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Abstract. A lagrangian formulation is presented for the total dynamic stiffness and damping matrices of a rigid rotor carrying

noncentral rigid disk and supported on angular contact ball bearings (ACBBs). The bearing dynamic stiffness/damping marix

is derived in terms of the bearing motions (displacements/rotations) and then the principal of virtual work is used to transfer it

from the bearing location to the rotor mass center to obtain the total dynamic stiffness/damping matrix. The bearing analyses

take into account the bearing nonlinearities, cage rotation and bearing axial preload. The coefficients of these time-dependent

matrices are presented analytically. The equations of motion of a rigid rotor-ACBBs assembly are derived using Lagrange’s

equation. The proposed analyses on deriving the bearing stiffness matrix are verified against existing bearing analyses of SKF

researchers that, in turn, were verified using both SKF softwares/experiments and we obtained typical agreements. The presented

total stiffness matrix is applied to a typical grinding machine spindle studied experimentally by other researchers and excellent

agreements are obtained between our analytical eigenvalues and the experimental ones. The effect of using the total full stiffness

matrix versus using the total diagonal stiffness matrix on the natural frequencies and dynamic response of the rigid rotor-bearings

system is studied. It is found that using the diagonal matrix affects natural frequencies values (except the axial frequency) and

response amplitudes and pattern and causes important vibration tones to be missig from the response spectrum. Therefore it is

recommended to use the full total stiffness matrix and not the diagonal matrix in the design/vibration analysis of these rotating

machines. For a machine spindle-ACBBs assembly under mass unbalnce and a horizontal force at the spindle cutting nose

when the bearing time-varying stiffness matrix (bearing cage rotation is considered) is used, the peak-to-valley variation in time

domain of the stiffness matrix elements becomes significant compared to its counterpart when the bearing standard stiffness

matrix (bearing cage rotation is neglected) is used. The vibration spectrum of the time-varying matrix case is marked by tones

at bearing outer ring ball passing frequency, rotating unbalnce frequency and combination compared to spectrum of the standard

stiffness matrix case which is marked by only the rotating unbalnce frequency. Therfore, it is highly recomended to model bearing

stiffness matrix to be a time-dependent.

1. Introduction

Rotating rigid machinery incorporating rolling element bearings are used in many industrial applications. These

machines are nonlinear and among sources of nonlinearities are the bearing nonlinear stiffness. Accurate calculation

∗Corresponding author: Fawzi El-Saeidy, 58 Lowana Street, Villawood, NSW 2163, Australia. Tel./Fax: +612 97239181; E-mail: fawzi.el-

saeidy@uts.edu.au.

ISSN 1070-9622/11/$27.50  2011 – IOS Press and the authors. All rights reserved



642 F.M.A. El-Saeidy / Time-varying total stiffness matrix of a rigid machine spindle-angular contact ball bearings assembly

of the stiffness matrix of a rigid shaft supported on angular contact ball bearings is important in the stability analysis

and eigenvalue problem solution of the system. The bearing model can be included in the machinery overall

dynamic model by calculating the bearing dynamic loads vector or stiffness matrix and then assemble into the

machinery overall load vector or stiffness matrix, respectively. Analytical studies that use five DOFs to calculate

loads (forces/moments) of rolling element bearings supporting a rigid shaft are numerous [1–4]. There are many

studies on calculating ball bearing stiffness matrix (Kb), see Section 1.1. The rotation of the bearing ball compliment

(cage) around the bearing longitudnal axis makes Kb time-variant. To avoid complicated analyses different authors

neglected effect of cage rotation and treated Kb to be time-invariant. Kb is computed using shaft motions at the

bearing location (Section 2.4) and then used to derive the total stiffness matrix of the rigid shaft-bearings assembly

(Kcg), see Section 2.5. To the author’s best knowledge the studies related to Kcg are limited to [32–34], see

Section 1.2.

1.1. The rolling element bearing stiffness matrix

Jones [5] presented a generalized theory to calculate rolling element bearings characteristics, namely,the dis-

placements, contact loads (forces/moments) and stiffness matrix. He used a five-DOF (two lateral, one axial, two

rotational) analysis and presented stiffness matrix coefficients analytically. The analyses are for an angular contact

ball bearing (ACBB) and a radial roller bearing. Jones’s work is adopted in numerous works [6–9]. De Mul et al. [6]

used a five-DOF analysis for numeric calculations of ball bearings loads and stiffness matrix (no analytical expres-

sions were presented for stiffness). In Ref. [7] a ball bearing 5 × 5 stiffness matrix coefficients are presented. The

bearing is rigid except at the ball-to-races local hertzian contact, the ball centrifugal force and gyroscopic moment

are neglected, and stiffness analysis is theoretical and similar to that of Jones [5] but using different vector notations.

In Refs [5–7] bearing damping is neglected. Muhlner [8] used a five-DOF model and presented expressions of

ACBB 5 × 5 stiffness matrix for the integrated analysis of bearings and structures. In Refs [5,7,8], the necessary

details of derivation of the stiffness matrix coefficients are not included and in the author’s opinion this makes it

difficult for the average reader to verify (check) these analyses before using them (see Section 3.1 of this study for

corrections in Muhlner’s [8] bearing stiffness matrix). Dietl [9] used a five-DOF ACBB and utilized principal of

virtual work and derived an equation for numeric calculation of its stiffness matrix and added to it a geometrical

stiffness (term) to account for the bearing axial preload. In Refs [5–9] the analyses are in fixed coordinates system

and the stiffness matrix is time-invariant (i.e. effect of cage rotation is neglected). However, Ref. [8] presented

plots of stiffness coefficients that show cyclic change due to the bearing cage rotation. Also Ref. [9] discussed

cage rotation effect. The analyses of [8,9] are verified experimentally [9] and analytically using SKF software [8].

Shimizu and Tamura [24–26] used two-DOFs to calculate static stiffness of a deep groove ball bearing (DGBB)

and showed that its variation is cyclic (due to change of the ball set position). El-Sayed [28] used his experimental

results that show radial stiffness of a DGBB under only a radial dead load to increase nonlinearly as load increases

and derived an emperical equation for stiffness calculation. El-Saeidy [30] showed that an increase in the rotating

unbalance load of a rigid rotor-ideal ball bearings system will shift its frequencies other than forcing (unbalance)

frequency to a higher frequency region; i.e. system’s nonlinearity is of the hard spring type.

The works [1–9,15,17–19,21–30,32–36,38–44,48,50–52] use summation over the bearing rolling elements in

contact to compute bearing total loads. Houpert [10,11] replaced this summation by integration using Sjovall’s [12]

axial and radial load distribution integrals (Ja, Jr). Later Xernot et al. [13] used a five-DOF bearing anlaysis as [11]

and presented coefficients of bearing stiffness matrix analytically. They used modified load integrals similar to

(Ja, Jr) in addition to a third integral. The three integrals need to be calculated numerically which in turn is an

expensive process, and this makes Houpert’s analysis of limited practical use, in the writer’s opinion, compared

to using summation over balls number. Houser et al. [14] used three-DOF (one radial, one axial, one rotational)

bearing and presented equations for its radial, axial and moment loads using load distribution factors. They replaced

integration needed to calculate these factors by summation over the load zone (not over balls number) and reported

that their simple model can be used to compute a 3 × 3 stiffness matrix but no equation(s)/information on matrix

computation were given. Sun et al. [15] presented equations of motion for dynamics of energy storage flywheel rigid

system supported on active magnetic bearings and angular contact ball bearings. The supporting ACBB at each shaft

end has three-DOFs (two lateral, one axial) for each of the inner and outer rings and the axial DOF is inertially and
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elastically uncoupled from the lateral DOFs. The ACBB lateral and axial stiffness coefficients only are included,

as [6], (no report on effect of neglecting stiffness cross coupling coefficients), damping is taken to be constant, mass

unbalance is included, and equations are solved using the Runge-Kutta method (RKM).

1.2. Rigid shaft-angular contact ball bearings total stiffness matrix

Jang and Jeong [32] used a five-DOF model to study effect of waviness of axially loaded ACBB on stability

of a rigid rotor supported by two angular contact ball bearings. The mass centre of the rotor coincides with the

bearings span centre. The three translational motions are taken to be uncoupled from each other and from the two

rotational motions that in turn are coupled to each other only by gyroscopic effect. The authors neglected effect

of bearing cage rotation, calculated stiffness matrix coefficients as [5], used diagonal stiffness matrix, and did not

report on effect of neglecting the stiffness matrix off-diagonal coefficients. They presented time domain plots of the

stiffness matrix coefficients that show that coefficients values are constant when the bearing is ideal (no waviness)

and have cyclic variation when waviness is present. Liew and Lim [33] used a five-DOF bearing and presented

without any information on its derivation a 5 × 5 stiffness matrix (denoted their by [K(t)]) of a rigid shaft of length

2lr carrying a central rigid disk and supported by one ACBB at each end. Applying our developed analyses of

Eq. (54) to their rotor-bearings system shows that their [K(t)] matrix needs corrections in its [K]44, [K]45 and [K]55
coefficients. In [K]44, the part {[Kbθxy]lp + [Kbθxy]rp}lr reads as 2lr{[Kbθxy]lp − [Kbθxy]rp}. In [K]45, the part

{[Kbθxx]lp +[Kbθxx]rp}lr reads as lr{[Kbθxx]lp− [Kbθxx]rp}. In [K]55, the part {[Kbθyx]lp +[Kbθyx]rp}lr reads as

2lr{[Kbθyx]lp − [Kbθyx]rp}. Also, in the numerator of Kbzθy
’s equation on page 1176 of Ref. [33], the term ‘+A2

s’

should read ‘−A2
s’. Yahland [34] used a five-DOF model, neglected bearing cage rotation effect, used linearization

approach and presented expressions of some coefficients (not all of them) of the linearized stiffness matrix of a rigid

rotor supported on two angular contact ball bearings with waiveness.

1.3. Rigid shaft-ball bearings system natural frequencies

Analytical calculation of natural frequencies of a rigid shaft-angular contact ball bearings taking into account

the bearing nonlinear stiffness is a complex task and this made different researchers use simple models to estimate

frequencies [16–20]. Aini et al. [16] experimentally and analytically studied vibrations of a horizontal rigid grinding

spindle-angular contact ball bearing system. They used a simple two-DOF (one lateral, one rotational) theoretical

model, assumed the spindle bearings stiffness to be constant and calculated bounce and rock/pitch frequencies of the

spindle assembly. The model does not account for axial mode frequency, ignores gyroscopic effect of the rotating

shaft and requires preknowledge (i.e. linearization) of bearing stiffness. They compared the analytical results with

experimental ones. Akturk [17,18] modeled a rigid shaft supported on two angular contact ball bearings using three-

DOFs (two lateral, one axial). He linearized stiffness coefficient in the vertical direction around a constant deflection

(= axial preload deflection) (no stiffness cross coupling coefficients). and presented an approximate equation for

calculating vertical natural frequency. The equation is valid for axially preloaded bearing only (radial and other loads

are not accounted for), requires linearized stiffness coefficient, ignores variation of the ball operating contact angle

due to the bearing axial preload, and neglects gyroscopic effect of the rotating shaft. Vibration of axially loaded high

speed rigid routing spindle supported on angular contact ball bearings runing under no cutting condition is analytically

modeled using a three-DOF (one horizontal, one vertical, one axial) model and experimentally studied [19,20]. The

spindle natural frequencies corresponding to the radial bounce mode and rocking mode are calculated by solving a

simple frequency equation qutoted from Ref. [25] in Ref. [19] (the writer did not verify its derivation). The equation

does not account for the axial mode frequency, assumes the stiffness coefficients of the supporting bearings to be

linear (constant), and is applicable to stationary spindles only (gyroscopic effect of the rotating shaft is neglected).

Mevel and Guyader [21,22] used a two-DOF (one vertical, one horizontal) model to study vibrations of a DGBB

under a vertical load. The load is assumed to be carried by one or two balls only at all times and the bearing horizontal

and vertical natural frequencies are
√

kii/mass, i = x, y. The bearing horizontal and vertical stiffness coefficients

(kxx, kyy) are calculated as [23] ([23] used a two-DOF model and presented a method to calculate the 2× 2 stiffness

matrix of a radial ball bearing under vertical dead load). Yamamoto and Ishida [27] experimentally showed that shaft

rotation causes cyclic variation of the bearing system natural frequency. While [29] used a simple one-DOF equation
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to calculate radial stiffness of a DGBB under radial load, calculated bearing radial natural frequency (bearing unit
mass was used), and showed that frequency increases nonlinearly as load increases.

As can be seen the models on calculating natural frequencies of a rotor-rolling element system are for a simple
two-DOF DGBB rotor and the analyses for a five-DOF ACBB rotor are incomplete and assume bearing stiffness to
be constant (linear). In the writer’s opinion stiffness linearization should be avoided as it is not an accurate estimation
of the bearing stiffness coefficients and could cause a large difference between predicted and experimental results.
For example in [31] experiments were conducted to measure radial stiffness of ball bearing under oscillating radial
load and large difference between the measured stiffness (12 × 108 N/m) and calculated stiffness (7 × 108 N/m, it
is not very clear how it was calculated) was reported which may be because the bearing was modeled using linear
springs.

1.4. The rolling element bearing damping

The main sources of damping in a rolling element bearing are [9,35]: 1. Material damping due to Hertzian
deformation of the rolling element and raceways. 2. Damping due to sqeezing lubricant within entry region where
oil is entrained into the Hertzian zone. 3. Elastohydrodynamic damping (EHD) lubrication film within the Hertzian
contact zone. 4. Damping at inner ring-shaft interface and outer ring-housing interface. SKF experimental results
show that sources 1 and 2 dominate the bearing damping. As rotor rotates, the stiff EHD layer develops and fixes the
viscous damping mechanism within that zone and values of the damping coefficients converge to values of the dry
(lubricant-free) bearing [35]. For dry deep grove ball bearings and dry angular contact ball bearings, the equivalent
viscous damping coefficients are in the range 330–550N.s/m [35]. However, equivalent viscous damping of constant
= 200 N.s/m is used for deep groove ball bearing [36,50]. Further, different authors neglected bearing damping, see
for example [1–4] and [30]. In Ref. [37] the damping coefficient at the ball-to-races contact is

D = (0.25 − 2.5)10−5K

(
Ns

µm

)
. (1)

K is the linearized hertzian stiffness constant (N/µm) at the ball contact. Equation (1) is used to calculate ACBB
damping matrix(= constant × bearing stiffnes matrix), see for example [32].

Cole et al. [38] modeled material damping force at a bearing ball-to-race contact = 3

2
CbKbδ̇δn. Cb = damping

costant. Kb = Hertz contact stiffness coefficient. δ = relative approach. δ̇ = relative approach velocity. In [8,
39] effect of lubricant in the bearing ball-to-race contacts is modeled using viscous linear damper of coefficient
Cv and the daming force of a ball in contact = Cv δ̇ for δ > 0. Without derivation details, Muhlner [8] presented
analytical expressions for bearing 5 × 5 time-invariant damping matrix coefficients. He reported that Cv can be
determined analytically or experimentally as [9]. His analytical analyses on rotor-ball bearings produce results with
good agreements with the experimental results of [9] and the analytical results obtained using the software used by
SKF industries. Dietl [9] calculated the equivalent viscous material damping coefficient at the ball-to-race contact
of a dry bearing Cv = ψ Kh

2πf . Kh is the bearing rolling element local Hertzian contact stiffness. f is the vibrating
bearing frequency. ψ is a dimensionless loss factor. Then he calculated the dry bearing material damping matrix
CB,h using bearing stiffness matrix KB according to

CB,h = ψ
KB

2πf
. (2)

In Refs [35,40], Eq. (2) is used with good agreement with experimental results.
As can be seen the studies on derivation of the Kcg matrix (Section 1.2) are very few and are incomplete and

their applications are limited. None of these studies had reported on effect of using diagonal coefficients of Kcg

marix versus full Kcg matrix. Moreover, these analyses, that use fixed coordinates system, present no details on
the stiffness matrix derivation and this makes it difficult for the analyst to verify and/or extend them. Therefore the
contributions of this study are:

(1) A Lagrangian formulation is presented for the time-dependent (cage rotation is considered) total stiffness
matrix of a rigid rotor with noncentral disk supported on angular contact ball bearings. The coefficients of the
total stiffness matrix are presented analytically. To the author’s best knowlege the formulation is new. Also,
for the first time, the derivation of the time-dependent bearing damping matrix is presented;
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Fig. 1. A rigid rotor-elastic bearings-rigid support configuration.

Fig. 2. Ball bearing elements and coordinate systems.

(2) Effect of using the total diagonal stiffness matrix (K
cg
inc) versus using the total full matrix (Kcg) on the

rotor-bearings system natural frequencies and dynamics is investigated for the first time (Section 3.4.1);

(3) The formulation enables us to compute all eigenvalues (axial, bounce, rock) of the rotating/nonrotating rigid

spindle-angular contact ball bearing assembly accurately without any need for linearization of the bearing

stiffness (Section 3.3.2);

(4) Effect of using the time-dependent bearing stiffness matrix versus using the the standard formulation bearing

stiffness matrix (i.e. cage rotation is neglected) is investigated (Section 3.4.2).

2. Five-DOF rigid spindle-angular contact ball bearing stiffness matrix model

Figure 1 shows a noncentral rigid disk mounted through its center to a rotating rigid shaft which in turn is mounted

on two rolling element bearings. The bearings are mounted into their rigid housings that are firmly attached to a

fixed rigid base (platform). The details of the bearing are depicted in Fig. 2. The position of the disk along shaft

axis is at distance Lr (not shown on Fig. 1) from the right bearing and at distance Ll (not shown on Fig. 1) from the

left bearing. The rigid shaft inertia is neglected compared to the disk inertia and therefore the system mass center is

at the geometric center of the disk. The orientation of the vibrating rigid rotor in space (Fig. 3) is monitored using



646 F.M.A. El-Saeidy / Time-varying total stiffness matrix of a rigid machine spindle-angular contact ball bearings assembly

Fig. 3. Orientation of a rigid rotor in space.

Fig. 4. Euler Angles.

Euler angles (Fig. 4). In Fig. 3, XsYsZs is an inertial frame (Fig. 1) and its origin (point Os) at the left bearing

pedestal center. The triad abc is a body fixed coordinates system that rotates with the rotor differential element and

represents its principal directions where ia, ib, and ic are unit vectors along axes a, b, and c, respectively. In Fig. 4,

XsYsZs is an inertial frame and abc is a body fixed one (see Fig. 3). x̄ȳz̄ is an auxiliary, moving, frame initially

coincides with the XsYsZs. Euler angles are not unique and are adopted as the following:

1. Rotation ψ about Zs axis results in Xs coincides with x̄;

2. Rotation θ about x̄ results in the moving frame coincides with cx̄¯̄y;

3. Spin φ about c axis results in the moving frame coincides with abc one.

The components of the rotor angular velocity vector ω̄ = ω̄aia + ω̄bib + ω̄cic in the abc frame are [41].
⎡

⎣
ω̄a

ω̄b

ω̄c

⎤

⎦ =

⎡

⎣
ψ̇ sin θ sin φ + θ̇ cosφ
ψ̇ sin θ cosφ − θ̇ sin φ

ψ̇ cos θ + φ̇

⎤

⎦ . (3)

(.) denotes differentiation with respect to time, t.

2.1. The spindle mass center displacement vector and kinetic energy

The disk mass center has five global DOFs: three translational along the Xs, Ys and Zs, respectively, plus two

rotational motions around the Xs and Ys axes, respectively. The local displacement vector of the disk mass center

is h = [ u v w θa θb ]T . Here u, v and w are the translational displacements along the a, b and c axes,

respectively. θa and θb are the rotations around a and b, respectively, where the superscript T denotes a matrix
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transpose. The vector h is related to its counterpart global displacement vector q of the disk mass center relative to

the machine base

q = [ x y z θx θy ]
T

. (4)

measured in XsYsZs system by transformation matrix Q̄s such that

h = Q̄sq, Q̄s = diag [Qt Qr ] ,

Qt =

⎡
⎣

cosΩst sin Ωst 0
− sinΩst cosΩst 0

0 0 1

⎤
⎦ , Qr =

[
cosΩst sin Ωst
− sinΩst cosΩst

]
. (5)

Qt, Qr are orthogonal transformation matrices where subscripits t and r denote translational and rotational motions.

In vector q, the displacements x, y and z are along the Xs, Ys and Zs axes, respectively, and θx and θy are the

rotational motions around the Xs and Ys axes, respectively. The displacement vector q (Eq. (4)) is partitioned as

q = [qT
t qT

r ]T ,qt = [x y z ]T ,qr = [ θx θy ]T . (6)

The vectors qt and qr are related to vector q as

qt = Ntq,qr = Nrq,Nt =

⎡
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎦ , Nr =

[
0 0 0 1 0
0 0 0 0 1

]
. (7)

The absolute position vector of the disk mass center measured in the XsYsZs coordinates is r = ro + Ntq.

ro = [xo yo zo]
T is the position vector of the mass center relative to the XsYsZs frame in the undisplaced state of

the rigid shaft-elastic bearing system. The absolute translational velocity vector of the mass center is ṙ.

ṙ = Ntq̇, q̇ = [ ẋ ẏ ż θ̇x θ̇y ]
T

. (8)

q̇ is the mass center generalized velocity vector. Expressed in the XsYsZs frame, the rotor translational kinetic

energy Tt is

Tt =
1

2
ṙTMtṙ, Mt = diag [ md md md ] . (9)

Mt is the system translational mass matrix and md is the disk mass. ṙ is from Eq. (8). Expressed in the abc frame,

the rotor rotational kinetic energy Tr is

Tr =
1

2
IT
r IiIr, Ir = [ω̄.ia ω̄.ib ω̄.ic]

T . (10)

Vector ω̄ is from Eq. (3). (.) denotes a vector inner product. Ii = diag [ Id
d Id

d Id
p ] is the rotor inertia tensor about

a, b, and c axes. Id
p is the polar moment of inertia of the rigid disk. Id

d is the disk diametral moment of inertia. From

Fig. 4, we have for small angles of rotations θx = θ cosψ and θy = θ sin ψ. Differniate each of θx and θy with

respect to time once, then

θx = θ cosψ, θy = θ sin ψ, θ̇x = θ̇ cosψ − θψ̇ sin ψ, θ̇y = θ̇ sinψ + θψ̇ cosψ. (11)

Using ω̄c from Eq. (3), we can show that

ω̄2

c = Ω2

s − Ωsψ̇θ2. (12)

where Ωs = (φ̇ + ψ̇) is the rotor spin speed. Using Eq. (11) one can show that θ̇yθx − θ̇xθy = ψ̇θ2. Substitute this

result into right hand side of Eq. (12) and use qr = [θx, θy]T (Eq. (6)) = Nrq, q̇r = [θ̇x, θ̇y]T = Nrq̇, then

ω̄2

c = Ω2

s + Ωsq̇
TNT

r Ĩ22Nrq, Ĩ22 =

[
0 1
−1 0

]
. (13)

Using ω̄b and ω̄c from Eq. (3) and the approximation sin θ ≈ θ, then

ω̄2

a + ω̄2

b = θ̇2 + θ2ψ̇2. (14)
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Using Eq. (11), then θ̇2
x + θ̇2

y = θ̇2 + θ2ψ̇2. Substituting this result into Eq. (14) and recalling that q̇r = Nrq̇, we
get

ω̄2

a + ω̄2

b = q̇T NT
r Nrq̇. (15)

Substitute from Eqs (13) and (15) into Eq. (10) to obtain Tr’s expression and substitute ṙ of Eq. (8) into Tt’s
expression of Eq. (9) then the total kinetic energy T (= Tr + Tt) is given by.

T =
1

2
[q̇T Ḡq + q̇TMq̇]. (16)

where M is the disk inertia (mass) matrix. Ḡ is its gyroscopic matrix.

M = diag [Mt Id
d I22 ] , Ḡ = diag

[
0̄33 ΩsI

d
p Ĩ22

]
. (17)

Matrix Mt is from Eq. (9). Iii is a i × i unit matrix. 0̄ij is a i × j null matrix.
Let µa and µb be the disk mass center eccentricities in a and b directions. The disk generalized unbalance force

vector is

Fu = Ω2

sQ̄
T
s M [ µa µb 0 0 0 ]

T
. (18)

The matrix Q̄s is from Eq. (5) and matrix M is from Eq. (17).

2.2. The bearing displacement vector

Figure 2 depicts a ball bearing system where the global coordinate system XsYsZs has its origin at the bearing
center with Zs axis coincides with the bearing axis. The frame x̄bȳbz̄b is a rotating coordinate system that spins at
the bearing cage angular speed (Ωc rad s−1) where the z̄b axis coincides with the bearing axis. The bearing inner
ring is lightly fitted on its rigid shaft and is modeled as an integral part of it and thus rotates with the angular speed
Ωs. The bearing outer ring, however, is fitted into its rigid and nonrotating housing. It should be noted that the
velocities Ωs and Ωc are absolute. The bearing has five-DOFs: three oscillations along, respectively, the Xs, Ys and
Zs axes plus two rotational motions around, respectively, the Xs and Ys axes, The coupling between the bearing
rotating elements and the rotating shaft is of the force-oscillations type. That is the input to bearing system is the
shaft motions and in return, the generated bearing reaction loads are inputed to shaft at the bearing point of action.
Let the global vibration amplitudes of the rotating shaft at the bearing point of action be xb, yb and zb, along Xs, Ys

and Zs directions plus θb
x and θb

y around Xs and Ys axes, respectively. These displacements, when transformed to

the system x̄bȳbz̄b using the orthogonal transformation matrix Q̄b are given by ūb, ūb, v̄b, θ̄b
u, and θ̄b

v, respectively,
such that

ūb = Q̄bqb, qb = Tbq,
ūb = [ ūb v̄b w̄b θ̄b

u θ̄b
v ]

T
, qb = [ xb yb zb θb

x θb
y ]

T
. (19)

Q̄b = diag [Qb
t Qb

r ] ,

Qb
t =

⎡
⎣

cosΩct sin Ωct 0
− sinΩct cosΩct 0

0 0 1

⎤
⎦ , Qb

r =

[
cosΩct sin Ωct
− sinΩct cosΩct

]
. (20)

where the bearing geometric transformation matrix Tb is from Eq. (52) and q is from Eq. (4). For a rotating
bearing inner and stationary outer ring, Ωc = Ωs

2
(1-Db cos αo

2rm
). rm is the bearing balls set pitch radius. Db is the ball

diameter. αo is the ball unloaded contact angle. Differentiating vector ūb of Eq. (19) with respect to time gives the

bearing local velocity vector ˙̄u
b
such that

˙̄u
b
= Q̄bq̇b + ˙̄Q

b
qb, q̇b = Tbq̇,

˙̄u
b
=

[
˙̄u
b ˙̄v

b ˙̄w
b ˙̄θ

b

u
˙̄θ
b

v

]T

, q̇b = [ ẋb ẏb żb θ̇b
x θ̇b

y ]
T

. (21)

where ˙̄Q
b
is the differentiation of the matrix Q̄b with respect to time. q̇b is the bearing global velocity vector and q̇

is from Eq. (8). The vector qb which is given by Eq. (19) is obtained from the vector q of Eq. (6) of the mass center
using the bearing geometric transformation matrix Tb of Eq. (52).
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Fig. 5. Ball bearing ball-to-races contact configuration.

2.3. The bearing elastic loads

For the analysis of the bearing generated forces and moments, the outer raceway of groove curvature radius ro

and center co is taken to be fixed in the bearing housing and the inner raceway of groove curvature radius ri and

center ci is attached to the shaft. If the bearing is unloaded, the relative distance between centers ci and co along

unloaded line of contact is So = BDb. B = (ro + ri − Db)/Db is the total curvature. see Fig. 5 which depicts the

geometry of contact between the bearing rolling element (ball) and the bearing inner and outer races. The ball free

contact angle αo = arccos(1- Sd

2So
). Sd is the bearing diametral clearance. If the bearing is subjected to a pure axial

load of magnitude F b
a , the ensuing axial deformation w̄b

o is

w̄b
o = BDb

sin (αp − αo)

cosαp
. (22)

The preload contact angle αp is obtained by solving Eq. (23) iteratively.

F b
a = K̄bNb

[
BDb

(
cosαo

cosαp
− 1

)]n

sin αo. (23)

Nb is the bearing rolling elements number. K̄b is the Hertzian spring constant [42].

K̄b =

(
1

(1/K̄b
i )

1/n + (1/K̄b
o)

1/n

)n

. (24)

K̄b
i and K̄b

o are the contact stiffness constants at the inner and outer races. They are functions of the diameters of the

bearing and balls, curvatures of the contact surfaces, the initial contact angles, and Hertzian stress. n = 1.5 for ball

bearings.

In the field, the supporting bearing could be loaded by a combination of axial, radial and moment loads/and or

deformations. The relative distance between the centers ci and co at the instantenous position of the jth ball is Sj .

Sj =
√

S2
r + S2

a. (25)

Sa and Sr are the axial and radial deformations at ball-to-races contact such that

Sa = w̄b + w̄b
o + rm(θ̄b

u sin φ − θ̄b
v cosφ) + So sin αo. (26)

Sr = ūb cosφ + v̄b sin φ + So cosαo. (27)

The operating contact angle at the instantenous position of the jth ball is αj .
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tan αj =
Sa

Sr
, cosαj =

Sr

Sj
, sinαj =

Sa

Sj
. (28)

If there is contact between ball and races, the ball elastic contact force P b
j is

P b
j = K̄b(Sj − So)

n if Sj > So. (29)

otherwise P b
j = 0. The bearing generated forces and moments when expressed in the x̄bȳbz̄b coordinates are given

by the vector f b
eo such that

f b
eo =

⎡
⎢⎢⎢⎢⎢⎢⎣

f b
ex

f b
ey

f b
ez

mb
ex

mb
ey

⎤
⎥⎥⎥⎥⎥⎥⎦

o

=

Nb∑

j=1

P b
j

⎡
⎢⎢⎢⎣

cosφj cosαj

sin φj cosαj

sinαj

rm sin φj sin αj

−rm cosφj sin αj

⎤
⎥⎥⎥⎦ . (30)

The subscript e denotes bearing elastic spring loads (forces/moments). These load components when expressed in

XsYsZs frame are given by load vector Fb
eo.

Fb
eo = [ F b

ex F b
ey F b

ez M b
ex M b

ey ]
T
o = (Q̄b)T f b

eo. (31)

Matrix Q̄b is from Eq. (20). The global load vector of the bearing inner ring, Fb
ei, is

Fb
ei = −Fb

eo. (32)

The outer subscripts i and o denote the bearing inner and outer races, respectively.

2.4. The bearing stiffness matrix at bearing location, Kb

The coefficients Kb
ij of the angular contact ball bearing stiffness matrix Kb are obtained by computing partial

derivatives of the bearing load vector Fb
ei with respect to each displacement of the bearing displacement vector qb

of Eq. (19). From Eq. (31), the bearing force F b
ex is

F b
ex = f b

ex cosΩct − f b
ey sin Ωct. (33)

The bearing local forces f b
ex and f b

ey are from Eq. (30). Thus,

Kb
11 =

∂F b
ex

∂xb
=

∂f b
ex

∂xb
cosΩct −

∂f b
ey

∂xb
sinΩct. (34)

Taking partial derivative of each of f b
ex and f b

ey with respect to displacement xb, then

∂f b
ex

∂xb
=

Nb∑

j=1

(
cosαj

∂P b
j

∂xb
+ P b

j

∂ cosαj

∂xb

)
cosφj . (35)

∂f b
ey

∂xb
=

Nb∑

j=1

(
cosαj

∂P b
j

∂xb
+ P b

j

∂ cosαj

∂xb

)
sin φj . (36)

Recalling from Eq. (29) that ball force P b
j = K̄b(Sj − So)

n, then

∂P b
j

∂xb
= nK̄b(Sj − So)

n−1 ∂Sj

∂xb
. (37)

Taking partial derivative of Sj of Eq. (25) with respect to xb, then

∂Sj

∂xb
=

1

Sj

(
Sr

∂Sr

∂xb
+ Sa

∂Sa

∂xb

)
. (38)
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Using Eqs (26) and (27), we obtain

∂Sa

∂xb
= 0. (39)

∂Sr

∂xb
=

∂ūb

∂xb
cosφj +

∂v̄b

∂xb
sin φj . (40)

From Eq. (19), we obtain

ūb = xb cosΩct + yb sin Ωct, v̄b = −xb sin Ωct + yb cosΩct. (41)

Thus,

∂ūb

∂xb
= cosΩct,

∂v̄b

∂xb
= − sinΩct. (42)

Substituting from Eq. (42) into Eq. (40), then

∂Sr

∂xb
= cosΩct cosφj − sin Ωct sin φj = cos(Ωct + φj). (43)

Substitute from Eqs (39) and (43) into Eq. (38) and recall Sr

Sj
= cosαj of Eq. (28), then

∂Sj

∂xb
=

Sr

Sj
cos(Ωct + φj) = cosαj cos(Ωct + φj). (44)

Substitute from Eq. (44) into Eq. (37), then

∂P b
j

∂xb
= nK̄b(Sj − So)

n−1 cosαj cos(Ωct + φj). (45)

or

∂P b
j

∂xb
=

nP b
j

Sj − So
cosαj cos(Ωct + φj). (46)

Recalling from Eqs (28) that cosαj = Sr/Sj , then

∂ cosαj

∂xb
=

Sj
∂Sr

∂xb − Sr
∂Sj

∂xb

S2
j

. (47)

Substituting from Eqs (43) and (44) into Eq. (47) and using the identity (1 − cos2 αj) = sin2 αj , then

∂ cosαj

∂xb
=

sin2 αj

Sj
cos(Ωct + φj). (48)

Substituting from Eqs (46) and (48) into each of Eqs (35) and (36), then

∂f b
ex

∂xb
=

Nb∑

j=1

P b
j

(
n cos2 αj

Sj − So
+

sin2 αj

Sj

)
cosφj cos(Ωct + φj). (49)

∂f b
ey

∂xb
=

Nb∑

j=1

P b
j

(
n cos2 αj

Sj − So
+

sin2 αj

Sj

)
sinφj cos(Ωct + φj). (50)

Substituting from Eqs (49) and (50) into Eq. (34), gives coefficient Kb
11 of Kb

Kb
11 =

∂F b
ex

∂xb
=

Nb∑

j=1

P b
j

(
n cos2 αj

Sj − So
+

sin2 αj

Sj

)
cos2(Ωct + φj). (51)

Following the derivation of Kb
11, the rest of the stiffness matrix coefficients are derived accordingly. They are listed

in Appendix A.
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2.5. The bearing stiffness matrix at rotor mass center location, Kcg

Recall that disk is mounted at the distances Lr and Ll from the right and left bearings, respectively. Its displacement

vector q measured in the XsYsZs frame is given by Eq. (4). For small oscillations and small angles of rotation, the

right and left bearing displacement vectors, qb
r = [ xb

r yb
r zb

r θb
xr θb

yr ]
T

and qb
l = [ xb

l yb
l zb

l θb
xl θb

yl ]
T
,

respectively, measured in XsYsZs are

qb
r = Tb

rq, qb
l = Tb

l q,

Tb
r =

⎡
⎢⎢⎢⎣

1 0 0 0 Lr

0 1 0 −Lr 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ , Tb

l =

⎡
⎢⎢⎢⎣

1 0 0 0 −Ll

0 1 0 Ll 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ . (52)

Tb
r and Tb

l are geometric transformation matrices for right and left bearings. Let Kb
r and Kb

l be the right and

left bearing stiffness matrices, respectively, computed using Eqs (69) to (83) (Appendix A), where each matrix is

computed at its bearing location, i.e. using the bearings displacement vectors qb
r and qb

r, respectively, of Eq. (52). To

transfer Kb
r and Kb

l to the mass center we use the principal of virtual work. The potential energy associated with the

right bearing is V b
r = 1

2
(qb

r)
T Kb

rq
b
r . Its first variation is δV b

r = (qb
r)

TKb
rδq

b
r= (δqb

r)
TKb

rq
b
r. δqb

r=Tb
rδq is the vir-

tual change in vector qb
r where δq is the virtual change in q. Using qb

r of Eq. (52), then δV b
r = (δq)T (Tb

r)
T Kb

rT
b
rq.

The virtual work of the right bearing spring loads is δW b
r = −δV b

r = −(δq)T (Tb
r)

T Kb
rT

b
rq = −(δq)T Hcg

r q.

Where Hcg
r = (Tb

r)
TKb

rT
b
r is the right bearing stiffness matrix expressed at the spindle-bearings assembly center

of gravity. Likewise the left bearing stiffness matrix is H
cg
l = (Tb

l )
T Kb

lT
b
l . The rigid shaft-disk-elastic bearings

system total stiffness matrix Kcg=Hcg
r + H

cg
l is

Kcg = (Tb
r)

T Kb
rT

b
r + (Tb

l )
T Kb

lT
b
l . (53)

Kcg is time-varying due to rotation of the bearing cage. Let coefficients of matrices Kb
r, Kb

l be Kr
ij , K l

ij , i, j =
1,2,3,4,5, then coefficients of Kcg are Kcg

ij such that

Kcg
11

= Kr
11 + K l

11, Kcg
12

= Kr
12 + K l

12, Kcg
13

= Kr
13 + K l

13,

Kcg
14

= Kr
14 − LrK

r
12 + K l

14 + LlK
l
12, Kcg

15
= Kr

15 + LrK
r
11 + K l

15 − LlK
l
11,

Kcg
22

= Kr
22 + K l

22, Kcg
23

= Kr
23 + K l

23, Kcg
24

= Kr
24 − LrK

r
22 + K l

24 + LlK
l
22,

Kcg
25

= Kr
25 + LrK

r
21 + K l

25 − LlK
l
21,

Kcg
33

= Kr
33 + K l

33, Kcg
34

= Kr
34 − LrK

r
32 + K l

34 − LlK
l
32,

Kcg
35

= Kr
35 + LrK

r
31 + K l

35 − LlK
l
31,

Kcg
44

= Kr
44 − 2LrK

r
24 + L2

rK
r
22 + K l

44 + 2LlK
l
24 + L2

l K
l
22,

Kcg
45

= Kr
45 + Lr(K

r
41 − Kr

25) − L2

rK
r
21 + K l

45 + Ll(K
l
25 − K l

41) − L2

l K
l
21,

Kcg
55

= Kr
55 + 2LrK

r
15 + L2

rK
r
11 + K l

55 − 2LlK
l
15 + L2

l K
l
11. (54)

The above procedure is applicable to rotors supported on any number of bearings.

2.6. The bearing damping matrix

Damping in the rolling element bearing is modeled using viscous damper of constant coefficient Cb
v . If there is

contact between the bearing ball and races, the ball local damping force Db
j is

Db
j = Cb

v

d

dt
(Sj − So) = Cb

vṠj , if Sj > So. (55)
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otherwise, Db
j = 0. The generated damping forces/moments when expressed in the x̄bȳbz̄b frame are given by the

vector f b
do such that

f b
do =

⎡
⎢⎢⎢⎢⎢⎢⎣

f b
dx

f b
dy

f b
dz

mb
dx

mb
dy

⎤
⎥⎥⎥⎥⎥⎥⎦

o

=

Nb∑

j=1

Db
j

⎡
⎢⎢⎢⎢⎢⎢⎣

cosφj cosαj

sin φj cosαj

sinαj

rm sin φj sin αj

−rm cosφj sin αj

⎤
⎥⎥⎥⎥⎥⎥⎦

. (56)

Using Sj Eq. (25), Sr

Sj
= cosαj ,

Sa

Sj
= sinαj Eq. (28), then Db

j = Cb
vṠj = Cb

v(Ṡr cosαj + Ṡa sin αj) which upon

substituting into Eq. (56) gives
⎡
⎢⎢⎢⎢⎢⎢⎣

f b
dx

f b
dy

f b
dz

mb
dx

mb
dy

⎤
⎥⎥⎥⎥⎥⎥⎦

o

=

Nb∑

j=1

Cb
v

⎡
⎢⎢⎢⎢⎣

cosφj(Ṡr cos2 αj + Ṡa sin αj cosαj)

sin φj(Ṡr cos2 αj + Ṡa sin αj cosαj)

(Ṡr sin αj cosαj + Ṡa sin2 αj)

rm sin φj(Ṡr sin αj cosαj + Ṡa sin2 αj)

−rm cosφj(Ṡr sin αj cosαj + Ṡa sin2 αj)

⎤
⎥⎥⎥⎥⎦

. (57)

The inner subscript d denotes damping and the other subscripts are defined before. The damping load vector f b
do

when expressed in the XsYsZs frame is given by Fb
do.

Fb
do =

[
F b

dx F b
dy F b

dz M b
dx M b

dy

]T

o
= (Q̄b)T f b

do. (58)

The global damping load vector of the bearing inner ring is Fb
di, such that

Fb
di = −Fb

do. (59)

The bearing damping matrix coefficients (Db
ij) are computed as follows. From Eq. (58), the bearing damping force

F b
dx in the Xs direction is

F b
dx = f b

dx cosΩct − f b
dy sin Ωct. (60)

where the bearing local damping forces f b
dx and f b

dy are from Eq. (57). Thus, the coefficient Db
11 of the bearing

damping matrix Db is

Db
11 =

∂F b
dx

∂ẋb
=

∂f b
dx

∂ẋb
cosΩct −

∂f b
dy

∂ẋb
sin Ωct. (61)

Take partial derivative of each of f b
dx and f b

dy with respect to velocity ẋb, then
⎡

⎣
∂fb

dx

∂ẋb

∂fb
dy

∂ẋb

⎤

⎦ =

Nb∑

j=1

Cb
v

[
cosφj(

∂Ṡr

∂ẋb cos2 αj + ∂Ṡa

∂ẋb sin αj cosαj)

sin φj(
∂Ṡr

∂ẋb cos2 αj + ∂Ṡa

∂ẋb sin αj cosαj)

]
. (62)

Using Eq. (27), then Ṡr = ˙̄u
b
cosφj + ˙̄v

b
sin φj . Thus ∂Ṡr

∂ẋb = ∂ ˙̄ub

∂ẋb cosφj + ∂ ˙̄vb

∂ẋb sinφj . But from Eqs (21), (19) and

(20), we obtain

[
˙̄u
b

˙̄v
b

]
=

[
ẋb cosΩct + ẏb sin Ωct + Ωc(−xb sin Ωct + yb cosΩct)
−ẋb sin Ωct + ẏb cosΩct − Ωc(x

b cosΩct + yb sin Ωct)

]
,

⎡
⎣

∂ ˙̄ub

∂ẋb

∂ ˙̄vb

∂ẋb

⎤
⎦ =

[
cosΩct

− sinΩct

]
. (63)

and therefore, ∂Ṡr

∂ẋb = cos(Ωct + φj) which upon substituting into Eq. (62) and since ∂Ṡa

∂ẋb = 0, then
[

∂fb
dx

∂ẋb

∂fb
dy

∂ẋb

]
=

Nb∑

j=1

Cb
v

[
cosφj cos2 αj cos(Ωct + φj)
sin φj cos2 αj cos(Ωct + φj)

]
. (64)
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Table 1

ACBB 7039 parameters, Muhlner [8]

Item value Item Value

Pitch circle radius, rm 36.25 mm Ball diameter, Db 17.7 mm

Outer race curvature radius, ro 9.38 mm Initial contact, αo 40◦

Inner race curvature radius, ri 9.16 mm Number of balls, Nb 12

Substituting from Eqs (64) into Eq. (61), then

Db
11 =

Nb∑

j=1

Cb
v cos2 αj cos2(Ωct + φj). (65)

Following derivation of Db
11, the rest of damping matrix coefficients are derived accordingly and listed in Appendix

B. Now, total damping matrix of the rigid shaft-disk-elastic bearings system, expressed ( acting) at mass centre is

Dcg.

Dcg = (Tb
r)

TDb
rT

b
r + (Tb

l )
TDb

l T
b
l . (66)

Db
r and Db

l are damping matrices of the right and left bearings, respectively, each is derived at its bearing position.

The matrices Tb
r and Tb

l are from Eq. (52).

2.7. Equations of motion

The potential and dissipation functions of the rotor-rolling element bearings system are P = 1

2
qT Kcgq and

D = 1

2
q̇T Dcgq̇, respectively. The stiffness matrix Kcg is from Eq. (53) and displacement vector q is from (4). The

dampig matrix is from Eq. (66) and velocity vector q̇ is from Eq. (8). Recall T of Eq. (16) and Fu of Eq. (18).

Apply Lagrange’s equations d
dt

(
∂T
∂q̇k

)
− ∂T

∂qk
+ ∂P

∂qk
+ ∂D

∂q̇k
= Fuk, k = x, y, z, θx, θy, we obtain

Mq̈ + Dcgq̇ + Gq̇ + Kcgq = F, G =
1

2
[Ḡ− ḠT ], F = Fu. (67)

G is the gyroscopic matrix where the matrix Ḡ is from Eq. (17). F is the load vector.

3. The bearing model verifications/application

3.1. Bearing stiffness matrix-comparison with SKF results/software

The angular contact ball bearing (ACBB) 7039 whose data are given in Table 1 is subjected to external load

vector (Fb
ext) of a radial force of 500 N in the horizontal direction, a radial force of 500 N in the vertical direction,

an axial force of 2000 N, a moment of 1.0 N.m about horizontal axis, and a moment of 1.0 N.m about vertical

axis (Muhlner [8]). As a result, the bearing system will experience an unknown deformation vector qb needed

to maintain the static equilibrium. The deformations qb are determined using Newton-Raphson method for a

system of simultaneous nonlinear equations (details are not included for brevity). Then vector qb is used to

calculate bearing loads and stiffness matrix Kb using the analytical analyses developed above. We observe that

Muhlner’s stiffness matrix coefficients (∆KHi,jq
) listed on pages 113–114 in [8] require corrections, e.g.∆KH5,5q

=

H5r
2
m(1.5H1 sin β−H2

4H2
2 ) sinϕ should read ∆KH5,5q

= H5r
2
m(1.5H1 sinβ−H2

4H2
2 ) sin2 ϕ. Also, in Eq. (A.22)

of [9] (which is a part of Dietl’s stiffness matrix), the term (r cosαi cosϕi) should read as (r cosαi sin ϕi). The

coefficients of the bearing stiffness matrix are listed in Table 2 for different models. Our proposed model produces

excellent results compared to both Muhlner’s model [8] (the maximum absolute error is 0.81%) and Dietl’s model [9]

(the maximum absolute error is 2.55%) that in turn were validated against both SKF software (not available for

public engineers) and experimental results. Recall that Dietl’s bearing stiffness matrix has two parts; namely, one

part called linear-elastic bearing stiffness matrix and one part called geometrical (preload) stiffness matrix and part

due to preload (geometrical stiffness matrix) is approximate.
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Table 2

ACBB 7039 Stiffness matrix coefficients, Kb
ij

, computed by different models. External load

vector Fb
ext = [500N 500N 2000N 1N.m 1N.m]T

Kb
ij Muhlnerb [8] %errab DAMRO-1a Dietlc [9] %errac

Kb
11, N mm−1 171000.0 −0.66 172131.6 172131.6 0.0

Kb
12, N mm−1 53300.0 −0.75 53698.3 53698.3 0.0

Kb
13, N mm−1 −4300.0 0.38 −4283.6 −4283.6 0.0

Kb
14, N rad−1 1460000.0 −0.81 1471843.7 1474665.0 0.19

Kb
15, N rad−1 −4880000.0 −0.48 −4903232.7 −4903232.7 0.0

Kb
22, N mm−1 155000.0 −0.34 155520.7 155520.7 0.0

Kb
23, N mm−1 11400.0 0.008 11399.1 11399.1 0.0

Kb
24, N rad−1 4390000.0 −0.45 4409792.6 4414719.7 0.11

Kb
25, N rad−1 −1500000.0 −0.62 −1509343.5 −1471843.7 −2.55

Kb
33, N mm−1 225000.0 −0.45 226011.1 226011.1 0.0

Kb
34, N rad−1 −863000.0 −0.68 −868886.0 −885433.0 1.87

Kb
35, N rad−1 1550000.0 −0.03 1550500.8 1550500.8 0.0

Kb
44, N mm/rad 139300000.0 −0.003 139304365.4 139304365.4 0.0

Kb
45, N mm/rad −49400000.0 −0.79 −49788394.5 −49563464.7 −0.45

Kb
55, N mm/rad 157000000.0 −0.10 157160958.5 157160958.5 0.0

aThis study; bResults listed in Fig. 3.19 of [8]; cDietl’s model including geometric stiffness term.

%errab =
Muhlner[8]−(DAMRO−1)

Muhlner[8]
× 100, %errac =

Dietl[9]−(DAMRO−1)
Dietl[9]

× 100.

Table 3

The bearing Parameters, [44]

Item value Item Value

Inner raceway radius, Ri 26.145 mm shaft speed, Ωs 400 rad/s

Outer raceway radius, Ro 38.855 mm Ball diameter, Db 12.7 mm

Outer race curvature radius, ro 6.6 mm Number of balls, Nb 9

Inner race curvature radius, ri 6.6 mm

Angular position of bearing inner ring (radians)
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Fig. 6. Bearing horizontal force F b
x vs shaft rotation for Ωs = 400 rad/s and vertical displacement ey = −0.061 mm; This study (solid line);

Kiskiniva’s model [44] (dashed line); Muhlner’s model [8] (dash-dot line).

3.2. Rotating bearing generatd dynamic loads due to external constant displacement

The variable elastic compliance induced vibrations occur in a bearing under constant radial load or combined load

but not under pure axial load [49]. The bearing example presented in [44] is studied. The bearing whose data are



656 F.M.A. El-Saeidy / Time-varying total stiffness matrix of a rigid machine spindle-angular contact ball bearings assembly

Table 4

The Rotor-SKF6002 bearing Parameters, [50]

Item value Item Value

Inner raceway radius, Ri 9.37 mm Shaft speed, Ωs 2000 rpm

Outer raceway radius, Ro 14.13 mm Cage speed, Ωc = ΩsRi

(Ri+Ro)

Radial clearance 3.0 µm Balls number, Nb 9

Spring constant, K̄b 7.055 × 109 N.m−1.5 Weight, W 6 N

Bearing damping, Cb
v 200 N.s/m Unbalance force, Fu 0.15W

Table 5

Rotor vertical displacement spectra of this study and Ref. [50]

Freq. (Hz) Fig. 7 of this study Fig. 19 of Ref. [50]

fo − 3fs
√

not visible

fs = 33.333
√

(dominant;amp=0.035 µm)
√

(dominant;amp≈0.0325 µm)

fo − 2fs
√ √

2fs
√ √

fo − fs
√ √

3fs
√ √

fo = 119.617
√ √

fo + fs
√ √

fo + 2fs
√ √

given in Table 3 is given a constant vertical displacement ey = −0.061 mm and the bearing forces are computed

while the shaft makes one revolution.

Kiskiniva [44] presented equations for calculating forces and moments acting on ACBB inner ring. He calculated

the bearingHertzian contact stiffness coefficient using the approximatemethod of [45–47]which requires calculation

of the contacting bodies radii of curvature that in turn depend on the ball contact angle. But he assumed ball contact

angle to be of zero value. However, this assumption of zero value introduces small error [48]. The bearing forces

are calculated using our analyses of Eqs (19) to (32). Analysis of [44] is used to reproduce the plot of the bearing

horizontal force F b
x against shaft rotation of Fig. 3.12 in [44]. The plot is shown in Fig. 6 (dashed line) along with our

model plot (solid line) and Muhlner’s model plot (dash-dot line). Our model and Muhlner’s model produce typical

results. The small difference between our results and Kiskiniva results may be due to approximation stated above.

However, there is good qualitative and quantitative agreement. Variation in F b
x is periodic of period ≈0.00433 s.

i.e. 230.947 Hz which could be due to fo = Nbfc = 230.625 Hz (the outer ring ball passing frequency, also known
as elastic variable compliance frequency), fc = 25.625 Hz is the bearing cage frequency. i.e. variation is due to

the bearing variable elastic compliance. Moreover, the variation is not pure sinsoidal as harmonic distortion (due to

bearing nonlinearity) is visible. These observations agree with similar SKF analytical/experimental observations on

response of ball bearings under pure constant radial loads [49].

3.3. Comparison with experimental/analytical results

3.3.1. Vibration of unbalanced two-DOF rigid rotor-ball bearings

Tiwari et al. [50] used two-DOF (1 horizontal, 1 vertical) model and analytically and experimentally studied effect

of SKF6002 deep grrove ball bearing internal clearance on dynamics of a horizontal unbalanced rigid rotor under

constant vertical load. The bearing horizontal and vertical nonlinear forces are caculated taking into account cage

rotation and radial clearance. They solved their two second order equations of motion using RKM and validated

numerical results using experimental test rig which is described in Fig. 21 in [50]. The rotor-bearing parameters are

listed in Table 4. We applied our developed analyses to this rotor-bearing system and obtained response using RKM.

Time domain record is zero meaned and windowed using Hanning window and FFT is computed using DAMRO-1

program [43]. Figure 7 depicts FFT of the bearing vertical displacement where we see excellent qualitative and

quantitative agreement with FFT of the vertical motion given in Eq. (19) in [50]. In each of our FFT and FFT of [50],

the dominant vibration is at fs (the rotor rotational speed frequency) and its amplitude is about 0.035 µm. The

comparison between our result and that of [50] is listed in Table 5. fo is the variable elastic compliance frequency

(defined above) and fs is the unbalance frequency. In [50], V C and nX , n = 1,2,3, correspond to fo and nfs,
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Fig. 7. FFT of the mass center (C.G) vertical displacement of deep groove ball bearing (DGBB) SKF6002.

respectively. FFT is marked with vibration tones at fo, fs and its higher harmonics in addition to peaks at (fo ±nfs)

and this agrees with the analytical and experimental results of Ref. [50].

3.3.2. Natural frequencies of five-DOF experimental rigid grinding spindle-angular contact ball bearings assembly

The experimental grinding spindle depicted in Fig. 1 of [16] and 4 of [51] is analytically simulated. The shaft

is mounted on a pair of angular contact ball bearings (RHP 7008). “The bearings are slide and interference fitted

into the housing and on the shaft”. “Hence a nearly clearance-free radial fit is ensured” [16]. The bearings-spindle

parameters are listed in Table 6. Using these parameters, the rigid spindle-elastic bearings symmetric total stiffness

matrix is calculated using Eq. (54) and is listed in Table 7. Since the matrix Kcg is symmetrix and matrix M of

Eq. (17) is diagonal, the analytical (exact) frequencies (in Hz) of Mq̈ + Kcgq = 0̄51 are

f̄1 =

√
Kcg

33

4π2md
(axial mode); (f̄2 = f̄3(bounce mode), f̄4 = f̄5(rock/pitch mode))

=

√√√√(mdKcg
55

+ Id
dKcg

11
)

8π2mdId
d

∓

√
(mdKcg

55
+ Id

dKcg
11

)2 − 4mdId
d (Kcg

11
Kcg

55
− Kcg

15
Kcg

15
)

8π2mdId
d

(68)

where the upper sign (−) is for the bounce mode frequency and the lower sign (+) is for the rock mode frequency.

The stiffness matrix elements Kcg
33

, Kcg
11

, Kcg
55

and Kcg
15

are from Eq. (54).

For comparison, the eigenvalues are obtained using QR method of DAMRO-1 program [43] and MATLAB [53],

see Table 8. Aini et al. [51,16] conducted impact (hammer) testing of the static spindle assembly normal to its

longitudinal axis at the application point of external applied force. They found the fundamental bounce mode in the

vertical transverse plane to be in the 0.7–1.2 kHz region, the frequencies band associated with the axial vibrations

to be in 0.0–0.7 kHz region and frequency band of rock/pitch mode of assembly to be between 1.2 and 2.0 kHz, see

Table 8. Aini et al. [16] assumed constant (linear) bearing stiffness coefficients at the front and rear bearings and

used a two-DOF analytical model (discussed in Section 1.3) and calculated bounce and rock/pitch frequencies only

with no account for the axial vibration mode, see Table 8. On the other hand, our proposed model predicts all natural

frequencies and is nonlinear (i.e. it does not require preknowledge of the stiffness coefficients) and takes into account

gyroscopic effect of the rotating rotor, see Table 9. In [16,51], the experimental natural frequencies of the rotating

spindle assembly under no cutting load are obtained from the spectrum of the spindle response. At rotor speed Ωs =
1000 rpm and bearing axial preload of 100 N, they [16,51] found the bounce and rock/pitch frequencies to be 1050 Hz

and 1590 Hz, respectively. Here Mq̈+Gq̇+Kcgq = 0̄51 is transformed into a first-order system and its matrix H=
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Table 6
Experimental grinding spindle-bearings assembly parameters, [16,51]

Bearings parameters:

Inner race bore = 0.04 m; Inner race diameter = 0.046 m; Number of balls = 16;

Outer race diameter = 0.062 m; Inner race radius of curvature = 0.00408 m;

Outer race radius of curvature=0.00461 m; Ball diameter = 0.00794 m;

Outer race outside diameter=0.068 m; Unloaded contact angle = 15◦;
Bearing width = 0.015 m; Pitch diameter of ball set = 0.054 m;

Bearing axial preload=100 N; Both bearings are identical.

Spindle parameters:

Shaft diameter between bearings = 0.04 m; Length of shaft = 0.421 m;

Shaft mass, m = 5.5 kg;

Moment of inertia of shaft about Xs or Ys axes, Id = 0.05177 kg.m2

Moment of inertia of shaft about Zs axis, Ip = 0.0044 kg.m2

Position of left bearing from mass center = 0.0875 m;

Position of right bearing from mass center = 0.174 m.

Table 7
Stiffness matrix coefficients of the grinding spindle-bearings assembly for

bearing axial preload = 100 N

K
cg
11 = 254789125.278, N/m; K

cg
25 = −0.0, N/rad;

K
cg
12 = 0.0, N/m; K

cg
33 = 40469147.099, N/m;

K
cg
13 = 0.0, N/m; K

cg
34 = 0.0, N/rad;

K
cg
14 = 0.0, N/rad; K

cg
35 = −0.0, N/rad;

K
cg
15 = 9106715.531, N/rad; K

cg
44 = 4681646.330, N.m/rad;

K
cg
22 = 254789125.278, N/m; K

cg
45 = 0.0, N.m/rad;

K
cg
23 = −0.0, N/m; K

cg
55 = 4681646.330, N.m/rad;

K
cg
24 = −9106715.531, N/rad; K

cg
ji

= K
cg
ij

.

Table 8

Natural frequencies f̄k (Hz) of spindle-ball bearings assembly for Ωs = 0, Bearing

axial preload = 100 N

This study: a,b,c Analytical: Experimental:
a:Exact∗ b:Damro-1∗ c:Matlab Ref. [16] Refs [16,51]

f̄1: 431.719 431.719 431.771 —— 0.0–700 band

f̄2: 1012.767 1012.767 1012.241 910 700-1200 band

f̄3: 1012.767 1012.767 1012.241 (bounce mode)

f̄4: 1561.536 1561.536 1561.421 1470 1200-2000 band

f̄5: 1561.536 1561.536 1561.421 (rock/pitch mode)

f̄1=fa(axial natural frequency), ∗The results are obtained using 2π = 8(arctan 1).

Table 9
Natural frequencies f̄k (Hz) of spindle-ball bearings assembly for Ωs = 1000 rpm, bearing

axial preload = 100 N

This study:a,b Experimental:

a: Damro-1 %erra b:Matlab %errb Refs [16,51]

f̄1 = fa: 431.719 431.771 —— (axial mode)

f̄2 = fB
1 : 1012.693 3.553 1012.162 3.604 1050 (bounce mode)

f̄3 = fF
1 : 1012.841 1012.321

f̄4 = fB
2 : 1560.902 1.830 1560.785 1.837 1590 (rock/pitch mode)

f̄5 = fF
2 : 1562.171 1562.058

%erra =
Experimental−(Damro−1)

Experimental
×100; %errb = Experimental−Matlab

Experimental
×100.
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Table 10

Natural frequencies f̄k (Hz) of spindle-ball bear-

ings assembly for Ωs = 0, 1000 rpm, bearing axial

preload = 100 N, K
cg
inc

=diag[K
cg
11 K

cg
22 K

cg
33 K

cg
44

K
cg
55]

Damro-1 Damro-1 %error

0 rpm 1000 rpm

f̄1: 431.719 f̄1: 431.719

f̄2: 1083.251 f̄2=fB
1 : 1083.251 −3.167

f̄3: 1083.251 f̄3=fF
1 : 1083.251

f̄4: 1513.493 f̄4=fB
2 : 1512.785 4.856

f̄5: 1513.493 f̄5=fF
2 : 1514.201

%error =
Experimental−(Damro−1)

Experimental
× 100, ex-

perimental values are listed in Table 9.

[
0̄55 I55

−M−1Kcg −M−1G

]
is solved using the QR method of DAMRO-1 and the MATLAB line command eig(H)

for eigenvalues. Table 9 compares our analytical results to the experimental results of Refs [16,51]. fF1 and fB1 are

first forward and backward modes. fF2 and fB2 are second forward and backward modes. Observe that the natural

frequency in axial direction (f̄1) is independent of the spindle speed (Ωs). Also, Aini [51] experimentally observed
that the axial frequency band (0.0–0.7 KHz) is independent of Ωs. As can be seen the proposed analytical model

produces results with excellent agreement with the experimental ones. Observe that the spindle rotation (gyroscopic

effect) has small effect. Also Aini [51] experimentally observed that the spindle gyroscopic effect at 1000 rpm has

small effect on the dynamic response.

3.4. Applications

3.4.1. Effect of using the incorrect (diagonal) stiffness matrix, K
cg
inc.

Here, effect of using matrix K
cg
inc = diag [Kcg

11
Kcg

22
Kcg

33
Kcg

44
Kcg

55
] whose coefficients Kcg

ii are from Eq. (54)

versus the full (correct) stiffness matrix Kcg of Eq. (54) on the spindle response is presented within the limits of a

research study. The rotor is loaded by mass center unbalance of eccentricities µa = µb = 18 µm and gravity load

of its own weight (54 N). The damping coefficient Cb
v = 40 N.s/m. The spindle-bearings data are given in Table 6.

If Kcg is used, full damping matrix Dcg is used. If K
cg
inc is used, diagonal damping matrix D

cg
inc is used. Since

the inertia matrix M is diagonal, using diagonal stiffness matrix uncouples the x and y motions from each other

and from each of the rotational motions. It makes rotational motions coupled to each other by only the gyroscopic
effect of the rotating shaft. As a result, the bounce mode frequency is not affected by inner ring rotation and the

rock/pitch mode frequency is affected as can be seen in Table 10 which tabulates natural frequencies when matrix

K
cg
inc is used. Comparing Table 10 to Table 9 for Ωs = 1000 rpm and Table 10 to Table 8 for Ωs = 0 rpm where

Ωs = 0.0 rpm/1000 rpm refers to execluding/including the rotor gyroscopic effect, we see that using matrix K
cg
inc

caused an increase in value of the bounce mode frequency and decrease in value of the rock/pitch mode frequency.

The axial mode frequency value is not affected. These trends of change in eigenvalues are observed for different

axail preload values, see Figs 8(a) to 8(c) that depict variation in axial, bounce and rock frequencies, respectively.

The most affected frequency is the bounce. The natural frequency change is nonlinear and its rate is rapid at lower
values of axial preload. As preload increases, the bearings become stiffer and the change rate decreases.

In the next section, effect of using K
cg
inc matrix will be further briefly highlighted (see Fig. 11).

3.4.2. Time-varying stiffness matrix (Kcg) versus standard formulation stiffness matrix (K
cg
std)

If the bearing cage rotation is not considered in the above presented analyses, the stiffness matrix becomes that of

the standard formulation and is denoted hereafter by K
cg
std.

For brevity, we present two examples to highlight the contributions of the presented analyses.

In the first example, the spindle-bearings system is loaded by mass unbalance of eccentricties µa = µb = 18 µm,

gravity load of its own weight (54 N) and a force of magnitude 203 N at 9.87◦ angle to the positive Xs axis in the
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Fig. 8. Natural frequencies of the machine spindle-bearings assembly vs bearing axial preload with consideration of shaft gyroscopic effect

(Ωs = 1000 rpm) and without gyroscopic effect (Ωs = 0.0 rpm): (a) axail frequency; (b) bounce frequency; (c) rock/pitch frequency.
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Fig. 9. (a): Gravity center orbit for time-varying stiffness matrix (dash-dot-dot line) and standard stiffness matrix (solid line). external force =
203 N force acting in vertical plane at gravity center and is inclined at 9.87 deg to the positive Xs. Ωs = 300 rpm. mass unbalance eccentricity
µa = µb = 18 µm. bearing number of balls Nb = 5, bearing axial preload = 70 N. (b): FFT of y (vertical) vibration of orbit in (a) for

time-varying stiffness matrix (dashed line) and standard stiffness matrix (solid line).

horizontal plane acting at the mass center. (this force could be due to a belt tension force, for example). The bearing

axial preload = 70 N, number of balls Nb = 5 and damping cb
v = 40 N.s/m. Ωs = 300 rpm. Figure 9(a) shows orbit

of the mass center for our time-varying stiffness matrix analyses (dash-dot-dot line) and the standard formulation
stiffness (solid line). FFT of the vertical displacement of each case is given in Fig. 9(b). Here the orbit of the Kcg

formulation has higher amplitudes and a net like structure (an indication of a multifrequency response). On the
other hand, the solid line orbit is a closed curve of lower amplitudes. Spectrum of the Kcg case (dashed line) has

the fs (the rotating unbalance frequency), fo and 2fo peaks and FFT of K
cg
std formulation (solid line) has only one

peak at fs. Figures 10(a) and 10(b) depict time domains of the stiffness matrix elements Kcg
11

and Kcg
33

, respectively,
each for the time-varying matrix (dash-dot-dot line) and the standard formulation matrix (solid line). Figure 10(c)

shows time domain of Kcg
44

and its FFT for time-varying stiffness. Here we see that the peak-to-valley variation in

the stiffness diagonal coefficients value is small. The FFT of the standard stiffness matrix elements (not shown for
brevity) is marked by only a single peak at fs. On the otherhand, FFT of the Kcg case is marked by peaks at fs, nfo

(n = 1,2,3,4; fo = outer ring ball passing frequency), see Fig. 10(c). The time domains of the off-diagonal elements
Kcg

12
and Kcg

35
are given in Figs 10(d) and 10(e), respectively. Here, the peak-to-valley variation in the stiffness

value for time-varying formulation is signifcant. These observations applies to the other off-diagonal elements (not

shown). The peak-to-valley variation in the standard stiffness elements is still very small. FFT of the signal Kcg
35

of
Fig 10(e) is shown in Fig. 10(f) where we see three peaks at fs, fo and 2fo for Kcg matrix (dash-dot-dot) and only

one peak at fs for K
cg
std formulation (solid line). Observe that variation in the stiffness coefficients of the standard

(K
cg
std) formulation is always periodic of period equals to the rotating unbalance period (1/fs s).
Next the bearing number of ball is increased to Nb = 16 and the rest of operating parameters are the same as

above. Figure 10(g) depicts time domain of Kcg
35

for time-varying matrix case only. FFT is shown in Fig. 10(h) for
time-varying case (dash line) and standard case (solid line). The time-varying case is marked by two peaks at fs

and fo. The standard case has only one tone at fs. Comparing Fig. 10(g) to Fig. 10(e) we see that increasing the

number of balls makes bearing stiffer and as a result the peak-to-valley variation in the stiffness decreases but it is
still significant. This observation applies to the other stiffness coefficients, see for example Fig. 10(i) which depicts

time domain of Kcg
45

and its spectra where FFT is marked by the tones at fs, fo and fo ± fs.
Figure 11 shows time domain of Kcg

35
for the diagonal (incorrect) time-varying stiffness matrix case (discussed

above in Section 3.4.1). This plot is generated using the same data used to obtain Fig. 10(e) for the time-varying

stiffness case except that the stiffness matrix is diagonal. Comparing this plot to its counterpart of the correct
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Fig. 10. (a): Time domain of K
cg
11 for time-varying stiffness matrix (dash-dot-dot line) and standard stiffness matrix (solid line). External load

is 203 N force acting in the vertical plane at gravity center and is inclined at 9.87 deg to the positive Xs. Ωs = 300 rpm. mass unbalance

eccentricity = 18 µm. Nb = 5, bearing axial preload = 70 N. (b): As in (a) but for K
cg
33 for time-varying stiffness matrix (dash-dot-dot line)

and standard stiffness matrix (solid line). (c): Time domain and FFT of K
cg
44 for time-varying stiffness matrix. Same input data as in (a) (d):

As in (a) but for K
cg
12 for time-varying stiffness matrix (dash-dot-dot line) and standard stiffness matrix (solid line). (e): As in (a) but for K

cg
35

for time-varying stiffness matrix (dash-dot-dot line) and standard stiffness matrix (solid line). (f): FFT of K
cg
35 in (e) for time-varying stiffness

matrix (dash-dot-dot line) and standard stiffness matrix (solid line). (g): Time domain of K
cg
35 for time-varying stiffness matrix. Same input data

as in (a) except that Nb = 16. (h): FFT of K
cg
35 in (g) (dashed line) and FFT of its counter part (K

cg
35 ) of standard stiffness matrix (solid line).

(i): Time domain and FFT of K
cg
45 for time-varying stiffness matrix. Same input data as in (a) except that Nb = 16.

time-varying stiffness (dash-dot-dot line) in Fig. 10(e), we see that using the time-varying diagonal stiffness matrix
analysis results in a waveform of lower energy contents compared to the time-varying full matrix waveform. The
FFT of plot in Fig. 11 (not shown) is similar to that of Fig. 10(f) for the time-varying stiffness case and amplitude
value of its dominant peak (fo) is 0.132 folds of amplitude value of fo of Fig. 10(f). i.e. response of the diagonal
(incorrect) stiffness formulation is of lower energy contents. This observation applies to the rest of the stiffness
matrix elements (not shown for brevity). Therefore it is recommended not to use the diagonal (K

cg
inc) matrix in the

vibration analysis of such rotor-bearings systems.
In the second example, the spindle-bearing system is excited by mass unbalnce as above plus a force Fcut = 50 N

in the hrizontal (Xs) direction at the spindle cutting nose. The bearing axial preload = 70 N. For Nb = 5, Fig. 12(a)
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Fig. 10. continued.

depicts time domain of Kcg
35

and its FFT. The peak-to-valley variation in Kcg
35

is noticable and FFT has peaks at
fs (dominant) and fo. Time domain of the mass center axial accelration (z̈) and its FFT are shown in Fig. 12(b).

FFT is marked by the fs, fo, 2fo and fa tones where fa = 279.84 Hz is owing to the natural frequency of the

spindle-bearings assembly in the axial direction. When the number of balls is increased to Nb = 16 and the rest

of input data are the same as in Fig. 12, Fig. 13 shows time domain of Kcg
35

and its FFT. As a result of increasing

the number of balls, the spindle-bearings system becomes more stiff and stiffness becomes periodic. FFT has one

visible peak at fs.

4. Conclusions

1. A lagrangian formulation is developed for computation of the total dynamic stiffness matrix (Kcg) and total

dynamic dampingmatrix (Dcg) of a rigid shaft carrying noncentral rigid disk and supported on angular contact

ball bearings. The coefficients of Kcg and Dcg are presented analytically. The formulation is new and takes

into account the bearing nonlinearity, variable compliance (i.e. bearing cage rotation) and the bearing axial
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Fig. 10. continued.
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Fig. 11. Time domain of K
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35 for the diagnoal (incorrect) total time-varying stiffness matrix (K

cg
inc

). Same input data as in Fig. 10(e) for the

time-varying stiffness case except that the stiffness matrix is diagonal.
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Bearing axial preload=70 N, Spindle speed=300 rpm, Nb=5

Fig. 12. Time domain and FFT of K
cg
35 [Fig. 12(a)]; Time domain and FFT of the mass center axial vibration [Fig. 12(b)]. Time varying stiffness

matrix is used. Ωs = 300 rpm. Mass eccentricity µa = µb = 18 µm. Spindle is subject to a force Fcut = 50 N in the horizontal direction at

its cutting nose. Nb = 5. Bearing axial preload = 70 N.

preload. The formulation is verified against existing analytical/experimental results of two-DOF/five-DOF

bearing-rigid rotor systems under static/dynamic loads and excellent agreements are obtained.

2. The presented analyses provide effective design tool for the calculation of all the natural frequencies (axial,

bounce and rock/pitch) of stationary/rotating machinery supported on angular contact ball bearings with no

need for any preknowledge of the bearing stiffness. This closes the gaps in existing analyses on solution of

eigen problem of such rotating machinery.

3. Using the rotor-bearings diagonal (incorrect) stiffness matrix (K
cg
inc) uncouples the three translational motions
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Fig. 13. Time domain and FFT of K
cg
35 . Time varying stiffness matrix is used. Same input data as in Fig. 12 except that Nb = 16.

from the two rotational motions which in turn become coupled to each other by only the rotating shaft

gyroscopic effect. This makes the bounce frequency independent of the rotor speed (gyroscopic) effect and

its value increases and vice versa if the full time-varying (correct) stiffness matrix (Kcg) is used. On the other

hand value of the rock frequency decreases when K
cg
inc is used compared to its value when Kcg is used.

These trends of change in the natural frequencies hold for the bearing axial preload range 10 N to 700 N studied

and the absolute value of change difference increases as the axial preload increases. The axial frequency value

is not affected by the rotor gyroscopic effect or the choice of Kcg or K
cg
inc but its value increases nonlinearly

as axial preload increases.

4. When the rotor center of gravity is loaded by mass unbalance and a constant force in each of the vertical

and horizontal directions and the bearings are axially preloaded, the dominant vibration of each of the Kcg

matrix coefficients becomes of higher energy contents compared to that of the K
cg
inc coefficients. Therefore,

it is highly recommended not to use the diagonal (incorrect) stiffness matrix in the design and/or analysis of

rigid rotor-ball bearings systems to avoid missing important vibration peaks or underestimate of the vibrations

amplitudes.

5. When the rotor center of gravity is lodaed as above and the time-varying stiffness formulation is used, the

peak-to-valley variation in the stiffness matrix coefficients becomes sgnificant in the off-diagonal elements

compared to the diagonal elements. Increasing the number of bearing ball makes spindle more stiff and

decreases the paek-to-valley variation of the stiffness coefficients but this variation is still significant and can

not be ignored.

When the standard stiffness matrix (K
cg
std) formulation is used, the peak-to-valley variation in the stiffness

coefficients becomes very small (compared to variation in the Kcg case) and always periodic of period equals

to the rotating mass unbalance period.

6. When the rotor is unbalanced, the bearings are axially preloaded and the spindle is under a force in the

horizontal direction at its cutting nose, the above conclusions regarding peak-to-valley variations in the

stiffness coefficients still hold. Therefore it is recommended to treat the spindle-bearings stiffness matrix to

be time-varying.
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Appendix A: Angular contact ball bearing stiffness matrix Kb

Kb
11 =

∂F b
ex

∂xb
=

Nb∑

j=1

P b
j

(
n cos2 αj

Sj − So
+

sin2 αj

Sj

)
cos2(Ωct + φj). (69)

Kb
12 =

∂F b
ex

∂yb
=

1

2

Nb∑

j=1

P b
j

(
n cos2 αj

Sj − So
+

sin2 αj

Sj

)
sin 2(Ωct + φj). (70)

Kb
13 =

∂F b
ex

∂zb
=

1

2

Nb∑

j=1

P b
j

(
n

Sj − So
−

1

Sj

)
sin 2αj cos(Ωct + φj). (71)

Kb
14 =

∂F b
ex

∂θb
x

=
rm

4

Nb∑

j=1

P b
j

(
n

Sj − So
−

1

Sj

)
sin 2αj sin 2(Ωtc + φj). (72)

Kb
15 =

∂F b
ex

∂θb
y

=
rm

2

Nb∑

j=1

P b
j

(
−n

Sj − So
+

1

Sj

)
sin 2αj cos2(Ωct + φj). (73)

Kb
22 =

∂F b
ey

∂yb
=

Nb∑

j=1

P b
j

(
n cos2 αj

Sj − So
+

sin2 αj

Sj

)
sin2(Ωct + φj). (74)

Kb
23 =

∂F b
ey

∂zb
=

1

2

Nb∑

j=1

P b
j

(
n

Sj − So
−

1

Sj

)
sin 2αj sin(Ωct + φj). (75)

Kb
24 =

∂F b
ey

∂θb
x

=
rm

2

Nb∑

j=1

P b
j

(
n

Sj − So
−

1

Sj

)
sin 2αj sin2(Ωct + φj). (76)

Kb
25 =

∂F b
ey

∂θb
y

=
rm

4

Nb∑

j=1

P b
j

(
−n

Sj − So
−

1

Sj

)
sin 2αj sin 2(Ωct + φj). (77)

Kb
33 =

∂F b
ez

∂zb
=

Nb∑

j=1

P b
j

(
n sin2 αj

Sj − So
+

cos2 αj

Sj

)
. (78)

Kb
34 =

∂F b
ez

∂θb
x

= rm

Nb∑

j=1

P b
j

(
n sin2 αj

Sj − So
+

cos2 αj

Sj

)
sin(Ωct + φj). (79)

Kb
35 =

∂F b
ez

∂θb
y

= rm

Nb∑

j=1

P b
j

(
−n sin2 αj

Sj − So
−

cos2 αj

Sj

)
cos(Ωct + φj). (80)

Kb
44 =

∂M b
ex

∂θb
x

= r2

m

Nb∑

j=1

P b
j

(
n sin2 αj

Sj − So
+

cos2 αj

Sj

)
sin2(Ωct + φj). (81)
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Kb
45 =

∂M b
ex

∂θb
y

=
r2
m

2

Nb∑

j=1

P b
j

(
−n sin2 αj

Sj − So
−

cos2 αj

Sj

)
sin 2(Ωct + φj). (82)

Kb
55 =

∂M b
ey

∂θb
y

= r2

m

Nb∑

j=1

P b
j

(
n sin2 αj

Sj − So
+

cos2 αj

Sj

)
cos2(Ωct + φj). (83)

Kb
ji = Kb

ij . n = 1.5 for ball bearings.

Appendix B: Angular contact ball bearing damping matrix Db

Db
11 =

∂F b
dx

∂ẋb
= Cb

v

Nb∑

j=1

cos2 αj cos2(Ωct + φj). (84)

Db
12 =

∂F b
dx

∂ẏb
=

1

2
Cb

v

Nb∑

j=1

cos2 αj sin 2(Ωct + φj). (85)

Db
13 =

∂F b
dx

∂żb
=

1

2
Cb

v

Nb∑

j=1

sin2 αj cos(Ωct + φj). (86)

Db
14 =

∂F b
dx

∂θ̇b
x

=
rm

4
Cb

v

Nb∑

j=1

sin 2αj sin 2(Ωct + φj). (87)

Db
15 =

∂F b
dx

∂θ̇b
y

= −
rm

2
Cb

v

Nb∑

j=1

sin 2αj cos2(Ωct + φj). (88)

Db
22 =

∂F b
dy

∂ẏb
= Cb

v

Nb∑

j=1

cos2 αj sin2(Ωct + φj). (89)

Db
23 =

∂F b
dy

∂żb
=

1

2
Cb

v

Nb∑

j=1

sin 2αj sin(Ωct + φj). (90)

Db
24 =

∂F b
dy

∂θ̇b
x

=
rm

2
Cb

v

Nb∑

j=1

sin 2αj sin2(Ωct + φj). (91)

Db
25 =

∂F b
dy

∂θ̇b
y

= −
rm

4
Cb

v

Nb∑

j=1

sin 2αj sin 2(Ωct + φj). (92)

Db
33 =

∂F b
dz

∂żb
= Cb

v

Nb∑

j=1

sin2 α. (93)

Db
34 =

∂F b
dz

∂θ̇b
x

= rmCb
v

Nb∑

j=1

sin2 αj sin Ωct + φj). (94)
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Db
35 =

∂F b
dz

∂θ̇b
y

= −rmCb
v

Nb∑

j=1

sin2 αj cos(Ωct + φj). (95)

Db
44 =

∂M b
dx

∂θ̇b
x

= r2

mCb
v

Nb∑

j=1

sin2 αj sin2(Ωct + φj). (96)

Db
45 =

∂M b
dx

∂θ̇b
y

=
−r2

m

2
Cb

v

Nb∑

j=1

sin2 αj sin 2(Ωct + φj). (97)

Db
55 =

∂M b
dy

∂θ̇b
y

= r2

mCb
v

Nb∑

j=1

sin2 αj cos2(Ωct + φj). (98)

Db
ij = Db

ji.
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