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Time-Varying Multi-Objective Optimisation over

Switching Graphs via Fixed-Time Consensus

Algorithms
Zhongguo Li, Zhengtao Ding

Abstract—This paper considers distributed multi-objective op-
timisation problems with time-varying cost functions for net-
work connected multi-agent systems over switching graphs. The
scalarisation approach is used to convert the problem into a
weighted-sum objective. Fixed-time consensus algorithms are
developed for each agent to estimate the global variables, and
drive all local copies of the decision vector to a consensus. The
algorithm with fixed gains is first proposed, where some global
information is required to choose the gains. Then, an adaptive
algorithm is presented to eliminate the use of global information.
The convergence of those algorithms to the Pareto solutions is
established via Lyapunov theory for connected graphs. In case of
disconnected graphs, the convergence to the subsets of the Pareto
fronts is studied. Simulation results are provided to demonstrate
the effectiveness of the proposed algorithms.

Index Terms—Consensus, gradient descent, optimisation, dis-
tributed algorithm, multi-agent systems.

I. INTRODUCTION

Recently, significant research efforts have been dedicated to

network connected multi-agent systems to facilitate the devel-

opment of large-scale and complex networks. The distributed

agents are entitled to make local decisions using their private

information and limited interactions with their neighbours. The

communication topologies among the agents are modelled by

graphs. Compared with the traditional centralised methods,

distributed algorithms have a series of superior advantages,

such as privacy protection, parallel computation, less commu-

nication and strong robustness (Cao et al., 2013).

Optimisation problems cover a large range of engineer-

ing and social applications, including optimal control of

power systems (Yi et al., 2016; Yang et al., 2016), mobile

robots (Wang and Xin, 2013) and game theory (Li and

Ding, 2019). Those problems can be divided into two cat-

egories: single-objective optimisation problems (SOPs) and

multi-objective optimisation problems (MOPs). Different from

SOPs, there is no single optimum that can simultaneously

minimise/maximise multiple conflicting objectives for MOPs.

Generally speaking, most of the practical applications involve

compromising among several objectives. For example, a re-

source allocation problem in a smart grid contains economic,
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environmental and technical objectives (Ren et al., 2010; Shi

et al., 2018).

Many algorithms have been proposed to solve MOPs, in-

cluding scalarisation approaches and population-based meth-

ods. Scalarisation approaches convert multiple objectives into

one objective with some weighting parameters, including the

weighted-sum approach (Johannes, 1984), and the weighted

Lp preference-based method (Miettinen, 2012). Population-

based methods have been extensively studied during the past

two decades, including evolutionary algorithms and particle

swarm algorithms, e.g., NSGA-II (Deb, 2005) and MOEA/D

(Zhang and Li, 2007; Chen et al., 2017). Recently, particle

swarm algorithms have demonstrated impressive success in

some biomedical applications (Zeng et al., 2019; Zeng et al.,

2016). One disadvantage of those algorithms is that estab-

lishing rigorous proof of convergence is usually difficult, and

sometimes is given in a stochastic sense. Particularly, the

performance of most population-based methods rely heavily

on the selection of algorithms’ parameters. Coding and tuning

are usually difficult and time-consuming for many engineering

applications. In addition, the aforementioned works are estab-

lished using centralised approaches, which assume that the

objective functions are all collected into one central node for

computation. In multi-agent systems, where the cost functions

are distributed across the agents, communication and com-

putation requirements are highly demanding using centralised

methods. Furthermore, privacy might be violated due to data

transmission.

Distributed algorithms have been actively studied to solve

SOPs, such as the subgradient method (Nedic and Ozdaglar,

2009), and the ADMM approach (Boyd et al., 2011) in

discrete-time. More recently, a number of continuous-time

algorithms have been proposed for distributed optimisation

problems, e.g., Gharesifard and Corts (2014), Lin et al. (2017),

Tran et al. (2017) and Garg et al. (2020). However, those works

deal with SOPs, and only address time-invariant optimisation

problems. Some recent studies that solve MOPs in distributed

ways have been reported by Cao et al. (2017), Chen and Sayed

(2013), Yang et al. (2018) and Li and Ding (2020). Chen and

Sayed (2013) propose a gradient-based algorithm to search the

Pareto solutions in discrete-time. A neurodynamic approach

is introduced by Yang et al. (2018) based on the weighted-

sum method, and the convergence is studied using consensus

tools in continuous-time. Distributed multi-objective resource

allocation problems are addressed by Li and Ding (2020)

via an online Lp preference-based method, which does not
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need to specify the weighting parameters. In particular, fixed-

time consensus based algorithms have been implemented for

distributed optimisation (Ning et al., 2019; Ning et al., 2019).

Since none of the aforementioned literature can be imple-

mented for MOPs with time-varying cost functions, and many

engineering systems can be formulated as time-varying MOPs

(Su, 2009; Fazlyab et al., 2018; Li et al., 2012), there is an

urgent need to develop feasible algorithms for those problems.

In this paper, we consider distributed MOPs with time-varying

objectives using the scalarisation approach. A local copy of the

decision vector is assigned to each agent such that the original

problem can be reformulated as a group of local optimisation

problems. When the local copies of the decision vector reach

a consensus, the solution of the reformulated problem is also

a Pareto optimum of the original problem. The weighted-

sum approach is implemented to quantify the importance of

each objectives. With some commonly-used assumptions, it is

proved that all the Pareto solutions can be identified by varying

the weighting parameters. A distributed scheme using fixed-

time average consensus algorithms is presented with some a

prior knowledge of the cost functions. Such consensus algo-

rithms are implemented for the first/second order gradients,

the time derivative of the first order gradient, and the decision

variable as well. The time-varying consensus can be viewed as

local estimates of those global variables. When all consensus

are achieved within a fixed time, the distributed algorithm is

then similar to those centralised algorithms except that local

estimates are used in the distributed method without acquiring

global information. The convergence of the proposed algo-

rithm to the Pareto solution is established for any connected

switching graphs via utilising fixed-time Lyapunov stability

theory and convex analysis.

One limitation of our first algorithm is that the selection of

the gains depends on some global information of the systems,

which might be unavailable. To eliminate this requirement, we

then propose a fully distributed and adaptive algorithm where

the gains are learned during the optimisation process. Then,

we further extend the results to disconnected graphs where

Pareto fronts for different subgroups of the objectives can be

identified with either the fixed-gain design or the adaptive-

gain design. Therefore, the proposed algorithms are robust to

the failures of communication links, even for disconnected

graphs. In addition, disconnected switching graphs can be

implemented to generate a variety of Pareto fronts for real

application analysis. Detailed simulation results are provided

to validate the effectiveness of those proposed algorithms.

The main contributions of our work can be summarised as

follows. 1) Distributed optimisation for multi-agent systems

with multiple time-varying objectives is studied using fixed-

time consensus algorithms. 2) Algorithms with fixed gains

and adaptive gains are proposed to solve distributed time-

varying MOPs under switching graphs. 3) The deterministic

convergence of those algorithms is established for connected

graphs, and in case of disconnected graphs, subsets of the

Pareto solutions can be obtained. Our work provides a dis-

tributed solution for a large range of engineering applications

with time-varying objectives.

The remainder of this paper is organised as follows. The

problem formulation and some general assumptions are pre-

sented in Section II. In Section III, distributed algorithms

are proposed to solve the problem and convergence of those

algorithms are established. Section IV shows the simulation

results, and Section V draws the conclusion.

Notation: Let diag(a1, . . . , aN ) denote a diagonal matrix

with (a1, . . . , aN ) on the diagonal entries, and zero elsewhere.

We denote col(a1, . . . , aN ) as a column vector consisting of

(a1, . . . , aN ) stacked on top of each other. For x ∈ R
n,

‖x‖2 ,
√
xTx (or simply ‖x‖) denotes the Euclidean

norm, and ‖x‖1 ,
∑n

i=1|xi| denotes 1-norm of x. The

symbol ⊗ denotes Kronecker product. The component-wise

signum function is represented by sign(·). Let sig(x)p =
[sig(x1)

p, . . . , sig(xn)
p]T , with sig(xi)

p = sign(xi)|xi|p, for

x ∈ R
n and p > 0.

II. PROBLEM FORMULATION

In this section, some basic definitions related to graphs are

introduced. Then, we formulate the multi-objective optimisa-

tion problems of distributed multi-agent systems.

A. Graph Theory

For a piecewise constant switching signal, σ(t) : [0,∞) →
S = {1, . . . , χ}, and a set of χ graphs, Gs(V, Es), s =
1, . . . , χ, with V = {1, . . . , N} and Es ∈ V × V , we define

a switching graph sequence as Gσ(V, Eσ). The time index t

has been omitted for notational conveniences. In a graph, V
represents a set of N distinct vertices, denoting the agents

in the network, and Es = {(i, j) : i, j ∈ V} denotes the set

of edges, representing the communication channels among

the agents. If an edge pair (i, j) ∈ Es, then agent i can

communicate with agent j. A graph Gs(V, Es) is said to be

undirected if any edge pair (i, j) ∈ Es implies (j, i) ∈ Es.

The adjacent matrix of a graph is defined as As = [asij ]N×N ,

where asij = 1 if the edge pair (j, i) ∈ Es, and zero otherwise.

The degree matrix is defined as Ds = diag(ds1, . . . , d
s
N ), with

dsi =
∑N

j=1 a
s
ij . Then, the Laplacian matrix is defined as

Ls = Ds − As. The neighbouring set of agent i is defined

as N s
i = {j ∈ V : (j, i) ∈ Es}. In this paper, all the graphs

are assumed to be undirected. For connected and undirected

graphs, zero is a simple eigenvalue of the Laplacian matrix,

and all other eigenvalues are positive real numbers (Ding,

2014). More definitions and properties related to graph theory

can be found in Godsil and Royle (2001).

B. Problem Formulation

Consider a network of N agents, where each of them

possesses a local objective, denoted as fi(z, t), with z ∈ R
n

being the decision variable. Then, the network objective is to

solve, in a distributed way,

min
z∈Rn

F (z, t) = {f1(z, t), . . . , fN (z, t)}. (1)

For an MOP, it is assumed that the objectives are conflicting,

that is, the objectives cannot be optimised simultaneously. The

concept of Pareto optimality is used to describe the solutions,

of which the formal definition is given as the following.
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Definition 1 (Pareto optimality (Miettinen, 2012)): A

decision vector z∗(t) ∈ R
n is the time-varying Pareto solu-

tion of problem (1), if for any time t there does not exist

any z(t) ∈ R
n such that fi(z(t), t) ≤ fi(z

∗(t), t) for all

i = 1, . . . , N , and fj(z(t), t) < fj(z
∗(t), t) for at least one

index j ∈ V .

Because the local objective fi(z, t) is privately known to the

agent i only, distributed algorithms should be implemented

to solve the problem. Introducing a local decision variable

xi ∈ R
n for agent i, problem (1) can be transferred to

min
x1,...,xN∈Rn

{f1(x1, t), . . . , fN (xN , t)}

subject to L̄σx̄ = 0

(2)

where L̄σ = Lσ ⊗ In and x̄ = col(x1, . . . , xN ). Note that

L̄σx̄ = 0 indicates that all the local decision variable reach

a consensus for connected graphs, and therefore, the refor-

mulated problem (2) is equivalent to the original centralised

problem (1). One of the commonly used approaches to search

the Pareto solution is the scalarisation method, which assigns

each cost function a positive weight ωi. Then, the weighted

problem is formulated as

min
x1,...,xN∈Rn

N∑

i=1

ωifi(xi, t)

subject to L̄σx̄ = 0.

(3)

Now, we introduce some assumptions that are widely de-

ployed in distributed optimisation, including the connectivity

of the communication graph, and the convexity of the cost

functions.

Assumption 1: The communication graphs Gs(V, Es), s =
1, . . . , χ, are connected. The switching time between any

two contiguous switching instances is greater than a positive

threshold σ0 > 0.

Assumption 2: The objective functions, fi(z, t), ∀i ∈ V ,

are strictly convex, and twice differentiable, with invertible

Hessian matrix, defined as [∇2fi(z, t)]r,s =
∂2fi(z,t)
∂zr∂zs

, ∀z, t.
Assumption 3: The following items

sup
i,j∈V

∥
∥
∥
∥

∂

∂t
∇ωifi(xi, t)−

∂

∂t
∇ωjfj(xj , t)

∥
∥
∥
∥

sup
i,j∈V

∥
∥
∥
∥

∂2

∂t2
∇ωifi(xi, t)−

∂2

∂t2
∇ωjfj(xj , t)

∥
∥
∥
∥

sup
i,j∈V

∥
∥
∥
∥

∂

∂t
∇2ωifi(xi, t)−

∂

∂t
∇2ωjfj(xj , t)

∥
∥
∥
∥

are all bounded.

Remark 1: Assumption 1 is to guarantee that information

can be shared among the participants of the network at all

time. Then, the consensus can be achieved such that the

distributed problem (2) is equivalent to the original problem

(1). To avoid Zeno behaviour, we assume the time length

between two contiguous switching instances is lower bounded

by σ0. The connectivity of the graphs will be relaxed in

Section III-C, where disconnected communication topologies

are used to generate the Pareto fronts. The convexity in

Assumptions 2 ensures that every Pareto solution can be

obtained by the scalarisation method, as stated in the ensuing

lemma. Assumption 3 implies that the changing rates of the

gradients (first and second order), and the Hessian matrices

with respect to t between any two cost functions are all

bounded. This assumption is used to ensure that the consensus

can be achieved within bounded time.

Lemma 1 (Miettinen (2012)): Let Assumptions 1 and 2

hold. For any non-negative weighting coefficients ωi, and ω̄ =
[ωi, . . . , ωN ]T 6= 0, the solution of the weighted problem (3)

is a Pareto optimum of (1). Moreover, any Pareto solution of

(1) can be found by the weighted problem in (3).

III. ALGORITHM DEVELOPMENT AND CONVERGENCE

ANALYSIS

In this section, we propose two distributed algorithms and

then the convergence to the Pareto solution will be established

using fixed-time Lyapunov theory for connected graphs. The

results are further extended to disconnected graphs where

subsets of the Pareto solutions can be derived.

A. Consensus-Based Pareto Solution Searching

The distributed algorithm for agent i is designed as

ρ̇i =α
∑

j∈Nσ
i

sig(̺j − ̺i)
p + β

∑

j∈Nσ
i

sig(̺j − ̺i)
q

+
∑

j∈Nσ
i

γ sign(̺j − ̺i)

̺i =ρi + ωi∇fi(xi, t)

(4a)

φ̇i =α
∑

j∈Nσ
i

sig(ϕj − ϕi)
p + β

∑

j∈Nσ
i

sig(ϕj − ϕi)
q

+
∑

j∈Nσ
i

δ sign(ϕj − ϕi)

ϕi =φi +
∂

∂t
ωi∇fi(xi, t)

(4b)

ξ̇i =α
∑

j∈Nσ
i

sig(ςj − ςi)
p + β

∑

j∈Nσ
i

sig(ςj − ςi)
q

+
∑

j∈Nσ
i

η sign(ςj − ςi)

ςi =ξi +∇2ωifi(xi, t)

(4c)

ẋi =α
∑

j∈Nσ
i

sig(xj − xi)
p + β

∑

j∈Nσ
i

sig(xj − xi)
q

+
∑

j∈Nσ
i

κ sign(xj − xi)− ς−1
i (τ̺i + ϕi)

(4d)

where ρi, φi, and ξi are intermediate states with initial values

specified as ρi(0) = φi(0) = ξi(0) = 0; ̺i, ϕi and ςi are

the consensus variables to estimate the global information;

α, β, γ, δ, η, κ are positive real constants to be designed later;

and p, q are positive numbers satisfying 0 < p < 1 and q > 1.

Remark 2: In (4a)-(4d), the local information required by

agent i includes ωi∇fi(xi, t), ∂
∂t
ωi∇fi(xi, t),∇2ωifi(xi, t)

and xi, which are locally available to agent i. The shared
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information from its neighbours, j ∈ N σ
i , includes ̺j , ϕj , ςj

and xj , which are exchanged through the communication

graph Gσ . Hence, the proposed algorithm is performed in a

distributed manner. Some private information, for example, the

local cost functions and their gradients, can be well-protected.

To show some insights into the proposed algorithm, let us

examine the first part of the algorithm in (4a)-(4c), which is

essentially formed by time-varying average consensus algo-

rithms. It will be proved in Lemma 2, the consensus variables

̺i, ϕi and ςi converge to the average of the time-varying

reference signals in a fixed time T1, that is,

̺i(t) →
1

N

N∑

j=1

∇ωjfj(xj , t) (5)

ϕi(t) →
1

N

N∑

j=1

∂

∂t
∇ωjfj(xj , t) (6)

ςi(t) →
1

N

N∑

j=1

∇2ωjfj(xj , t). (7)

With (5)-(7), the last term in (4d) can be rewritten as, for

t > T1,

− ς−1
i (τ̺i + ϕi) = −

[ N∑

j=1

∇2ωjfj(xj , t)

]−1

×
[

τ

N∑

j=1

∇ωjfj(xj , t) +

N∑

j=1

∂

∂t
∇ωjfj(xj , t)

]

. (8)

The first three terms in (4d) constitute another fixed-time

consensus, with settling time being denoted as T2, leading

to xi = xj , for t > T1 + T2. Then, it follows that

ẋi(t) = −
[ N∑

j=1

∇2ωjfj(xj , t)

]−1

×
[

τ

N∑

j=1

∇ωjfj(xj , t) +

N∑

j=1

∂

∂t
∇ωjfj(xj , t)

]

. (9)

for t > T1 + T2. Finally, we obtain a time-varying convex

optimisation algorithm (9) that shares a similar structure as

the centralised methods (Su, 2009), of which the convergence

will be established in Theorem 1.

Assumption 4: The coefficients in algorithm (4a)-(4d)

satisfy

N − 1

2
sup
i,j∈V

∥
∥
∥
∥

∂

∂t
∇ωifi(xi, t)−

∂

∂t
∇ωjfj(xj , t)

∥
∥
∥
∥
< γ

N − 1

2
sup
i,j∈V

∥
∥
∥
∥

∂2

∂t2
∇ωifi(xi, t)−

∂2

∂t2
∇ωjfj(xj , t)

∥
∥
∥
∥
< δ

N − 1

2
sup
i,j∈V

∥
∥
∥
∥

∂

∂t
∇2ωifi(xi, t)−

∂

∂t
∇2ωjfj(xj , t)

∥
∥
∥
∥
< η.

Note that Assumption 4 implies the bounds of the time

derivatives are available to all agents. We will propose an

adaptive algorithm to eliminate those global information. Now,

we focus on the algorithm (4a)-(4d).

Lemma 2: Consider the following dynamics

ψ̇i =α
∑

j∈Nσ
i

sig(zj − zi)
p + β

∑

j∈Nσ
i

sig(zj − zi)
q

+
∑

j∈Nσ
i

γ sign(zj − zi)

zi =ψi + ri

(10)

where α, β and γ are positive constants; initial conditions are

specified as ψi(0) = 0, ∀i ∈ V; and 0 < p < 1 and q > 1. If

the communication graphs Gσ are connected, and γ >
(N−1)µ̄

2 ,

with µ̄ ≥ ‖ṙi(t) − ṙj(t)‖, ∀i, j ∈ V , ∀t, then all the states zi
achieve a time-varying average consensus to 1

N

∑N
j=1 rj(t) in

a fixed time, bounded by

Tmax =
1

α2
p−3

2 λ2(L̄σ)
p+1

2 (1− p)
+

N
2q2+q−3

2q+2

β2
q−3

2 λ2(L̄σ)
q+1

2 (q − 1)

(11)

where λ2(L̄σ) denotes the second smallest eigenvalue of the

Laplacian matrix.

Proof: We denote the consensus error of agent i as ei = zi −
1
N

∑N
j=1 zj . Noticing that

∑N
i=1 ψi(0) = 0 and

∑N
i=1 ψ̇i(t) =

0, we have
∑N

i=1 ψi(t) = 0, ∀t. From the second equation in

(10), it follows
∑N

i=1 zi(t) =
∑N

i=1 ψi(t) +
∑N

i=1 ri(t) =
∑N

i=1 ri(t). If ei(t) → 0, ∀i ∈ V , it can be concluded that

zi(t) → 1
N

∑N
j=1 zj(t) = 1

N

∑N
j=1 rj(t). Now, consider a

Lyapunov candidate as

V1(t) =
1

2

N∑

i=1

eTi ei (12)

of which the time derivative is given by

V̇1(t) =

N∑

i=1

eTi ėi

=
N∑

i=1

eTi ψ̇i −
1

N

N∑

i=1

N∑

j=1

eTi ψ̇j

+
1

N

N∑

i=1

N∑

j=1

eTi (ṙi − ṙj)

(13)

where the second equation follows from

ėi =
1

N

N∑

j=1

(żi − żj)

=
1

N

N∑

j=1

(ψ̇i − ψ̇j) +
1

N

N∑

j=1

(ṙi − ṙj).

(14)

Since
∑N

i=1 ei =
∑N

i=1(zi − 1
N

∑N
j=1 zj(t)) =

∑N
i=1 zi −

∑N
i=1 zj = 0, we have − 1

N

∑N
i=1

∑N
j=1 e

T
i ψ̇j = 0. Now,
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substituting (10) into (13) yields

V̇1(t) =

N∑

i=1

eTi

[

α
∑

j∈Nσ
i

sig(zj − zi)
p

+ β
∑

j∈Nσ
i

sig(zj − zi)
q +

∑

j∈Nσ
i

γ sign(zj − zi)

]

+
1

N

N∑

i=1

N∑

j=1

eTi (ṙi − ṙj)

=α

N∑

i=1

∑

j∈Nσ
i

eTi sig(zj − zi)
p

︸ ︷︷ ︸

W1

+ β

N∑

i=1

∑

j∈Nσ
i

eTi sig(zj − zi)
q

︸ ︷︷ ︸

W2

+ γ

N∑

i=1

∑

j∈Nσ
i

eTi sign(zj − zi)

︸ ︷︷ ︸

W3

+
1

N

N∑

i,j=1

eTi (ṙi − ṙj)

︸ ︷︷ ︸

W4

.

(15)

For the first term W1 in (15), it follows from the symmetrical

property of undirected graphs that

W1 =
α

2

N∑

i=1

N∑

j∈Nσ
i

eTi sig(zj − zi)
p

+
α

2

N∑

j=1

N∑

i∈Nσ
j

eTj sig(zi − zj)
p

= −α
2

N∑

i=1

N∑

j∈Nσ
i

(ei − ej)
T sig(ei − ej)

p

(16)

where ej − ei = zj − zi has been used to derive the last

equation. Applying Lemma 3 in Zuo et al. (2018) yields

W1 = −α
2

N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖p+1
p+1

≤ −α
2

N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖p+1

≤ −α
2

( N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖2
) p+1

2

.

(17)

By similar arguments, it can be obtained that

W2 ≤ −β
2
N

−2q2−q+3

2q+2

( N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖2
) q+1

2

. (18)

Due to the symmetricity of the graph, W3 can be written as

W3 =
γ

2

N∑

i=1

∑

j∈Nσ
i

eTi sign(zj − zi)

+
γ

2

N∑

j=1

∑

j∈Nσ
i

eTj sign(zi − zj)

= −γ
2

N∑

i=1

∑

j∈Nσ
i

(ei − ej)
T sign(ei − ej)

= −γ
2

N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖1.

(19)

For W4, we have

W4 =
1

2N

N∑

i=1

N∑

j=1

(ei − ej)
T (ṙi − ṙj). (20)

Then, applying Cauchy-Schwarz inequality yields

W4 ≤ 1

2N

N∑

i=1

N∑

j=1

‖ei − ej‖‖ri − rj‖

≤ µ̄

2N

N∑

i=1

N∑

j=1

‖ei − ej‖.
(21)

Note that

N∑

i=1

N∑

j=1

‖ei − ej‖ ≤ N max
i∈V

N∑

j=1,j 6=i

‖ei − ej‖

≤ N(N − 1)

2

N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖

≤ N(N − 1)

2

N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖1.

(22)

Hence,

W4 ≤ (N − 1)µ̄

4

N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖1. (23)
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Combing the results in (15)-(23) leads to

V̇1 ≤− α

2

( N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖2
) p+1

2

− β

2
N

−2q2−q+3

2q+2

( N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖2
) q+1

2

−
(
γ

2
− (N − 1)µ̄

4

) N∑

i=1

∑

j∈Nσ
i

‖ei − ej‖1

≤− α

2

(

2eT L̄σe

) p+1

2

− β

2
N

−2q2−q+3

2q+2

(

2eT L̄σe

) q+1

2

≤− α

2

(

2λ2(L̄σ)V1

) p+1

2

− β

2
N

−2q2−q+3

2q+2

(

2λ2(L̄σ)V1

) q+1

2

≤− α2
p−1

2 λ2(L̄σ)
p+1

2 V
p+1

2

1

− βN
−2q2−q+3

2q+2 2
q−1

2 λ2(L̄σ)
q+1

2 V
q+1

2

1 . (24)

Invoking the fixed-time convergence theorem in Polyakov

(2012), it can be concluded that ei, ∀i ∈ V converge to zero

in a fixed time, bounded by Tmax in (11). This completes the

proof. �

Lemma 3: Under Assumptions 1-4, the average time-

varying consensus of ̺i, ϕi and ςi in (5)-(7) are obtained

within a fixed time.

Proof: The results follow directly from Lemma 2. �

Theorem 1: Let Assumptions 1-4 hold. The algorithm pro-

posed in (4) solves the time-varying distributed problem (3).

The solution trajectory xi(t) forms a Pareto optimum of

the original time-varying multi-objective optimisation prob-

lem (1).

Proof: From Lemma 3, the algorithm in (4d) can be written

as, for t > T1,

ẋi =α
∑

j∈Nσ
i

sig(xj − xi)
p + β

∑

j∈Nσ
i

sig(xj − xi)
q

+ γ4
∑

j∈Nσ
i

sign(xj − xi)−
[ N∑

j=1

∇2ωjfj(xj , t)

]−1

×
[

τ

N∑

j=1

∇ωjfj(xj , t) +

N∑

j=1

∂

∂t
∇ωjfj(xj , t)

]

.

(25)

Notice that ‖ς−1
i (τ̺i+ϕi)− ς−1

j (τ̺j +ϕj)‖ = 0 for t > T1.

It thus can be concluded a consensus of the state variable xi =
xj is obtained within a fixed time, T2, by invoking Lemma 2.

Note that, for t ≤ T1 + T2, all the states remain bounded.

Therefore, (25) reduces to

ẋi(t) = −
[ N∑

j=1

∇2ωjfj(xj , t)

]−1

×
[

τ

N∑

j=1

∇ωjfj(xj , t) +

N∑

j=1

∂

∂t
∇ωjfj(xj , t)

]

(26)

for t > T1 + T2. Now, consider a Lyapunov function

V2(t) =
1

2

( N∑

i=1

∇wifi(xi, t)

)T( N∑

i=1

∇wifi(xi, t)

)

. (27)

The time derivative of V2(t) along with (26) is given by

V̇2(t) =

( N∑

i=1

∇wifi(xi, t)

)T( N∑

i=1

∇2ωifi(xi, t)ẋi

+

N∑

i=1

∂

∂t
∇ωifi(xi, t)

)

=

( N∑

i=1

∇wifi(xi, t)

)T(

− τ

N∑

i=1

∇ωifi(xi, t)

−
N∑

i=1

∂

∂t
∇ωifi(xi, t) +

N∑

i=1

∂

∂t
∇ωifi(xi, t)

)

=− τ

( N∑

i=1

∇wifi(xi, t)

)T( N∑

i=1

∇ωifi(xi, t)

)

=− 2τV2(t).

(28)

Hence,
∑N

i=1 ∇wifi(xi, t) converges to 0, which directly

leads to the results. This completes the proof. �

B. Adaptive Consensus-Based Pareto Solution Searching

In previous subsection, the parameters γ, δ and η are

determined by the bounds of the time derivatives as shown

in Assumption 4, which are global information. In order to

release such restrictions, we propose an adaptive design in

this subsection.

The adaptive parameters are designed as






γ̇ij = sign
(
maxs∈[t−ǫ,t] ‖̺j(s)− ̺i(s)‖

)

δ̇ij = sign
(
maxs∈[t−ǫ,t] ‖ϕj(s)− ϕi(s)‖

)

η̇ij = sign
(
maxs∈[t−ǫ,t] ‖ςj(s)− ςi(s)‖

)
∀(j, i) ∈ E

(29)

where ǫ > 0 is an arbitrary small constant. The main structure

of the adaptive algorithm is similar to previous fixed-gain

design, and it is therefore omitted to avoid redundancy. Now,

we show the convergence proof of the algorithm.

Lemma 4: Consider the following dynamics

ψ̇i =α
∑

j∈Nσ
i

sig(zj − zi)
p + β

∑

j∈Nσ
i

sig(zj − zi)
q

+
∑

j∈Nσ
i

γij sign(zj − zi)

zi =ψi + ri

γ̇ij =sign

(

max
s∈[t−ǫ,t]

‖zj(s)− zi(s)‖
)

, ∀(j, i) ∈ E

(30)

where α, β are positive constants with initial condition

ψi(0) = γij(0) = 0. If the communication graph Gσ is

connected, and ‖ṙi(t) − ṙj(t)‖ < µ̄, ∀i, j ∈ V , ∀t, then all

the states zi achieve an average consensus to 1
N

∑N
k=1 rk(t)

in a fixed time.

Proof: The convergence can be divided into the following two

cases. Case 1: The consensus of the states zi is achieved within
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t ≤ T3 = (N−1)µ̄
2 , that is, zi(t) = zj(t), for all t > T3. Conse-

quently, it follows that zi(t) = zj(t) =
1
N

∑N
k=1 rk(t), since

∑N
i=1 zi(t) =

∑N
i=1 ψi(t) +

∑N
i=1 ri(t) and

∑N
i=1 ψi(t) = 0.

Case 2: The consensus is not achieved within time t ≤ T3 =
(N−1)µ̄

2 . Then, we have maxs∈[t−ǫ,t] ‖zj(s)− zi(s)‖ 6= 0,

and γ̇ij = 1 for t < T3. Hence, it can be obtained that

γij(t) >
(N−1)µ̄

2 for t > T3. Following similar procedures in

Lemma 2, it can be concluded that the consensus is achieved

within t < T3 + T1. This completes the proof. �

Theorem 2: Let Assumptions 1-3 hold. The algorithm in

(4) with adaptive gains in (29) solves the time-varying dis-

tributed problem (3). The solution trajectory xi(t) constitutes

a Pareto optimum of the original time-varying multi-objective

optimisation problem (1).

Proof: The result directly follows from Lemma 4 and Theo-

rem 1. �

C. Pareto Solution Searching with Disconnected Graphs

In previous subsections, the communication graphs are

assumed to be connected. In practice, the communication

topology may be unstable and easily broken. Moreover, some

subsystems might be intentionally disconnected from the net-

work for maintenance. In this part, switching and disconnected

graphs will be used to generate the Pareto fronts.

Apparently, if a graph is disconnected, it can also be

considered as a set of d connected subgraphs. We denote the

Laplacian matrices of the subgraphs as Lσ
1 , . . . ,Lσ

d , where

each of them consists of mi agents with
∑d

i=1mi = N , and

the objectives are reordered according to their communication

subgroups. In addition, the weighting parameters ωi for each

subgroup are nonnegative with at least one element being

positive.

Corollary 1: Under Assumptions 2-4, if the communication

graph is disconnected, both the fixed-gain algorithm in (4)

and the adaptive algorithm in (29) can solve the mi-objective

optimisation problem for each subgroup. Moreover, all the

solutions of the subgroups are the Pareto solution of the

original problem (1).

Proof: Note that each subgraph is connected, and therefore

Theorems 1 and 2 remain valid. Now we consider the kth

subgroup with mk agents, denoted as Mk, and each of

them with objectives fk,1(xk,1, t), . . . , fk,mk
(xk,mk

, t). The

subgroup’s objective can be viewed as
∑mk

i=1 ωk,ifk,i(xk,i, t)+∑

j∈V\Mk
0×fj(xj , t), where ωk,i 6= 0 for at least one index

i. According to Lemma 1, all the solutions of the disconnected

subgroups are also Pareto solutions of the original network.

This completes the proof. �

Remark 3: With Corollary 1, we can generate the Pareto

fronts for different sets of objective functions by switching

the communication graphs. This is of great significance to

analyse the properties of any combination of the cost functions,

and to enrich the diversity of the solution set. Different from

centralised optimisation where a global coordinator dominates

the selection of the Pareto solution by enforcing its own

preference on the networked agents, the distributed methods

in this paper enable each agent to specify the local weights, by

which the diversity of the Pareto solution is further improved.

Remark 4: The proposed algorithms for distributed

network-connected systems can be implemented for a range

of real-world applications, including power systems (Yang

et al., 2016) and communication systems (Li et al., 2020).

Since many practical applications have multiple time-varying

objectives, the proposed method can quickly adjust the net-

work strategy due to the utilisation of fixed-time consensus

algorithms. In the simulation section, the algorithms will be

implemented for an optimal charging problem of multiple

electric vehicles.

Remark 5: Recent studies have been extensively focused on

distributed single objective optimisation, see Ning et al. (2019)

and Boyd et al. (2011). Another stream on MOPs mainly uses

particle swarm optimization methods in centralised settings,

as in Song et al. (2017) and Liu et al. (2019). The pro-

posed method in this paper implements fixed-time consensus-

based algorithms to solve distributed time-varying MOPs. The

convergence of the proposed algorithms is established in a

deterministic sense, which is different from the genetic and

particle swarm algorithms. Distinct from the problem solved

by Li and Ding (2020), time-varying objectives and switching

graphs are considered in the work.

IV. SIMULATION

In this section, we will demonstrate the effectiveness of

the proposed algorithms using two examples with detailed

simulation results.

A. Numerical Example

Consider a network of 6 agents where each of them pos-

sesses a time-varying objective function, given by

f1(x1, t) =
1

2
x21 − 10 cos(2t)x1 + sin(2t)

f2(x2, t) = x22 − 10e−tx2 + 5 cos(t)

f3(x3, t) = 2x23 − 100x3 + 5 tanh(t)

f4(x4, t) = 2x24 − 10 sin(t)x4 + 5 tanh(2t)

f5(x5, t) = x25 − 2 cos(3t)x5 + 10

f6(x6, t) = 4x26 − 20e−2tx6 + 20.

where xi ∈ R, ∀, i = 1, . . . , 6. The communication graphs

have been selected from a randomly generated set, satisfying

Assumption 1. We implement the fixed-gain algorithm in (4).

The parameters are set as follows: ωi =
1
6 , i = 1, . . . , 6, p =

1
3 , q = 5

3 , α = β = 0.01, γ = 2, and δ = η = κ = 1.

The initial states of all agents are set to zero. The state

trajectories are illustrated in Fig. 1a, where the time-varying

Pareto solution x∗(t) is shown in the dotted line. It can be

observed that all the sates converge to the optimal solution

after a few seconds. As the states change, the objective values

can be calculated and plotted in Fig. 1b. Now, we demonstrate

the obtained solution is indeed the Pareto optimum. To see

this, the sum of the weighted derivatives
∑N

i=1 ∇ωifi(xi, t)
has been depicted in Fig. 1c. It is clear that the weighted

derivatives converge to zero, which manifests that the time-

varying trajectory is the Pareto solution. Though the objectives

are time-varying, the distributed agents have been capable of
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Fig. 1: The simulation results using distributed fixed-gain design: (a) state trajectories; (b) objective values; (c) convergence of the weighted derivatives.
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Fig. 2: Simulation results under the first graph in Fig. 4: (a) Time-varying Pareto states with three separate equilibria; (b) Pareto fronts for agents 1 and 2; (c) Pareto fronts for

agents 4 and 6.
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Fig. 3: Simulation results under the first graph in Fig. 4: (a) Convergence of time-varying states with two separate equilibria; (b) Pareto fronts of agents 1, 2 and 4 at t = 20s; (c)

Pareto fronts of agents 1, 2 and 4 at t = 30s.

tracking the optimal solution in a fast manner, due to the

utilisation of fixed-time consensus algorithms. Similar results

can be obtained using the adaptive design in (29), which have

been omitted due to space limit. It has been shown in Lemma 1

that any Pareto solution of the original problem (1) can be

obtained by varying the weighting parameters ωi.

Now, we deploy the proposed algorithms for disconnected

graphs to search the Pareto front. Fig. 2a displays the conver-

gence of the state variables, where three time-varying Pareto

solutions of the subgroups are obtained using the first com-

munication topology. In Figs. 2b and 2c, the Pareto fronts are

presented for the two subgroups in different time slots. For the

second disconnected communication graph, the convergence

of the decision variables is shown in Fig. 3a. The Pareto

fronts can be obtained by changing the weighting parameters.

Figs. 3b and 3c show, respectively, the Pareto fronts for the the

Fig. 4: The disconnected communication topology.

subgroup with agents 1, 2 and 4 at time t = 20s and t = 30s.

From above observations, the proposed algorithms can be

implemented for disconnected graphs to identify the Pareto

fronts, and separated subgroups are able to cooperatively
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Fig. 5: Charging network of multiple electric vehicles, where solid line in blue denotes

the power network and dotted line in grey denotes the communication channel.

optimise partial objectives of the network, which is impor-

tant for applications with unstable communication channels.

Moreover, by varying the communication topology, different

Pareto optima can be derived, which is helpful for improving

the diversity of the solutions.

B. Practical Application

In this subsection, we implement the proposed algorithms to

an optimal charging problem of plug-in electric vehicles. Due

to the increasing concerns over environmental degradation,

electric vehicles have received significant research efforts,

among which power charging management is one of the

most important issues. As the number of electric vehicles

increases, centralised methods are no longer feasible because

of heavy communication and computation burden. Distributed

algorithms developed in this paper can therefore serve as an al-

ternative, which possesses a number of promising advantages,

such as robustness and scalability.

We consider a group of electric vehicles at a charging station

that aim to cooperatively optimise the charging power by using

local communication with their neighbours. The objectives of

the electric vehicles are formulated as

fi(PEV , t) = pi(t)

(
PEV

Ri

− Vo,i + 2RiI
ref
i

2R2
i

√

4RiPEV + V 2
o,i

)

where the variable PEV is the parallel charging power to

be optimised; pi(t) denotes the time-varying priority weight

of the ith vehicle; Ri is the equivalent internal resistance;

Vo,i represents the open-circuit voltage; and I ref
i is the desired

charging current. Formulation of such objective functions has

been studied in some recent works, for example, Xu (2014)

and Zhao and Ding (2017). The simulation parameters in this

paper are adopted from Xu (2014). The network structure and

communication topology are shown in Fig. 5.

During the charging process, the priority of each vehicle

may change as the charging status varies, and some coefficients

can be time-varying, such as the desired charging current I ref
i .

In this case, the algorithms proposed in Gharesifard and Corts

(2014) and Li and Ding (2020) dealing with time-invariant

optimisation problems are infeasible. The time-varying opti-

misation developed in this paper can be utilised to obtain an

optimal charging profile in an online manner. The simulation

parameters are kept the same as the numerical case. Fig. 6
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Fig. 6: Time-varying charging power of the electric vehicles.

shows the charging power of the network, where consensus is

achieved within 2 seconds. Due to the change of priority, the

network can quickly adjust its power profile so as to optimise

the time-varying objectives.

V. CONCLUSION

In this paper, time-varying multi-objective optimisation

problems have been considered. A weighted sum approach

is introduced to quantify different objectives. Distributed op-

timisation algorithms are proposed to solve those problems

over switching graphs. With some knowledge of the system

parameters, a fixed-gain algorithm is developed to achieve

convergence to the Pareto solutions, where the average time-

varying consensus plays a significant role in estimating the

global variables. Then, an adaptive algorithm is designed,

which overcomes the dependence on additional global infor-

mation. When the graphs are disconnected, it is shown that the

obtained solutions constitute the Pareto fronts for the original

problem. The simulation results have been provided to validate

the effectiveness of the algorithms.

Future work can be concentrated on dealing with different

settings of communication topologies, e.g., directed graphs.

Due to the existence of time delay and uncertainties in com-

munication channels, future work may also consider robust

and event-triggered optimisation strategies.
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