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Abstract. The design of TimeML as an expressive language for temporal
information brings promises, and challenges; in particular, its representa-
tional properties raise the bar for traditional information extraction meth-
ods applied to the task of text-to-TimeML analysis. A reference corpus,
such as TimeBank, is an invaluable asset in this situation; however, certain
characteristics of TimeBank—size and consistency, primarily—present chal-
lenges of their own. We discuss the design, implementation, and perfor-
mance of an automatic TimeML-compliant annotator, trained on TimeBank,
and deploying a hybrid analytical strategy of mixing aggressive finite-
state processing over linguistic annotations with a state-of-the-art ma-
chine learning technique capable of leveraging large amounts of unan-
notated data. The results we report are encouraging in the light of a close
analysis of TimeBank; at the same time they are indicative of the need for
more infrastructure work, especially in the direction of creating a larger
and more robust reference corpus. 1
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1 Introduction

Developed as a ‘transport mechanism’ for temporal information, connecting
processes of its extraction from a text document followed by a formalisation by
means of an ontology of time [1], TimeML [2] uses the representational princi-
ples of XML markup to annotate the analysis of the core elements in a tempo-
ral framework: time expressions, events, and links among these (additionally
moderated by temporal connectives, or signals).2

Such representational principles adhere to established guidelines for text
markup, in line with prevalent methodology of creating community-wide an-
notated resources, where linguistic analysis is captured by means of a range
of tags with suitably defined attributes for finer-grained specification of ana-
lytical detail. TimeML takes these ideas to an extreme, developing half-a-dozen
entity and relation marking tags—both consuming and non-consuming—and

1 This work was supported in part by the ARDA NIMD (Novel Intelligence and Mas-
sive Data) program PNWD-SW-6059.

2 We assume in this paper some familiarity with TimeML. For details of the markup
language for time, readers are referred to [3].
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defining a large number of attributes for most of them. Consequently, the re-
sulting language is both very expressive (a necessity, arising from the richness
of time information and depth of temporal analysis, and addressed from the
beginning of the design effort) and very complex (at least in comparison with
markup schemes for “named entity” foci of traditional information extraction
endeavours).

This is not surprising. Most markup schemes for IE to date target relatively
simple phenomena; unlike TimeML, their design has not been informed by the
need to capture the variety and complexity of information required to support
reasoning.3 TimeML, in contrast, aims to capture all of the temporal charac-
teristics in a text document, so that the intricate temporal linking among all
time expressions and events can then get fully mapped onto an ontologically-
grounded temporal graph (or its equivalent), cf. [6], [7]. Indeed, such a mapping
(see [8] for a sketch) has been one of the guiding principles in the conception
and design of TimeML.

A particularly relevant question, then, concerns the extent to which TimeML-
compliant analysis can be automated: temporal reasoning frameworks crucially
require such analysis for any practical understanding of time: “... the [TimeML]
annotation scheme itself, due to its closer tie to surface texts, can be used as the
first pass in the syntax-semantics interface of a temporal resolution framework
such as ours. The more complex representation, suitable for more sophisticated
reasoning, can then be obtained by translating from the annotations.” [7].

Analysis into TimeML is the larger question addressed by this paper. Fur-
thermore, our investigation starts from a particular premise, shared by the de-
signers of TimeML, and in line with the prevalent methodology of developing
analytical frameworks on the basis of common, standard, annotated resources.

The TERQAS effort (Temporal and Event Recognition for QA Systems; http:
//www.timeml.org/terqas/index.html), which over the last 24 months coor-
dinated a series of definitional and follow-up workshops from which emerged
the current set of TimeML annotation guidelines, also produced a corpus anno-
tated by following those guidelines. A description of the TimeBank corpus [9]
states:

“TIMEBANK contains [186] newswire articles with careful, detailed annota-
tions of terms denoting events, temporal expressions, and temporal signals,
and, most importantly, of links between them denoting temporal relations. This
collection, the largest temporal-event annotated corpus to date, provides a solid
empirical basis for future research into the way texts actually express and con-
nect series of events. It will support research into areas as diverse as the seman-
tics of tense and aspect, the explicit versus implicit communication of temporal
relational information, and the variation in typical event structure across narra-
tive domains...”

3 Arguably, an exception can be found in the ‘spirit’ of the MUC event scenario tasks,
which instantiate semantic networks [4, 5]; however, the mapping of an entire text
document to a single template can hardly be regarded as logically complete and co-
herent, in the sense required and assumed by formal event and/or time ontologies.
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Additionally, the corpus was regarded as a resource for “training and eval-
uating algorithms which determine event ordering and time-stamping” (ibid.),
as well as providing general-purpose training data for any and all TimeML com-
ponents. The specific question we ask in this work, then, concerns the extent to
which TimeBank does, in fact, support the development of a TimeML-compliant
text annotator. As we will see, there are certain characteristics of the corpus—
primarily to do with size and consistency—which pose challenges to the notion
of using TimeBank as a training resource.

The remainder of this paper presents some analysis of the TimeBank corpus
from the point of view of a TimeML annotation task, followed by a descrip-
tion and an evaluation of a hybrid analytical strategy, aiming to make maximal
use of the information in the corpus. We argue that tiny as it is (compared to
guidelines implicitly established by other information extraction tasks relying
on annotated data), TimeBank is still the valuable resource that [9] describes. By
developing a strategy for time analysis of text specifically informed by the char-
acteristics of TimeBank—a synergistic approach deploying both finite-state (FS)
grammars with broad range of analysis and machine learning techniques capa-
ble of also leveraging unannotated data—we demonstrate not only the utility
of the corpus as it stands, but more importantly the need for a concerted and
concrete effort to create a sizable TimeBank for the use by the larger NLP com-
munity.

2 Quantitative analysis of TimeBank

Practical content analysis of documents relies, broadly, on a variety of ‘gisting’
approaches, offering surrogate views into what a document is about. Numerous
NLP technologies and applications are concerned with identifying text frag-
ments with high information quotient (according to certain task criteria). Typ-
ical of such approaches are, for instance, efforts to extract mentions of named
entities and broader semantic categories of concepts: in isolation, chained, or
linked in relational structures. These trends can be observed in the definition of
community-wide efforts like the Message Understanding Conferences (MUC)4

and the Automatic Content Extraction (ACE) evaluations.5

One of the common characteristics of such efforts is that they make, from
the outset, infrastructural provisions for the development of a substantial ‘ref-
erence’ corpus, which defines a gold standard (“truth”) for the task. The corpus
contains materials selected to be representative of the phenomenon of interest;
sizes of training and testing samples are carefully considered especially as they
depend on the complexity of the task; experienced annotators are used; the cor-
pus is not released until a certain level of inter-annotator agreement is reached.
These measures ensure that the reference corpus is of a certain size and quality.

The TimeBank corpus is small. This need not be surprising, given that the
TERQAS effort did not commit to producing a ‘reference’, training-strength,

4 See http://www.itl.nist.gov/iad/894.02/related projects/muc/main.html.
5 See http://www.nist.gov/speech/tests/ace/index.htm.
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corpus in the sense described above. In fact, TimeBank is almost a ‘side effect’
of the work: it was largely an exercise in applying the annotation guidelines—
as they were being developed—to real texts (news articles, primarily) in order
to assess the need for, and then the adequacy of, the language representational
devices as they were being designed in the process of TimeML evolution.

Just how small TimeBank is is illustrated by the following statistics. The
corpus has only 186 documents, with a total of 68.5K words. As there are no
separate training and test portions, it would need partitioning somehow; if we
held out 10% of the corpus as test data, we have barely over 60K words for
training.

To put it into perspective, this is order of magnitude less than other stan-
dard training corpora in the NLP community: the Penn Treebank corpus6 for
part-of-speech tagging (arguably a simpler task than TimeML component analy-
sis) contains more than 1M words—which makes it over 16 times larger than
TimeBank; the CoNLL’03 named entity chunking task7 is defined by means of
a training set with over 200K words. A task closely related to time analysis is
ACE’s TERN (Temporal Expression Recognition and Normalisation)8. TERN
only focuses on TIMEX2 (TIMEX3, which extends the TIMEX2 tag [3], is just one
of half-a-dozen TimeML components); even so, the TERN training set is almost
800 documents/300K words-strong.

TimeML tags # occurrences: 29049
marking non-marking

Timex3 1422
Signal 2117
Event 7962
Instance 7966
ALink 282
SLink 2619
TLink 6681

Total: 11501 17548

Fig. 1: Distributions of TimeML components in TimeBank.

Fig. 1 shows a breakdown of the individual TimeML component distrib-
utions in the corpus. While initially the figure of 29K counts of temporally-
related entities seems to hold some promise, the perception quickly shifts as we
realise that there are only 11.5K marking (text-consuming) spans. Furthermore,
given the relationship between EVENTs and INSTANCEs, the 8K INSTANCE tags
in the corpus contribute almost nothing to the training cycle (this is particularly
true, considering that non-trivial EVENT to event INSTANCE mapping comes

6 See http://www.cis.upenn.edu/̃treebank/home.html.
7 See http://cnts.uia.ac.be/conll2003/ner/.
8 See http://timex2.mitre.org/tern.html.
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TIMEX3 class # occurrences:

date 975
duration 314
time 80
set 7

Total: 1423
(In document body:) (1245)

Fig. 2: Distribution of TIMEX3 types in TimeBank.

into play in the analysis of time frequencies (SETs), and that only 7 TIMEX3 an-
notations in the corpus are typed as SETs.)

Fig. 2 gives counts of TIMEX3 classes in TimeBank. It is a highly uneven dis-
tribution, with clearly not enough TIME and SET examples. Additionally, adjust-
ing the counts to take account of time expressions found in document metadata
(marking, for instance, document creation time, document transmittal time, and
so forth)—these are of a very uniform format, and can be found with a trivially
simple regular expression pattern—the total number of examples drops to 1245.
Again, this is considerably less than TERN’s 8K TIMEX2 examples.

Further illustration of the extreme paucity of positive examples over a range
of categories in the TimeBank corpus is shown in Fig. 3. The numbers reveal

tlink type # occurrences event type # occurrences
IS INCLUDED 866 OCCURRENCE 4,452

DURING 146 STATE 1,181
ENDS 102 REPORTING 1,010

SIMULTANEOUS 69 I ACTION 668
ENDED BY 52 I STATE 586

AFTER 41 ASPECTUAL 295
BEGINS 37 PERCEPTION 51
BEFORE 35

INCLUDES 29
BEGUN BY 27

IAFTER 5
IDENTITY 5
IBEFORE 1

Total : 1,451 Total : 8,243

Fig. 3: Distribution of (some) types of TimeML components. Note that the count of 1451
TLINKs, while apparently different from the number of 6681 TLINKs reported in Fig. 1,
refers only to the TLINKs between an event and a temporal expression, itself in the body
of a document. (TLINKs with TIMEX3’s in metadata are not counted here; see Section 6.3.)
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some of the variety and complexity of TimeML annotation: for instance, while
Fig. 1 gives counts per component, it is clear that the extensive typing of EVENTs,
TIMEX3’s and LINKs introduces even more classes in an operational TimeML ty-
pology. Thus an event recognition and typing task is, in effect, concerned with
partitioning recognised events into 7 categories (as we shall see in Section 5.2,
a particular implementation of such a partitioning is realised as (2k + 1)-way
classification task, where k = 7 in our case). Similarly, for TLINK analysis the rel-
evant comparison is to consider that in contrast to, for instance, the CoNLL’03
named entity recognition task—with training data containing 23K examples of
named entities belonging to just 4 categories, TimeBank offers less than 2K ex-
amples of TLINKs, which, however, range over 13 category types.

The table additionally shows the highly uneven distribution of both TLINK
classes and EVENT types; so much so as to render some of the data in the corpus
almost unusable for the purposes of a machine learning framework. This is,
presumably, a consequence of the relatively eclectic way of collecting TimeBank
data, resulting in a less than balanced corpus.

3 Challenges for TimeML analysis

It is clear that temporal annotation is a very complex problem: TimeML was
developed precisely to address the issues of complexity and to provide a rep-
resentational framework capable of capturing the richness of analysis required.
One consequence of this is the pervasiveness of relational data which is integral
to the underlying representation: all links are, notationally, relations connecting
events with other events or temporal expressions. As recent work in relation
finding information extraction shows (in particular, in the context of the ACE
program), the task requires both some linguistic analysis of text and the defini-
tion of complex learning models, typically going beyond just token sequences.

Additionally, as the previous section shows, a different degree of complex-
ity is introduced by the size (and coverage) characteristics of TimeBank. While
it may be reasonable to take a position that in our investigation we will focus
on those TimeML components which are relatively more prevalent in the data
(e.g. TLINKs over ALINKs and SLINKs), we still need to address the problem of
insufficient training data. Our position thus is that in addition to deploying so-
phisticated feature generators, we crucially need to leverage machine learning
technology capable of exploiting unlabeled data.

Our strategy for TimeML analysis of text develops a hybrid approach util-
ising both finite-state (FS) grammars over linguistic annotations and machine
learning (ML) techniques incorporating a novel learning strategy from large
volumes of unlabeled data. The respective strengths of these technologies are
well suited for the challenges of the task: complexity of analysis, need for some
syntactic and discourse processing, and relative paucity of examples of TimeML-
style annotation.

The initial targets of our analysis are TIMEX3 (with attributes), EVENT (plus
type), and TLINK (plus type, and limited to links between events and time ex-
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pressions); see Figs. 2 and 3. This kind of limitation is imposed largely by the
distributional properties of TimeML components annotated in TimeBank (as dis-
cussed in Section 2 earlier); but it is also motivated by the observation that to
be practically useful to a reasoner, a time analysis framework would need to
support, minimally, time stamping and temporal ordering of events. As this
is work in progress, the description below offers more details specifically on
identifying TIMEX3 expressions, marking and typing EVENTs, and associating
(some of these) with TIMEX3 tags (typing the links, as appropriate).

All of these subtasks have components which can be naturally aligned with
one or the other of our strategic toolkits. Thus TIMEX3 expressions are intrinsi-
cally amenable to FS description, and a grammar-based approach is well-suited
to interfacing to the task of TIMEX3 normalisation (i.e. instantiating its value).
On the other hand, certain attributes of a TIMEX3 (such as temporalFunction,
valueFromFunction, functionInDocument) can be assigned by a machine learning
component. FS devices can also encode some larger context for time analysis
(temporal connectives for marking putative events, clause boundaries for scop-
ing possible event-time pairs, etc; see Section 4). To complement such analy-
sis, an ML approach can, using suitable classification methods, cast the prob-
lem of marking (and typing) EVENTs as chunking (Section 5.2). As we will see
later, a TLINK classifier crucially relies on features derived from the configu-
rational characteristics of a syntactic parse; a result in line with recent work
which shows that mid-to-high-level syntactic parsing—typically derived by FS
cascades—can produce rich features for classifiers.

In summary, we address the challenges of the TimeBank corpus by com-
bining FS grammars for temporal expressions, embedded in a shallow parser
adapted for time analysis, with machine learning trained with TimeBank and
unannotated corpora.

4 Finite state devices for temporal analysis

Temporal expressions conform to a set of regular patterns, amenable to grammar-
based description. Viewing TIMEX3 analysis as an information extraction task,
a cascade of finite-state grammars with broad coverage (compiled down to a
single TIMEX3 automaton with 500 states and over 16000 transitions) targets
abstract temporal entities such as unit, point, period, relation, etc; typically, these
will be further decomposed and typed into e.g. month, day, year (for a unit); or
interval or duration (for a period).

Fine-grained analysis of temporal expressions, instantiating local9 attributes
like granularity, cardinality, ref direction, and so forth, is crucially required for nor-
malising a TIMEX3: representing“the last five years” as illustrated in Fig. 4 below
greatly facilitates the derivation of a value (in this case ”5PY”) for the TIMEX3
value attribute.

9 “Local” attributes encapsulate time expression characteristics, intrinsic to their tem-
poral nature, but not related to TIMEX3 attributes.
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[timex : [relative : true ]

[ref_direction : past ]

[cardinality : 5 ]

[granularity : year ] ]

Fig. 4: Analysis of a time expression in terms of local attributes.

In effect, such analysis amounts to a parse tree under the TIMEX3. (Not
shown above is additional information, anchoring the expression into the larger
discourse and informing other normalisation processes which emit the full com-
plement of TIMEX3 attributes—type, temporalFunction, anchorTimeID, etc).

It is important to separate the processes of recognition of the span of a
TIMEX3 expression from local attribute instantiation for that expression. There
is nothing intrinsic to the recognition which necessitates a grammar-based de-
scription in preference to a statistical model (as the TERN evaluation exercise
demonstrated [10]). However, local attributes (as exemplified above) are neces-
sary for the interpretation rules deriving TIMEX3 value.

TimeBank does not contain such fine-grained mark-up: the grammars thus
perform an additional ‘discovery’ task, for which no training data currently ex-
ists, but which is essential for discourse-level post-processing, handling e.g. am-
biguous and/or underspecified time expressions or the relationship between
document-internal and document-external temporal properties (such as ‘docu-
ment creation time’).

In addition to parsing of temporal expressions, FS devices are deployed for shal-
low parsing for feature generation. We build upon prior work [11], which showed
how substantial discourse processing can be carried out from a shallow syntac-
tic base, and derived by means of FS cascading.

Our grammars interleave syntactic analysis with named entity extraction.
In particular, they define temporal expressions—as well as other TimeML com-
ponents, namely events and signals—in terms of linguistic units, as opposed to
simply lexical cues (as many temporal taggers to date do). The focus on lin-
guistic description cannot be over-emphasised. One of the complex problems
for TimeML analysis is that of event identification. A temporal tagger, if nar-
rowly focused on time expressions only (cf. [12]), offers no clues to what events
are there in the text. In contrast, a temporal parser aware of the syntax of a
time phrase like “during the long and ultimately unsuccessful war in Afghanistan”
is very close to knowing—from the configurational properties of a prepositional
phrase—that the nominal argument (“war”) of the temporal preposition (“dur-
ing”) is (most likely) an event nominal.

This kind of information is easily captured within a parsing framework.
Additionally, given that EVENTs and LINKs are ultimately posted by a machine
learning component, the parser need not commit to e.g. event identification and
typing. It can gather clues, and formulate hypotheses; and it can then make
these available to an appropriate classifier, from whose point of view an EVENT
annotation is just another feature. Indeed, the only use of syntactic analysis be-
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yond the TIMEX3 parser is to populate a feature space for the classifiers tasked
with finding EVENTs and LINKs (Section 5).

Feature generation typically relies on a mix of lexical properties and some
configurational syntactic information (depending on the complexity of the task).
The scheme we use (Section 5) requires additionally some semantic typing,
knowledge of boundaries of longer syntactic units (typically a variety of clauses),
and some grammatical function. Fig. 5 illustrates the nature of the FS cascade
output.

[Snt [svoClause

[tAdjunct In [NP [timex3 the 1988 period timex3] NP] tAdjunct],

[SUB [NP the company NP] SUB]

[VG [GrmEventOccurrence earned grmEventOccurrence] VG]

[OBJ [NP [Money $20.6 million Money] NP] OBJ] svoClause] ... Snt]

Fig. 5: Shallow syntactic analysis (simplified) from finite-state parsing.

Most of the above is self-explanatory, but we emphasise a few key points.
The analysis captures the mix of syntactic chunks, semantic categories, and
TimeML components used for feature generation (a label like GrmEventOccur-
rence denotes a hypothesis, generated by the syntactic grammars, that it “earned”
is an occurrence type EVENT). It maintains local TIMEX3 analysis; the time ex-
pression is inside of a larger clause boundary, with internal grammatical func-
tion identification for some of the event predicates. The specifics of mapping
configurational information into feature vectors is described in Section 5.

TimeML parsing is thus a bifurcated process of TimeML components recogni-
tion: TIMEX3’s are marked by FS grammars; SIGNALs, EVENTs and LINKs are pu-
tatively marked by the grammars, but the final authority on their identification
are classification models built from analysis of both TimeBank and large unan-
notated corpora. Features for these models are derived, as we shall see below,
from common strategies for exploiting local context, as well as from mining the
results—both mark-up and configurational—of the FS grammar cascading.

5 Classification models for temporal analysis

The classification framework we adopt for this work is based on a principle of
empirical risk minimization. In particular, we use a linear classifier, which makes
classification decisions by thresholding inner products of feature vectors and
weight vectors. It learns weight vectors by minimizing classification errors (em-
pirical risk) on annotated training data.

There are good reasons to use linear classifiers; an especially good one is
that they allow for easy experimentation with various types of features, with-
out making any model assumptions. This is particularly important in an inves-
tigation like ours, where we do not know a priori what kinds of features and
feature sets would turn out to be most productive.
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For our experiments (Section 6), we use the Robust Risk Minimization (RRM)
classifier [13], a linear classifier, which has independently been shown useful for
a number of text analysis tasks such as syntactic chunking [13], named entity
chunking [14–16], and part-of-speech tagging [17].

In marked contrast to generative models, where assumptions about features
are tightly coupled with algorithms, RRM—as is the case with discriminative
analysis—enjoys clear separation of feature representation from the underlying
algorithms for training and classification. This facilitates experimentation with
different feature representations, since the separation between these and the al-
gorithms which manipulate them does not require that the algorithms change.
We show how choice of features affects performance in Section 6.

To use classifiers, one needs to design feature vector representation for the ob-
jects to be classified. This entails selection of some predictive attributes of the
objects (in effect promoting these to the status of features) and definition of map-
pings between vector dimensions and those attributes (feature mapping). Before
we describe (later in this section) the essence of our feature design for EVENT
and TLINK recognition,10 we briefly outline word profiling as the enabling tech-
nique for counteracting the paucity of training data in TimeBank.

5.1 Word profiling for exploitation of unannotated corpora

In general, classification learning requires substantial amount of labeled data
for training—considerably more than what TimeBank offers (Section 2). This
characteristic of size is potentially a limiting factor in supervised machine learn-
ing approaches. We, however, seek to improve performance by exploiting unan-
notated corpora, which have the natural advantages of being sizable, and freely
available. We use a word profiling technique, developed specially for the pur-
poses of exploiting a large unannotated corpus for tagging/chunking tasks [17].
Word profiling identifies, extracts, and manipulates information that character-
izes words from unannotated corpora; it does this, in essence, by collecting and
compressing feature frequencies from the corpus, a process which maps the
commonly used feature vectors to frequency-encoded context vectors.

More precisely, word profiling turns co-occurrence counts of words and fea-
tures (e.g. ‘next word’, ‘head of subject’, etc) into new feature vectors. For ex-
ample, observing—in an unannotated corpus—that nouns like “extinction” and
“explosion” are often used as syntactic subject to “occur”, and that “earthquakes”
and “explosions” “happen”, helps to predict that “explosion”, “extinction”, and
“earthquake” all function like event nominals. In Section 6.2, we demonstrate
the effectiveness of word profiling, specifically for EVENT recognition.

10 We do not discuss SIGNAL recognition here, as the signal tag itself contributes noth-
ing to EVENT or TLINK recognition, beyond what is captured by a lexical feature over
the temporal connective, independent of whether it is tagged as SIGNAL or not.
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5.2 EVENT recognition as a classification problem

Similarly to named entity chunking, we cast the EVENT recognition task as a
problem of sequential labeling of tokens by encoding chunk information into
token tags. For a given class, this generates three tags: E:class (the last, end, to-
ken of a chunk denoting a mention of class type), I:class (a token inside of a
chunk), and O (any token outside of any target chunk). The example sequence
below indicates that the two tokens “very bad” are spanned by an event-state
annotation.

· · · another/O very/I:event-state bad/E:event-state week/O · · ·

In this way, the EVENT chunking task becomes a (2k + 1)-way classification
of tokens where k is the number of EVENT types; this is followed by a Viterbi-
style decoding. (We use the same encoding scheme for SIGNAL recognition.)

The feature representation used for EVENT extraction experiments mimics
the one developed for a comparative study of entity recognition with word
profiling [17]. The features we extract are:

◦ token, capitalisation, part-of-speech (POS) in 3-token window;
◦ bi-grams of adjacent words in 5-token window;
◦ words in the same syntactic chunk;
◦ head words in 3-chunk window;
◦ word uni- and bi-grams based on subject-verb-object and preposition-

noun constructions;
◦ syntactic chunk types (noun or verb group chunks only);
◦ token tags in 2-token window to the left;
◦ tri-grams of POS, capitalisation, and word ending;
◦ tri-grams of POS, capitalisation, and left tag.

5.3 TLINK recognition as a classification problem

TLINK is a relation between events and time expressions which can link two
EVENTs, two TIMEX3’s, or an EVENT and a TIMEX3. As we stipulated earlier
(Section 3), presently we focus on TLINKs between events and time expressions.

As a relational link, TLINK does not naturally fit the tagging abstraction un-
derlying the chunking problem, as outlined above. Instead, we formulate a clas-
sification task as follows. After posting EVENT and TIMEX3 annotations (by the
event classifier and the FS temporal parser, respectively), for each pairing be-
tween an EVENT and a TIMEX3, we ask whether it is a certain type of TLINK.
This defines a (�+1)-way classification problem, where � is the number of TLINK
types (before, after, etc). The adjustment term ‘+1’ is for the negative class, which
indicates that the pair does not have any kind of temporal link relation.

The relation-extraction nature of the task of posting TLINKs requires a dif-
ferent feature representation, capable of encoding the syntactic function of the
relation arguments (EVENTs and TIMEX3’s), and some of the larger context of
their mentions. To that end, we consider the following five partitions (defined in
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Fig. 6: Partitions for TLINK classifier segmentation.

terms of tokens): spans of arguments (P 1 or P 2); two tokens to the left/right
of the left/right argument (P left/P right); and the tokens between the argu-
ments (P middle). From each partition, we extract tokens and parts-of-speech
as features (Fig. 6).

We also consider segments (i.e. syntactic constructions derived by FS analy-
sis: ‘when-clause’, ’subject’, etc) in certain relationship to partitions:

◦ contained in P 1, P 2, or P middle;
◦ covering P 1 (or P 2) but not overlapping with P 2 (or P 1);
◦ occurring to the left of P 1 (or the right of P 2); or
◦ covering both P 1 and P 2.

We use uni- and bi-grams of types of these segments as features.
In this feature representation, segments play a crucial role by capturing the

syntactic functions of EVENTs and TIMEX3’s, as well as the syntactic relations
between them.

Thus in the example analysis in Fig. 5 (p. 9), svoClause is the smallest seg-
ment containing both an EVENT and a TIMEX3, which is indicative of (or at least
does not prohibit) a direct syntactic relation between the two. In the next ex-
ample (Fig. 7), the TIMEX3 and EVENT chunks are contained in different clauses
(a thatClause and a svoClause, respectively), which structurally prohibits a
TLINK relation between the two. Our feature representation is capable of cap-
turing this information via the types of the segments that contain each of EVENT
and TIMEX3 without overlapping.

[Snt

Analysts have complained

[thatClause that [timex3 third-quarter timex3] corporate earnings

have n’t been very good thatClause]

[svoClause , but the effect [event hit event] ... svoClause] Snt]

Fig. 7: Syntactic configuration discouraging of a TLINK.

6 Experiments

In line with our current investigation focus (as defined in Section 3), we present
here performance results on recognition and typing of TIMEX3, EVENT and
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TLINK only. Our primary objective here is to report on how effective our analyt-
ical strategy is in leveraging the reference nature of the small TimeBank corpus
for training classifiers for TimeML. This is the first attempt to build a TimeML-
compliant analyser which addresses a more or less full complement of TimeML
components; thus there are no comparable results in the literature.

The results (micro-averaged F-measure) reflect experiments with different
settings, against the TimeBank corpus, and produced by 5-fold cross validation.

6.1 TIMEX recognition and typing

Fig. 8 presents performance results of our TIMEX3 analysis subsystem. Experi-
ments were carried out under different settings. “Span” refers to strict match of
both boundaries (the extent) of a TIMEX3 expression; “sloppy” admits time ex-
pressions recognised by the FS grammars as long as their right boundary is the
same as the reference expression in TimeBank. (As we will see, in Section 7.2
later, TimeBank is inconsistent with respect to whether some ‘left boundary’
items—determiners, pre-determiners, and so forth—are marked as a part of
the time expression or not; the “sloppy” setting tries to account for this some-
what). As of the time or writing, there are no published results for full TimeML-

Task P R F

Span 77.6 86.1 81.7
Span (‘sloppy’) 85.2 95.2 89.6

Accuracy

Type (given ‘true’ span) 81.5

Span + type 64.5 71.6 67.9
Span (‘sloppy’) + type 70.1 77.8 73.7

Fig. 8: TIMEX3 analysis results, with/without typing. Typing carried out after/
simultaneously with span marking.

compliant analysis. We offer here only indirect assessment of our TIMEX3 analy-
sis task, by observing that the numbers for extent marking are not very far
from the best systems performance reported at the TERN conference. Of course,
given the different definitions of TIMEX2 and TIMEX3, as well as TimeBank’s
relatively ‘cavalier’ attitude with respect to TIMEX3’s left boundary, the com-
parison is not very meaningful; still, it is indicative of some level of grammar
coverage, especially given the incommensurate sizes of the TERN training data
and the TimeBank corpus (Section 2).

While TIMEX3 spans are determined by grammars, we use a classifier to type
the time expressions. Again, this decision was motivated largely by observing
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some inconsistencies in type assignment in the corpus, and we felt that, for
the purposes of strictly matching the data, machine learning was a more fitting
approach to try first (we are yet to compare the typing results presented here
with typing by the FS grammars; such a comparison is tied somewhat to getting
a better understanding of the quality of annotations in TimeBank; see Section 7
below). The TIMEX3 typing classifier (second segment of Fig. 8) is configured to
use “true” TIMEX3 spans, as per TimeBank, as data points, to which it assigns a
category (type) label; thus the table gives a single accuracy measure.

Finally, we report on a joint task, which combines (in sequence) extent mark-
ing by FS grammars and type determination as classification process over given
spans (this classification task, and features, are defined similarly to the IEO
scheme used for EVENT extraction and typing, in without-word-profiling set-
ting; see Section 5.2). In effect, the results here confirm the intuition that im-
perfect subtasks individually contribute to cumulative degradation of perfor-
mance.

6.2 EVENT recognition and typing

The example analysis in Fig. 5, and the description of features used for the
EVENT classification task (Section 5.2) demonstrates how local information and
syntactic environment both contribute to the feature generation process. Fig. 9
shows performance results with and without word profiling for exploiting an
unannotated corpus. For the word profiling experiments, we extracted feature

features with typing w/o typing
basic 61.3 78.6
basic + word-profiling 64.0 (+2.7) 80.3 (+1.7)

Fig. 9: EVENT extraction results, with/without typing. Numbers in parentheses show
contribution of word profiling, over using basic features only.

co-occurrence counts from 40 million words of 1991 Wall Street Journal articles.
The proposed event chunks are counted as correct only when both the chunk
boundaries and event types are correct. 64.0% F-measure is lower than typical
performance of, for instance, named entity chunking; this result is indicative of
the effects of insufficient training data. On the other hand, a strongly positive
indicator here is the fact that word profiling clearly improves performance. In
a different setting, when we train the EVENT classifiers without typing, we ob-
tain 80.3% F-measure. This confirms the intuition that the EVENT typing task is
inherently complex, and requires more training data.
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distance (# of tlinks) features with typing w/o typing
distance ≤ 64 tokens baseline 21.8 34.9

(1370 tlinks) basic 52.1 74.1
basic+FS 53.1 (+1.0) 74.8 (+0.7)

distance ≤ 16 tokens baseline 38.7 61.3
(1269 tlinks) basic 52.8 75.8

basic+FS 54.3 (+1.5) 76.5 (+0.7)
distance ≤ 4 tokens baseline 49.8 76.1

(789 tlinks) basic 57.0 80.1
basic+FS 58.8 (+1.8) 81.8 (+1.7)

Fig. 10: TLINK extraction results, with/without typing. Parentheses show positive con-
tribution of grammar-derived features, over using basic features only. Baseline method
posts TLINKs over ‘close’ pairs of EVENTs and TIMEX3’s.

6.3 TLINK recognition and typing

In this experimental setting, we only consider the pairings of EVENT and TIMEX3
which appear within a certain distance in the same sentences (as we will see
shortly, this hardly reduces the problem space).11

For comparison, we implement the following simple baseline method. Con-
sidering the text sequence of EVENTs and TIMEX3’s, only ‘close’ pairs of poten-
tial arguments are coupled with TLINKs; EVENT e and TIMEX3 t are close if and
only if e is the closest EVENT to t and t is the closest TIMEX3 to e. For all other
pairings, no temporal relation is posted. Depending on the ‘with-’/‘without-
typing’ setting, the baseline method either types the TLINK as the most popu-
lous class in TimeBank, is included, or simply marks it as ‘it exists’.

Results are shown in Fig. 10. Clearly, the detection of temporal relations
between events and time expressions requires more than simply coupling the
closest pairs within a sentence (as the baseline does). It is also clear that the
baseline method performs poorly, especially for pairings over relatively long
distances. For instance, it produces 34.9% (in F-measure) when we consider
the pairings within 64 tokens without typing. In the same setting, our method
produces 74.8% in F-measure, significantly outperforming the baseline.

We compare performance against two types of feature representation: ‘ba-
sic’ and ‘basic+FS grammar’, which reflect the without- and with-segment-type
information obtained by the grammar analysis, respectively. As the positive
delta’s show, configurational syntactic information can be exploited beneficially
by our process. When we focus on the pairings within a 4-tokens window, we
achieve 81.8% F-measure without typing of TLINKs, and 58.8% with typing.
(The task without typing is a binary classification to detect whether the pairing

11 To evaluate the TLINK classifier alone, we use the EVENT and TIMEX3 annotations in
TimeBank. Also, note that the focus on links within a sentence span naturally excludes
TLINKs with time expressions in document metadata.
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has a TLINK relation or not, regardless of the type.) As the figure shows, the task
becomes harder when we consider longer distance pairings. Within a 64 token
distance, for instance,, we obtain figures of 74.8% and 53.1%, without and with
typing respectively.

While we are moderately successful in detecting the existence of temporal
relations, the noticeable differences in performance between the task settings
with and without typing indicate that we are not as successful in distinguish-
ing one type from another. In particular, the major cause of the relatively low
performance of TLINK typing is the difficulty in distinguishing between during
and is included link types.

7 Qualitative analysis of TimeBank

This section makes some observations concerning the types of errors encoun-
tered during our analysis of the TimeBank corpus. It is important to emphasise
that this is an informal analysis; in particular, there is no quantification of error
types. It is equally important to realise that our observations are not intended
to be critical of the corpus: as we discuss in Section 1, TimeBank was not in-
stantiated as a reference training corpus, and rigorous processes and controls
such as double annotation and inter-annotator agreement were not part of this
particular corpus definition cycle.

We are primarily motivated by a desire to understand how to interpret the
performance figures presented in the previous section: low numbers are typi-
cally indicative of any combination of not enough training data, noisy and in-
consistent data, complex phenomenon to be modeled, and inappropriate model(s).
Our hope is that by highlighting the kinds of ‘natural’ errors that a ‘casual’ an-
notator tends to introduce into the exercise, a more focused effort to instantiate
a larger TimeBank would be able to avoid repetition of these kinds of errors.

There are different types of error, broadly falling into three categories: er-
rors due to failures in the annotation infrastructure, errors resulting from broad
interpretation of the guidelines, and errors due to the inherent complexity of
the annotation task (possibly compounded by underspecification in the guide-
lines).

On th<Timex3-DATE>e afternoon of Oct. 1 </Timex3-DATE>7,

after hours o<Event-OCCURRENCE>f hagglin</Event-OCCURRENCE>g

with five insurance-claims adjusters

over<Event-ASPECTUAL> settlin</Event-ASPECTUAL>g a

toxic-waste<Event-OCCURRENCE> sui</Event-OCCURRENCE>t,

four lawyers<Event-OCCURRENCE> ha</Event-OCCURRENCE>d

an<Event-OCCURRENCE> agreemen</Event-OCCURRENCE>t in hand.

Fig. 11: Annotation tool gone wrong.
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7.1 Annotation infrastructure errors

Consider the (excerpt from an) annotated document illustrated in Fig. 11. Ap-
parently an error, most likely in the annotation software, has caused a system-
atic shift by a single character; the scope of this error is the entire document.
Clearly, there is potential for mismatches between the reference annotations
above and anything tested against them which has been generated without
knowing of this type of error. Equally problematic are errors likely to be in-
troduced in a pre- (or post-) processing cycle by an XML parser thrown off
by malformed XML markup (Fig. 12). The first three examples are, arguably

[Signal who [Event should Event] Signal]

[Signal never [Signal going Signal] Signal]

[Event lawyers [Signal went Signal] Event]

[Event the [Signal settlement Event] into Signal]

Fig. 12: Embedded and overlapping XML annotations.

‘harmless’, as there would be no trace of abnormality after simply stripping the
tags off. However, the semantics of mutually embedded EVENTs and SIGNALs
are clearly dubious, at best. More problematic, of course, is the last example,
where crossing brackets would confuse a parser.12

The cause of such errors is most likely a combination of features of the sup-
porting software. It is certainly the case that the examples in Fig. 11 and Fig. 12
illustrate a situation which is no longer true of that software; in particular, fol-
lowing the release of TimeBank, a dedicated effort focused on developing a
special purpose annotation tool, designed specifically to address the challenges
of producing XML-compliant and internally consistent markup for ‘dense’ an-
notation tasks (of which TimeML is a particularly good example) [18]. It is also
the case that this problem is not manifested over many documents.

However, TimeBank is sufficiently small so that any additional ‘noise’ intro-
duced from extraneous sources—even if relatively few documents are impacted—
has a noticeable effect on performance measures.

7.2 Broad interpretation of the guidelines

This kind of error is manifested in inconsistent and/or missing markup, as il-
lustrated, for example, in the following table (Fig. 13), which shows counts of
different markup patterns either for relatively frequent temporal expressions
(such as the first three entries), or for very similar ones (the last three).

A different kind of inconsistency, also indicative of less than rigorous appli-
cation of the guidelines is reflected in the fluidity of placement of left boundary

12 As it happened in our case, the XML parser driving the generation of the derived test
corpus actually used in the experiments, used to fail silently, causing all remaining
annotations in the document, after the point of failure, to be ignored.
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text time date duration signal none

“currently” 2 8 4
“recently” 2 10 1 4
“already” 1 1 13 17

“two-week-old” ∗
“[8-month]-old” ∗
“136-years-old” ∗

Fig. 13: Inconsistent/missing markup.

to TIMEX3 expressions in particular. We already mentioned that determiners,
pre-determiners and the like tend to float in and out of annotations (Section 6.1).
In different contexts, TimeBank marks the string “the fourth quarter” as a TIMEX3,
with or without including the determiner in its span. Similarly, “[the late 1970s]”
and “the [late 1950s]” are tagged as time expressions which do, or do not, con-
sume the determiner; a behaviour repeatedly observed in the corpus: cf. “the
[timex3 early years timex3]” vs. “[timex3 the early 1980s timex3]” or “[timex3 the
early summer timex3]”.

As we have seen, once we become aware of this kind of error, it is possible
to make some provisions to accommodate it (the ‘lenient’ definition of admit-
ting TIMEX3’s, in Section 6.1 above, is an example). However, this phenomenon
is not limited to time expressions alone, nor can it be counteracted in isola-
tion. For instance, consider the TimeBank analyses of “[timex3 later this afternoon
timex3]” and “[signal later signal] [timex3 this month timex3]”. Interference is now
spread to a different TimeML component analysis; and, arguably, without a SIG-
NAL in the stream, a subsequent TLINK derivation might be compromised—a
situation further exemplified by yet more examples of inconsistent analyses in
the corpus: “at [timex3 this crucial moment timex3]” vs. “[timex3 at the moment
timex3]” and “[signal at signal] the [timex3 end of November timex3]”, “[signal at
signal] [timex3 the beginning of October timex3]” and “[signal at signal] the end of
October”.

These are not isolated errors. Fig. 14 shows a subset of a 48-strong list of
TIMEX3 expression, typed as TIME. The list was derived by a simple projection,
against the TimeBank corpus, of searching for TIMEs which might have inter-
nal inconsistencies. Syntactically, at least, these TIME expressions are in conflict
with the annotation guidelines: for instance, most of their value attributes do
not contain the qualifier "T" (strongly, if not mandatorily, expected in DATE
values); some of them explicitly contain a granularity marker "Q" (for year-
quarter), which does not conform to the definition of TIME that “the expression
[should] refer to time of the day, even if in a very indefinite way”, [3]:p. 22).

To put this projection further into perspective, there are 63 TIME expressions
in the corpus (not counting TIMEs in metadata), approximately three quarters
of which are suspect.
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value in TimeBank covered text

1991-02-24 yesterday
1991-02-25 weekend

1990-08 ast August
1991-02-25 next few days.

1988 last year
1989-11 end of November
1989-Q3 third-quarter
1988-Q3 the year-ago quarter
1989-03 March
1988-Q3 A year earlier

1989 Earlier this year
1990-Q1 early 1990

1989-10-01 earlier this year
1989 now

1989-10 this month

Fig. 14: TimeBank markup of TIME expressions, with values incompatible with TIME nor-
malisation guidelines.

7.3 Errors in EVENT and TLINK markup

As we observed in Fig. 9 (Section 6.2), the event typing task is inherently com-
plex. TimeBank exhibits a variety of error in marking EVENTs. Some are more
systematic than others: for instance, there is pervasive confusion between money
amounts and occurrence events. Some may be due to oversight (or fatigue): a
number of verbs are not marked as EVENTs, even if they clearly denote even-
tualities; the same verb (“run”, “fall”)—in similar contexts—is marked either as
an occurrence or an i action.

TLINK typing is equally (if not even more so) complex, and we attributed
to the difficulties of this task the relatively low performance of our TLINK type
classifier (Section 6.3).

◦ In [timex3 the nine months timex3], net income [event rose event] 4.3% to $525.8...
<tlink type=is included ... />

◦ ... said that its net income [event rose event] 51% in [timex the third quarter timex]
<tlink type=during ... />

Fig. 15: Different type assignment to TLINKs from similar contexts.

The guidelines (and common sense analysis) suggest that is included type
should be assigned if the time point or duration of EVENT is included in the du-
ration of the associated TIMEX3. during, on the other hand, should be assigned
as a type if some relation represented by the EVENT holds during the duration
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of the TIMEX3. We note that for this particular typing problem, the subtle dis-
tinctions are hard even for human annotators: the TimeBank corpus displays a
number of occasions where inconsistent tagging is evident, as Fig. 15 illustrates.

8 Conclusion

The primary focus of this investigation has been the study—direct and indirect—
of the characteristics of the TimeBank corpus which are likely to influence its
utility as a training resource for developing automatic TimeML analysis ma-
chinery. Additionally, we have used the overall task to experiment with a spe-
cially developed strategy for leveraging minuscule amounts of training data.
The strategy synergistically blends finite-state analysis for shallow syntactic
parsing with a machine learning technique. Especially novel components of
this blend are the aggressive analysis, by a complex grammar cascade, targeting
considerably more than just partitioning text into chunks; coupled with an ex-
tension of the learning component, specifically designed to counteract paucity
in pre-annotated data with the ability to train over unannotated data as well as
exploit whatever labeled data is available, no matter how small.

The performance results, in particular where the novel components of EVENT
and TLINK analysis are targeted, appear to fall short of expectations in line with
current state-of-the-art information extraction capabilities. However, given the
extreme paucity of the available reference data, as well as the inherently noisy
nature of a corpus which has not been designed and populated using rigorous
methods for generating training data, our experience is indicative of the effec-
tiveness of a hybrid analytical approach. Furthermore, it is clear that with the
ability to use unannotated corpora in conjunction with TimeBank, even small
improvements to the corpus would significantly boost performance.

Given that ours is the first systematic attempt at TimeML-compliant analysis,
aiming at a more or less full complement of TimeML components, there are no
comparable results in the literature. [19] discuss some pioneering work in link-
ing events with times, and ordering events, suggestive of productive strategies
for posting (some) TLINK information. However, the nature of these efforts is
such that differences in premises, representation, and focus make a direct per-
formance comparison impossible. Furthermore, the work pre-dates TimeML,
and cannot be conveniently mapped to TimeBank data; this, in effect, precludes
a quantitative comparison with our work.

Most recently, the TARSQI project13 has been developing strategies and heur-
istics for particular subsets of TimeML components [20]; again, there is no basis
for direct comparison, as only partial overlap exists between the phenomena
and attributes targeted by that work and ours. For this reason, as well as be-
cause TARSQI does not explicitly focus on investigating the utility of TimeBank
as a training resource, it is not constructive to attempt comparative assessment.

Our analysis of TimeBank confirms that, from the point of view of develop-
ing strong models of temporal phenomena, the corpus would benefit from the
13 See http://www.timeML.org/tarsqi/.
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application of rigorous methodology for compiling training data. It is clear—
especially from considering the results presented in Section 6 and the corpus
characteristics highlighted in Section 7—that even a relatively minor effort of
cleaning up the existing data would improve performance. Such cleanup oper-
ation would largely focus on fixing both the errors of omission and commission
in the original TimeBank.

More challenging, but also more productive and useful to the community,
would be an effort to create a larger TimeBank which—by virtue of the system-
atic methods of developing an annotated corpus within an established set of
annotation guidelines—will truly become the widely usable reference resource
envisaged, from the outset of the TimeML definition and standardisation effort,
by its creators [9].
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