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Abstract—This paper presents a direct and robust analysis technique for
evaluating nonlinear distortion phenomena in FET mixers excited by mul-
titone signals. Time-varying Volterra-series analysis has previously been
proven to be appropriate for small-signal intermodulation-distortion calcu-
lations in mixers excited by simple RF signals. Spectral convolutions of the
suitably mapped control voltages are introduced in this paper in order to
solve the nonlinear current source calculations for narrow-band modulated
or broad-band multicarrier RF signals. Simulations and measurements of
a properly characterized resistive mixer validate the accuracy of this direct
and noniterative analysis tool for spectral regrowth and noise-power-ratio
prediction in such applications.

Index Terms—Intermodulation distortion, MESFETs, mixers, Volterra
series.

I. INTRODUCTION

The complex nature of the nonlinear distortion phenomena ap-
pearing in microwave applications, when excited by multitone signals,
has determined an increased use of new characterization procedures
instead of the classical two-tone intermodulation distortion (IMD)
test. In this sense, the adjacent channel power ratio (ACPR) is being
widely employed for evaluating the broadening of a signal bandwidth
(spectral regrowth) and the distortion caused in the neighbor signals.
The noise power ratio (NPR) is, however, preferred to quantify the
total co-channel distortion appearing in a particular frequency band of
a multicarrier signal.

In amplifiers, this problem has recently been considered making use
of low-frequency transformations [1], transient envelope analysis [2],
Volterra series [3], or spectral balance [4]. However, very few results
have been reported for other applications [5], and the mixer case is
as yet unsolved. For small-signal RF excitations, the case of most
practical significance in mixers, time-varying Volterra-series analysis
has been proven to constitute an accurate and simple tool for IMD
calculations [6]. Nevertheless, and to the authors’ knowledge, most
published works in FET mixers have dealt with simple (one- or two-
tone) RF signals [7], [8].

In this paper, we propose a technique to extend this powerful non-
linear analysis method to the handling of more complex excitation sig-
nals at circuit level. In an analogous way to [3], it is assumed that the
circuit is weakly nonlinear for the RF signal such that a time-varying
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Taylor-series expansion of the device’s nonlinearities up to the third de-
gree is adequate. The accuracy of our approach is validated comparing
measured and simulated values in a resistive mixer in a previously un-
published way.

II. TIME-VARYING VOLTERRA ANALYSIS

The time-varying Volterra-series or large-signal/small-signal tech-
nique [9] begins by first analyzing the nonlinear circuit under large-
signal excitation (LO), employing, for instance, the well-known har-
monic-balance method. The nonlinear circuit components are then re-
placed by time-varying elements, and the small-signal nonlinear cur-
rent technique of Volterra-series applied.

In Fig. 1, we show the general topology of a single FET mixer for ap-
plying the above technique. In active gate or drain mixers,VRF = V g
represents the RF signal, a role played byV d if it is resistive. The cir-
cuit has been divided into a linear subcircuit where the elements have
been represented by their conversion matrices, and the nonlinear cur-
rent sources (IgsNL

i
; IgdNL

i
, andIdsNLi ) determined by theith de-

gree Taylor expansion terms (i > 1) for each respective nonlinearity.
The subindexc indicates the conversion matrix for the corresponding
time-varying element,
 and “1” represent the frequency diagonal and
identity matrices [9]. Impedance matrices are used for the inductances,
while the admittance ones describe the capacitances.

Solving the linear subcircuit to obtain the first-order control volt-
ages and the first-order parameters (conversion loss or gain, RF input
impedance, and IF output impedance) for a discrete multitone exci-
tation, or a discretized continuous spectrum, does not differ in prin-
ciple from the classical one- or two-tone case. The conversion ma-
trices should be evaluated, and the circuit solved for each excitation
frequency component.

The problem arises when the nonlinear current sources have
to be evaluated. To illustrate this situation, we will consider the
second-order nonlinear current source for the predominant nonlin-
earity Ids(V gs; V ds), whose Taylor-series expansion is represented
in the following:

Ids(V gs; V ds) = Ids(VGS; VDS) +Gm1 � vgs +Gds � vds

+Gm2 � vgs2 +Gmd � vgs � vds +Gd2 � vds2

+Gm3 � vgs3 +Gm2d � vgs2 � vds

+Gmd2 � vgs � vds2 +Gd3 � vds3: (1)

From the first-order calculation, we can obtain a set of first-order
control voltagesV gs

1
andV ds1. Each control voltage vector would

be of the form

V gs
1
(
k) =

V gs�N
1

(N � !LO � !k)
�

...

V gs�1
1
(!LO � !k)

�

V gs0
1
(!k)

V gs1
1
(!LO + !k)

...

V gsN
1
(N � !LO + !k)

;

with !k = j!LO � !RF j andk = 1; � � � ; K:

(2)
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Fig. 1. Single FET mixer equivalent circuit for applying time-varying nonlinear current technique.

K represents the number of discrete excitation tones, andN the
number of LO harmonics to be considered. The upper part of the vector
contains the conjugate values of the phasors representing the lower
sidebands, while the lower part represents the values for the upper side-
bands, as in [9]. If the excitation tones are uniformly spaced in fre-
quency, then!k = !k=1+(k� 1) ��! with k = 1; . . . ; K and�!

the frequency step.
In time domain, the second-order nonlinear current source would be

determined by the second-order Taylor coefficients and the first-order
control voltages as in (3)

idsNL2 (t) = Gm2(t) � vgs2
1
(t) +Gmd(t) � vgs

1
(t) � vds1(t)

+Gd2(t) � vds21(t): (3)

A time-domain product becomes a frequency-domain convolution,
resulting in (4)

IdsNL2 (!) = Gm2(!) � V gs
1
(!) � V gs

1
(!)+Gmd(!) � V gs

1
(!)

�V ds1(!) +Gd2(!) � V ds1(!) � V ds1(!): (4)

The relation between the calculated first-order vectors and their cor-
responding position in the spectrum can be visualized in Fig. 2. It is
quite evident that a spectrum of this kind with the real frequency vari-
able would be quite sparse and difficult to handle in a convolution
product. However, the frequency-domain nature of Volterra analysis
lets us compress such sparse spectrum without affecting the convolu-
tion result [10]. In spite of the minimum separation necessary between
clusters or bands, to avoid aliasing when the convolutions are evalu-
ated, the computational efforts are greatly reduced.

Once we have made the convolution, two definite second-order fre-
quency-band sets appear, a difference and a sum band set. Two sets
of vectors corresponding to each second-order frequency component

in the difference and sum bands can be obtained, as shown in Fig. 3.
This is not a difficult task thanks to the previous knowledge we have of
the second-order real values for the frequency components appearing
in the compressed or mapped convolution. These second-order vectors
are shown in (5) for theV gs

1
� V gs

1
convolution in (4) as follows:

V gs
2
(
s)Sum =

V gs�N
2

(N � !LO � !s)
�

...

V gs�1
2

(!LO � !s)
�

V gs0
2
(!s)

V gs1
2
(!LO + !s)

...

V gsN
2
(N � !LO + !s) Sum

;

with !s = 2 � !k=1 + (s� 1) ��!;

s = 1; . . . ; 2K � 1

V gs
2
(
d)Dif =

V gs�N
2

(N � !LO � !d)
�

...

V gs�1
2

(!LO � !d)
�

V gs0
2
(!d)

V gs1
2
(!LO + !d)

...

V gsN
2
(N � !LO + !d) Dif

;

with !d = (d� 1) ��!;

d = 1; . . . ; K: (5)
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Fig. 2. Spectrum of a first-order control voltage for aK-tone RF excitation and consideringN = 2 LO harmonics. The components of the vector fork = 2

have been represented with broad lines.

Fig. 3. Spectrum of a second-order control voltage for aK-tone RF excitation and considering anN = 1 LO harmonic. The components of the difference vector
for d = 2 and the sum vector fors = K + 1 have been represented with broad lines.

The convolution of the LO time-varying second-degree coefficient in
(3) with the resulting control voltage convolution can be reduced to a
simple multiplication of the corresponding conversion matrix and each
member of the set of second-order control voltage vectors. The corre-
sponding set of vectors for the second-order nonlinear current source
would be then evaluated as in (6) for both the sum and difference bands,
and for each second-orderk component

Ids
NL

2 = Gm2C � V gs
2

+GmdC � V gsds
2

+Gd2C � V ds2 (6)

whereV gsds
2

andV ds2 constitute sets of vectors as in (5),
but representing the results from theV gs

1
� V ds1 andV ds1 � V ds1

convolutions in corresponding order (Band = Sum; Dif).
The situation is analogously repeated for the third-order case. Two

definite sets of third-order frequency bands appear, one of these is cen-
tered in the first-order bands and defines the in-band distortion phe-
nomena we are interested in.

III. SPECTRAL REGROWTH AND NPR RESULTS

The proposed technique for calculating the nonlinear current sources
was included in an in-house time-varying Volterra-series simulator [11]
to evaluate spectral regrowth and NPR in single FET mixer structures.
For illustrative purposes, a resistive mixer employing a 6� 50 �m

F20 MESFET from GEC-Marconi, Caswell, U.K., was designed, mea-
sured, and simulated under multitone excitation.

As accurate nonlinear distortion calculations in a mixer also require
the reproduction of the nonlinearity derivatives throughout the LO ex-
cursion, we made a careful extraction of the coefficients in (1) in the
whole linear region as in [11].

A. Spectral Regrowth

In Fig. 4, we show the RF input spectrum as well as the simulated
and measured values of the spectral regrowth appearing at the IF. The
LO signal was located at 1.6 GHz and had an available power of 0 dBm.
The multitone RF excitation was created by modulating a 1.7-GHz car-
rier with a 2-MHz bandwidth deterministic baseband signal. The mod-
ulation format was QPSK. The input spectrum was discretized in 61
components whose phase relation was available. Such a large number
of tones can be handled without problem thanks to the noniterative na-
ture of the Volterra-series approach. As can be appreciated, there is a
very good agreement between both sets of results.

B. NPR

In Fig. 5, we represent the RF input and IF output spectrum for an
NPR experiment. For the simulation, a discrete amplitude spectrum
was generated from the NPR excitation, and different calculation re-
sults for correspondent random phase distributions were evaluated
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(a)

(b)

Fig. 4. Spectral regrowth prediction. (a) RF input amplitude and phase
discretized spectrum. (b) Simulated (—) and measured (ooo) IF output
amplitude spectrum.

and averaged. Once again, the direct nature of Volterra-series calcu-
lations lets us employ a small frequency interval when discretizing
the spectrum. This gives rise to a large number of frequency com-
ponents and, thus, a situation closer to the original continuous NPR
spectrum than the one reproduced by other frequency-domain tech-
niques. It also enables the possibility of evaluating and averaging
different phase distributions without the computational effort required
in others. The predictions are quite similar to the measurements, val-
idating our approach.

IV. CONCLUSIONS

It has been shown that small-signal nonlinear distortion phenomena,
such as spectral regrowth and NPR, can be efficiently predicted in FET
mixers employing time-varying Volterra-series analysis with mapped
frequency convolutions and an adequate device model. As the RF signal
is handled in the second part of the method, its direct and noniterative
nature, as well as the absence of time–frequency domain transforma-
tions, determines a high degree of accuracy and the absence of conver-
gence problems. The method is not limited to narrow-band signals. If
necessary, the RF small-signal amplitude limitation can be relaxed if
the analysis is extended to fifth or even seventh order, but at the ex-
pense of a great increase in computational effort.

(a)

(b)

Fig. 5. NPR prediction. (a) RF input amplitude discretized spectrum.
(b) Simulated (—) and measured (ooo) IF output amplitude spectrum.
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Uniplanar One-Dimensional Photonic-Bandgap Structures
and Resonators

Tae-Yeoul Yun and Kai Chang

Abstract—This paper presents uniplanar one-dimensional (1-D) period-
ical structures, so-called photonic-bandgap (PBG) structures, and defect
high- resonators for coplanar waveguide, coplanar strip line, and slot
line. Proposed uniplanar PBG structures consist of 1-D periodically etched
slots along a transmission line or alternating characteristic impedance se-
ries with wide band-stop filter characteristics. A stop bandwidth obtained
is 2.8 GHz with a stopband rejection of 36.5 dB. This PBG performance can
be easily improved if the number of cells or the filling factor is modified in a
parametric analysis. Using uniplanar 1-D PBG structures, we demonstrate
new high- defect resonators with full-wave simulation and measured re-
sults. These structures based on defect cavity or Fabry–Perot resonators
consist of a center resonant line with two sides of PBG reflectors. They
achieve a loaded of 247.3 and unloaded of 299.1. The proposed cir-
cuits should have many applications in monolithic and hybrid microwave
integrated circuits.

Index Terms—Band-stop filter, photonic bandgap, resonator, uniplanar.

I. INTRODUCTION

Similarly to the energy bandgap concept in solid-state electronic
materials, photonic-bandgap (PBG) materials or photonic crystals
provide a means to control lightwave propagation. Although the
PBG structure was developed for use at optical frequencies, it is
scalable to microwave and millimeter-wave frequencies because the
PBG is an electromagnetic bandgap (EBG) [1]. A one-dimensional
(1-D) PBG structure can be made by alternating wave impedances,
which has been analyzed and applied to several transmission lines and
waveguides in microwave engineering to demonstrate stopband and
slow-wave characteristics [2]. In this paper, however, the periodicity
is referred to as the PBG because ideas of a new 1-D resonator are
based on the defect cavity concept [1].

Two-dimensional (2-D) PBG structures published for antenna and
microstrip-line applications consisted of periodical air holes, which
are micromachined or drilled through the substrate [3], [4]. A most re-
cently reported 2-D PBG structure for microstrip lines was composed
of circularly etched holes on the ground plane along the microstrip
line without drilling [5]. The periodically etched hole technique avoids
the drilling process and makes PBG structures easier to manufacture.
Since most electromagnetic fields are confined to the microstrip-line
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Fig. 1. Uniplanar (CPW, CPS, and slot line) 1-D periodical structures. (a) 1-D
PBG bandstop filters. (b) 1-D PBG resonators.

width, 2-D hole structures can be modified to 1-D structures. In addi-
tion, use of uniplanar structures has an advantage that only a one-sided
photolithography process is required. In this paper, uniplanar 1-D PBG
structures for a coplanar waveguide (CPW), coplanar strip line (CPS),
and slot-line PBG are designed, as shown in Fig. 1(a).

Using the defect cavity concept, 1-D or 2-D optical waveguide
resonators with an alternating dielectric constant [6], [7] and image
guide resonator [8] have been published for high quality (Q) res-
onators. Fig. 1(b) shows new CPW, CPS, and slot-line uniplanar
resonators using 1-D PBG structures [9]. These resonators consist of
a center resonant-line (defect) with periodic PBG reflectors on both
sides to implement Fabry–Perot resonators. Two important parameters
are analyzed and full-wave simulation and measured results are
presented. The uniplanar defect resonators can be readily implemented
in monolithic microwave integrated circuits (MMICs) in which loss
compensation circuits with active devices can be used.

II. DESIGN AND PARAMETRIC ANALYSIS

The PBG structure is basically a periodical structure that satisfies the
following equation, and strongly shows band-stop filter characteristics
as the number of cells is increased [1]:

k =
�

d
(1)

wherek is the propagation constant. The cell distance (d) is equal to
1/2 guided wavelength (�g) if k is equal to2�=�g . The propagation
constant is difficult to determine and full-wave analysis is necessary to
calculate�g for the structures in Fig. 1. As a simple approximation, it is
acceptable to set the propagation constant as approximately the same as
an unperturbed transmission line, assuming that the perturbation of the
PBG structure is very small [5]. The circuit length is dependent on the
cell number, center frequency, and dielectric constant. In this study, the
substrate used is a RT/Duroid 6010.5, with relative dielectric constant
("r) of 10.5, height (H) of 50 mil, and length of 2 in. The stopband
center or resonant frequency (fo) is chosen near 10 GHz and, thus, the
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