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ABSTRACT

Phase mismatches sometimes occur between final pro-

cessed sections and zero-phase synthetics based on well logs,

despite best efforts for controlled-phase acquisition and pro-

cessing. The latter are often based on deterministic correc-

tions derived from field measurements and physical laws. A

statistical analysis of the data can reveal whether a time-vary-

ing nonzero phase is present. This assumes that the data

should be white with respect to all statistical orders after

proper deterministic corrections have been applied. Kurtosis

maximization by constant phase rotation is a statistical meth-

od that can reveal the phase of a seismic wavelet. It is robust

enough to detect time-varying phase changes. Phase-only

corrections can then be applied by means of a time-varying

phase rotation. Alternatively, amplitude and phase deconvo-

lution can be achieved using time-varying Wiener filtering.

Time-varying wavelet extraction and deconvolution can also

be used as a data-driven alternative to amplitude-only in-

verse-Q deconvolution.

INTRODUCTION

Controlled-phase acquisition and processing plays an important

role in current acquisition and processing strategies �Trantham,

1994�. Deterministic corrections such as for debubbling and for at-

tenuation-related dispersion are favored over statistical approaches.

Nevertheless, despite the best efforts to control the phase of a wave-

let during the entire acquisition and processing sequence, phase mis-

matches regularly occur between final processed data based on de-

terministic zero-phase shaping and zero-phase synthetics created

from well logs. The existing well logs are often used in these cases as

ground truth, and a further phase correction is applied to the data

such that they match the zero-phase synthetics.

Unfortunately, well logs are not always available, and different

wells can predict different phase corrections. It is also possible that

the phase mismatch varies with time. Thus, there is a need for a sta-

tistical approach to estimate the phase of a wavelet from the data

alone, yielding complementary information, and to serve as addi-

tional quality control.

Levy and Oldenburg �1987�, Longbottom et al. �1988�, and White

�1988� describe such a technique for stationary data. Their method is

based on a simplification of the blind deconvolution method pro-

posed by Wiggins �1978�. They search for a constant-phase rotation

�i.e., a frequency-independent one� that renders the data maximally

non-Gaussian. The rationale behind the Wiggins algorithm and vari-

ants is that convolution of any filter with a time series that is white

with respect to all statistical orders renders the outcome more Gauss-

ian. The optimum deconvolution filter is therefore one that ensures

the deconvolution output is maximally non-Gaussian �Donoho,

1981�. The constant-phase assumption made by Levy and Olden-

burg �1987�, Longbottom et al. �1988�, and White �1988� greatly re-

duces the number of free parameters and thus stabilizes the perfor-

mance of their algorithm compared with the Wiggins method. Wave-

lets derived in seismic-to-well ties often have a near-constant phase,

thus justifying this assumption �Longbottom et al., 1988�.

I extend the constant-phase rotation method in three ways. First, I

modify it such that it can handle nonstationary �i.e., time-varying�

data. Second, I show how the time-varying wavelet can be extracted,

which can serve as a more familiar quality-control tool for interpret-

ers than phase information alone. Finally, I demonstrate how time-

varying amplitude and phase deconvolution can be applied by

means of Wiener filtering. The latter has an optimum trade-off be-

tween noise amplification and recovery of the reflectivity series

�Berkhout, 1977�. I illustrate the method on both synthetic and real

data examples and discuss some quality-control measures to deter-

mine whether the extracted phase variations are reliable.

METHOD

Phase estimation

To estimate the phase of the wavelet, I use a simplification of the

blind deconvolution method developed by Wiggins �1978�. The ob-
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jective of blind deconvolution is to retrieve the reflectivity series

without knowing the amplitude or phase spectrum of the wavelet.

Blind deconvolution therefore differs from conventional deconvolu-

tion in that we do not make a priori assumptions about the wavelet

phase as is routinely done in, for example, predictive deconvolution

�gapped/spiking� or spectral whitening.

Wiggins �1978� introduced the first blind deconvolution algo-

rithm based on kurtosis maximization. Convolving any white reflec-

tivity series with an arbitrary wavelet renders the outcome less white

but also more Gaussian �Donoho, 1981�. Maximizing the kurtosis

recovers the original reflectivity series because kurtosis measures

deviation from Gaussianity. The technique can handle nonmini-

mum-phase wavelets because kurtosis is a fourth-order statistic and

higher-order statistics retain phase information — contrary to con-

ventional algorithms based on second-order statistics, such as pre-

dictive deconvolution and spectral whitening.

The Wiggins algorithm and variants attracted significant attention

until the mid-1980s, when the method was found to have several

shortcomings. It tends to emphasize the largest reflector at the ex-

pense of all others, and it is unstable for very band-limited data �Wig-

gins, 1985; Longbottom et al., 1988; White, 1988�. In particular, if

the principal frequency is larger than the wavelet passband �i.e.,

roughly less than 1.5 octaves of bandwidth�, then the Wiggins algo-

rithm breaks down.

Levy and Oldenburg �1987�, Longbottom et al. �1988�, and White

�1988� greatly reduced the number of degrees of freedom in the

phase-estimation problem by proposing that a seismic wavelet in the

later processing stages can be described accurately by a constant-

phase approximation, leaving only a single degree of freedom and

thereby a robust inversion procedure. The optimum phase is estimat-

ed by applying a series of constant-phase rotations to the data. The

angle corresponding to the maximum kurtosis value determines the

most likely wavelet phase.

The normalized kurtosis of a discrete time series x�t� is commonly

approximated by

kurt�x� � n
� x4�t�

�� x2�t��2 � 3, �1�

with n the number of time samples and t discrete time.

The constant-phase rotations can be applied naturally in the fre-

quency domain. Arons and Yennie �1950� show, however, that a

time-domain implementation is also possible and much faster. The

rotated trace xrot can be computed from the original trace x by

xrot�t� � cos �x�t� � sin �H�x�t�� , �2�

with � the phase rotation angle and H�.� the Hilbert transform.Afur-

ther advantage of time-domain implementation is that it is straight-

forward to apply time-varying rotations because each individual

time sample is treated independently.

The most likely phase angle �kurt corresponds to the maximum

kurtosis value. This is easiest estimated using a grid search with test

angles � between �180° and 180°. The kurtosis is averaged over

tens of traces to ensure robustness.

The kurtosis variation with test angle � can be used as a quality-

control tool. It should display a dominant cos 2� variation, with pos-

sibly a cos 4� trend superposed �White, 1988�. The difference be-

tween the maximum and minimum kurtosis value indicates the ro-

bustness of the inversion result �Levy and Oldenburg, 1987; Long-

bottom et al., 1988; White, 1988�.

Because of the large reduction in degrees of freedom, the de-

scribed phase-estimation method by kurtosis maximization can be

extended to cope with time-varying phase changes by subdividing

each section into partly overlapping time windows.Asingle phase is

estimated for each window.An overlap of 67% is used such that rap-

id phase changes indicate the window size is likely to be too small.

The extracted phase is assigned to the center of each analysis win-

dow. A linear interpolation, done between each center position, re-

covers the phase variations in between evaluation points.At the start

and end times, the wavelet phase is assumed to be constant.

The chosen implementation assumes that the phase change of the

wavelet is smooth enough to be treated as piecewise stationary with-

in each window. The interpolation between evaluation windows

softens this assumption thereafter. It also assumes that the phase

spectrum of the reflectivity as a function of frequency is a uniformly

distributed random process with all angles equally likely.

If phase-only deconvolution is desired, it can be accomplished by

expression 2 as well. In this case, the rotation angle � becomes time

dependent and is exactly equal to minus the time-varying phase just

extracted from the kurtosis analysis, or ��kurt�t�.

Wavelet estimation

Wavelet estimation is straightforward once the phase is known.

Only the amplitude spectrum is left to be estimated. This is done by

�1� averaging the amplitude spectra of all traces in each time window

and �2� multiplying the averaged window in the time domain by a

Hanning taper for enhanced robustness, while �3� ensuring that the

amplitude at the Nyquist frequency remains zero. This procedure

leads to a symmetric, zero-phase wavelet. It naturally assumes that

the reflectivity within each analysis window is a white process. The

multiplication in the time domain with a Hanning filter serves two

purposes: It smoothes the spectral estimate, thus ensuring extra ro-

bustness, and it allows for the inclusion of any a priori information

on the expected wavelet lengths.

Inspection of the time-domain wavelet and its variations with

time is another useful quality control. In the frequency domain, each

individual wavelet W j is given by

W j�f� � �Wave,j�f��exp�i�kurt,j sgn�f�� , �3�

with �Wave,j� the averaged amplitude spectrum, �kurt,j the constant-

phase angle determined by evaluating the kurtosis in window j, and

sgn�.� the sign function.

Time-varying Wiener filtering

In the deconvolution problem, we assume that the observed trace

x is the result of the convolution of the wavelet w with the reflectivity

series r plus some superposed noise n. That is,

x�t� � w�t� � r�t� � n�t� , �4�

where � indicates convolution and t represents time. The objective is

to find a filter g�t� such that the outcome y�t� is as close as possible to

the original reflectivity series r�t�. Thus, y�t� � g�t� � x�t�	r�t�.
Because of the presence of the noise, the reflectivity series r cannot

be recovered perfectly and a compromise must be achieved between

noise amplification and successful recovery.
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If the wavelet w�t� is known, then the time-domain Wiener filter

gw�t� achieves an optimum solution. In the frequency domain, it is

given by

Gw�f� �
W*�f�

�W�f��2 � � n
2

, �5�

with f the frequency, � n
2 the noise variance, and superscript * the

complex conjugate �Berkhout, 1977�.

Time-varying deconvolution is conceptionally slightly more

complex than the ordinary stationary case because the filter coeffi-

cients change with time. Formally, it is written as �Clarke, 1968;

Wang, 1969�

y�t� � 

��

�

gw�t � t�,t��x�t��dt�, �6�

with t and t� the observation and initiation times, respectively. The

time difference � � t � t� serves a similar purpose to the normal

lag � in stationary convolution, but the outcome y�t� observed at t

depends on the initiation time t� of both the input trace x and the filter

gw. The latter also varies with lag � from the initiation time t�.

Equation 6 represents a time-domain implementation. However, I

choose a frequency-domain implementation that is conceptually

simpler and easier to implement at the expense of a slight increase in

computation time.

A specific Wiener filter is created for each individual wavelet

W j�f� estimated in window j using expressions 3 and 5. The estimat-

ed wavelets and all traces are zero padded such that they have the

same length; this ensures that wraparound effects resulting from cir-

cular convolution in the frequency domain are prevented. Each indi-

vidual Wiener filter thus created is applied to all traces in their entire-

ty. Linear interpolation of the resulting deconvolved sections y j�t�
then yields the final deconvolved section y�t�. Expressed by

y�t� � �1 � r�t��y j�t� � r�t�y j�1�t� , �7�

with

r�t� �
t � t j

t j�1 � t j

, ∀t � �t j,t j�1� , �8�

where y is the final deconvolved trace and y j is the deconvolved trace

obtained using the jth wavelet estimated with an analysis window

centered at position t j. At the start and end times, it is assumed that

the deconvolution result y�t� equals the Wiener output of the first and

last wavelet exactly.

Implementation

The technique can be implemented in the described order, i.e.,

phase estimation by kurtosis maximization, wavelet estimation by

spectral averaging, and then time-varying Wiener filtering. This has

the advantage that one can stop after the first step if time-varying

phase-only deconvolution is desired.

Alternatively, one can estimate a zero-phase wavelet first in each

analysis window, deconvolve it by means of Wiener filtering, and es-

timate the phase using kurtosis maximization on the outcome. The

advantage of this approach is that it leads to a more accurate phase

estimate. The Wiener filtering reduces the influence of the noise

while boosting the kurtosis value, thus increasing the contrast be-

tween the minimum and maximum values found. One can then pro-

ceed with phase-only or amplitude-and-phase deconvolution as de-

scribed before.

In both cases, care should be taken when combining the deconvo-

lution outcomes for the different wavelets. The lowest reconstruc-

tion error is obtained if the Wiener filter �equation 5� for each wave-

let W j�f� is applied on the entire trace length in the case of a frequen-

cy-domain implementation. Least-squares filter design is needed if a

time-domain implementation is desired �Berkhout, 1977�.

RESULTS

Synthetic example

To illustrate the entire procedure, I use a challenging synthetic ex-

ample composed of a super-Gaussian reflectivity convolved with

two superposed Ricker wavelets with time-varying peak frequencies

and phases. At zero time, the composite wavelet has peak frequen-

cies and phases of, respectively, �30 Hz, �90°� and �60 Hz, �30°�,

which linearly transform to �15 Hz, 30°� and �30 Hz, 90°� at the bot-

tom of the recording. The peak frequencies are thus halved from top

to bottom, and the wavelet phase is at every instant frequency depen-

dent �Figure 1a�. The total recording time is 2 s, with a sample rate of

2 ms. There are 30 traces.

The reflectivity series is created by raising a white Gaussian time

series to the third power. This results in a super-Gaussian reflectivity

series with both isolated and closely spaced events but without hard

zeros. Random Gaussian noise is superposed on each trace after con-

volution of the reflectivity series with the composite wavelet such

that the signal-to-noise ratio �S/N� is three. That is, the standard de-

viation of the signal is three times that of the noise.

Figure 2a displays the original data. The reduction of frequency

content with time, is clearly visible. Figure 1a shows the true wavelet

at various times. Its peak frequency and phase vary considerably

with time, rendering this a challenging test.

I use nine 0.56-s windows with a 67% overlap in the wavelet esti-

mation procedure. The extracted wavelets are 60 ms long. Figure 1b

shows the extracted wavelets, and Figure 1c shows the estimated

wavelet phase interpolated to all recording times. It also shows the

average phase of the composite wavelet for guidance. The extracted

and instantaneous wavelets compare very well, as do the estimated

and averaged phases. In general, phase mismatches up to 20° pro-

duce only minor changes in associated waveforms — something

also noticed by Levy and Oldenburg �1987�.

This example is challenging for several reasons. The phases

changes are dramatic and frequency dependent, yet the constant-

phase approximation holds well. The frequency content of the com-

posite wavelet also varies considerably. Tests show that the constant-

phase approximation works well even if a third Ricker wavelet is

added with yet another phase. Only the introduction of time lags be-

tween the different wavelets �thus mimicking significant dispersion�

or phase variations of more than 90° seem to pose problems.

The kurtosis variations with test angle � for the first, middle, and

last wavelet are shown in Figure 1d. The other phases display similar

variations. All curves display variations of 100% or more. They are

therefore very well resolved. This also holds true for the middle

wavelet, which has the largest error in its estimated phase angle.

Analysis of the relevant section of the reflectivity series reveals that

it is atypical, in that its phase spectrum has a constant bias affecting

the wavelet-phase estimate.
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The result of phase-only and amplitude-and-phase deconvolution

is displayed in Figure 2b and c. Phase-only deconvolution solely ap-

plies a phase rotation to the recorded traces using expression 2; it

does not change the frequency content. A constant-phase rotation on

a monofrequency signal amounts to a simple time shift of the entire

trace.Applying a time-varying phase rotation on a seismic signal of-

ten results in a gentle squeezing or stretching of the time series.

Phase mismatches on continuous sequences of events thus might

give the impression that a timing error is occurring. Only if an isolat-

ed event can be detected does it become possible to see if the phase

rotation was done properly because a zero-phase wavelet is symmet-

ric.

The differences between Figure 2a and b are therefore mostly the

result of small changes in arrival time of events. This is best visible in

Figure 3, showing the actual reflectivity series, the noisy input data,

and various deconvolution outcomes for the first trace. A compari-

son of Figure 3b and c reveals that mostly subtle differences are visi-

ble between the input data and the phase-rotated trace. The exception

is the reflection at 0.2 s, which has become zero phase and symmet-

ric after phase rotation.

Time-varying Wiener filtering �expressions 5 and 6, determined

using the estimated wavelets of expression 3� corrects for phase and

increases the frequency content of the outcome. It whitens the fre-

quency content of traces within the passband of the wavelet �i.e.,

�W�f�/� n
2�≫1� and dampens any noise outside of this frequency

range �i.e., �W�f�/� n
2�≪1� �Berkhout, 1977�. The composite wave-

lets are already relatively white within their passbands. The result of

time-varying amplitude and phase deconvolution �Figure 2c� there-

fore displays a similar response as for phase-only deconvolution

�Figure 2b� but with less noise contamination. This can also be seen

in Figure 3b-d.

Finally, estimating a single wavelet for the entire section produces

strongly biased results. The extracted global wavelet is shown in

Figure 1e, and the associated deconvolution result is shown in Fig-

ure 2d. Not only is the global wavelet dissimilar to any of the instan-

taneous ones �Figure 1a�, but also it cannot correct the phase of the

data �e.g., reflection at 0.20 s�. It is evident that any deconvolution

attempt with this wavelet leads to nonoptimal results. Time-varying

wavelet estimation and deconvolution must be performed to handle

observations of this kind.

Stacked section

In the second example, a stacked section is considered. Figures 4

and 5 display the data before and after deconvolution, the extracted

wavelets, and associated phase and kurtosis variations. Five 2.1-s

analysis windows are used, each with a 67% overlap. In each win-

dow, a 0.1-s-long wavelet is extracted. Predictive deconvolution had

already been applied to the data such that only phase corrections

were used in the deconvolution.

Phase variations show a steplike change from �75° to �21°

�Figure 5c�. The kurtosis variations indicate again that the phase is

well resolved except possibly for the last wavelet. Relative varia-

tions are from 6.5% for the first wavelet to 16% for the deepest four

wavelets. A relative fluctuation of 6.5% is low, but the high kurtosis

value of four boosts confidence that the angle has been estimated

correctly. The last wavelet, on the other hand, has only a kurtosis val-

ue of 0.4, indicating the deepest portion of the seismic section is too

close to Gaussian to allow for robust phase estimation �Figure 5d�.

The wavelets broaden with time, indicating the presence of seismic

attenuation.

The original data and the result of phase-only deconvolution are

shown in Figure 4. Most variations occur in the shallowest part, as

seen in Figure 4c and d, which zooms in on the top leftmost corner.

Examples where the phase rotation has rendered the reflectors ap-

proximately zero phase can be seen at 0.48 and 0.75 s, indicated by

the arrows.

Designing a single deconvolution filter does not produce suitable

results for this data set. For instance, the global wavelet has a phase

a)

b)

c)

d)

e)

Figure 1. Wavelet estimation results for the synthetic example. �a�
Instantaneous wavelets, mixed phase. The true wavelet has a strong
time-varying nature, as seen by its instantaneous waveforms shown
at nine different times between 0.3 and 1.8 s. �b� Extracted time-
varying wavelets, mixed phase. Extracted waveforms are at the same
time positions, numbered 1–9 with increasing time. Extracted and
instantaneous wavelets bear a good resemblance. �c� Estimated and
averaged true phase as a function of time. �d� The kurtosis variations
with test angle indicate that each phase is well resolved. �e� Global
wavelet, constant phase. Extracting a single constant phase wavelet
from the entire section in Figure 2 leads to biased results because the
observations are nonstationary.Alocal kurtosis analysis is needed to
cope with the time-varying recordings.
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a) b) c) d)

Figure 2. Deconvolution results for the synthetic example. �a� Original input data displaying a strong decrease in the peak frequency with time.
Results after �b� time-varying phase-only deconvolution using the estimated phase angle shown in Figure 1c, �c� time-varying amplitude and
phase deconvolution using the extracted wavelets �Figure 1b�, and �d� global deconvolution using the constant wavelet �Figure 1e�. Differences
in all deconvolution results are subtle at this scale. They are much clearer if examined on a single trace �Figure 3�. CDP � common-depth point.

a)

b)

c)

d)

e)

Figure 3. Deconvolution results for the first trace of the synthetic example. �a� Reflectivity series, �b� input data with added noise, �c� results after
time-varying phase rotation, �d� results after time-varying amplitude and phase deconvolution, and �e� results after global deconvolution using a
constant wavelet. Both time-varying and global deconvolution have removed some of the high-frequency noise outside the passband of the
wavelet. However, the global result does not create a zero-phase section because the observations are nonstationary �e.g., reflection at 0.2 s�.
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a) b)

c) d)

Figure 4. Deconvolution results for stacked section. �a� Original data; �b� outcome after time-varying rotation. �c and d� Close-up of the top-left
corner of, respectively, the original and deconvolution result. Several phase rotations are visible, indicated by the arrows. Data courtesy of Shell.
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of �57° and contrasts increasingly from the five extracted local

wavelets �Figure 5a�. Time-varying wavelet extraction and decon-

volution are required for this data set.

DISCUSSION

Several assumptions underlie the described wavelet estimation

technique. It assumes that the earth’s reflectivity series have a white

non-Gaussian distribution, i.e., its amplitude spectrum is flat and the

phase spectrum has a uniform distribution between �� and � radi-

ans.

Analysis of well logs has shown that reflectivity series are gener-

ally non-Gaussian �Walden and Hosken, 1986� and that they tend to

be blue instead of white, thus lacking low vertical wavenumbers

�Walden and Hosken, 1985�. This nonwhiteness is generally consid-

ered to be a second-order problem. It can be remedied easily if local

well logs exist �Saggaf and Robinson, 2000�.

It is also conceivable that the earth’s phase spectrum has a nonuni-

form distribution at specific depths and locations. Local well-log

analyses can again reveal whether this is the case. A local nonuni-

form phase distribution would bias the estimated wavelet as it hap-

pened, for instance, in the fifth wavelet in Figure 1.

The technique further assumes the wavelet varies only smoothly

with time, such that it can be treated as piecewise stationary within

each analysis window. The linear interpolation between evaluation

points softens this assumption to a certain extent. A trade-off exists,

however, between the optimum length of the analysis window and

the nonstationarity of the wavelet. On the one hand, one needs a suf-

ficiently long window to estimate the kurtosis robustly. On the other

hand, the wavelet and its phase should vary only moderately within

the analysis window. Robust estimation of the kurtosis is difficult for

weakly non-Gaussian and/or short time series �Sacchi and Ulrych,

2000�. Analysis windows should contain at least several hundred

samples. The use of overlapping windows helps with quality control

because rapid variations of estimated wavelets and phases will indi-

cate suspicious results.

Finally, the method assumes that the wavelet has a relatively con-

stant-phase spectrum and that its bandwidth is larger than the peak

frequency. Wavelets derived in seismic-to-well ties often have a

near-constant phase �Longbottom et al., 1988�, thus justifying the

first assumption. The constant-phase assumption greatly reduces the

number of free parameters and stabilizes the performance of the al-

gorithm. Longbottom et al. �1988� and White �1988� show, nonethe-

less, that phase estimation by kurtosis maximization is unstable if

the peak frequency is larger than the wavelet passband �i.e., less than

approximately 1.5 octaves of bandwidth�. However, with the advent

of the microelectrical-mechanical system sensors, bandwidth is

much less of a problem than it was 20 years ago and unlikely to pose

a problem in practice.

The cause for the phase variations over time is unknown in the real

data example. However, the kurtosis variations with test angle show

that the extracted phase is sufficiently well resolved to be deter-

mined. Unfortunately, the measured variations could not be con-

firmed by means of a seismic-to-well tie analysis. It is thus possible

that they reflect true geologic changes with depth.Astatistical analy-

sis of the measured data alone cannot reveal this. This was not the ob-

jective of the article. A statistical approach yields relevant informa-

tion about the data, which can be used to zero phase time-varying ob-

servations, as quality control to check deterministic phase correc-

tions, or even as an individual analysis tool.

The described method can also be used as an alternative to deter-

ministic inverse-Q deconvolution approaches �Robinson, 1979;

Bickel and Natarajan, 1985; Hargreaves and Calvert, 1991; Y. Wang,

2002�. The latter apply frequency-dependent, phase-only or phase-

and-amplitude corrections to the data, given some measured values

for the quality factor Q. Unfortunately, inverse-Q amplitude filtering

is inherently unstable and may decrease the S/N with increasing

time.

The described statistical approach whitens the data only within

the passband of the locally extracted wavelet. The damping factor � n

in expression 5 determines the trade-off between recovery of the re-

flectivity series and noise amplification. Wiener filtering leads to an

optimal trade-off between these two objectives and has the advan-

tage that no Q factor need be measured first. Indeed, it is even possi-

ble to estimate the Q factor from the extracted wavelets, e.g., by

means of computing spectral ratios or by tracking the shift in their

peak frequency �Hauge, 1981; Tonn, 1991; Quan and Harris, 1997�.

a)

b)

c)

d)

Figure 5. �a� Global wavelet constant phase, �b� time-varying ex-
tracted wavelets �constant phase�, �c� time-varying phase, and �d�
kurtosis variations associated with the real data example in Figure 4.
Five wavelets have been extracted, numbered 1–5 with increasing
time. Only the middle wavelets are similar to the global wavelet.
Wavelets seem to broaden with time, indicating the presence of seis-
mic attenuation. Kurtosis variations for each wavelet suggest that all
wavelets are well resolved except for the last one, which has only a
small kurtosis value.

Time-varying wavelet estimation V17



Deterministic dispersion corrections, on the other hand, allow for

frequency-dependent phase modifications, whereas a single-phase

rotation is applied by the statistical method described above.

The noise variance � n
2 in the Wiener filter �expression 5� was kept

constant in all examples, although it can naturally be varied such that

problems caused by nonstationary signal-to-noise ratios can be

countered if needed.

CONCLUSIONS

Phase mismatches sometimes occur between final processed sec-

tions and zero-phase synthetics based on well logs. This happens de-

spite best efforts for controlled-phase acquisition and processing.

The invoked controlled-phase strategies generally are based on de-

terministic corrections derived from field measurements and physi-

cal laws.

Kurtosis maximization by constant-phase rotation is a statistical

method that can reveal the phase of a seismic wavelet. It is robust

enough to detect time-varying phase changes. Phase-only correc-

tions can then be applied by means of a time-varying phase rotation.

Alternatively, amplitude and phase deconvolution can be achieved

using time-varying Wiener filtering.

Naturally, a statistical analysis of the data alone cannot reveal

whether a remnant phase indicates the data acquisition and process-

ing strategy was unsuccessful or represents a true geologic feature.

Nevertheless, a statistical approach yields relevant information

about the data that can be used with zero-phase time-varying obser-

vations, as a quality control to check deterministic phase correc-

tions, or even as an individual analysis tool. Time-varying wavelet

extraction and deconvolution can also be a robust alternative to am-

plitude-only inverse-Q deconvolution. The latter tends to be unsta-

ble because it often attempts to restore information below the noise

level of the data, e.g., amplitudes outside of the passband of the local

wavelet. Time-varying wavelet extraction and deconvolution, on the

other hand, only seeks to restore amplitudes within the local pass-

band of the wavelet. It is therefore inherently stable.
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