional assumptions. We adopt a mixture of exponentials with time-

varying mixing weights; maintaining the hypothesis that the innovation process

has unit expected value, we keep the interpretation of the conditional term being

the expected duration provided by the model. The results of estimating such a

model on ultra high frequency data from the NYSE Trades and Quotes database

show that the model fits the data well. The question of interpreting the mixing

weights is kept in the background: we suggest that the time-varying arrival rates

implied by the model represent different regimes of intensity in trading. The fact

that we make this arrival rates dependent on some indicator of market activity is

suggestive of a more market microstructure–based interpretation of the weights

as the proportion of a certain type of trader (possessing private information and

having a time-varying arrival rate) being present in the market.

Here is what the reader should expect. Section 2 presents the basic ACD

models and suggests how to incorporate heterogeneity in the innovation process.

Section 3 studies a new formulation of the ACD model whose relevant by-product

is the estimate of the time-varying arrival rates in one of the two components of

the mixture. In Section 4 an application with IBM data is carried out and Section

5 concludes.
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2 ACD models and Heterogeneity

The financial market microstructure literature (e.g. O’Hara, 1995) analyzes the

mechanisms at work in the price formation process and in the interaction among

market agents giving rise to market activity as it develops during market opening

time. Institutional frameworks and specific rules of the exchanges must also be

taken into consideration especially in what concerns the activity during market

pre-opening (cf. Ghysels et al. 2000) and market clearing procedures (dynamics

of the order book). Particular emphasis is given to the different degree of informa-

tion possessed by various traders since some of the activity observed in the market

can be ascribed to an imitation mechanism of agents who take price movements as

disclosing private information and follow in the footsteps of the moves performed

by others.

The time elapsed between one market event (be it a trade, a price movement

in absolute value above a certain threshold or an accumulation of volume traded

above a certain level) and the next are an obvious function of these elements, al-

though it is not a straightforward task to identify which forces are at work and

determine the outcomes. This notwithstanding, durations are an important indica-

tor of market activity (even in their relations to price volatility) have the important

feature of being temporally clustered, so that short durations tend to be followed

by short durations and long by long.
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In their general formulation, ACD models can be written as follows:

Xi = φ(ti)Ψiεi

Ψi = f(xi−1, . . . , xi−q, Ψi−1, . . . , Ψi−p)

= ω +
∑q

h=1 αhxi−h +
∑p

k=1 βkΨi−k

(1)

where εi ∼ iid with positive support and E(εi) = 1. They are a special case of the

more general class of Multiplicative Error Models (MEM - cf. Engle and Gallo,

2005)

The subscript i refers to the i-th market event recorded at time ti, Xi is the i-th

duration, that is Xi = ti − ti−1 and φ(ti) is a daily seasonal component. Letting

xi = Xi/φ(ti) such that xi is the seasonally adjusted duration and denoting the

information set up to time ti−1 as Ii−1, in the ACD model

E(xi|Ii−1) = Ψi,

so that Ψi is the expected duration conditionally on the information up to the time

ti−1 and is (conditionally) deterministic.

The simplest distributional assumptions for the conditional excess durations

εi are the Exponential and the Weibull. Unfortunately, they are far from captur-

ing the most salient features of the εi’s, particularly their variability. Alternative

hypotheses have been studied (eg. Generalized Gamma or Burr), but without suc-

cess, at least as far as modelling the tail behavior is concerned.

Following De Luca and Zuccolotto (2003) and De Luca and Gallo (2004) we

can suggest the use of a mixture of two exponential distributions, deferring to a

later section the discussion of possible economic interpretations of this assump-

tion. For the time being, let us assume that the excess durations, that is actual over
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expected durations, follow a different probability law, labelled as “I” and “U”:

f
(

xi

Ψi

)
= pI g

(
xi

Ψi

; θI
)

+ (1− pI)g
(

xi

Ψi

; θU
)

,

where θI and θU are the parameter vectors characterizing the densities g(·) and

0 < pI < 1. The simplest assumption is a mixture of two exponential distribu-

tions for the innovation term with parameters λI and λU ,

f(εi) = pI 1

λI
exp

{
− εi

λI

}
+ (1− pI)

1

λU
exp

{
− εi

λU

}
.

Imposing a unit expected value of the mixture,

E(εi) = pIλI + (1− pI)λU = 1.

involves a link between the arrival rates of the two components

λI =
1

pI

[
1− (1− pI)λU

]
.

We will denote this model as Mixture ACD (M–ACD).

3 The Influence of Market Conditions

De Luca and Gallo (2004) show that the Mixture Exponential ACD model per-

forms well in capturing the tail behavior of the conditional distribution of excess

durations. In the empirical section of the paper we will give additional evidence

of such a feature of this model. A limitation of the model, though, is that the

assumption of constant weights in the mixture may mask the possibility of vari-

able market conditions, characterized by varying intensity of trading. For this
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reason, we advance the suggestion that mixing weights may be time varying: the

corresponding model will be denoted as Time–Varying Mixture (TVM) ACD. A

rationale for time varying weights may be connected with the non constant arrival

rate of news on the markets and/or with a varying proportion of informed traders

relative to uninformed ones (cf. Ghysels, 2000), or yet with volatility clustering.

More on these aspects will follow the presentation of the results: for the time be-

ing we would like to concentrate on various statistical specifications of the model,

on their properties and on their performance on a financial duration time series.

Let us start by extending the notation and defining pI
i + pU

i = 1 the weights at

time ti, both time varying. We can insert a degree of asymmetry between the two

components of the mixture, distributions I and U by assuming that the inverse of

the arrival rate for distribution I , λI
i , is time dependent, while we will keep the

inverse of the arrival rate of distribution U , namely λU , constant (cf., again, Ghy-

sels, 2000). Such an assumption is not restrictive and could help us in providing a

market structure interpretation to the nature of the weights.

Accordingly, the density of a mixture of two exponentials becomes

f(εi) = pI
i

1

λI
i

exp

{
− εi

λI
i

}
+ (1− pI

i )
1

λU
exp

{
− εi

λU

}

To close the model, we need an expression to describe the time evolution of

pI
i : a simple formulation for pI

i comes from a logit framework

pI
i =

exp{δ0 + δ′zi−1}
1 + exp{δ0 + δ′zi−1} ,

where we make the weight dependent on a vector zi−1 of variables known at time

ti−1, there including past estimated values of pI
i as well. A suitable choice of these
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predetermined variables will offer the possibility of linking time varying behavior

of the weights to some observable phenomenon.

For the time being, let us concentrate on the properties of the model. If we

impose a unit mean constraint on the mixture of distributions, we get

λI
i =

1

pI
i

[
1− (1− pI

i )λ
U

]
= λU +

1− λU

pI
i

,

known as a function of Ii−1, that is, as a function of pI
i and of the constant inverse

of the arrival rate in distribution U . We can establish a relationship between pI
i

and the rate of arrival in the distribution labelled I , 1
λI

i
, depending on whether λU

is smaller or greater than one. In the former case, a direct relationship holds, that

is

lim
pI

i→0

1

λI
i

= 0 and, conversely, lim
pI

i→1

1

λI
i

= 1,

or, as pI
i increases, so does the corresponding arrival rate. The relationships of λI

i

and 1
λI

i
against pI

i are depicted graphically in Figure 1.

Figure 1: Relationship between λI
i (left) and 1

λI
i

(right) against pI
i (λU < 1).
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When λU is greater than one, the rate of arrival in distribution I is inversely

related to the weight attributed to that distribution in the mixture. However, since

λI
i has to be positive, it must be that

pI
i >

λU − 1

λU

.

In this case, the limits are

lim
pI

i→
λU−1

λU

1

λI
i

= ∞

and

lim
pI

i→1

1

λI
i

= 1.

Figure 2 contains the plots of λI
i and 1

λI
i

against pI
i .

The empirical evidence produced in this paper suggests however that, at least

for the stock and sample period examined, the relevant case is the former, given

that the distribution labelled as U has a higher arrival rate.

The assumptions described so far imply a consequence of conditional het-

eroskedasticity for εi, in that

Var(εi|Ii−1) = pI
i

(
2λI

i (λ
I
i − 1) + 1

)
+ (1− pI

i )
(
2λU(λU − 1) + 1

)
. (2)

Under an assumed λU smaller than one, we can characterize the relationship be-

tween between pI and Var(εi) as an inverse one (cf. Figure 3 for a numerical

example for λU = 0.5). As the weight associated with distribution I decreases,

the noise in excess durations increases, and there is more uncertainty around the

expected durations. This mechanism allows for more flexibility in the tail behavior

(in our example, as we will see, for estimated λU approximately equal to 0.5, the
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empirical estimates of pI
i oscillate around 0.25 which in turn forces the variance

to oscillate around 2.5): the data will attribute a higher weight to the distribution

I to capture a lower variance in the expected durations, while a higher weight to

distribution U will be associated with a higher variance.

Figure 2: Relationship between λI
i (left) and 1

λI
i

(right) against pI
i (λU > 1).
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Figure 3: Relationship between pI
i and Var(εi).
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In order to make sure that the effects captured by our mixture ACD model

are truly affecting the variance and are not due to a misspecification of the mean,
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we will insert the market related variables in the expression for the conditional

expected duration Ψi.

Summarizing, the model to be estimated departs in various ways from the

standard ACD (cf. (1) above)

xi = Ψiεi

Ψi = ω +
∑q

h=1 αhxi−h +
∑p

k=1 βkΨi−k + γ ′zi−1

εi ∼ ME(λI
i , λ

U , pI
i )

(3)

The assumption that the mixing innovation εi has a unit mean implies also in

this model that E(xi|Ii−1) = Ψi, so that Ψi keeps its interpretation of conditional

expected duration possibly with additional effects coming from the predetermined

variables. As per the variance, we have Var(xi|Ii−1) = Ψ2
i Var(εi). As seen,

Var(εi) depends on pI
i which is a function of the predetermined variables zi−1 in

the logit specification, to be suitably chosen, and the different arrival rates in the

two exponential distributions.

In the framework that we pursue here, that is durations between price move-

ments beyond a certain threshold, we can resort to market conditions observable

within the time duration, recognizing that in between the price movements rele-

vant for determining the durations there may occur other transactions which are

not associated to substantial price increases or decreases. We can build two such

variables:

1. the trading intensity at time ti, TIi, is defined as the ratio of the number

of trades recorded during the duration xi and the duration itself. A positive

coefficient in the conditional expectation expression would mean that the
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variable has an effect to increase the expected time elapsed between sub-

sequent relevant price movements. A positive coefficient in the logit spec-

ification would signal that a higher number of such trades per unit of time

increases the weight attributed to distribution I and decreases the variance

around the expected duration. The opposite would be true if the coefficient

were negative.

2. For a duration xi, the average volume, AVi, is defined as the ratio of the

traded volume over the number of transactions. Also in this case, a positive

coefficient would associate a higher average volume with longer expected

durations in the conditional mean, whereas it would have the effect to de-

crease the variance if the coefficient in the logit specification were positive

and the effect to increase the variance if the coefficient is negative.

Timing is such that these variables need to enter with a lag in the specification.

4 IBM data

The empirical analysis is focused on the IBM stock with price data coming from

the Trades and Quotes database of the NYSE. The duration data is built for trans-

actions involving a (cumulative) price change greater than 1
16

of one dollar. The

observations chosen start on March 02, 2000 and end on March 17, 2000 for

a total of 14 trading days. We selected the transactions between 10:00AM and

4:00PM. We opted for a short period in order to illustrate the functioning of our

model avoiding the possibility of nonstationarities in the behavior of the series
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on a longer horizon. The total number of transactions (12707) was obtained after

carrying out some cleaning operations. Durations involving the first price change

of a day and the last price change of the previous day were also deleted.

Let us start by providing some descriptive evidence in the behavior of the

series which will be used in the estimations. We start by showing in Figure 4 the

raw durations, the estimated daily seasonal component (estimated through a cubic

spline with nodes set at each hour) and the adjusted durations. The clustering of

adjusted durations is shown in Figure 5 where we report the estimated total and

partial autocorrelation functions.

As a preliminary justification for what follows, let us start from the estimation

of a standard ACD model with an exponential assumption for the innovation term.

Preliminary testing shows that an ACD(1,2) is advisable and this choice of orders

for the model will be kept throughout. As shown in Table 1, the customary excess

variance in the estimated residuals is obtained also in our case.

Let us move now to the consideration of the model with time varying weights,

and let us start by showing some evidence about the behavior of the two variables

chosen to represent market conditions as expectations on future durations are to

be formed.

In Figure 6 we report the time series graph of the Trading Intensity (TIi)

defined as the ratio of the number of trades recorded between ti−1 and ti over

the length of the seasonally adjusted duration,

TIi =
NTi

xi

.

In Figure 7 we report the time series graph of the Average Volume (AV ) built
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Figure 4: The durations data (top), the estimated daily seasonal component (mid-

dle) and the adjusted durations (bottom).
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as the ratio of volume recorded between ti−1 and ti (divided by 10000) over num-

ber of trades recorder during the same period

AVi =
V ol/10000

NTi

.

Table 2 reports some summary statistics about adjusted durations, number of

trades within duration, trading intensity and average volume. The highest correla-
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Figure 5: Estimated total and partial autocorrelation functions for adjusted dura-

tions.
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tion is between adjusted durations and number of trades, with the other variables

exhibiting very low linear correlation with one another.

In order to keep the comparison manageable and interpretable, we will con-

sider four models where the mixing distributions are inserted, identified by the

presence or the absence of a number of features. We may have:

• Fixed versus Time-varying weights;

• Presence of predetermined variables in the Ψi specification (Extended Ψi),

and/or in the pI
i specification: Trading Intensity (TIi) and Average Volume

(AVi) as defined above;

We will clearly mark in each of the Tables that follow what features are present

in each model. We have gathered further evidence about what is involved when

the assumption of unit expectation of the innovation εi is removed (i.e. when the
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Table 1: Estimation of an Exponential ACD.

Parameters estimation (standard errors)

Parameter ACD Model

ω 0.0223 (0.0033)

α 0.0624 (0.0051)

β1 0.4386 (0.0782)

β2 0.4775 (0.0752)

Statistics on residuals

Statistics ACD Model

Mean 1.000

Variance 2.558

Theoretical Var 1

Q(10) 14.42

arrival rate of distribution I becomes constant). The results are not reported for

the sake of space but are available on request.

Table 3 compares two specifications: Model 1 is the De Luca and Gallo (2004)

specification where the adoption of a mixture is made with fixed weights. As

a preliminary check2 we estimate a corresponding model (Model 2) with fixed

mixing weights extending the number of variables included in the specification

2We thank Timo Teräsvirta for pointing this out to us.
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Figure 6: Trading intensity TIi.
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Figure 7: Average volume per trade, AVi.
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for Ψi. The two models are defined as follows:

xi = Ψiεi

E(εi = 1), εi mixture of exponentials with fixed weights

Model 1 : Ψi = ω + αxi−1 + β1Ψi−1 + β2Ψi−2

Model 2 : Ψi = ω + αxi−1 + β1Ψi−1 + β2Ψi−2 + γ1TIi−1 + γ2AVi−1

The diagnostics on the second model will point out whether some substantial mod-
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Table 2: Descriptive statistics on variables of interest

Statistics Adj. Dur. NT TI AV

Min 0.030 1 0.298 0.010

Mean 1.027 5.802 9.953 0.143

Max 29.669 283 528.306 25

St. dev. 1.736 9.708 13.285 0.404

Correlation

Adj. dur. - 0.832 -0.192 -0.016

NT - -0.005 -0.034

TI - -0.044

ification in the variance of the standardized residuals is detected.

The likelihood–ratio test shows a significance of the presence of the market

related variables in the Ψi specification with negative coefficients pointing to a

reduction of the expected duration. The diagnostics on the residuals is not altered,

except for a reduction in the serial autocorrelation signalled by the Ljung-Box Q

statistic at various lags.

In estimating time–varying weights we report only the results for a logit model

for the weights specified as

pI
i =

exp{δ0 + δ1TIi−1 + δ2p
I
i−1}

1 + exp{δ0 + δ1TIi−1 + δ2pI
i−1}

,

Other specifications without the autoregressive term performed substantially less

satisfactorily, and the variable AVi−1 systematically lacked statical significance.
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Consistently, the insertion of the market related variables in the specification

with time–varying mixing weights proves to be statistically significant (cf. Ta-

ble 4). The residual diagnostics is quite satisfactory, in that the variance of the

residuals standardized by the time-varying standard deviation is close to one and

the residual autocorrelation is limited. The chosen specification for the time vary-

ing weights is quite persistent: the implied estimated relationship between pI
i−1

and pI
i when the variable TIi−1 is set at the sample mean is shown in Figure 8.

Figure 8: Relationship between pI
i−1 and pI

i : Estimated Logit relationship with TI

fixed at the sample mean
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Figure 9 shows the estimated behavior of time varying mixing weights pI
i for

the Model 4, in which trading intensity and average volume enter the specification

of the conditional expectation and trading intensity and an autoregressive term
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Figure 9: Estimated mixing weight for distribution I . Model with time varying

weights, unit expected innovation and extended Ψi specification.
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regulate the behavior of the logit mapping. Vertical bars separate the days of the

sample. A daily seasonal pattern is made more apparent by plotting the estimated

values for the various days separately, as in Figure 10: in particular, the highest

values of the p̂I
i occur in correspondence with the beginning of the trading day.

A drop is observed in the mid-day time. Sometimes a rise is detected in the last

hours. Fitting some polynomials of time to the daily results shows a bowl shaped

pattern for most of the days.

Correspondingly, we can show the time–varying behavior of the estimated

variance of the residuals coming from the estimated ACD model with mixing
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weights. In Figure 11 we have to exclude the highest spikes and adopted a loga-

rithmic scale, in order to appreciate the oscillations of the series. Note that in this

case the oscillations vary in excess of 2, while in case of the fixed weights mixture

the variance was estimated at around 2.53 and should be interpreted as an uncon-

ditional estimate of what we have estimated with time-varying weights. We take

this to be further evidence of the flexibility provided by our model in capturing

time-varying nature of market dynamics.

5 Concluding Remarks

In this paper we extend previous findings (De Luca and Gallo, 2004) on the suit-

ability of a mixture of distribution assumption for the modelling of durations be-

tween relevant price movements within an ACD framework. We have shown the

statistical properties of a model in which two exponential distributions are used

with time-varying weights, keeping the arrival rate in one of the distributions to

be constant and the other one to be time–varying. The evolution of the weights

is assumed autoregressive in a logit framework and is taken to be dependent on

some observable variables linked to some features of market activity in between

relevant price movements. The results are quite encouraging based on the statisti-

cal significance of the estimated coefficients and on the features of the estimated

time–varying variance of the innovation term.

We did not engage in a micro-structural motivation of our model or an explicit

interpretation of its findings in terms of price formation dynamics. There are a

few features that are worth mentioning at this stage which deserve further atten-
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tion with a richer dataset which would allow us to mark each trade as a “buy” or a

“sell”. The idea of a mixture of two distributions conjures up images of two types

of traders or two types of regimes. We have purposedly marked our two distribu-

tions as I and U because a promising structural explanation for our model would

be the presence in the market of traders who have asymmetric information (good

or bad news – informed) and traders who trade for liquidity (uninformed). The lit-

erature in this respect is very rich and can be traced to the work of Easley, O’Hara

and their co-authors (e.g. Easley and O’Hara, 1987; Easley et al., 1996; Easley, et

al., 2003). Some of our assumptions and findings are suggestive in that direction:

for example, the time-varying arrival rate in the distribution of type I is consistent

with the presence of traders who move on the basis of news events available at

irregular intervals within the day; the seasonal intra–daily pattern which we find

in the weight attributed to type I is consistent with several findings (e.g. Nyholm,

2002) that the information content of the trading process is larger in the morning

than in the afternoon; the fact that our model predicts that variance in the inno-

vation would increase if more weight is to be given to the type U distribution is

consistent with the fact that the presence of uninformed (i.e noisy) traders makes

prediction on future expected durations less precise.

From a more statistical point of view we feel that the extension suggested in

this paper is a very important one, since it introduces the possibility of modelling

mixing parameters in a time-varying fashion. What we have accomplished is to

estimate these parameters and investigate whether the inclusion of explanatory

variables in the determination of the weights sharpens the picture. The results we

obtain on the IBM dataset are quite encouraging, since we improve upon the stan-
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dard ACD model and we show the gains that one obtains over the fixed weights

case.
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Table 3: Estimation of ACD Models with fixed mixing weights

Parameter Model 3 Model 4

TV weigths no no

Extended Ψi no yes

E(εi = 1) yes yes

Specification for Ψi

ω 0.0315 (0.0058) 0.0742 (0.0078)

α 0.0619 (0.0070) 0.0568 (0.0066)

β1 0.3518 (0.1007) 0.4751 (0.1146)

β2 0.5551 (0.0971) 0.4127 (0.1110)

γ1 -0.0015 (0.0001)

γ2 -0.0260 (0.0107)

Specification for mixture

pI 0.3015 (0.0120) 0.2982 (0.0120)

λU 0.4534 (0.0113) 0.4580 (0.0113)

λI Function of λU and of pi

n 12707 12707

Mean log-lik -0.865593 -0.862167

Mean 1.000 1.000

Variance 2.558 2.553

Q(1) 4.646 3.894

Q(10) 18.22 11.39

Q(20) 30.54 21.67
LR test (Model 2 vs Model 1): 87.07
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Table 4: Estimation of ACD Models with time-varying mixing weights

TV weigths yes yes

E(εi = 1) yes yes

Extended Ψi no yes

Parameter Model 3 Model 4

Specification for Ψi

ω 0.0360 (0.0067) 0.0614 (0.0087)

α 0.0555 (0.0068) 0.0488 (0.0068)

β1 0.3549 (0.1119) 0.4835 (0.1412)

β2 0.5559 (0.1078) 0.4219 (0.1360)

γ1 - -0.0011 (0.0002)

γ2 - -0.0234 (0.0100)

Specification for mixture

δ0 -1.6476 (0.1783) -1.7329 (0.2380)

δ1 -0.0256 (0.0059) -0.0216 (0.0072)

δ2 3.3971 (0.4228) 3.5383 (0.5887)

λU 0.4385 (0.0108) 0.4502 (0.0111)

λI Time Varying

Mean log-lik -0.861913 -0.860168

Mean -0.007 -0.006

Variance 1.018 1.017

Q(1) 6.465 8.149

Q(10) 22.68 20.30

Q(20) 32.51 29.51
LR test, Model 4 vs Model 3: 44.34.
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Figure 10: Breakup of the intra-daily estimates of time-varying weights p̂I
i esti-

mated in Model 4 with time varying weights, unit expected innovation and ex-

tended Ψi specification. The continuous line is a quadratic function of time.
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Figure 11: Estimated variance of excess durations (log–scale).
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