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Abstract

We develop an econometric methodology to infer the path of risk premia from large unbalanced

panel of individual stock returns. We estimate the time-varying risk premia implied by conditional linear

asset pricing models where the conditioning includes instruments common to all assets and asset specific

instruments. The estimator uses simple weighted two-pass cross-sectional regressions, and we show its

consistency and asymptotic normality under increasing cross-sectional and time series dimensions. We

address consistent estimation of the asymptotic variance, and testing for asset pricing restrictions induced

by the no-arbitrage assumption in large economies. The empirical illustration on returns for about ten

thousands US stocks from July 1964 to December 2009 shows that conditional risk premia are large and

volatile in crisis periods. They exhibit large positive and negative strays from standard unconditional

estimates and follow the macroeconomic cycles. The asset pricing restrictions are rejected for the usual

unconditional four-factor model capturing market, size, value and momentum effects.
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1 Introduction

Risk premia measure financial compensation asked by investors for bearing risk. Risk is influenced by

financial and macroeconomic variables. Conditional linear factor models aim at capturing their time-varying

influence in a simple setting (see e.g. Shanken (1990), Cochrane (1996), Ferson and Schadt (1996), Ferson

and Harvey (1991, 1999), Lettau and Ludvigson (2001), Petkova and Zhang (2005)). Time variation in risk

is known to bias unconditional estimates of alphas and betas, and therefore asset pricing test conclusions

(Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth, Carlson, Fisher and Simutin (2010)).

Ghysels (1998) discusses the pros and cons of modeling time-varying betas.

The workhorse to estimate equity risk premia in a linear multi-factor setting is the two-pass cross-

sectional regression method developed by Black, Jensen and Scholes (1972) and Fama and MacBeth (1973).

Its large and finite sample properties for unconditional linear factor models have been addressed in a series

of papers, see e.g. Shanken (1985, 1992), Jagannathan and Wang (1998), Shanken and Zhou (2007), Kan,

Robotti and Shanken (2009), and the review paper of Jagannathan, Skoulakis and Wang (2009). Statistical

inference for equity risk premia in conditional linear factor model has not yet been formally addressed in

the literature despite its empirical relevance.

In this paper we study how we can infer the time-varying behaviour of equity risk premia from large

stock return databases by using conditional linear factor models. Our approach is inspired by the recent trend

in macro-econometrics and forecasting methods trying to extract cross-sectional and time-series information

simultaneously from large panels (see e.g. Stock and Watson (2002a,b), Bai (2003, 2009), Bai and Ng

(2002, 2006), Forni, Hallin, Lippi and Reichlin (2000, 2004, 2005), Pesaran (2006)). Ludvigson and Ng

(2007, 2009) show that it is a promising route to follow to study bond risk premia. Connor, Hagmann,

and Linton (2011) show that large cross-section helps to exploit data more efficiently in a semiparametric

characteristic-based factor model of stock returns. It is also inspired by the framework underlying the

Arbitrage Pricing Theory (APT). Approximate factor structures with nondiagonal error covariance matrices

(Chamberlain and Rothschild (1983, CR)) address the potential empirical mismatch of exact factor structures

with diagonal error covariance matrices underlying the original APT of Ross (1976). Under weak cross-

sectional dependence among error terms, they generate no-arbitrage restrictions in large economies where

the number of assets grows to infinity. Our paper develops an econometric methodology tailored to the APT
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framework. We let the number of assets grow to infinity mimicking the large economies of financial theory.

Our approach is further motivated by the potential loss of information and bias induced by grouping

stocks to build portfolios in asset pricing tests (Litzenberger and Ramaswamy (1979), Lo and MacKinlay

(1990), Berk (2000), Conrad, Cooper and Kaul (2003), Phalippou (2007)). Avramov and Chordia (2006)

have already shown that empirical findings given by conditional factor models about anomalies differ a

lot when considering single securities instead of portfolios. Ang, Liu and Schwarz (2008) argue that a lot

of efficiency may be lost when only considering portfolios as base assets, instead of individual stocks, to

estimate equity risk premia in unconditional models. In our approach the large cross-section of stock returns

also helps to get accurate estimation of the equity risk premia even if we get noisy time-series estimates

of the factor loadings (the betas). Besides, when running asset-pricing tests, Lewellen, Nagel and Shanken

(2010) advocate working with a large number of assets instead of working with a small number of portfolios

exhibiting a tight factor structure. The former gives us a higher hurdle to meet in judging model explanation

based on cross-sectional R2.

Our theoretical contributions are threefold. First we derive no-arbitrage restrictions in a multi-period

economy (Hansen and Richard (1987)) with a continuum of assets and an approximate factor structure

(Chamberlain and Rothschild (1983)). We explicitly show the relationship between the ruling out of asymp-

totic arbitrage opportunities and a testable restriction for large economies in a conditional setting. We also

formalize the sampling scheme when observed assets are random draws from an underlying population (An-

drews (2005)). Second we derive a new weighted two-pass cross-sectional estimator of the path over time

of the risk premia from large unbalanced panels of excess returns. We study its large sample properties

in conditional linear factor models where the conditioning includes instruments common to all assets and

asset specific instruments. The factor modeling permits conditional heteroskedasticity and cross-sectional

dependence in the error terms (see Petersen (2008) for stressing the importance of residual dependence when

computing standard errors in finance panel data). We derive consistency and asymptotic normality of our

estimates by letting the time dimension T and the cross-section dimension n grow to infinity simultane-

ously, and not sequentially. We relate the results to bias-corrected estimation (Hahn and Kuersteiner (2002),

Hahn and Newey (2004)) accounting for the well-known incidental parameter problem of the panel literature

(Neyman and Scott (1948)). We derive all properties for unbalanced panels to avoid the survivorship bias
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inherent to studies restricted to balanced subsets of available stock return databases (Brown, Goetzmann,

Ross (1995)). The two-pass regression approach is simple and particularly easy to implement in an unbal-

anced setting. This explains our choice over more efficient, but numerically intractable, one-pass ML/GMM

estimators or generalized least-squares estimators. When n is of the order of a couple of thousands assets,

numerical optimization on a large parameter set or numerical inversion of a large weighting matrix is too

challenging and unstable to benefit in practice from the theoretical efficiency gains, unless imposing strong

ad hoc structural restrictions. Third we provide a goodness-of-fit test for the conditional factor model un-

derlying the estimation. The test exploits the asymptotic distribution of a weighted sum of squared residuals

of the second-pass cross-sectional regression (see Lewellen, Nagel and Shanken (2010), Kan, Robotti and

Shanken (2009) for a related approach in unconditional models and asymptotics with fixed n). The con-

struction of the test statistic relies on consistent estimation of large-dimensional sparse covariance matrices

by thresholding (Bickel and Levina (2008), El Karoui (2008), Fan, Liao, and Mincheva (2011)). As a by-

product, our approach permits inference for the cost of equity on individual stocks, in a time-varying setting

(Fama and French (1997)). As known from standard textbooks in corporate finance, the cost of equity is

such that cost of equity = risk free rate + factor loadings × factor risk premia. It is part of the cost of capital

and is a central piece for evaluating investment projects by company managers. For pedagogical purposes

the three theoretical contributions are first presented in an unconditional setting before being extended to a

conditional setting.

For our empirical contributions, we consider the Center for Research in Security Prices (CRSP) database

and take the Compustat database to match firm characteristics. The merged dataset comprises about ten

thousands stocks with monthly returns from July 1964 to December 2009. We look at factor models popular

in the empirical finance literature to explain monthly equity returns. They differ by the choice of the factors.

The first model is the CAPM (Sharpe (1964), Lintner (1965)) using market return as the single factor. Then,

we consider the three-factor model of Fama and French (1993) based on two additional factors capturing the

book-to-market and size effects, and a four-factor extension including a momentum factor (Jegadeesh and

Titman (1993), Carhart (1997)). We study both unconditional and conditional factor models (Ferson and

Schadt (1996), and Ferson and Harvey (1999)). For the conditional versions we use both macrovariables

and firm characteristics as instruments. The estimated path shows that the risk premia are large and volatile
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in crisis periods, e.g., the oil crisis in 1973-1974, the market crash in October 1987, and the crisis of the

recent years. Furthermore, the conditional estimates exhibit large positive and negative strays from standard

unconditional estimates and follow the macroeconomic cycles. The asset pricing restrictions are rejected for

the usual unconditional four-factor model capturing market, size, value and momentum effects.

The outline of the paper is as follows. In Section 2 we present our approach in an unconditional lin-

ear factor setting. In Section 3 we extend all results to cover a conditional linear factor model where the

instruments inducing time varying coefficients can be common to all stocks or stock specific. Section 4

contains the empirical results. Section 5 contains the simulation results. Finally, Section 6 concludes. In

the Appendix, we gather the technical assumptions and some proofs. We place all omitted proofs in the

online supplementary materials. We use high-level assumptions to get our results and show in Appendix 4

that they are all met under a block cross-sectional dependence structure on the error terms in a serially i.i.d.

framework.

2 Unconditional factor model

In this section we consider an unconditional linear factor model in order to illustrate the main contributions

of the article in a simple setting. This covers the CAPM where the single factor is the excess market return.

2.1 Excess return generation and asset pricing restrictions

We start by describing how excess returns are generated before examining the implications of absence of

arbitrage opportunities in terms of asset pricing restrictions in large economies. We combine the construction

of Hansen and Richard (1987) for multi periods and the construction of Andrews (2005) for cross-section

dependence. We need such a formal construction to guarantee that all information sets are well-defined

when we condition on them, and that, under a sampling mechanism (see the next section), cross-sectional

limits exist and are invariant to reordering of the assets.

Let (Ω,F , P ) be a probability space. The random vector f admitting values in R
K , and the collection

of random variables ε(γ), γ ∈ [0, 1], are defined on this probability space. Moreover, let β = (a, b′)′ be a

vector function defined on [0, 1] with values in R × R
K . The dynamics is described by the measurable and
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measure-preserving transformation S mapping Ω into itself. If ω ∈ Ω is the state of the world at time 0,

then St(ω) is the state at time t, where St denotes the transformation S applied t times successively.

Assumption APR.1 The excess returns Rt(γ) of asset γ ∈ [0, 1] at date t = 1, 2, ... satisfy the uncondi-

tional linear factor model:

Rt(γ) = a(γ) + b(γ)
′

ft + εt(γ), (1)

where the random variables εt(γ) and ft are defined by εt (γ, ω) = ε[γ, St(ω)] and ft(ω) = f [St(ω)].

Assumption APR.1 defines the excess return processes for an economy with a continuum of assets. The

index set is the interval [0, 1] without loss of generality. Vector ft gathers the values of the K observable

factors at date t, while the intercept a(γ) and factor sensitivities b(γ) of asset γ ∈ [0, 1] are time invariant.

Since S is measure-preserving, all processes are stationary. Let further xt = (1, f
′

t )
′

which yields the

compact formulation:

Rt(γ) = β(γ)′xt + εt(γ). (2)

In order to define the information sets, let F0 ⊂ F be a sub sigma-field. Random vector f is assumed

measurable w.r.t. F0. Define Ft = {S−t (A) , A ∈ F0}, t = 1, 2, ..., and assume that F1 contains F0. Then,

the filtration Ft, t = 1, 2, ... characterizes the information available to investors.

Let us now introduce supplementary assumptions on factors, factor loadings and error terms.

Assumption APR.2 The matrix

ˆ

b(γ)b(γ)′dγ is positive definite.

Assumption APR.2 implies non-degeneracy in the factor loadings across assets.

Assumption APR.3 For any γ ∈ [0, 1]: E[εt(γ)|Ft−1] = 0 and Cov[εt(γ), ft|Ft−1] = 0.

Hence, the error terms have mean zero and are uncorrelated with the factors conditionally on information

Ft−1. In Assumption APR.4 (i) below, we build on CR and impose an approximate factor structure for the

conditional distribution of the error terms given Ft−1 in any countable collection of assets.

Assumption APR.4 The conditional variance-covariance matrix Σε,t,n of the errors εt(γ1), ..., εt(γn) given

Ft−1 is such that: (i) eigmax (Σε,t,n) ≤ c1, P -a.s., (ii) eigmin (Σε,t,n) ≥ c2, P -a.s., for all γ1, ..., γn
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∈ [0, 1], n ∈ N, and some constants 0 < c2 ≤ c1 <∞ , where eigmin (Σε,t,n) and eigmax (Σε,t,n) denote the

smallest and the largest eigenvalues of matrix Σε,t,n, (iii) eigmax (V [ft|Ft−1]) ≤ c3 and eigmin (V [ft|Ft−1])

≥ c4, P -a.s., for some constants 0 < c4 ≤ c3 <∞.

Assumptions APR.4 (ii)-(iii) are mild regularity conditions used in the proof of Proposition 1.

Absence of asymptotic arbitrage opportunities generates asset pricing restrictions in large economies

(Ross (1976), CR). We define asymptotic arbitrage opportunities in terms of sequences of portfolios pn,

n ∈ N. Portfolio pn is defined by the share α0 invested in the riskfree asset and the shares αi invested in the

risky assets γi for i = 1, ...., n. The shares are measurable w.r.t. F0. Then C(pn) =

n∑

i=0

αi is the portfolio

cost at t = 0, and pn = C(pn)R0 +
n∑

i=1

αiR1(γi) is the portfolio payoff at t = 1, where R0 denotes the

riskfree gross return measurable w.r.t. F0. We can work with t = 1 because of stationarity.

Assumption APR.5 There are no asymptotic arbitrage opportunities in the economy, that is, there exists

no portfolio sequence (pn) such that lim
n→∞

P [pn ≥ 0] = 1 and lim
n→∞

P [C(pn) ≤ 0, pn > 0] > 0.

Assumption APR.5 excludes portfolios that approximate arbitrage opportunities when the number of

included assets increases. Arbitrage opportunities are investments with non-positive cost and non-negative

payoff in each state of the world, and positive payoff in some states of the world (Hansen and Richard

(1987), Definition 2.4). Then, the asset pricing restriction is given in the next Proposition 1.

Proposition 1 Under Assumptions APR.1-APR.5, there exists a unique vector ν ∈ R
K such that:

a(γ) = b(γ)′ν, (3)

for almost all γ ∈ [0, 1].

The asset pricing restriction in Proposition 1 can be rewritten as

E [Rt(γ)] = b(γ)′λ, (4)

for almost all γ ∈ [0, 1], where λ = ν + E [ft] is the vector of the risk premia. In the CAPM, we have

K = 1 and ν = 0. When a factor fk,t is a portfolio excess return, we also have νk = 0, k = 1, ...,K.
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Proposition 1 differs from CR Theorem 3 in terms of both the definition of asymptotic arbitrage opportu-

nities and the derived asset pricing restriction. We prefer the definition underlying Assumption APR.5 since

it extends more easily to the conditional setting (see Section 3). In Appendix 2 we show that Assumption

APR.5 implies the no-arbitrage conditions in Assumptions A.1 i) and ii) of CR, for a.e. conditional economy

given F0 with a countable collection of assets. Then, by applying CR Theorem 3 to each such conditional

economy, we deduce that

∞∑

i=1

(
a(γi) − b(γi)

′

ν
)2

<∞ for some ν ∈ R
K , for a.e. sequence (γi). Finally,

by assuming that the asset characteristics are defined by the underlying function β = (a, b′)′ defined on

[0, 1], we transform this summability condition into the equivalent restriction (3). Proposition 1 character-

izes the functions β that are compatible with absence of asymptotic arbitrage opportunities. The restriction

in Proposition 1 is testable with large equity datasets and large sample sizes (Section 2.5), and therefore is

not affected by the Shanken (1982) critique. The next section describes how we get the data from sampling

the continuum of assets.

2.2 The sampling scheme

We estimate the risk premia from a sample of observations on returns and factors for n assets and T dates. In

available databases, asset returns are not observed for all firms at all dates. We account for the unbalanced

nature of the panel through a collection of indicator variables I(γ), γ ∈ [0, 1], and define It(γ, ω) =

I[γ, St(ω)]. Then It(γ) = 1 if the return of asset γ is observable by the econometrician at date t, and

0 otherwise (Connor and Korajczyk (1987)). To ease exposition and to keep the factor structure linear,

we assume a missing-at-random design (Rubin (1976), Heckman (1979)), that is, independence between

unobservability and returns generation.

Assumption SC.1 The random variables It(γ), γ ∈ [0, 1], are independent of εt(γ), γ ∈ [0, 1], and ft.

Another design would require an explicit modeling of the link between the unobservability mechanism and

the continuum of assets; this would yield a nonlinear factor structure.

Assets are randomly drawn from the population according to a probability distribution G on [0, 1]. We

use a single distribution G in order to avoid the notational burden when working with different distributions

on different subintervals of [0, 1].
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Assumption SC.2 The random variables γi, i = 1, ..., n, are i.i.d. indices, independent of εt(γ), It(γ),

γ ∈ [0, 1] and ft, each with continuous distribution G with support [0, 1].

For any n, T ∈ N, the excess returns are Ri,t = Rt(γi) and the observability indicators are Ii,t = It(γi),

for i = 1, ..., n, and t = 1, ..., T . The excess return Ri,t is observed if and only if Ii,t = 1. Similarly, let

βi = β(γi) = (ai, b
′
i)
′ be the characteristics, εi,t = εt(γi) the error terms and σij,t = E[εi,tεj,t|xt, γi, γj ]

the conditional variances and covariances of the assets in the sample, where xt = {xt, xt−1, ...}. By random

sampling, we get a random coefficient panel model (e.g. Wooldridge (2002)). The characteristic βi of asset i

is random, and potentially correlated with the error terms εi,t and the observability indicators Ii,t, as well as

the conditional variances σii,t, through the index γi. If the ais and bis are treated as deterministic, and not as

realizations of random variables, invoking cross-sectional LLNs and CLTs as in some parts of the proofs has

no sense. Random elements (β′i, σii,t, εi,t, Ii,t)
′
, i = 1, ..., n, are exchangeable (Andrews (2005)). Hence,

assets randomly drawn from the population have ex-ante the same features. However, given a specific

realization of the indices in the sample, assets have ex-post heterogeneous features.

2.3 Asymptotic properties of risk premium estimation

We consider a two-pass approach (Fama and MacBeth (1973), Black, Jensen and Scholes (1972)) building

on Equations (1) and (3).

First Pass: The first pass consists in computing time-series OLS estimators

β̂i = (âi, b̂
′
i)
′ = Q̂−1

x,i

1

Ti

∑

t

Ii,txtRi,t, for i = 1, ..., n, where Q̂x,i =
1

Ti

∑

t

Ii,txtx
′
t and Ti =

∑

t

Ii,t. In

available panels the random sample size Ti for asset i can be small, and the inversion of matrix Q̂x,i can be

numerically unstable. This can yield unreliable estimates of βi. To address this, we introduce a trimming de-

vice: 1
χ
i = 1

{
CN

(
Q̂x,i

)
≤ χ1,T , τi,T ≤ χ2,T

}
, where CN

(
Q̂x,i

)
=

√
eigmax

(
Q̂x,i

)
/eigmin

(
Q̂x,i

)

denotes the condition number of matrix Q̂x,i, τi,T = T/Ti, and the two sequences χ1,T > 0 and χ2,T > 0

diverge asymptotically. The first trimming condition {CN
(
Q̂x,i

)
≤ χ1,T } keeps in the cross-section only

assets for which the time series regression is not too badly conditioned. A too large value of CN
(
Q̂x,i

)
=

1/CN
(
Q̂−1

x,i

)
indicates multicollinearity problems and ill-conditioning (Belsley, Kuh, and Welsch (2004),

Greene (2008)). The second trimming condition {τi,T ≤ χ2,T } keeps in the cross-section only assets for

which the time series is not too short.
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Second Pass: The second pass consists in computing a cross-sectional estimator of ν by regressing the

âi’s on the b̂i’s keeping the non-trimmed assets only. We use a WLS approach. The weights are esti-

mates of wi = v−1
i , where the vi are the asymptotic variances of the standardized errors

√
T
(
âi − b̂′iν

)

in the cross-sectional regression for large T . We have vi = τic
′
νQ

−1
x SiiQ

−1
x cν , where Qx = E

[
xtx

′
t

]
,

Sii = plim
T→∞

1

T

∑

t

σii,txtx
′
t = E

[
ε2i,txtx

′
t|γi

]
, τi = plim

T→∞

τi,T = E[Ii,t|γi]
−1, and cν = (1,−ν ′)′. We use

the estimates v̂i = τi,T c
′
ν̂1
Q̂−1

x,i ŜiiQ̂
−1
x,icν̂1

, where Ŝii =
1

Ti

∑

t

Ii,tε̂
2
i,txtx

′
t, ε̂i,t = Ri,t − β̂′ixt and cν̂1

=

(1,−ν̂ ′1)′. To estimate cν , we use the OLS estimator ν̂1 =

(∑

i

1
χ
i b̂ib̂

′
i

)−1∑

i

1
χ
i b̂iâi, i.e., a first-step

estimator with unit weights. The WLS estimator is:

ν̂ = Q̂−1
b

1

n

∑

i

ŵib̂iâi, (5)

where Q̂b =
1

n

∑

i

ŵib̂ib̂
′
i and ŵi = 1

χ
i v̂

−1
i . Weighting accounts for the statistical precision of the first-

pass estimates. Under conditional homoskedasticity σii,t = σii and a balanced panel τi,T = 1, we have

vi = c′νQ
−1
x cνσii. There, vi is directly proportional to σii, and we can simply pick the weights as ŵi = σ̂−1

ii ,

where σ̂ii =
1

T

∑

t

ε̂2i,t (Shanken (1992)). The final estimator of the risk premia is

λ̂ = ν̂ +
1

T

∑

t

ft. (6)

Starting from the asset pricing restriction (4), another estimator of λ is λ̄ = Q̂−1
b

1

n

∑

i

ŵib̂iR̄i, where

R̄i =
1

Ti

∑

t

Ii,tRi,t. This estimator is numerically equivalent to λ̂ in the balanced case, where Ii,t = 1 for

all i and t. In the general unbalanced case, it is equal to λ̄ = ν̂ + Q̂−1
b

1

n

∑

i

ŵib̂ib̂
′
if̄i,where f̄i =

1

Ti

∑

t

Ii,tft.

Estimator λ̄ is often studied by the literature (see, e.g., Shanken (1992), Kandel and Stambaugh (1995), Ja-

gannathan and Wang (1998)), and is also consistent. EstimatingE [ft] with a simple average of the observed

factor instead of a weighted average based on estimated betas simplifies the form of the asymptotic distri-

bution in the unbalanced case (see below and Section 2.4). This explains our preference for λ̂ over λ̄.

We derive the asymptotic properties under assumptions on the conditional distribution of the error terms.
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Assumption A.1 There exists a positive constant M such that for all n:

a) E
[
εi,t|{εj,t−1, γj , j = 1, ..., n}, xt

]
= 0, with εi,t−1 = {εi,t−1, εi,t−2, · · · } and xt = {xt, xt−1, · · · } ;

b) σii,t ≤M, i = 1, ..., n; c)E


 1

n

∑

i,j

E
[
|σij,t|2 |γi, γj

]1/2


 ≤M , where σij,t = E

[
εi,tεj,t|xt, γi, γj

]
.

Assumption A.1 allows for a martingale difference sequence for the error terms (White (2001)) including

potential conditional heteroskedasticity as well as weak cross-sectional dependence (Bai and Ng (2002)).

More general error structures are possible but complicate consistent estimation of the asymptotic variances

of the estimators (see Section 2.4).

Proposition 2 summarizes consistency of estimators ν̂ and λ̂ under the double asymptotics

n, T → ∞. For sequences xn and yn, we denote xn ≍ yn when xn/yn is bounded and bounded away

from zero from below as n→ ∞.

Proposition 2 Under Assumptions APR.1-APR.5, SC.1-SC.2, A.1 and C.1a), C.2-C.5, we get a) ‖ν̂ − ν‖ =

op (1) and b)

∥∥∥λ̂− λ
∥∥∥ = op (1), when n, T → ∞ such that n ≍ T γ̄ for γ̄ > 0.

The conditions in Proposition 2 allow for n large w.r.t. T (short panel asymptotics) when γ̄ > 1. Shanken

(1992) shows consistency of ν̂ and λ̂ for a fixed n and T → ∞. This consistency does not imply Proposition

2. Shanken (1992) (see also Litzenberger and Ramaswamy (1979)) further shows that we can estimate ν

consistently in the second pass with a modified cross-sectional estimator for a fixed T and n → ∞. Since

λ = ν+E [ft], consistent estimation of the risk premia themselves is impossible for a fixed T (see Shanken

(1992) for the same point).

Proposition 3 below gives the large-sample distributions under the double asymptotics

n, T → ∞. Let us define τij,T = T/Tij , where Tij =
∑

t

Iij,t and Iij,t = Ii,tIj,t for i, j = 1, ..., n. Let us

further define τij = plim
T→∞

τij,T = E[Iij,t|γi, γj ]
−1, Sij = plim

T→∞

1

T

∑

t

σij,txtx
′
t = E[εi,tεj,txtx

′
t|γi, γj ] and

Qb = plim
n→∞

1

n

∑

i

wibib
′
i = E[wibib

′
i]. The following assumption describes the CLTs underlying the proof

of the distributional properties. These CLTs hold under weak serial and cross-sectional dependencies such

as temporal mixing and block dependence (see Appendix 4).
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Assumption A.2 As n, T → ∞ such that n ≍ T γ̄ for γ̄ ∈ Γ1 ⊂ R
+, a)

1√
n

∑

i

wiτi (Yi,T ⊗ bi) ⇒

N (0, Sb) , where Yi,T =
1√
T

∑

t

Ii,txtεi,t and Sb = lim
n→∞

E


 1

n

∑

i,j

wiwj
τiτj
τij

Sij ⊗ bib
′
j




= plim
n→∞

1

n

∑

i,j

wiwj
τiτj
τij

Sij ⊗ bib
′
j ; b)

1√
T

∑

t

(ft − E [ft]) ⇒N (0,Σf ) ,where Σf = lim
T→∞

1

T

∑

t,s

Cov (ft, fs) .

Proposition 3 Under Assumptions APR.1-APR.5, SC.1-SC.2, A.1-A.2, and C.1a), C.2-C.5, we get:

a)
√
nT

(
ν̂ − ν − 1

T
B̂ν

)
⇒N (0,Σν) ,where Σν = Q−1

b lim
n→∞

E


 1

n

∑

i,j

wiwj
τiτj
τij

(c′νQ
−1
x SijQ

−1
x cν)bib

′
j


Q−1

b

and the bias term is B̂ν = Q̂−1
b

(
1

n

∑

i

ŵiτi,TE
′
2Q̂

−1
x,i ŜiiQ̂

−1
x,icν̂

)
, withE2 = (0 : IdK)′ and cν̂ = (1,−ν̂ ′)′;

b)
√
T
(
λ̂− λ

)
⇒ N (0,Σf ), when n, T → ∞ such that n ≍ T γ̄ for γ̄ ∈ Γ1 ∩ (0, 3) .

The asymptotic variance matrix in Proposition 3 can be rewritten as:

Σν = plim
n→∞

(
1

n
B′

nWnBn

)−1 1

n
B′

nWnVnWnBn

(
1

n
B′

nWnBn

)−1

where Bn = (b1, ..., bn)′, Wn = diag(w1, ..., wn) and Vn = [vij ]i,j=1,...,n with vij =
τiτj
τij

c′νQ
−1
x SijQ

−1
x cν ,

which gives vii = vi. In the homoskedastic and balanced case, we have c′νQ
−1
x cν = 1 + λ′V [ft]

−1λ and

Vn = (1 + λ′V [ft]
−1λ)Σε,n, where Σε,n = [σij ]i,j=1,...,n. Then, the asymptotic variance of ν̂ reduces

to plim
n→∞

(1 + λ′V [ft]
−1λ)

(
1

n
B′

nWnBn

)−1 1

n
B′

nWnΣε,nWnBn

(
1

n
B′

nWnBn

)−1

. In particular, in the

CAPM we have K = 1 and ν = 0, which implies that

√
λ2

V [ft]
is equal to the slope of the Capital Market

Line

√
E[ft]2

V [ft]
, i.e., the Sharpe Ratio of the market portfolio.

Proposition 3 shows that the estimator ν̂ has a fast convergence rate
√
nT and features an asymptotic

bias term. Both âi and b̂i in the definition of ν̂ contain an estimation error; for b̂i, this is the well-known

Error-In-Variable (EIV) problem. The EIV problem does not impede consistency since we let T grow to

infinity. However, it induces the bias term B̂ν/T which centers the asymptotic distribution of ν̂. We have

Γ1 = R
+ in Assumption A.2, when (εi,t) and (xt) are i.i.d. across time and errors (εi,t) feature a cross-

sectional block dependence structure (see Appendix 4). Then, the upper bound on the relative expansion
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rates of n and T is n = o(T 3). The control of first-pass estimation errors uniformly across assets requires

that the cross-section dimension n should not be too large w.r.t. the time series dimension T .

If we knew the true factor mean, for example E[ft] = 0, and did not need to estimate it, the estimator

ν̂ + E[ft] of the risk premia would have the same fast rate
√
nT as the estimator of ν, and would inherit

its asymptotic distribution. Since we do not know the true factor mean, the asymptotic distribution of λ̂ is

driven only by the variability of the factor since the convergence rate
√
T of the sample average

1

T

∑

t

ft

dominates the convergence rate
√
nT of ν̂. This result is an oracle property for λ̂, namely that its asymptotic

distribution is the same irrespective of the knowledge of ν. This property is in sharp difference with the

single asymptotics with a fixed n and T → ∞. In the balanced case and with homoskedastic errors, Theo-

rem 1 of Shanken (1992) shows that the rate of convergence of λ̂ is
√
T and that its asymptotic variance is

Σλ,n = Σf + (1 + λ′V [ft]
−1λ)

(
1

n
B′

nWnBn

)−1 1

n2
B′

nWnΣε,nWnBn

(
1

n
B′

nWnBn

)−1

, for fixed n and

T → ∞. The two components in Σλ,n come from estimation of E[ft] and ν, respectively. In the het-

eroskedastic setting with fixed n, a slight extension of Theorem 1 in Jagannathan and Wang (1998), or Theo-

rem 3.2 in Jagannathan, Skoulakis, and Wang (2009), to the unbalanced case yields

Σλ,n = Σf +

(
1

n
B′

nWnBn

)−1 1

n2
B′

nWnVnWnBn

(
1

n
B′

nWnBn

)−1

. Letting n → ∞ gives Σf under

weak cross-sectional dependence. Thus, exploiting the full cross-section of assets improves efficiency

asymptotically, and the positive definite matrix Σλ,n − Σf corresponds to the efficiency gain. Using a

large number of assets instead of a small number of portfolios does help to eliminate the EIV contribution.

Proposition 3 suggests exploiting the analytical bias correction B̂ν/T and using ν̂B = ν̂ − 1

T
B̂ν instead

of ν̂. Furthermore, λ̂B = ν̂B +
1

T

∑

t

ft delivers a bias-free estimator of λ at order 1/T , which shares the

same root-T asymptotic distribution as λ̂.

Finally, we can relate the results of Proposition 3 to bias-corrected estimation accounting for the well-

known incidental parameter problem of the panel literature (Neyman and Scott (1948), see Lancaster (2000)

for a review). Model (1) under restriction (3) can be written as Ri,t = b′i(ft + ν) + εi,t. In the likelihood

setting of Hahn and Newey (2004) (see also Hahn and Kuersteiner (2002)), the bi correspond to the indi-

vidual effects and ν to the common parameter of interest. Available results tell us: (i) the estimator of ν is

inconsistent if n goes to infinity while T is held fixed; (ii) the estimator of ν is asymptotically biased even

if T grows at the same rate as n; (iii) an analytical bias correction may yield an estimator of ν that is root-

13



(nT ) asymptotically normal and centered at the truth if T grows faster than n1/3. The two-pass estimators

ν̂ and ν̂B exhibits the properties (i)-(iii) as expected by analogy with unbiased estimation in large panels.

This clear link with the incidental parameter literature highlights another advantage of working with ν in

the second pass regression.

2.4 Confidence intervals

We can use Proposition 3 to build confidence intervals by means of consistent estimation of the asymptotic

variances. We can check with these intervals whether the risk of a given factor fk,t is not remunerated, i.e.,

λk = 0, or the restriction νk = 0 holds when the factor is traded. We estimate Σf by a standard HAC

estimator Σ̂f such as in Newey and West (1994) or Andrews and Monahan (1992). Hence, the construction

of confidence intervals with valid asymptotic coverage for components of λ̂ is straightforward. On the

contrary, getting a HAC estimator for Σ̄f appearing in the asymptotic distribution of λ̄ is not obvious in the

unbalanced case.

The construction of confidence intervals for the components of ν̂ is more difficult. Indeed, Σν involves

a limiting double sum over Sij scaled by n and not n2. A naive approach consists in replacing Sij by

any consistent estimator such as Ŝij =
1

Tij

∑

t

Iij,tε̂i,tε̂j,txtx
′
t, but this does not work here. To handle this,

we rely on recent proposals in the statistical literature on consistent estimation of large-dimensional sparse

covariance matrices by thresholding (Bickel and Levina (2008), El Karoui (2008)). Fan, Liao, and Mincheva

(2011) have recently focused on the estimation of E[ǫ′tǫt] in large balanced panel.

The idea is to assume sparse contributions of the Sij’s to the double sum. Then we only have to account

for sufficiently large contributions in the estimation, i.e., contributions larger than a threshold vanishing

asymptotically. Thresholding permits an estimation invariant to asset permutations; this choice of estimator

is motivated by the absence of any natural cross-sectional ordering among the matrices Sij . In the following

assumption we use the notion of sparsity suggested by Bickel and Levina (2008) adapted to our framework

with random coefficients.

Assumption A.3 There exist constants q, δ ∈ [0, 1) such that max
i

∑

j

‖Sij‖q = Op

(
nδ
)

.

Assumption A.3 tells us that most cross-asset contributions ‖Sij‖ can be neglected. As sparsity increases,
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we can choose coefficients q and δ closer to zero. Assumption A.3 does not impose sparsity of the covariance

matrix of the returns themselves. Assumption A.1 c) is also a sparsity condition, which ensures that the limit

matrix Σν is well-defined when combined with Assumption C.3. Both sparsity assumptions are satisfied

under weak cross-sectional dependence between the error terms, for instance, under a block dependence

structure (see Appendix 4).

As in Bickel and Levina (2008), let us introduce the thresholded estimator S̃ij = Ŝij1

{∥∥∥Ŝij

∥∥∥ ≥ κ
}

of

Sij , which we refer to as Ŝij thresholded at κ = κn,T . We can derive an asymptotically valid confidence

interval for the components of ν̂ from the next proposition giving a feasible asymptotic normality result.

Proposition 4 Under Assumptions APR.1-APR.5, SC.1-SC.2, A.1-A.3, C.1-C.5, we have

Σ̃−1/2
ν

√
nT

(
ν̂ − 1

T
B̂ν − ν

)
⇒ N (0, IdK) where Σ̃ν = Q̂−1

b


 1

n

∑

i,j

ŵiŵj
τi,T τj,T
τij,T

(c′ν̂Q̂
−1
x S̃ijQ̂

−1
x cν̂)b̂ib̂

′
j


 Q̂−1

b ,

when n, T → ∞ such that n ≍ T γ̄ for γ̄ ∈ Γ1 ∩
(

0,min

{
1 + η, η

1 − q

2δ

})
, and κ = M

√
log n

T η
for a

constant M and η ∈ (0, 1] as in Assumption C.1.

Constant η ∈ (0, 1] is defined in Assumption C.1 and is related to the time series dependence of pro-

cesses (εi,t) and (xt). We have η = 1, when (εi,t) and (xt) are serially i.i.d. as in Appendix 4 and Bickel

and Levina (2008). The matrix made of thresholded blocks S̃ij is not guaranteed to be semi definite positive

(sdp). However we expect that the double summation on i and j makes Σ̃ν sdp in empirical applications. In

case it is not, El Karoui (2008) discusses a few solutions based on shrinkage.

2.5 Tests of asset pricing restrictions

The null hypothesis underlying the asset pricing restriction (3) is

H0 : there exists ν ∈ R
K such that a(γ) = b(γ)′ν, for almost all γ ∈ [0, 1].

Under H0, we have EG

[
(ai − b′iν)

2
]

= 0. Since ν is estimated via the WLS cross-sectional regression

of the estimates âi on the estimates b̂i, we suggest a test based on the weighted sum of squared residuals

SSR of the cross-sectional regression. The weigthed SSR is Q̂e =
1

n

∑

i

ŵiê
2
i , with êi = c′ν̂ β̂i, which is an

empirical counterpart of EG

[
wi (ai − b′iν)

2
]
.
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Let us define Sii,T =
1

T

∑

t

Ii,tσii,txtx
′
t, and introduce the commutation matrixWm,n of ordermn×mn

such that Wm,nvec [A] = vec [A′] for any matrix A ∈ R
m×n, where the vector operator vec [·] stacks the

elements of an m×n matrix as a mn× 1 vector. If m = n, we write Wn instead Wn,n. For two (K + 1)×
(K + 1) matrices A and B, equality W(K+1) (A⊗B) = (B ⊗A)W(K+1) also holds (see Chapter 3 of

Magnus and Neudecker (2007) for other properties).

Assumption A.4 For n, T → ∞ such that n ≍ T γ̄ for γ̄ ∈ Γ2 ⊂ Γ1, we have

1√
n

∑

i

wiτ
2
i (Yi,T ⊗ Yi,T − vec [Sii,T ]) ⇒ N (0,Ω), where the asymptotic variance matrix is:

Ω = lim
n→∞

E


 1

n

∑

i,j

wiwj

τ2
i τ

2
j

τ2
ij

[
Sij ⊗ Sij + (Sij ⊗ Sij)W(K+1)

]



= plim
n→∞

1

n

∑

i,j

wiwj

τ2
i τ

2
j

τ2
ij

[
Sij ⊗ Sij + (Sij ⊗ Sij)W(K+1)

]
.

Assumption A.4 is a high-level CLT condition. This assumption can be proved under primitive conditions

on the time series and cross-sectional dependence. For instance, we prove in Appendix 4 that Assumption

A.4 holds under a cross-sectional block dependence structure for the errors. Intuitively, the expression of the

variance-covariance matrix Ω is related to the result that, for random (K + 1) × 1 vectors Y1 and Y2 which

are jointly normal with covariance matrix S, we have Cov (Y1 ⊗ Y1, Y2 ⊗ Y2) = S⊗S+(S ⊗ S)W(K+1).

Let us now introduce the following statistic ξ̂nT = T
√
n

(
Q̂e −

1

T
B̂ξ

)
, where the recentering term

simplifies to B̂ξ = 1 thanks to the weighting scheme. Under the null hypothesis H0, we prove that

ξ̂nT =
(
vec

[
Q̂−1

x cν̂c
′
ν̂Q̂

−1
x

])′ 1√
n

∑

i

wiτ
2
i (YiT ⊗ Yi,T − vec [Sii,T ]) + op (1), which implies

ξ̂nT ⇒ N (0,Σξ), where Σξ = 2 lim
n→∞

E


 1

n

∑

i,j

wiwjv
2
ij


 = 2 plim

n→∞

1

n

∑

i,j

wiwjv
2
ij as n, T → ∞ (see

Appendix A.2.5). Then a feasible testing procedure exploits the consistent estimator Σ̃ξ = 2
1

n

∑

i,j

ŵiŵj ṽ
2
ij

of the asymptotic variance Σξ, where ṽij =
τi,T τj,T
τij,T

c′ν̂Q̂
−1
x S̃ijQ̂

−1
x cν̂ .

Proposition 5 Under H0, and Assumptions APR.1-APR.5, SC.1-SC.2, A.1-A.4 and C.1-C.5, we have

Σ̃
−1/2
ξ ξ̂nT ⇒ N (0, 1) , as n, T → ∞ such that n ≍ T γ̄ for γ̄ ∈ Γ2 ∩

(
0,min

{
2η, η

1 − q

2δ

})
.
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In the homoskedastic case, the asymptotic variance of ξ̂nT reduces to Σξ = 2 plim
n→∞

1

n

∑

i,j

τiτj
τ2
ij

σ2
ij

σiiσjj
.

For fixed n, we can rely on the test statistic TQ̂e, which is asymptotically distributed as
1

n

∑

j

eigjχ
2
j

for j = 1, . . . , (n−K), where the χ2
j are i.i.d. chi-square variables with 1 degree of freedom, and the

coefficients eigj are the non-zero eigenvalues of matrix V
1/2
n (Wn −WnBn(B′

nWnBn)−1B′
nWn)V

1/2
n (see

Kan et al. (2009)). By letting n grow, the sum of chi-square variables converges to a Gaussian variable after

recentering and rescaling, which yields heuristically the result of Proposition 5.

The alternative hypothesis is

H1 : inf
ν∈RK

EG

[(
ai − b′iν

)2]
> 0.

Let us define the pseudo-true value ν∞ = arg inf
ν∈RK

Qw
∞(ν), where Qw

∞(ν) = EG

[
wi

(
ai − b′iν

)2]
(White

(1982), Gourieroux, Monfort and Trognon (1984) ) and population errors ei = ai − b′iν∞ = c′ν∞βi,

i = 1, ..., n, for all n. In the next proposition, we prove consistency of the test, namely that the statistic

ξ̂nT diverges to +∞ under the alternative hypothesis H1 for large n and T . We also give the asymptotic

distribution of estimators ν̂ and λ̂ under H1.

Proposition 6 Under H1 and Assumptions APR.1-APR.5, SC.1-SC.2, A.1-A.4 and C.1-C.5, we have

ξ̂nT
p→ +∞, and

√
n (ν̂ − ν∞) ⇒ N (0,Σν∞), where Σν∞ = Q−1

b EG[w2
i e

2
i bib

′
i]Q

−1
b and

√
T
(
λ̂− λ∞

)
⇒ N (0,Σf ), and λ∞ = ν∞ + E [ft], as n, T → ∞ such that n ≍ T γ̄

for γ̄ ∈ Γ2 ∩
(

1,min

{
2η, η

1 − q

2δ

})
.

Under the alternative hypothesis H1, the rate of convergence of ν̂ is slower than under H0, while the rate

of convergence of λ̂ remains the same. The asymptotic distribution of ν̂ is the same as the one got from a

cross-sectional regression of ai on bi. Pre-estimation of bi has no impact on the asymptotic distribution of ν̂

since the bias induced by the EIV problem is of the order O(1/T ), and
√
n/T = o(1). The lower bound 1

on rate γ̄ in Proposition 6 ensures that cross-sectional estimation of ν has asymptotically no impact on the

estimation of λ.

To study the local asymptotic power, we can adopt the following local alternative:

H1,nT : inf
ν∈RK

Qw
∞(ν) =

ψ√
nT

> 0, for a constant ψ > 0. Then we can show (see the supplementary
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materials) that ξ̂nT ⇒ N(ψ,Σξ), and the test is locally asymptotically powerful. Pesaran and Yamagata

(2008) consider a similar local analysis for a test of slope homogeneity in large panels.

Finally, we can derive a test for the null hypothesis when the factors come from tradable assets, i.e., are

portfolio excess returns:

H0 : a(γ) = 0 for almost all γ ∈ [0, 1] ⇔ EG[a2
i ] = 0,

against the alternative hypothesis

H1 : EG

[
a2

i

]
> 0.

We only have to substitute âi for êi, and E1 = (1, 0′)′ for cν̂ in Proposition 5.

3 Conditional factor model

In this section we extend the setting of Section 2 to conditional specifications in order to model possibly

time-varying risk premia (see Connor and Korajczyk (1989) for an intertemporal competitive equilibrium

version of the APT yielding time-varying risk premia and Ludvigson (2011) for a discussion within scaled

consumption-based models). We do not follow rolling short-window regression approaches to account for

time-variation (Fama and French (1997), Lewellen and Nagel (2006)) since we favor a structural economet-

ric framework to conduct formal inference in large cross-sectional equity datasets. A five-year window of

monthly data yields a very short time-series panel for which asymptotics with fixed (small) T and large n

are better suited, but keeping T fixed impedes consistent estimation of the risk premia as already mentioned

in the previous section.

3.1 Excess return generation and asset pricing restrictions

The following assumptions are the analogues of Assumptions APR.1 and APR.2, and Proposition 7 is the

analogue of Proposition 1. Its proof derives easily from the steps in A.2.1 for the unconditional case.

Assumption APR.6 The excess returns Rt(γ) of asset γ ∈ [0, 1] at date t = 1, 2, ... satisfy the conditional

linear factor model:

Rt(γ) = at(γ) + bt(γ)
′

ft + εt(γ), (7)
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where at(γ) and bt(γ) are Ft−1-measurable scalar and vector functions defined on [0, 1].

Assumption APR.7 The matrix

ˆ

bt(γ)bt(γ)
′dγ is positive definite, P -a.s., for any date t = 1, 2, ....

Proposition 7 Under Assumptions APR.3-APR.7, there exists a unique vector νt ∈ R
K at date t = 1, 2, ...

such that νt is Ft−1-measurable and:

at(γ) = bt(γ)
′νt, (8)

for almost all γ ∈ [0, 1].

The asset pricing restriction in Proposition 7 can be rewritten as

E [Rt(γ)|Ft−1] = bt(γ)
′λt, (9)

for almost all γ ∈ [0, 1], where λt = νt + E [ft|Ft−1] is the vector of the conditional risk premia.

The sampling scheme is the same as in Section 2.2, and we use the same type of notations, for example

bi,t = bt(γi). To have a workable version of (7), we further specify the conditioning information and how

coefficients depend on it. The conditioning information is generated by lagged instruments Zt−1 ∈ R
p and

Zi,t−1 ∈ R
q. To end up with a linear regression model we specify that the vector of factor sensitivities

bi,t is a linear function of lagged instruments Zt−1 (Shanken (1990), Ferson and Harvey (1991)) and Zi,t−1

(Avramov and Chordia (2006)): bi,t = BiZt−1 + CiZi,t−1, where Bi ∈ R
K×p and Ci ∈ R

K×q, for

any i, t. The lagged instruments Zt−1 are common to all stocks. They may include the constant and past

observations of the factors and some additional variables such as macroeconomic variables. The lagged

instruments Zi,t−1 are specific to stock i. They may include past observations of firm characteristics and

stock returns. The lagged instruments may include powers to account for possible nonlinearities. We also

specify that the vector of risk premia is a linear function of lagged instruments Zt−1 (Cochrane (1996),

Jagannathan and Wang (1996)): λt = ΛZt−1, where Λ ∈ R
K×p, for any t. Furthermore, we assume that

the conditional expectation of Zt given the past Zt−1 and Zi,t−1, i = 1, ..., n, depends on Zt−1 only and is

linear, as, for instance, in a Vector Autoregressive (VAR) model of order 1. Since ft is a subvector of Zt,

then E
[
ft|
{
Zi,t−1 : i = 1, ..., n

}
, Zt−1

]
= FZt−1, where F ∈ R

K×p, for any t. Under these functional

19



specifications the asset pricing restriction linking the expected excess returns and the factor sensitivities

E
[
Ri,t|

{
Zi,t−1 : i = 1, ..., n

}
, Zt−1

]
= b′i,tλt, (10)

implies that the intercept ai,t is a quadratic form in lagged instruments Zt−1 and Zi,t−1, that is,

ai,t = Z ′
t−1B

′
i (Λ − F )Zt−1 + Z ′

i,t−1C
′
i (Λ − F )Zt−1. This shows that assuming a priori linearity of ai,t

in the lagged instruments Zt−1 and Zi,t−1 is in general not compatible with linearity of bi,t and E [ft|Zt−1].

The conditional factor model (7) then becomes

Ri,t = Z ′
t−1B

′
i (Λ − F )Zt−1 + Z ′

i,t−1C
′
i (Λ − F )Zt−1 + Z ′

t−1B
′
ift + Z ′

i,t−1C
′
ift + εi,t, (11)

which is nonlinear in the parameters Λ, F , Bi, and Ci. In order to implement the two-pass methodology in

a conditional context it is useful to rewrite model (11) as a model that is linear in transformed parameters

and new regressors. The regressors include x2,i,t =
(
f ′t ⊗ Z ′

t−1, f
′
t ⊗ Z ′

i,t−1

)′
∈ R

d2 with d2 = K(p+ q).

The first components with common instruments take the interpretation of scaled factors, while the second

components do not since they depend on i. The regressors also include the predetermined variables x1,i,t =
(
vech [Xt]

′ , vec [Xi,t]
′
)′ ∈ R

d1 with d1 = p(p + 1)/2 + pq, where the symmetric matrix Xt = [Xt,k,l] ∈
R

p×p is such that Xt,k,l = Z2
t−1,k, if k = l, and Xt,k,l = 2Zt−1,kZt−1,l, otherwise, k, l = 1, . . . , p, and the

matrix Xi,t = Zt−1Z
′
i,t−1 ∈ R

p×q. The vector-half operator vech [·] stacks the lower elements of a p × p

matrix as a p (p+ 1) /2 × 1 vector (see Chapter 2 in Magnus and Neudecker (2007) for properties of this

matrix tool). To parallel the analysis of the unconditional case, we can express model (11) as in (2) through

appropriate redefinitions of the regressors and loadings (see Appendix 3):

Ri,t = β′ixi,t + εi,t, (12)

where xi,t =
(
x′1,i,t, x

′
2,i,t

)′
has dimension d = d1 + d2, and βi =

(
β′1,i, β

′
2,i

)′
is such that

β1,i = Ψβ2,i, β2,i =
(
vec

[
B′

i

]′
, vec

[
C ′

i

]′)′
, (13)

Ψ =




1
2D

+
p [(Λ − F )′ ⊗ Ip + Ip ⊗ (Λ − F )′Wp,K ] 0

0 (Λ − F )′ ⊗ Iq


 .

The matrix D+
p is the p(p + 1)/2 × p2 Moore-Penrose inverse of the duplication matrix Dp, such that

vech [A] = D+
p vec [A] for any A ∈ R

p×p (see Chapter 3 in Magnus and Neudecker (2007)). When Zt = 1

and Zi,t = 0, we have p = p(p+ 1)/2 = 1 and q = 0, and model (12) reduces to model (2).
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In (13) the d1 × 1 vector β1,i is a linear transformation of the d2 × 1 vector β2,i. This clarifies that

the asset pricing restriction (10) implies a constraint on the coefficient distributions via their supports. The

coefficients of this linear transformation depend on matrix Λ−F . For the purpose of estimating the loading

coefficients of the risk premia in matrix Λ, the parameter restrictions can be written as (see Appendix 3):

β1,i = β3,iν, ν = vec
[
Λ′ − F ′

]
, β3,i =

([
D+

p

(
B′

i ⊗ Ip
)]′
,
[
Wp,q

(
C ′

i ⊗ Ip
)]′)′

. (14)

Furthermore, we can relate the d1 ×Kp matrix β3,i to the vector β2,i (see Appendix 3):

vec
[
β′3,i

]
= Jaβ2,i, (15)

where the d1pK × d2 block-diagonal matrix of constants Ja is given by Ja =


 J11 0

0 J22




with diagonal blocks J11 = Wp(p+1)/2,pK

(
IK ⊗

[(
Ip ⊗D+

p

)
(Wp ⊗ Ip) (Ip ⊗ vec [Ip])

])
and

J22 = Wpq,pK (IK ⊗ [(Ip ⊗Wp,q) (Wp,q ⊗ Ip) (Iq ⊗ vec [Ip])]). The link (15) is instrumental in deriving

the asymptotic results. The parameters β1,i and β2,i correspond to the parameters ai and bi of the uncondi-

tional case, where the matrix Ja is equal to IK . Equations (14) and (15) in the conditional setting are the

counterparts of restriction (3) in the static setting.

3.2 Asymptotic properties of time-varying risk premium estimation

We consider a two-pass approach building on Equations (12) and (14).

First Pass: The first pass consists in computing time-series OLS estimators

β̂i = (β̂′1,i, β̂
′
2,i)

′ = Q̂−1
x,i

1

Ti

∑

t

Ii,txi,tRi,t, for i = 1, ..., n, where Q̂x,i =
1

Ti

∑

t

Ii,txi,tx
′
i,t. We use the

same trimming device as in Section 2.

Second Pass: The second pass consists in computing a cross-sectional estimator of ν by regressing the

β̂1,i on the β̂3,i keeping non-trimmed assets only. We use a WLS approach. The weights are estimates of

wi = (diag [vi])
−1

, where the vi are the asymptotic variances of the standardized errors
√
T
(
β̂1,i − β̂3,iν

)

in the cross-sectional regression for large T . We have vi = τiC
′
νQ

−1
x,iSiiQ

−1
x,iCν , whereQx,i = E

[
xi,tx

′
i,t|γi

]
,

Sii = plim
T→∞

1

T

∑

t

σii,txi,tx
′
i,t = E

[
ε2i,txi,tx

′
i,t|γi

]
, σii,t = E

[
ε2i,t|xi,t, γi

]
, andCν =

(
E′

1 −
(
Id1

⊗ ν ′
)
JaE

′
2

)′
,

with E1 = (Id1
, 0d1×d2

)′, E2 = (0d2×d1
, Id2

)′. We use the estimates v̂i = τi,TC
′
ν̂1
Q̂−1

x,i ŜiiQ̂
−1
x,iCν̂1

, where
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Ŝii =
1

Ti

∑

t

Ii,tε̂
2
i,txi,tx

′
i,t, ε̂i,t = Ri,t − β̂′ixi,t and Cν̂1

=
(
E′

1 −
(
Id1

⊗ ν̂ ′1
)
JaE

′
2

)′
. To estimate Cν , we

use the OLS estimator ν̂1 =

(∑

i

1
χ
i β̂

′
3,iβ̂3,i

)−1∑

i

1
χ
i β̂

′
3,iβ̂1,i, i.e., a first-step estimator with unit weights.

The WLS estimator is:

ν̂ = Q̂−1
β3

1

n

∑

i

β̂′3,iŵiβ̂1,i, (16)

where Q̂β3
=

1

n

∑

i

β̂′3,iŵiβ̂3,i and ŵi = 1
χ
i (diag [v̂i])

−1
. The final estimator of the risk premia is λ̂t =

Λ̂Zt−1 where we deduce Λ̂ from the relationship vec
[
Λ̂′
]

= ν̂ + vec
[
F̂ ′
]

with the estimator F̂ obtained

by a SUR regression of factors ft on lagged instruments Zt−1: F̂ =
∑

t

ftZ
′
t−1

(∑

t

Zt−1Z
′
t−1

)−1

.

The next assumption is similar to Assumption A.1.

Assumption B.1 There exists a positive constant M such that for all n, T :

a) E
[
εi,t|{εj,t−1, Zj,t−1, j = 1, ..., n}, Zt

]
= 0, with Zt = {Zt, Zt−1, · · · } and Zj,t = {Zj,t, Zj,t−1, · · · }

b) σii,t ≤M, i = 1, ..., n; c)E


 1

n

∑

i,j

E
[
|σij,t|2 |γi, γj

]1/2


 ≤M , where σij,t = E

[
εi,tεj,t|xi,t, xj,t, γi, γj

]
.

Proposition 8 summarizes consistency of estimators ν̂ and Λ̂ under the double asymptotics

n, T → ∞. It extends Proposition 2 to the conditional case.

Proposition 8 Under Assumptions APR.3-APR.7, SC.1-SC.2, B.1 and C.1a), C.2-C.6, we get

a) ‖ν̂ − ν‖ = op (1), b)

∥∥∥Λ̂ − Λ
∥∥∥ = op (1), when n, T → ∞ such that n ≍ T γ̄ for γ̄ > 0.

Part b) implies sup
t

∥∥∥λ̂t − λt

∥∥∥ = op (1) under for instance a boundeness assumption on process Zt.

Proposition 9 below gives the large-sample distributions under the double asymptotics

n, T → ∞. It extends Proposition 3 to the conditional case through adequate use of selection matri-

ces. The following assumption is similar to Assumption A.2. We make use of Qβ3
= EG

[
β′3,iwiβ3,i

]
,

Qz = E
[
ZtZ

′
t

]
, Sij = plim

T→∞

1

T

∑

t

σij,txi,tx
′
j,t = E[εi,tεj,txi,tx

′
j,t|γi, γj ] and SQ,ij = Q−1

x,iSijQ
−1
x,j , other-

wise, we keep the same notations as in Section 2.
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Assumption B.2 As n, T → ∞ such that n ≍ T γ̄ for γ̄ ∈ Γ1 ⊂ R
+, a)

1√
n

∑

i

τi

[
(Q−1

x,iYi,T ) ⊗ v3,i

]
⇒

N (0, Sv3
) ,with Yi,T =

1√
T

∑

t

Ii,txi,tεi,t, v3,i = vec[β′3,iwi] and Sv3
= lim

n→∞
E


 1

n

∑

i,j

τiτj
τij

SQ,ij ⊗ v3,iv
′
3,j




= plim
n→∞

1

n

∑

i,j

τiτj
τij

[SQ,ij ⊗ v3,iv
′
3,j ]; b)

1√
T

∑

t

ut ⊗ Zt−1 ⇒ N (0,Σu) ,where Σu = E
[
utu

′
t ⊗ Zt−1Z

′
t−1

]

and ut = ft − FZt−1.

Proposition 9 Under Assumptions APR.3-APR.7,SC.1-SC.2,B.1-B.2 and C.1a), C.2-C.6, we have

a)
√
nT

(
ν̂ − ν − 1

T
B̂ν

)
⇒ N (0,Σν) where B̂ν = Q̂−1

β3
Jb

1

n

∑

i

τi,T vec
[
E′

2Q̂
−1
x,i ŜiiQ̂

−1
x,iCν̂ŵi

]
and

Σν =
(
vec

[
C ′

ν

]
⊗Q−1

β3

)′
Sv3

(
vec

[
C ′

ν

]
⊗Q−1

β3

)
, with Jb =

(
vec [Id1

]′ ⊗ IKp

)
(Id1

⊗ Ja) and

Cν̂ =
(
E′

1 −
(
Id1

⊗ ν̂ ′
)
JaE

′
2

)′
; b)

√
Tvec

[
Λ̂′ − Λ′

]
⇒N (0,ΣΛ) where ΣΛ =

(
IK ⊗Q−1

z

)
Σu

(
IK ⊗Q−1

z

)
,

when n, T → ∞ such that n ≍ T γ for γ ∈ Γ1 ∩ (0, 3).

Since λt = ΛZt−1 =
(
Z ′

t−1 ⊗ IK
)
Wp,Kvec

[
Λ′
]
, part b) implies conditionally on Zt−1 that

√
T
(
λ̂t − λt

)
⇒ N

(
0,
(
Z ′

t−1 ⊗ IK
)
Wp,KΣΛWK,p (Zt−1 ⊗ IK)

)
.

We can use Proposition 9 to build confidence intervals. It suffices to replace the unknown quantities Qx,

Qz , Qβ3
, Σu and ν by their empirical counterparts. For matrix Sv3

we use the thresholded estimator S̃ij as

in Section 2.4. Then we can extend Proposition 4 to the conditional case under Assumptions B.1-B.2, A.3,

A.4 and C.1-C.6.

Since Equation (14) corresponds to the asset pricing restriction (3), the null hypothesis of correct speci-

fication of the conditional model is

H0 : there exists ν ∈ R
pK such that β1(γ) = β3(γ)ν, with vec

[
β3(γ)

′
]

= Jaβ2(γ),

for almost all γ ∈ [0, 1].

Under H0, we have EG

[
(β1,i − β3,iν)

′ (β1,i − β3,iν)
]

= 0. The alternative hypothesis is

H1 : inf
ν∈RdK

EG

[
(β1,i − β3,iν)

′ (β1,i − β3,iν)
]
> 0.

As in Section 2.5, we build the SSR Q̂e =
1

n

∑

i

ê′iŵiêi, with êi = β̂1,i − β̂3,iν̂ = C ′
ν̂ β̂i and

the statistic ξ̂nT = T
√
n

(
Q̂e −

1

T
B̂ξ

)
, where B̂ξ = d1.
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Assumption B.3 For n, T → ∞ such that n ≍ T γ̄ for γ̄ ∈ Γ2 ⊂ Γ1, we have

1√
n

∑

i

τ2
i

[(
Q−1

x,i ⊗Q−1
x,i

)
(Yi,T ⊗ Yi,T − vec [Sii,T ])

]
⊗ vec[wi] ⇒ N (0,Ω), where the asymptotic vari-

ance matrix is:

Ω = lim
n→∞

E


 1

n

∑

i,j

τ2
i τ

2
j

τ2
ij

[SQ,ij ⊗ SQ,ij + (SQ,ij ⊗ SQ,ij)Wd] ⊗
(
vec[wi]vec[wj ]

′
)



= plim
n→∞

1

n

∑

i,j

τ2
i τ

2
j

τ2
ij

[SQ,ij ⊗ SQ,ij + (SQ,ij ⊗ SQ,ij)Wd] ⊗
(
vec[wi]vec[wj ]

′
)
.

Proposition 10 Under H0 and Assumptions APR.3-APR.7, SC.1-SC.2, B.1-B.2, A.3, A.4 and C.1-C.6, we

have Σ̃
−1/2
ξ ξ̂nT ⇒ N (0, 1) ,where Σ̃ξ = 2

1

n

∑

i,j

τ2
i,T τ

2
j,T

τ2
ij,T

tr
[
ŵi

(
C ′

ν̂Q̂
−1
x,i S̃ijQ̂

−1
x,jCν̂

)
ŵj

(
C ′

ν̂Q̂
−1
x,jS̃jiQ̂

−1
x,iCν̂

)]

as n, T → ∞ such that n ≍ T γ for γ ∈ Γ2 ∩
(

0,min

{
2η, η

1 − q

2δ

})
.

Under H1, we have ξ̂
p→ +∞, as in Proposition 6.

As in Section 2.5, the null hypothesis when the factors are tradable assets becomes:

H0 : β1(γ) = 0 for almost all γ ∈ [0, 1],

against the alternative hypothesis

H1 : EG

[
β′1,iβ1,i

]
> 0.

We only have to substitute Q̂a =
1

n

∑

i

β̂′1,iŵiβ̂1,i for Q̂e, and E1 = (Id1
: 0)′ for Cν̂ . This gives an exten-

sion of Gibbons, Ross and Shanken (1989) to the conditional case and with double asymptotics. Implement-

ing the original Gibbons, Ross and Shanken (1989) test, which uses a weighting matrix corresponding to an

inverted estimated covariance matrix, becomes quickly problematic; each β1,i is of dimension d1 × 1, and

the inverted matrix is of dimension nd1×nd1. We expect to compensate the potential loss of power induced

by a diagonal weighting thanks to the large number nd1 of restrictions. Our preliminary unreported Monte

Carlo simulations show that the test exhibits good power properties for a couple of hundreds of assets.
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4 Empirical results

4.1 Asset pricing model and data description

Our baseline asset pricing model is a four-factor model with ft = (rm,t, rsmb,t, rhml,t, rmom,t)
′
where rm,t is

the month t excess return on CRSP NYSE/AMEX/Nasdaq value-weighted market portfolio over the risk free

rate (proxied by the monthly 30-day T-bill beginning-of-month yield), and rsmb,t, rhml,t and rmom,t are the

month t returns on zero-investment factor-mimicking portfolios for size, book-to-market, and momentum

(see Fama and French (1993), Jegadeesh and Titman (1993), Carhart (1997)). To account for time-varying

alphas, betas and risk premia, we use a specification based on two common variables and two firm-level

variables. We take the instruments Zt = (1, Z∗
t
′)′, where bivariate vector Z∗

t includes the term spread,

proxied by the difference between yields on 10-year Treasury and three-month T-bill, and the default spread,

proxied by the yield difference between Moody’s Baa-rated and Aaa-rated corporate bonds. We take Zi,t

as a bivariate vector made of the market capitalization and the book-to-market equity of firm i. We refer

to Avramov and Chordia (2006) for convincing theoretical and empirical arguments in favor of the chosen

conditional specification. The vector xi,t is of dimension d = 32. The firm characteristics are computed as

in the appendix of Fama and French (2008) from Compustat. We use monthly stock returns data provided by

CRSP and we exclude financial firms (Standard Industrial Classification Codes between 6000 and 6999) as

in Fama and French (2008). The dataset after matching CRSP and Compustat contents comprises n = 9, 936

stocks and covers the period from July 1964 to December 2009 with T = 546. For comparison purposes

with a standard methodology for small n, we consider the 25 and 100 Fama-French (FF) portfolios as base

assets. We have downloaded the time series of factors, portfolios and portfolio characteristics from the

website of Kenneth French.

4.2 Estimation results

We first present unconditional estimates before looking at the path of the time-varying estimates. We use

χ1,T = 15 and χ2,T = 546/12 for the unconditional estimation and χ1,T = 15 and χ2,T = 546/36 for the

conditional estimation. In the reported results for the four-factors model, we denote by nχ the dimension of

the cross-section after trimming. We use a data-driven threshold selected by cross-validation as in Bickel and
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Levina (2008). Table 1 gathers the estimated annual risk premia for the following unconditional models:

the four-factor model, the Fama-French model, and the CAPM. In Table 2, we display the estimates of

the components of ν. When n is large, we use bias-corrected estimates for λ and ν. When n is small,

we use asymptotics for fixed n and T → ∞. The estimated risk premia for the market factor are of

the same magnitude and all positive across the three universes of assets and the three models. The 95%

confidence intervals are larger by construction for fixed n, and they often contain the interval for large n.

For the four-factor model and the individual stocks the size factor is positively remunerated (2.91%) and it

is not significantly different from zero. The value factor commands a significant negative reward (-4.55%).

Phalippou (2007) obtained a similar result, indeed he got a growth premium when portofolios are built

on stocks with a high institutional ownership. The momentum factor is largely remunerated (7.34%) and

significantly different from zero. For the 25 and 100 FF portfolios we observe that the size factor is not

significantly positively remunerated while the value factor is significantly positively remunerated (4.81%

and 5.11%). The momentum factor bears a significant positive reward (34.03% and 17.29%). The large, but

imprecise, estimate for the momentum premium when n = 25 and n = 100 comes from the estimate for

νmom (25.40% and 8.66% ) that is much larger and less accurate than the estimates for νm, νsmb and νhml

(0.85%, -0.26%, 0.03%, and 0.55%, 0.01%, 0.33%). Moreover, while for portfolios the estimates of νm,

νsmb and νhml are statistically not significant, for individual stocks these estimates are statistically different

from zero. In particular, the estimate of νhml is large and negative, which explains the negative estimate on

the value premium displayed in Table 1.

As showed in Figure 1, a potential explanation of the discrepancies revealed in Tables 1 and 2 between

individual stocks and portfolios is the much larger heterogeneity of the factor loadings for the former. The

portfolio betas are all concentrated in the middle of the cross-sectional distribution obtained from the indi-

vidual stocks. Creating portfolios distorts information by shrinking the dispersion of betas. The estimation

results for the momentum factor exemplify the problems related to a small number of portfolios exhibiting

a tight factor structure (Lewellen, Nagel and Shanken (2010)). For λm, λsmb, and λhml, we obtain similar

inferential results when we consider the Fama-French model. Our point estimates for λm, λsmb and λhml,

for large n agree with Ang, Liu and Schwarz (2008). Our point estimates and confidence intervals for λm,

λsmb and λhml, agree with the results reported by Shanken and Zhou (2007) for the 25 portfolios.
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Figure 2 plots the estimated time-varying path of the four risk premia from the individual stocks. We

also plot the unconditional estimates and the average lambda over time. The discrepancy between the uncon-

ditional estimate and the average over time is explained by a well-known bias coming from market-timing

and volatility-timing (Jagannathan and Wang (1996), Lewellen and Nagel (2006), Boguth, Carlson, Fisher

and Simutin (2010)). The risk premia for the market, size and value factors feature a counter-cyclical pat-

tern. Indeed, these risk premia increase during economic contractions and decrease during economic booms.

Gomes, Kogan and Zhang (2003) and Zhang (2005) construct equilibrium models exhibiting a countercycli-

cal behavior in size and book-to-market effects. On the contrary, the risk premium for momentum factor

is pro-cyclical. Furthermore, conditional estimates of the value premium take stable and positive values.

They are not significantly different from zero during economic booms. The conditional estimates of the size

premium are most of the time slightly positive, and not significantly different from zero.

Figure 3 plots the estimated time-varying path of the four risk premia from the 25 portfolios. We also plot

the unconditional estimates and the average lambda over time. The discrepancy between the unconditional

estimate and the averages over time is also observed for n = 25. The conditional point estimates for

λmom,t are larger and more imprecise than the unconditional estimate in Table 1. Indeed, the pointwise

confidence intervals contain the confidence interval of the unconditional estimate for λmom. Finally, by

comparing Figures 2 and 3, we observe that the patterns of risk premia look similar except for the book-to-

market factor. Indeed, the risk premium for the value effect estimated from the 25 portfolios is pro-cyclical,

contradicting the counter-cyclical behavior predicted by finance theory. By comparing Figures 3 and 4, we

observe that increasing the number of portfolios to 100 does not help in reconciling the discrepancy.

4.3 Specification test results

As already mentioned Figure 1 shows that the 25 FF portfolios all have four-factor market and momentum

betas close to one and zero, respectively, so the model can be thought as a two-factor model consisting of

smb and hml for the purposes of explaining cross-sectional variation in expected returns. For the 100 FF

portfolios the dispersion around one and zero is slightly larger. As depicted in Figure 1 by Lewellen, Nagel

and Shanken (2010), this empirical concentration implies that it is easy to get artificially large estimates ρ̂2

of the cross-sectional R2 for three- and four-factor models. On the contrary, the observed heterogeneity in
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the betas coming from the individual stocks impedes this. This suggests that it is much less easy to find

factors that explain the cross-sectional variation of expected returns on individual stocks than on portfolios.

Reporting large ρ̂2, or small SSR Q̂e, when n is large, is much more impressive than when n is small.

Table 2 gathers specification test results for unconditional factor models. As already mentioned, when

n is large, we prefer working with test statistics based on the SSR Q̂e instead of ρ̂2 since the population R2

is not well-defined with tradable factors under the null hypothesis of well-specification (its denominator is

zero). For the individual stocks, we compute the test statistic Σ̃
−1/2
ξ ξ̂nT as well as its associated p-value. For

the 25 and 100 FF portfolios, we compute weighted test statistics (Gibbons, Ross and Shanken (1989)) as

well as their associated p-value. We do similarly for the test statistics relying on the alphas a. As expected

the rejection of the well specification is strong on the individual stocks. This suggests that the unconditional

models do not describe the behavior of individual stocks. For the 25 portfolios, the Gibbons-Ross-Shanken

test statistic rejects the well specification for the CAPM and the three-factor model. The four-factor model

is not rejected at 1% level, but it is rejected at 5% level.

4.4 Cost of equity

The results in Section 3 can be used for estimation and inference on the cost of equity in conditional factor

models. We can estimate the time varying cost of equity CEi,t = rf,t + b′i,tλt of firm i with ĈEi,t =

rf,t + b̂′i,tλ̂t, where rf,t is the risk-free rate. We have (see Appendix 3)

√
T
(
ĈEi,t − CEi,t

)
= ψ′

i,tE
′
2

√
T
(
β̂i − βi

)

+
(
Z ′

t−1 ⊗ b′i,t
)
Wp,K

√
Tvec

[
Λ̂′ − Λ′

]
+ op (1) , (17)

where ψi,t =
(
λ′t ⊗ Z ′

t−1, λ
′
t ⊗ Z ′

i,t−1

)′
. Standard results on OLS imply that estimator β̂i is asymptotically

normal,
√
T
(
β̂i − βi

)
⇒ N

(
0, τ2

i Q
−1
x,iSiiQ

−1
x,i

)
, and independent of estimator Λ̂. Then, from Proposition

7 we deduce that
√
T
(
ĈEi,t − CEi,t

)
⇒ N

(
0,ΣCEi,t

)
, conditionally on Zt−1, where

ΣCEi,t
= τ2

i ψ
′
i,tE

′
2Q

−1
x,iSiiQ

−1
x,iE2ψi,t +

(
Z ′

t−1 ⊗ b′i,t
)
Wp,KΣΛWK,p (Zt−1 ⊗ bi,t) .

Figure 5 plots the path of the estimated annualized costs of equity for Ford Motor, Disney, Motorola and

Sony. The cost of equity has risen tremendously during the recent subprime crisis.
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Figure 1: Distribution of the factor loadings
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The figure displays box-plots for the distribution of factor loadings β̂m, β̂smb, β̂hml and β̂mom. The factor

loadings are estimated by running the time-series OLS regression in equation (2) for n = 9, 936 from

1964/07 to 2009/12. Moreover, next to each box-plot we report the estimated factor loadings for the 25 and

100 Fama-French portfolios (circles and triangles, respectively).
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Appendix 1: Regularity conditions

In this Appendix, we list and comment the additional assumptions used to derive the large sample properties

of the estimators and test statistics. For unconditional models, we use Assumptions C.1-C.5 below with

xt = (1, f ′t)
′.

Assumption C.1 There exists constants η, η̄ ∈ (0, 1] and C1, C2, C3, C4 > 0 such that for all δ > 0 and

T ∈ N we have:

a) P

[∥∥∥∥∥
1

T

∑

t

(
xtx

′
t − E

[
xtx

′
t

])
∥∥∥∥∥ ≥ δ

]
≤ C1T exp

{
−C2δ

2T η
}

+ C3δ
−1 exp

{
−C4T

η̄
}
.

Furthermore, for all δ > 0, T ∈ N, and 1 ≤ k, l,m ≤ K + 1, the same upper bound holds for:

b) sup
γ∈[0,1]

P

[∥∥∥∥∥
1

T

∑

t

It(γ)
(
xtx

′
t − E

[
xtx

′
t

])
∥∥∥∥∥ ≥ δ

]
;

c) sup
γ∈[0,1]

P

[∥∥∥∥∥
1

T

∑

t

It(γ)xtεt(γ)

∥∥∥∥∥ ≥ δ

]
;

d) sup
γ,γ′∈[0,1]

P

[∥∥∥∥∥
1

T

∑

t

It(γ)It(γ
′)
(
εt(γ)εt(γ

′)xtx
′
t − E

[
εt(γ)εt(γ

′)xtx
′
t

])
∥∥∥∥∥ ≥ δ

]
;

e) sup
γ,γ′∈[0,1]

P

[∣∣∣∣∣
1

T

∑

t

It(γ)It(γ
′)xk,txl,txm,tεt(γ)

∣∣∣∣∣ ≥ δ

]
.

Assumption C.2 There exists c > 0 such that sup
γ∈[0,1]

E



∥∥∥∥∥

1

T

∑

t

It(γ)
(
xtx

′
t − E[xtx

′
t]
)
∥∥∥∥∥

4

 = O(T−c).

Assumption C.3 a) There exists a constantM such that ‖xt‖ ≤M , P -a.s.. Moreover, b) sup
γ∈[0,1]

‖β(γ)‖ <∞

and c) inf
γ∈[0,1]

E[It(γ)] > 0.

Assumption C.4 There exists a constant M such that for all n, T :

a)
1

nT 2

∑

i,j

∑

t1,t2,t3,t4

|E [εi,t1εi,t2εj,t3εj,t4 |γi, γj ]| ≤M ;

b)
1

nT 2

∑

i,j

∑

t1,t2,t3,t4

‖E [ηi,t1εi,t2εj,t3ηj,t4 |γi, γj ]‖ ≤M , where ηi,t = ε2i,txtx
′
t − E[ε2i,txtx

′
t|γi];

c)
1

nT 3

∑

i,j

∑

t1,...,t6

|E [εi,t1εi,t2εi,t3εj,t4εj,t5εj,t6 |γi, γj ]| ≤M ;

Assumption C.5 The trimming constants satisfy χ1,T = O ((log T )κ1), χ2,T = O ((log T )κ2), with κ1, κ2 >

0.
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For conditional models, Assumptions C.1-C.5 are used with xt replaced by xi,t as defined in Section 3.1.

More precisely, for Assumptions C.1a) and C.3a) we replace xt by xt(γ) and require the bound to be valid

uniformly w.r.t. γ ∈ [0, 1]; for Assumptions C.1b)-e) and C.2 we replace xt by xt(γ); for Assumption C.4b)

we replace xt by xi,t. Furthermore, we use:

Assumption C.6 There exists a constant M such that
∥∥E
[
utu

′
t|Zt−1

]∥∥ ≤M for all t, where ut = ft −
FZt−1.
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Appendix 2: Unconditional factor model

A.2.1 Proof of Proposition 1

For given assets γ1, ..., γn ∈ [0, 1], let µn = An + BnE[f1|F0] and Vn = BnV [f1|F0]B
′
n +Σε,1,n be the

mean vector and the variance-covariance matrix of asset excess returns (R1(γ1), ..., R1(γn))
′

conditional

on F0, where An = [a(γ1), ..., a(γn)]′, Bn = [b(γ1), ..., b(γn)]
′

. Let en = µn − Bn

(
B

′

nBn

)−1
B

′

nµn =

An − Bn

(
B

′

nBn

)−1
B

′

nAn be the residual of the orthogonal projection of µn (and An) onto the columns

of Bn. Then, for portfolio pn we have:

C(pn) = α0,n + α
′

nιn, E [pn|F0] = R0C(pn) + α
′

nµn, V [pn|F0] = α
′

nVnαn,

where ιn = (1, ..., 1)
′

and αn = (α1,n, ..., αn,n)
′

. We denote by J the set of asset sequences (γi) in [0, 1]

such thatB′
nBn/n converges to a positive definite matrix as n→ ∞, and by P the set of portfolio sequences

based on asset sequences in J .

The proof involves three steps.

STEP 1: The absence of asymptotic arbitrage opportunities (Assumption APR.5) implies that the two con-

ditions:

(i) If V [pn|F0] → 0 and C(pn) → 0, then E [pn|F0] → 0;

(ii) If V [pn|F0] → 0, C(pn) → 1 and E [pn|F0] → δ, then δ ≥ 0,

hold for any portfolio sequence (pn) in P , P -a.s.

STEP 2: Conditions (i) and (ii) imply that inf
ν∈RK

∞∑

i=1

(
a(γi) − b(γi)

′

ν
)2

<∞ for any sequence (γi) in J .

STEP 3: There exists a unique vector ν ∈ R
K such that: a(γ) = b(γ)′ν for almost all γ ∈ [0, 1].

STEP 1: The proof is by contradiction. Suppose that Condition (i) does not hold. Then, with probability

strictly larger than zero, there exists a portfolio sequence (pn) in P such that V [pn|F0] → 0, C(pn) → 0

and E [pn|F0] 9 0. Let us denote by S ∈ F the set of events where this fact occurs. The condition

E [pn|F0] 9 0 implies that either lim inf E [pn|F0] or lim supE [pn|F0] is different from zero. Then, when

S occurs, there exists a subsequence such that inf
n≥0

E [pn|F0] > 0 possibly after changing the sign of the

portfolio weights.
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First, we prove that lim sup
n→∞

‖en‖2 = +∞ on S. Since ‖en‖ is non-decreasing w.r.t. n, we have

sup
n≥0

‖en‖ = lim sup
n→∞

‖en‖. Suppose that sup
n≥0

‖en‖ <∞. By using that:

V (pn|F0) = (B
′

nαn)′V [f1|F0](B
′

nαn) + α
′

nΣε,1,nαn ≥ c

(∥∥∥B′

nαn

∥∥∥
2
+ ‖αn‖2

)
,

for c = min{eigmin(V [f1|F0]), eigmin(Σε,1,n)} > 0 (Assumptions APR.4 (ii)-(iii)), we deduce ‖αn‖ → 0,

B
′

nαn → 0, and inf
n≥0

α
′

nµn > 0, P -a.s. on S. Write α
′

nµn = α
′

nBn

(
B

′

nBn

n

)−1
B

′

nµn

n
+ α

′

nen. Now, by

Cauchy-Schwarz α
′

nen ≤ ‖αn‖ ‖en‖ = o(1). Then, since B′
nBn/n converges to a positive definite matrix

and B′
nµn/n is bounded, it follows α′

nµn = o(1), which is in contradiction with inf
n≥0

α
′

nµn > 0. Thus,

lim sup
n→∞

‖en‖2 = +∞ must hold on S.

Let us now show that an asymptotic arbitrage portfolio exists. Define the portfolio sequence (qn) with

investments αn =
1

‖en‖2
en and α0,n = −ι′nαn if S occurs, and zero investment otherwise. This portfolio

has zero cost, i.e., C(qn) = 0, and E [qn|F0] = 1 and V [qn|F0] ≤ c1‖en‖−2 on S (Assumption APR.4 (i)).

Moreover, we have: V [qn|F0] = E
[
(qn − E [qn|F0])

2 |F0

]
≥ E

[
(qn − E [qn|F0])

2 |F0, qn ≤ 0
]

·P [qn ≤ 0|F0] ≥ P [qn ≤ 0|F0] , on S. Hence we get P [qn > 0|F0] ≥ 1 − V [qn|F0] ≥ 1 − c1‖en‖−2 if

S occurs, and qn = 0 otherwise. Thus, P [qn > 0|F0] → 1S and P [qn ≥ 0|F0] → 1 as n → ∞, P -a.s.

By using the Law of Iterated Expectation and the Lebesgue dominated convergence theorem, P [qn > 0] →
P [S] and P [qn ≥ 0] → 1.

Since by Assumption APR.5 no asymptotic arbitrage portfolio exists, we deduce that Condition (i) holds.

By a similar argument, we can show that Condition (ii) also holds.

STEP 2: Conditions (i) and (ii) correspond to conditions A.1 (i) and (ii) in CR written conditionally on

F0. Step 2 follows by using Assumption APR.4 and applying CR Theorem 3 conditionally on F0 for any

countable collection of assets (γi) in J .

STEP 3: The proof is by contradiction. Suppose that

ˆ

[a(γ) − b(γ)′ν]2dγ > 0 for any ν ∈ R
K . Let

sequence (γi) in [0, 1] be a realization of i.i.d. uniform random draws. Then this sequence is in J with prob-

ability 1 by the LLN. Moreover, we have

∞∑

i=1

(
a(γi) − b(γi)

′

ν
)2

≥
n∑

i=1

(
a(γi) − b(γi)

′

ν
)2

= nQn (ν) ,
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where Qn (ν) =
1

n

n∑

i=1

(
a(γi) − b(γi)

′

ν
)2

, for any n ∈ N and ν ∈ R
K . Thus, for any n ∈ N:

inf
ν

∞∑

i=1

(
a(γi) − b(γi)

′

ν
)2

≥ n inf
ν
Qn (ν) = nQn(νn), (18)

where νn =

(
n∑

i=1

b(γi)b(γi)
′

)−1 n∑

i=1

b(γi)a(γi). Consider the LHS of the inequality (18). From Step 2,

inf
ν

∞∑

i=1

(
a(γi) − b(γi)

′

ν
)2

<∞ with probability 1. Consider now the RHS of (18). By the strong LLN, we

haveQn(νn) → Q∞(ν∞) =

ˆ

[a(γ) − b(γ)′ν∞]2dγ,with probability 1, where ν∞ =

(
ˆ

b(γ)b(γ)′dγ

)−1

·
ˆ

b(γ)a(γ)dγ. Since Q∞(ν∞) > 0, we deduce that nQn(νn) → ∞, P -a.s.. Then, Inequality (18) cannot

hold for large n with probability 1. Thus, it must be that

ˆ

[a(γ) − b(γ)′ν]2dγ = 0 for some ν ∈ R
K . Since

matrix

ˆ

b(γ)b(γ)′dγ is non-singular (Assumption APR.2), such ν is unique.

A.2.2 Proof of Proposition 2

a) Consistency of ν̂. From equation (5) and the asset pricing restriction (3), we have:

ν̂ − ν = Q̂−1
b

1

n

∑

i

ŵib̂ic
′
ν

(
β̂i − βi

)
(19)

= Q−1
b

1

n

∑

i

ŵibic
′

ν

(
β̂i − βi

)
+
(
Q̂−1

b −Q−1
b

) 1

n

∑

i

ŵibic
′

ν

(
β̂i − βi

)

+Q̂−1
b

1

n

∑

i

ŵi

(
b̂i − bi

)
c
′

ν

(
β̂i − βi

)
.

By using β̂i − βi =
τi,T√
T
Q̂−1

x,iYi,T and Q̂−1
b −Q−1

b = −Q̂−1
b

(
Q̂b −Qb

)
Q−1

b , we get:

ν̂ − ν =
1√
nT

Q−1
b

1√
n

∑

i

ŵiτi,T bic
′

νQ̂
−1
x,iYi,T − 1√

nT
Q̂−1

b

(
Q̂b −Qb

)
Q−1

b

1√
n

∑

i

ŵiτi,T bic
′

νQ̂
−1
x,iYi,T

+
1

T
Q̂−1

b

1

n

∑

i

ŵiτ
2
i,TE

′

2Q̂
−1
x,iYi,TY

′

i,T Q̂
−1
x,icν

=:
1√
nT

Q−1
b I1 −

1√
nT

Q̂−1
b

(
Q̂b −Qb

)
Q−1

b I1 +
1

T
Q̂−1

b I2. (20)
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To control I1, we use the decomposition:

I1 =
1√
n

∑

i

ŵiτi,T bic
′
νQ̂

−1
x Yi,T +

1√
n

∑

i

ŵiτi,T bic
′
ν

(
Q̂−1

x,i − Q̂−1
x

)
Yi,T =: I11 + I12.

Write I11 = I111Q̂
−1
x cν and decompose I111 :=

1√
n

∑

i

ŵiτi,T biY
′
i,T as:

I111 =
1√
n

∑

i

wiτibiY
′
i,T +

1√
n

∑

i

(1χ
i − 1)wiτibiY

′
i,T +

1√
n

∑

i

1
χ
i wi (τi,T − τi) biY

′
i,T

+
1√
n

∑

i

1
χ
i

(
v̂−1
i − v−1

i

)
τi,T biY

′
i,T =: I1111 + I1112 + I1113 + I1114.

We have E
[
‖I1111‖2 |xT , IT , {γi}

]
=

1

nT

∑

i,j

∑

t

wiwjτiτjIi,tIj,tσij,t ‖xt‖2 b
′

jbi by Assumption A.1 a).

Then, by using ‖xt‖ ≤ M , ‖bi‖ ≤ M , τi ≤ M , wi ≤ M from Assumption C.3, and Assumption A.1 c),

we get E
[
‖I1111‖2 |{γi}

]
≤ C. Then I1111 = Op(1). To control I1112, we use the next Lemma.

Lemma 1 Under Assumption C.2: sup
i

P [1χ
i = 0] = O(T−b̄), for any b̄ > 0.

By using ‖I1112‖ ≤ C√
n

∑

i

(1 − 1
χ
i )‖Yi,T ‖, sup

i
E[‖Yi,T ‖|xT , IT , {γi}] ≤ C from Assumption A.1, and

Lemma 1, it follows I1112 = Op(
√
nT−b̄), for any b̄ > 0. Since n ≍ T γ̄ , we get I1112 = op(1). We have

E
[
‖I1113‖2|xT , IT , {γi}

]
≤ C

nT

∑

i,j

∑

t

1
χ
i 1

χ
j |τi,T − τi||τj,T − τj |σij,t. Then, by the Cauchy-Schwartz

inequality and Assumption A.1 c), we get E
[
‖I1113‖2|{γi}

]
≤ CM sup

γ∈[0,1]
E
[
1

χ
i |τi,T − τi|4|γi = γ

]1/2
.

By using τi,T − τi = −τi,T τi
1

T

∑

t

(Ii,t − E[Ii,t|γi]) we get sup
γ∈[0,1]

E
[
1

χ
i |τi,T − τi|4|γi = γ

]

≤ Cχ4
2,T sup

γ∈[0,1]
E



∣∣∣∣∣
1

T

∑

t

(It(γ) − E[It(γ)])

∣∣∣∣∣

4

 = o(1) from Assumptions C.2 and C.5. Then I1113 =

op(1). From v̂−1
i − v−1

i = −v−2
i (v̂i − vi) + v̂−1

i v−2
i (v̂i − vi)

2
, we get:

I1114 = − 1√
n

∑

i

1
χ
i v

−2
i (v̂i − vi) τi,T biY

′
i,T +

1√
n

∑

i

1
χ
i v̂

−1
i v−2

i (v̂i − vi)
2 τi,T biY

′
i,T

=: I11141 + I11142.
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Let us first consider I11141. We have:

v̂i − vi = τi,T c
′
ν̂1
Q̂−1

x,i

(
Ŝii − Sii

)
Q̂−1

x,icν̂1
+ 2τi,T (cν̂1

− cν)
′Q̂−1

x,iSiiQ̂
−1
x,icν̂1

+τi,T (cν̂1
− cν)

′Q̂−1
x,iSiiQ̂

−1
x,i (cν̂1

− cν) + 2τi,T c
′
ν

(
Q̂−1

x,i −Q−1
x

)
SiiQ̂

−1
x,icν

+τi,T c
′
ν

(
Q̂−1

x,i −Q−1
x

)
Sii

(
Q̂−1

x,i −Q−1
x

)
cν + (τi,T − τi)c

′
νQ

−1
x SiiQ

−1
x cν ,

and we get for the first two terms:

I111411 = − 1√
n

∑

i

1
χ
i v

−2
i τ2

i,T c
′
ν̂1
Q̂−1

x,i

(
Ŝii − Sii

)
Q̂−1

x,icν̂1
biY

′
i,T ,

I111412 = − 2√
n

∑

i

1
χ
i v

−2
i τ2

i,T (cν̂1
− cν)

′Q̂−1
x,iSiiQ̂

−1
x,icν̂1

biY
′
i,T .

We first show I111412 = op(1). For this purpose, it is enough to show that cν̂1
− cν = Op(T

−c), for some

c > 0, and
1√
n

∑

i

1
χ
i v

−2
i τ2

i,T

(
Q̂−1

x,iSiiQ̂
−1
x,i

)
kl
biY

′
i,T = Op

(
χ2

1,Tχ
2
2,T

)
, for any k, l. The first statement is

implied by arguments showing consistency without estimated weights. The second statement follows from

1
χ
i ‖Q̂−1

x,i‖ ≤ Cχ1,T , 1
χ
i τi,T ≤ χ2,T (see control of I12 below), and an argument as for I1111. Let us now

prove that I111411 = op(1). For this purpose, it is enough to show that

J1 :=
1√
n

∑

i

1
χ
i v

−2
i τ2

i,T

(
Q̂−1

x,i

(
Ŝii − Sii

)
Q̂−1

x,i

)
kl
biY

′
i,T = op(1),

for any k, l. By using ε̂i,t = εi,t − x′t

(
β̂i − βi

)
= εi,t −

τi,T√
T
x′tQ̂

−1
x,iYi,T , we get:

Ŝii − Sii =
1

Ti

∑

t

Ii,t
(
ε̂2i,t − ε2it

)
xtx

′
t +

1

Ti

∑

t

Ii,t
(
ε2itxtx

′
t − Sii

)

=
τi,T√
T
W1,i,T −

2τ2
i,T

T
W2,i,T Q̂

−1
x,iYi,T +

τ3
i,T

T
Q̂

(4)
x,i Q̂

−1
x,iYi,TY

′
i,T Q̂

−1
x,i ,

where W1,i,T :=
1√
T

∑

t

Ii,tηi,t, ηi,t = ε2itxtx
′
t − E

[
ε2itxtx

′
t|γi

]
, W2,i,T :=

1√
T

∑

t

Ii,tεi,tx
3
t ,

Q̂
(4)
x,i :=

1√
T

∑

t

Ii,tx
4
t and xt has been treated as a scalar to ease notation. Then:

J1 =
1√
nT

∑

i

1
χ
i v

−2
i τ3

i,T Q̂
−1
x,iW1,i,T Q̂

−1
x,ibiY

′
i,T − 2√

nT

∑

i

1
χ
i v

−2
i τ4

i,T Q̂
−1
x,iW2,i,T Q̂

−1
x,iYi,T Q̂

−1
x,ibiY

′
i,T

+
1√
nT

∑

i

1
χ
i v

−2
i τ5

i,T Q̂
−1
x,i Q̂

(4)
x,i Q̂

−1
x,iYi,TY

′
i,T Q̂

−2
x,ibiY

′
i,T =: J11 + J12 + J13.
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Let us consider J11. We have:

E
[
‖J11‖2|xT , IT , {γi}

]
≤ C

nT 3

∑

i,j

∑

t1,t2,t3,t4

1
χ
i 1

χ
j τ

3
i,T τ

3
j,T ‖Q̂−1

x,i‖2‖Q̂−1
x,j‖2‖E

[
ηi,t1εi,t2εj,t3ηj,t4 |xT , γi, γj

]
‖.

By using 1
χ
i ‖Q̂−1

x,i‖ ≤ Cχ1,T , 1
χ
i τi,T ≤ χ2,T , the Law of Iterated Expectations and Assumptions C.4 b) and

C.5, we get E
[
‖J11‖2|

]
= o(1). Thus J11 = op(1). By similar argument and using Assumptions C.4 a),

c), we get J12 = op(1) and J13 = op(1). Hence J1 = op(1). Paralleling the detailed arguments provided

above, we can show that all other remaining terms making I1114 are also op(1). Hence I11 = Op(1).

To control I12, we have:

I12 =
1√
n

∑

i

1
χ
i v

−1
i τi,T bic

′
ν

(
Q̂−1

x,i − Q̂−1
x

)
Yi,T

+
1√
n

∑

i

1
χ
i

(
v̂−1
i − v−1

i

)
τi,T bic

′
ν

(
Q̂−1

x,i − Q̂−1
x

)
Yi,T =: I121 + I122.

From Q̂−1
x,i − Q̂−1

x = −Q̂−1
x

(
1

Ti

∑

t

Ii,txtx
′
t − Q̂x

)
Q̂−1

x,i = −τi,T Q̂−1
x Wi,T Q̂

−1
x,i + Q̂−1

x WT Q̂
−1
x,i , where

Wi,T =
1

T

∑

t

Ii,t(xtx
′
t −Qx) and WT =

1

T

∑

t

(xtx
′
t −Qx), we can write:

I121 = − 1√
n

∑

i

1
χ
i v

−1
i τ2

i,T bic
′
νQ̂

−1
x Wi,T Q̂

−1
x,iYi,T +

1√
n

∑

i

1
χ
i v

−1
i τi,T bic

′
νQ̂

−1
x WT Q̂

−1
x,iYi,T

=

(
− 1√

n

∑

i

1
χ
i v

−1
i τ2

i,T biY
′
i,T Q̂

−1
x,iWi,T +

1√
n

∑

i

1
χ
i v

−1
i τi,T biY

′
i,T Q̂

−1
x,iWT

)
Q̂−1

x cν

=: (I1211 + I1212) Q̂
−1
x cν .

Let us consider term I1211. From Assumption C.3 we have:

E
[
‖I1211‖2|xT , IT , {γi}

]
≤
Cχ4

2,T

nT

∑

i,j

∑

t

1
χ
i 1

χ
j |σij,t|‖Q̂−1

x,i‖‖Q̂−1
x,j‖‖Wi,T ‖‖Wj,T ‖.

Now, by using that ‖Q̂−1
x,i‖2 = Tr

(
Q̂−2

x,i

)
=

K+1∑

k=1

λ−2
k ≤ K + 1

eigmin

(
Q̂x,i

)2 =
K + 1

eigmax

(
Q̂x,i

)2CN
(
Q̂x,i

)2
,

where the λk are the eigenvalues of matrix Q̂x,i, and eigmax

(
Q̂x,i

)
≥ 1, we get 1

χ
i ‖Q̂−1

x,i‖ ≤ Cχ1,T and:

E
[
‖I1211‖2|xT , IT , {γi}

]
≤
Cχ2

1,Tχ
4
2,T

nT

∑

i,j

∑

t

|σij,t|‖Wi,T ‖‖Wj,T ‖.
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Then, from Cauchy-Schwartz inequality and Assumption A.1 c), we get E
[
‖I1211‖2|{γi}

]

≤ CMχ2
1,Tχ

4
2,T sup

i
E
[
‖Wi,T ‖4|γi

]1/2
. From Assumption C.2 we have sup

i
E
[
‖Wi,T ‖4|γi

]

≤ sup
γ∈[0,1]

E



∥∥∥∥∥

1

T

∑

t

It(γ)
(
xtx

′
t −Qx

)
∥∥∥∥∥

4

 = O(T−c). It follows I1211 = op(1). Similarly I1212 = op(1),

and then I121 = op(1). We can also show that I122 = op(1), which yields I12 = op(1). Hence, I1 = Op(1).

Consider now I2. We have:

1

n

∑

i

ŵiτ
2
i,T Q̂

−1
x,iYi,TY

′

i,T Q̂
−1
x,i =

1

n

∑

i

ŵiτ
2
i,T Q̂

−1
x Yi,TY

′

i,T Q̂
−1
x +

1

n

∑

i

ŵiτ
2
i,T

(
Q̂−1

x,i − Q̂−1
x

)
Yi,TY

′

i,T Q̂
−1
x

+
1

n

∑

i

ŵiτ
2
i,T Q̂

−1
x Yi,TY

′

i,T

(
Q̂−1

x,i − Q̂−1
x

)

+
1

n

∑

i

ŵiτ
2
i,T

(
Q̂−1

x,i − Q̂−1
x

)
Yi,TY

′

i,T

(
Q̂−1

x,i − Q̂−1
x

)

=: I21 + I22 + I23 + I24.

Let us control the four terms. We get I21 = Op(1) by using a decomposition similar to I111 and for the lead-

ing term

∥∥∥∥∥
1

n

∑

i

wiτ
2
i Q̂

−1
x Yi,TY

′

i,T Q̂
−1
x

∥∥∥∥∥ ≤ C
∥∥∥Q̂−1

x

∥∥∥
2 1

n

∑

i

‖Yi,T ‖2
and E

[
‖Yi,T ‖2 |xT , IT , {γi}

]
≤ C.

Moreover, we get I22 = op(1) by using a decomposition similar to I111 and for the leading term∥∥∥∥∥
1

n

∑

i

wiτ
2
i

(
Q̂−1

x,i − Q̂−1
x

)
Yi,TY

′

i,T Q̂
−1
x

∥∥∥∥∥ ≤ C
∥∥∥Q̂−1

x

∥∥∥χ1,T
1

n

∑

i

‖Yi,T ‖2
(see control of term I121). Sim-

ilarly, we get that I23 = op(1) and I24 = op(1). Hence, I2 = Op(1).

Finally, we have:

Q̂b −Qb =

(
1

n

∑

i

wibib
′

i −Qb

)
+

1

n

∑

i

(ŵi − wi)bib
′

i

+
1

n

∑

i

ŵi

(
b̂i − bi

)
b
′

i +
1

n

∑

i

ŵibi

(
b̂i − bi

)′

+
1

n

∑

i

ŵi

(
b̂i − bi

)(
b̂i − bi

)′

=

(
1

n

∑

i

wibib
′

i −Qb

)
+

1

n

∑

i

(ŵi − wi)bib
′

i +
1

n
√
T

∑

i

ŵiτi,TE
′

2Q̂
−1
x,iYi,T b

′

i

+
1

n
√
T

∑

i

ŵiτi,T biY
′

i,T Q̂
−1
x,iE2 +

1

nT

∑

i

ŵiτ
2
i,TE

′

2Q̂
−1
x,iYi,TY

′

i,T Q̂
−1
x,iE2

=: I3 + I4 + I5 + I
′

5 + I6. (21)

From Assumption SC.2, we have I3 = op(1), and I4 = op(1) follows from Lemma 1. Moreover, by similar

arguments as for terms I1 and I2, we can show that I5 and I6 are op(1). Then, from Equation (21), we get
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Q̂b −Qb = op(1). Thus, from (20) we deduce that ‖ν̂ − ν‖ = Op

(
1√
nT

+
1

T

)
= op(1).

b) Consistency of λ̂. By Assumption C.1a), we have
1

T

∑

t

ft − E [ft] = op (1), and thus

∥∥∥λ̂− λ
∥∥∥ ≤ ‖ν̂ − ν‖ +

∥∥∥∥∥
1

T

∑

t

ft − E [ft]

∥∥∥∥∥ = op (1) .

A.2.3 Proof of Proposition 3

a) Asymptotic normality of ν̂. From Equation (20), we have:

√
nT

(
ν̂ − 1

T
B̂ν − ν

)
= Q−1

b I1 + Q̂−1
b

1√
nT

∑

i

ŵiτ
2
i,T

(
E

′

2Q̂
−1
x,iYi,TY

′

i,T Q̂
−1
x,icν − τ−1

i,TE
′

2Q̂
−1
x,i ŜiiQ̂

−1
x,icν̂

)

+op(1) =: Q−1
b I1 + Q̂−1

b I7 + op(1). (22)

Let us first show that Q−1
b I1 is asymptotically normal. From the proof of Proposition 2 and the properties

of the vec operator and Kronecker product, we have:

Q−1
b I1 = Q−1

b

(
1√
n

∑

i

wiτibiY
′
i,T

)
Q̂−1

x cν + op(1) =
(
c′νQ̂

−1
x ⊗Q−1

b

) 1√
n

∑

i

wiτivec
[
biY

′
i,T

]
+ op(1)

=
(
c′νQ̂

−1
x ⊗Q−1

b

) 1√
n

∑

i

wiτi (Yi,T ⊗ bi) + op(1).

Then we deduce Q−1
b I1 ⇒ N (0,Σν), by Assumptions A.2a) and C.1a).

Let us now show that I7 = op(1). We have:

I7 =
1√
nT

∑

i

ŵiτ
2
i,TE

′

2Q̂
−1
x,i

(
Yi,TY

′

i,T − Sii,T

)
Q̂−1

x,icν − 1√
nT

∑

i

ŵiτ
2
i,TE

′

2Q̂
−1
x,i

(
τ−1
i,T Ŝ

0
ii − Sii,T

)
Q̂−1

x,icν

− 1√
nT

∑

i

ŵiτi,TE
′

2Q̂
−1
x,i

(
Ŝii − Ŝ0

ii

)
Q̂−1

x,icν − 1√
nT

∑

i

ŵiτi,TE
′

2Q̂
−1
x,i ŜiiQ̂

−1
x,i (cν̂ − cν)

=: I71 − I72 − I73 − I74,

where Ŝ0
ii =

1

Ti

∑

t

Ii,tε
2
i,txtx

′

t and Sii,T =
1

T

∑

t

Ii,tσii,txtx
′
t. The four terms are bounded in the next

Lemma.

Lemma 2 Under Assumptions C.1a),b), C.3-C.5, I71 = Op

(
1√
T

)
, I72 = Op

(
1

T

)
, I73 = Op

( √
n

T
√
T

)

and I74 = Op

(
1

T
+

√
n

T
√
T

)
.
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Then, from n = o
(
T 3
)
, we get I7 = op(1) and the conclusion follows.

b) Asymptotic normality of λ̂. We have
√
T
(
λ̂− λ

)
=

1√
T

∑

t

(ft − E [ft]) +
√
T (ν̂ − ν) . By using

√
T (ν̂ − ν) = Op

(
1√
n

+
1√
T

)
= op (1) , the conclusion follows from Assumption A.2b).

A.2.4 Proof of Proposition 4

From Proposition 3, we have to show that Σ̃ν − Σν = op (1). By Σν =
(
c′νQ

−1
x ⊗Q−1

b

)
Sb

(
Q−1

x cν ⊗Q−1
b

)

and Σ̃ν =
(
c′ν̂Q̂

−1
x ⊗ Q̂−1

b

)
S̃b

(
Q̂−1

x cν̂ ⊗ Q̂−1
b

)
, where S̃b =

1

n

∑

i,j

ŵiŵj
τi,T τj,T
τij,T

S̃ij ⊗ b̂ib̂
′
j , the statement

follows if S̃b−Sb = op(1). The leading term in S̃b−Sb is given by I8 =
1

n

∑

i,j

wiwj
τiτj
τij

(
S̃ij − Sij

)
⊗ bib

′
j ,

while the other ones can be shown to be op(1) by arguments similar to the proofs of Propositions 2 and 3. By

using that τi ≤M , τij ≥ 1,wi ≤M and ‖bi‖ ≤M , I8 = op(1) follows if we show:
1

n

∑

i,j

∥∥∥S̃ij − Sij

∥∥∥ = op (1) .

For this purpose, we introduce the following Lemmas 3 and 4 that extend results in Bickel and Levina (2008)

from the i.i.d. case to the time series case.

Lemma 3 LetψnT = max
i,j

∥∥∥Ŝij − Sij

∥∥∥ , and ΨnT (δ) = max
i,j

P

[∥∥∥Ŝij − Sij

∥∥∥ ≥ δ
]
.Under Assumption A.3,

1

n

∑

i,j

∥∥∥S̃ij − Sij

∥∥∥ = Op

(
ψnTn

δκ−q + nδκ1−q + ψnTn
2ΨnT ((1 − v)κ)

)
, for any v ∈ (0, 1) .

Lemma 4 Under Assumptions C.1 and C.3, if κ = M

√
log n

T η
with M large, then n2ΨnT ((1 − v)κ) =

O (1) , for any v ∈ (0, 1) , and ψnT = Op

(√
log n

T η

)
.

From Lemmas 3 and 4, it follows
1

n

∑

i,j

∥∥∥S̃ij − Sij

∥∥∥ = Op

((
log n

T η

)(1−q)/2

nδ

)
= op (1) .

A.2.5 Proof of Proposition 5

By definition of Q̂e, we get the following result:

Lemma 5 Under H0 and Assumption A.2a), we have Q̂e =
1

n

∑

i

ŵi

[
c′ν̂

(
β̂i − βi

)]2
+Op

(
1

nT
+

1

T 2

)
.
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From Lemmas 1 and 5, it follows: ξ̂nT =
1√
n

∑

i

ŵi

{[
c′ν̂
√
T
(
β̂i − βi

)]2
− τi,T c

′
ν̂Q̂

−1
x,i ŜiiQ̂

−1
x,icν̂

}
+ op (1) .

By using
√
T
(
β̂i − βi

)
= τi,T Q̂

−1
x,iYi,T , we get

ξ̂nT =
1√
n

∑

i

ŵiτ
2
i,T c

′
ν̂Q̂

−1
x,i

(
Yi,TY

′
i,T − τ−1

i,T Ŝii

)
Q̂−1

x,icν̂ + op (1)

=
1√
n

∑

i

ŵiτ
2
i,T c

′
ν̂Q̂

−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q̂−1

x,icν̂ − 1√
n

∑

i

ŵiτ
2
i,T c

′
ν̂Q̂

−1
x,i

(
τ−1
i,T Ŝii − Sii,T

)
Q̂−1

x,icν̂

+op (1) =: I91 + I92 + op(1).

We have I91 =
1√
n

∑

i

wiτ
2
i c

′
ν̂Q̂

−1
x

(
Yi,TY

′
i,T − Sii,T

)
Q̂−1

x cν̂ + op(1) by arguments similar to the proof of

Proposition 2 (see control of I111). By using τ−1
i,T Ŝii − Sii,T =

1

T

∑

t

Ii,t
(
ε̂2i,t − ε2i,t

)
xtx

′
t+

1

T

∑

t

Ii,t
(
ε2i,t − σii,t

)
xtx

′
t and an argument similar to the proof of Proposition 2 (see control of J1),

we can show that I92 = Op(
√
n/T + 1/

√
T ). By using n = o(T 2), it follows I92 = op(1). Then,

ξ̂nT =
1√
n

∑

i

wiτ
2
i c

′
ν̂Q̂

−1
x

(
Yi,TY

′
i,T − Sii,T

)
Q̂−1

x cν̂ + op (1) . By using that tr
[
A′B

]
= vec [A]′ vec [B] ,

and vec
[
Y Y ′

]
= (Y ⊗ Y ) for a vector Y , we get

ξ̂nT =
1√
n

∑

i

wiτ
2
i tr
[
Q̂−1

x cν̂c
′
ν̂Q̂

−1
x

(
Yi,TY

′
i,T − Sii,T

)]
+ op (1)

=
(
vec

[
Q̂−1

x cν̂c
′
ν̂Q̂

−1
x

])′ 1√
n

∑

i

wiτ
2
i (Yi,T ⊗ Yi,T − vec [Sii,T ]) + op (1) .

By using Assumption A.4, and by consistency of ν̂ and Q̂x, we get ξ̂nT ⇒ N (0,Σξ), where

Σξ =
(
vec

[
Q−1

x cνc
′
νQ

−1
x

])′
Ω
(
vec

[
Q−1

x cνc
′
νQ

−1
x

])
. By using MN Theorem 3 Chapter 2, we have

vec
[
Q−1

x cνc
′
νQ

−1
x

]′
(Sij ⊗ Sij) vec

[
Q−1

x cνc
′
νQ

−1
x

]
= tr

[
SijQ

−1
x cνc

′
νQ

−1
x SijQ

−1
x cνc

′
νQ

−1
x

]

=
(
c′νQ

−1
x SijQ

−1
x cν

)2
, (23)

and

vec
[
Q−1

x cνc
′
νQ

−1
x

]′
(Sij ⊗ Sij)W(K+1)vec

[
Q−1

x cνc
′
νQ

−1
x

]
=

(
c′νQ

−1
x SijQ

−1
x cν

)2
. (24)

Then, from the definition of Ω and Equations (23) and (24), we deduce

Σξ = 2 plim
n→∞

1

n

∑

i,j

wiwj

τ2
i τ

2
j

τ2
ij

(
c′νQ

−1
x SijQ

−1
x cν

)2
. Finally, Σ̃ξ = Σξ + op(1) follows from
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1

n

∑

i,j

‖S̃ij − Sij‖ = op(1) and
1

n

∑

i,j

‖S̃ij − Sij‖2 = op(1).

A.2.6 Proof of Proposition 6

a) Asymptotic normality of ν̂. By definition of ν̂ and under H1, we have

ν̂ − ν∞ = Q̂−1
b

1

n

∑

i

ŵib̂ic
′
ν∞ β̂i = Q̂−1

b

1

n

∑

i

ŵib̂ic
′
ν∞

(
β̂i − βi

)
+ Q̂−1

b

1

n

∑

i

ŵib̂iei

= Q̂−1
b

1

n

∑

i

ŵib̂ic
′
ν∞

(
β̂i − βi

)
+ Q̂−1

b

1

n

∑

i

ŵibiei + Q̂−1
b

1

n

∑

i

ŵi

(
b̂i − bi

)
ei.

Thus we get:

√
n (ν̂ − ν∞) = Q̂−1

b

1√
nT

∑

i

ŵiτi,T b̂ic
′
ν∞Q̂

−1
x,iYi,T + Q̂−1

b

1√
n

∑

i

wibiei

+Q̂−1
b

1√
n

∑

i

(ŵi − wi)biei + Q̂−1
b

1√
nT

∑

i

ŵiτi,T eiE
′
2Q̂

−1
x,iYi,T

=: I101 + I102 + I103 + I104.

From Assumption SC.2 and EG [wibiei] = 0, we get
1√
n

∑

i

wibiei ⇒ N
(
0, EG

[
bib

′
iw

2
i e

2
i

])
by the CLT.

Thus I102 ⇒ N
(
0, Q−1

b EG

[
w2

i e
2
i bib

′
i

]
Q−1

b

)
. Then the asymptotic distribution of ν̂ follows if terms I101,

I103 and I104 are op (1). From similar arguments as in the proof of Proposition 2 (control of term I1), we

have
1√
n

∑

i

ŵiτi,T b̂ic
′
ν∞Q̂

−1
x,iYi,T = Op(1) and

1√
n

∑

i

ŵiτi,T eiE
′
2Q̂

−1
x,iYi,T = Op(1). Thus I101 = op(1)

and I104 = op(1). Moreover, term I103 is op(1) from Lemma 1.

b) Asymptotic normality of λ̂. We have
√
T
(
λ̂− λ∞

)
=

√
T (ν̂ − ν∞) +

1√
T

∑

t

(ft − E [ft]) . By

using
√
T (ν̂ − ν∞) = Op

(√
T

n

)
= op (1) , the conclusion follows.

c) Consistency of the test. By definition of Q̂e, we get the following result:

Lemma 6 Under H1 and Assumption A.2a), we have Q̂e =
1

n

∑

i

ŵi

[
c′ν̂

(
β̂i − βi

)]2
+

1

n

∑

i

ŵie
2
i +

Op

(
1√
nT

)
.
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By similar arguments as in the proof of Proposition 4, we get:

ξ̂nT =
1√
n

∑

i

wiτ
2
i c

′
ν̂Q̂

−1
x

(
Yi,TY

′
i,T − Sii,T

)
Q̂−1

x cν̂ + T
1√
n

∑

i

wie
2
i +Op

(√
T
)

= Op (1) +O
(
T
√
nEG

[
wi (ai − biν∞)2

])
+Op (T ) .

Under H1 we have EG

[
wi (ai − biν∞)2

]
> 0, since wi > 0 and (ai − biν∞)2 > 0, P -a.s.
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Appendix 3: Conditional factor model

A.3.1 Derivation of Equations (12) and (13)

From Equation (11) and by using vec [ABC] =
[
C ′ ⊗A

]
vec [B] (MN Theorem 2, p. 35), we get

Z ′
t−1B

′
ift = vec

[
Z ′

t−1B
′
ift

]
=
[
f ′t ⊗ Z ′

t−1

]
vec

[
B′

i

]
, andZ ′

i,t−1C
′
ift =

[
f ′t ⊗ Z ′

i,t−1

]
vec

[
C ′

i

]
,which gives

Z ′
t−1B

′
ift + Z ′

i,t−1C
′
ift = x′2,i,tβ2,i.

a) By definition of matrix Xt in Section 3.1, we have

Z ′
t−1B

′
i (Λ − F )Zt−1 =

1

2
Z ′

t−1

[
B′

i (Λ − F ) + (Λ − F )′Bi

]
Zt−1

=
1

2
vech [Xt]

′ vech
[
B′

i (Λ − F ) + (Λ − F )′Bi

]
.

By using the Moore-Penrose inverse of the duplication matrix Dp, we get

vech
[
B′

i (Λ − F ) + (Λ − F )′Bi

]
= D+

p

[
vec

[
B′

i (Λ − F )
]
+ vec

[
(Λ − F )′Bi

]]
.

Finally, by the properties of the vec operator and the commutation matrix Wp,K , we obtain

1

2
D+

p

[
vec

[
B′

i (Λ − F )
]
+ vec

[
(Λ − F )′Bi

]]
=

1

2
D+

p

[
(Λ − F )′ ⊗ Ip + Ip ⊗ (Λ − F )′Wp,K

]
vec

[
B′

i

]
.

b) By definition of matrix Xi,t in Section 3.1, we have

Z ′
i,t−1C

′
i (Λ − F )Zt−1 = vec

[
Zt−1Z

′
i,t−1

]′
vec

[
C ′

i (Λ − F )
]

= vec [Xi,t]
′
[
(Λ − F )′ ⊗ Iq

]
vec

[
C ′

i

]
.

By combining a) and b), we deduce Z ′
t−1B

′
i (Λ − F )Zt−1 + Z ′

i,t−1C
′
i (Λ − F )Zt−1 = x′1,i,tβ1,i and

β1,i = Ψβ2,i.

A.3.2 Derivation of Equation (14)

a) From the properties of the vec operator, we get

vec
[
B′

i (Λ − F )
]
+ vec

[
(Λ − F )′Bi

]
=
(
Ip ⊗B′

i

)
vec [Λ − F ] +

(
B′

i ⊗ Ip
)
vec

[
Λ′ − F ′

]
.

Since vec [Λ − F ] = Wp,Kvec [Λ′ − F ′], we can factorize ν = vec
[
Λ′ − F ′

]
to obtain

1

2
D+

p

[
vec

[
B′

i (Λ − F )
]
+ vec

[
(Λ − F )′Bi

]]
=

1

2
D+

p

[(
Ip ⊗B′

i

)
Wp,K +B′

i ⊗ Ip
]
ν.
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By properties of commutation and duplication matrices (MN p. 54-58), we have
(
Ip ⊗B′

i

)
Wp,K =

Wp

(
B′

i ⊗ Ip
)

and D+
p Wp = D+

p , then
1

2
D+

p

[(
Ip ⊗B′

i

)
Wp,K +B′

i ⊗ Ip
]

= D+
p

(
B′

i ⊗ Ip
)
.

b) From the properties of the vec operator, we get

vec
[
C ′

i (Λ − F )
]

=
(
Ip ⊗ C ′

i

)
vec [Λ − F ] =

(
Ip ⊗ C ′

i

)
Wp,Kvec

[
Λ′ − F ′

]
= Wp,q

(
C ′

i ⊗ Ip
)
ν.

A.3.3 Derivation of Equation (15)

a) By MN Theorem 2 p. 35 and Exercise 1 p. 56, and by writing IpK = IK ⊗ Ip, we obtain

vec
[
D+

p

(
B′

i ⊗ Ip
)]

=
(
IpK ⊗D+

p

)
vec

[
B′

i ⊗ Ip
]

=
(
IpK ⊗D+

p

)
{IK ⊗ [(Wp ⊗ Ip) (Ip ⊗ vec [Ip])]} vec

[
B′

i

]

=
{
IK ⊗

[(
Ip ⊗D+

p

)
(Wp ⊗ Ip) (Ip ⊗ vec [Ip])

]}
vec

[
B′

i

]
.

Moreover, vec
[
{D+

p (B′
i ⊗ Ip)}′

]
= Wp(p+1)/2,pKvec

[
D+

p (B′
i ⊗ Ip)

]
.

b) Similarly, vec
[
Wp,q

(
C ′

i ⊗ Ip
)]

= {IK ⊗ [(Ip ⊗Wp,q) (Wp,q ⊗ Ip) (Iq ⊗ vec [Ip])]} vec
[
C ′

i

]
and

vec [{Wp,q (C ′
i ⊗ Ip)}′] = Wpq,pKvec [Wp,q (C ′

i ⊗ Ip)].

By combining a) and b) and using vec
[
β′3,i

]
=
(
vec

[
{D+

p (B′
i ⊗ Ip)}′

]′
, vec [{Wp,q (C ′

i ⊗ Ip)}′]′
)′

the

conclusion follows.

A.3.4 Proof of Proposition 8

a) Consistency of ν̂. By definition of ν̂ we have: ν̂ − ν = Q̂−1
β3

1

n

∑

i

β̂′3,iŵi

(
β̂1,i − β̂3,iν

)
. From Equa-

tion (15) and MN Theorem 2 p. 35, we get β̂3,iν = vec[ν ′β̂′3,i] =
(
Id1

⊗ ν ′
)
vec[β̂′3,i] =

(
Id1

⊗ ν ′
)
Jaβ̂2,i.

Moreover, by using matrices E1 and E2, we obtain
(
β̂1,i − β̂3,iν

)
= [E′

1 − (Id1
⊗ ν ′)JaE

′
2] β̂i = C ′

ν β̂i =

C ′
ν

(
β̂i − βi

)
, from Equation (14). It follows that

ν̂ − ν = Q̂−1
β3

1

n

∑

i

β̂′3,iŵiC
′
ν

(
β̂i − βi

)
. (25)

By comparing with Equation (19) and using the same arguments as in the proof of Proposition 1 applied to

β′3 instead of b, the result follows.
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b) Consistency of Λ′. By definition of ν, we deduce

∥∥∥vec
[
Λ̂′ − Λ′

]∥∥∥ ≤ ‖ν̂ − ν‖ +
∥∥∥vec

[
F̂ ′ − F ′

]∥∥∥ . By

part a), ‖ν̂ − ν‖ = op (1). By LLN and Assumptions C.1a),b) and C.6, we have
1

T

∑

t

Zt−1Z
′
t−1 = Op (1)

and
1

T

∑

t

utZ
′
t−1 = op (1). Then, by Slustky theorem, we conclude that

∥∥∥vec
[
F̂ ′ − F ′

]∥∥∥ = op (1). The

result follows.

A.3.5 Proof of Proposition 9

a) Asymptotic normality of ν̂. From Equation (25) and by using
√
T
(
β̂i − βi

)
= τi,T Q̂

−1
x,iYi,T , we get

√
nT (ν̂ − ν) = Q̂−1

β3

1√
n

∑

i

τi,T β̂
′
3,iŵiC

′
νQ̂

−1
x,iYi,T

= Q̂−1
β3

1√
n

∑

i

τi,Tβ
′
3,iŵiC

′
νQ

−1
x,iYi,T + Q̂−1

β3

1√
n

∑

i

τi,Tβ
′
3,iŵiC

′
ν

(
Q̂−1

x,i −Q−1
x,i

)
Yi,T

+Q̂−1
β3

1√
n

∑

i

τi,T

(
β̂3,i − β3,i

)′
ŵiC

′
νQ̂

−1
x,iYi,T =: I71 + I72 + I73.

By MN Theorem 2 p. 35, we have I71 = Q̂−1
β3

(
1√
n

∑

i

τi,T

[
(Y ′

i,TQ
−1
x,i ) ⊗ (β′3,iŵi)

])
vec

[
C ′

ν

]
.

As in the proof of Propositions 2 and 3, we have I71 = Q̂−1
β3

(
1√
n

∑

i

τi

[
(Y ′

i,TQ
−1
x,i ) ⊗ (β′3,iwi)

])
vec

[
C ′

ν

]

+op(1) =: I711 + op(1). We can rewrite I711 =
(
vec

[
C ′

ν

]′ ⊗ Q̂−1
β3

) 1√
n

∑

i

τivec
[
(Y ′

i,TQ
−1
x,i ) ⊗ (β′3,iwi)

]
.

Moreover, by using vec
[
(Y ′

i,TQ
−1
x,i ) ⊗ (β′3,iwi)

]
= (Q−1

x,iYi,T ) ⊗ vec
[
β′3,iwi

]
(see MN Theorem 10 p. 55),

we get I711 =
(
vec

[
C ′

ν

]′ ⊗ Q̂−1
β3

) 1√
n

∑

i

τi

[
(Q−1

x,iYi,T ) ⊗ v3

]
. Then I711 ⇒ N (0,Σν) follows from As-

sumption B.2 a).

Let us consider I72. By similar arguments as in the proof of Proposition 3, I72 = op (1).

Let us consider I73. We introduce the following lemma:

Lemma 7 Let A be a m× n matrix and b be a n× 1 vector. Then, Ab =
(
vec [In]′ ⊗ Im

)
vec [vec [A] b′] .
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By Lemma 7, Equation (15) and
√
Tvec

[(
β̂3,i − β3,i

)′]
= τi,TJaE

′
2Q̂

−1
x,iYi,T , we have

I73 = Q̂−1
β3

1√
nT

∑

i

τ2
i,T

(
vec [Id1

]′ ⊗ IKp

)
vec

[
JaE

′
2Q̂

−1
x,iYi,TY

′
i,T Q̂

−1
x,iCνŵi

]

= Q̂−1
β3

1√
nT

∑

i

τ2
i,TJbvec

[
E′

2Q̂
−1
x,iYi,TY

′
i,T Q̂

−1
x,iCνŵi

]
=:

√
n

T
B̂ν + I74,

where I74 = op (1) by similar arguments as in the proof of Proposition 3.

b) Asymptotic normality of vec
(
Λ̂′
)

. We have
√
Tvec

[
Λ̂′ − Λ′

]
=

√
Tvec

[
F̂ ′ − F ′

]
+
√
T (ν̂ − ν) .By

using
√
Tvec

[
F̂ ′ − F ′

]
=


IK ⊗

(
1

T

∑

t

Zt−1Z
′
t−1

)−1

 1√

T

∑

t

ut ⊗ Zt−1 and
√
T (ν̂ − ν) =

Op

(
1√
n

+
1√
T

)
= op (1), the conclusion follows from Assumption B.2b).

A.3.6 Proof of Proposition 10

By similar arguments as in the proof of Proposition 5, we have:

Q̂e =
1

n

∑

i

(
β̂i − βi

)′
Cν̂ŵiC

′
ν̂

(
β̂i − βi

)
+Op

(
1

nT
+

1

T 2

)

=
1

nT

∑

i

τ2
i,T tr

[
C ′

ν̂Q̂
−1
x,iYi,TY

′
i,T Q̂

−1
x,iCν̂ŵi

]
+Op

(
1

nT
+

1

T 2

)
.

By using that τi,T tr
[
C ′

ν̂Q̂
−1
x,i ŜiiQ̂

−1
x,iCν̂ŵi

]
= 1

χ
i d1 and Lemma 1 in the conditional case, we get:

ξ̂nT =
1√
n

∑

i

τ2
i,T tr

[
C ′

ν̂Q̂
−1
x,i

(
Yi,TY

′
i,T − τ−1

i,T Ŝii

)
Q̂−1

x,iCν̂ŵi

]
+ op(1)

=
1√
n

∑

i

τ2
i tr
[
C ′

ν̂Q
−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1

x,iCν̂wi

]
+ op(1).
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Now, by using tr(ABCD) = vec(D′)′(C ′ ⊗ A)vec(B) (MN Theorem 3, p. 31) and vec(ABC) = (C ′ ⊗
A)vec(B) for conformable matrices, we have:

tr
[
C ′

ν̂Q
−1
x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1

x,iCν̂wi

]

= vec[wi]
′
(
C ′

ν̂ ⊗ C ′
ν̂

)
vec

[
Q−1

x,i

(
Yi,TY

′
i,T − Sii,T

)
Q−1

x,i

]

= vec[wi]
′
(
C ′

ν̂ ⊗ C ′
ν̂

) (
Q−1

x,i ⊗Q−1
x,i

)
vec

[
Yi,TY

′
i,T − Sii,T

]

= vec[wi]
′
(
C ′

ν̂ ⊗ C ′
ν̂

) (
Q−1

x,i ⊗Q−1
x,i

)
(Yi,T ⊗ Yi,T − vec[Sii,T ])

= vec
[
C ′

ν̂ ⊗ C ′
ν̂

]′ {[(
Q−1

x,i ⊗Q−1
x,i

)
(Yi,T ⊗ Yi,T − vec[Sii,T ])

]
⊗ vec[wi]

}
.

Thus, we get ξnT = vec
[
C ′

ν̂ ⊗ C ′
ν̂

]′ 1√
n

∑

i

τ2
i

[(
Q−1

x,i ⊗Q−1
x,i

)
(Yi,T ⊗ Yi,T − vec [Sii,T ])

]
⊗ vec[wi]. From

Assumption B.3, we get ξ̂nT ⇒ N(0,Σξ), where Σξ = vec
[
C ′

ν ⊗ C ′
ν

]′
Ωvec

[
C ′

ν ⊗ C ′
ν

]
. Now, by using

that tr(ABCD) = vec(D)′(A⊗ C ′)vec(B′) (see Theorem 3, p. 31, in MN) we have:

vec
[
C ′

ν ⊗ C ′
ν

]′ [
(SQ,ij ⊗ SQ,ij) ⊗ vec[wi]vec[wj ]

′
]
vec

[
C ′

ν ⊗ C ′
ν

]

= tr
[
(SQ,ij ⊗ SQ,ij) (Cν ⊗ Cν) vec[wj ]vec[wi]

′
(
C ′

ν ⊗ C ′
ν

)]

= vec[wi]
′
[(
C ′

νSQ,ijCν

)
⊗
(
C ′

νSQ,ijCν

)]
vec[wj ]

= tr
[(
C ′

νSQ,ijCν

)
wj

(
C ′

νSQ,jiCν

)
wi

]

= tr
[(
C ′

νQ
−1
x,iSijQ

−1
x,jCν

)
wj

(
C ′

νQ
−1
x,jSjiQ

−1
x,iCν

)
wi

]
,

and similarly vec
[
C ′

ν ⊗ C ′
ν

]′ [
(SQ,ij ⊗ SQ,ij)Wd ⊗ vec[wi]vec[wj ]

′
]
vec

[
C ′

ν ⊗ C ′
ν

]

= tr
[(
C ′

νQ
−1
x,iSijQ

−1
x,jCν

)
wj

(
C ′

νQ
−1
x,jSjiQ

−1
x,iCν

)
wi

]
. Thus, we get the asymptotic variance matrix

Σξ = 2 lim
n→∞

E


 1

n

∑

i,j

τ2
i τ

2
j

τ2
ij

tr
[(
C ′

νQ
−1
x,iSijQ

−1
x,jCν

)
wj

(
C ′

νQ
−1
x,jSjiQ

−1
x,iCν

)
wi

]

. From Σ̃ξ = Σξ +

op(1), the conclusion follows.

A.3.7 Proof of Equation (17)

We have:

b̂′i,tλ̂t = tr
[
Zt−1Z

′
t−1B̂

′
iΛ̂
]
+tr

[
Zt−1Z

′
i,t−1Ĉ

′
iΛ̂
]

=
(
Z ′

t−1 ⊗ Z ′
t−1

)
vec

[
B̂′

iΛ̂
]
+
(
Z ′

t−1 ⊗ Z ′
i,t−1

)
vec

[
Ĉ ′

iΛ̂
]
.
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Thus, we get:

√
T
(
ĈEi,t − CEi,t

)

=
(
Z ′

t−1 ⊗ Z ′
t−1

)√
T
(
vec

[
B̂′

iΛ̂
]
− vec

[
B′

iΛ
])

+
(
Z ′

t−1 ⊗ Z ′
i,t−1

)√
T
(
vec

[
Ĉ ′

iΛ̂
]
− vec

[
C ′

iΛ
])

=
(
Z ′

t−1 ⊗ Z ′
t−1

) [(
Λ̂′ ⊗ Ip

)√
Tvec

[
B̂′

i −B′
i

]
+
(
Ip ⊗B′

i

)√
Tvec

[
Λ̂ − Λ

]]

+
(
Z ′

t−1 ⊗ Z ′
i,t−1

) [(
Λ̂′ ⊗ Iq

)√
Tvec

[
Ĉ ′

i − C ′
i

]
+
(
Ip ⊗ C ′

i

)√
Tvec

[
Λ̂ − Λ

]]
.

By using that Λ̂ = Λ + op(1) and vec
[
Λ̂ − Λ

]
= Wp,Kvec

[
Λ̂′ − Λ′

]
, equation (17) follows.
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Appendix 4: Check of Assumptions A under block dependence

In this appendix we verify that the cross-sectional dependence and asymptotic normality conditions in As-

sumptions A.1-A.4 are satisfied under a block-dependence structure in a serially i.i.d. framework. Let us

assume that:

BD.1 The errors εt(γ) are i.i.d. over time with E[εt(γ)] = 0, for all γ ∈ [0, 1]. For any n, there exists

a partition of the interval [0, 1] into Jn ≤ n subintervals I1, ..., IJn , such that εt(γ) and εt(γ
′) are

independent if γ and γ′ belong to different subintervals, and Jn → ∞ as n→ ∞.

BD.2 The blocks are such that n

Jn∑

m=1

|Bm|2 = O(1), n3/2
Jn∑

m=1

|Bm|3 = o(1), where Bm =

ˆ

Im

dG(γ).

BD.3 The factors (ft) are i.i.d. over time and independent of the errors (εt(γ)), γ ∈ [0, 1].

BD.4 There exist a constant M such that ‖ft‖ ≤ M , P -a.s.. Moreover, sup
γ∈[0,1]

E[|εt(γ)|6] <∞,

sup
γ∈[0,1]

‖β(γ)‖ <∞ and inf
γ∈[0,1]

E[It(γ)] > 0.

The block-dependence structure as in Assumption BD.1 is satisfied for instance when there are unobserved

industry-specific factors independent among industries and over time, as Ang, Liu, Schwartz (2010). In

empirical applications, blocks can match industrial sectors. Then, the number Jn of blocks amounts to a

couple of dozens, and the number of assets n amounts to a couple of thousands. There are approximately

nBm assets in block m, when n is large. In the asymptotic analysis, Assumption BD.2 on block sizes and

block number require that there are not too many large blocks, that is, the partition in independent blocks is

sufficiently fine grained asymptotically.

Lemma 8 Let Assumptions BD.1-4 on block dependence and Assumptions SC.1-SC.2 on random sampling

hold. Then, Assumptions A.1, A.2 (with Γ1 = R
+), A.3 (with any q ∈ (0, 1) and δ = 1/2) and A.4 (with

Γ2 = R
+) are satisfied.

In Lemma 8, we have Γ1 = Γ2 = R
+, which means that there is no condition on the relative expansion

rates of n and T .
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