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Abstract

There is a need for solutions which assist users to understand long time-series data by observing its changes over time,

finding repeated patterns, detecting outliers, and effectively labeling data instances. Although these tasks are quite distinct

and are usually tackled separately, we present an interactive visual analytics system and approach that can address these

issues in a single system. It enables users to visualize, understand and explore univariate or multivariate long time-series

data in one image using a connected scatter plot. It supports interactive analysis and exploration for pattern discovery and

outlier detection. Different dimensionality reduction techniques are used and compared in our system. Because of its power

of extracting features, deep learning is used for multivariate time-series along with 2D reduction techniques for rapid and

easy interpretation and interaction with large amount of time-series data. We deploy our system with different time-series

datasets and report two real-world case studies that are used to evaluate our system.

Keywords Time-series data · Visual analytics · Sliding window · Dimension reduction · Time-series graph · 2D projection ·

Repeated patterns · Outliers · Labeling

1 Introduction

Due to the growing amount of collected time-series data and

the increase in the complexities involved in its understanding

in practice, processing and analyzing such data have become

more substantial procedures to understand the characteristics

of the data and obtain meaningful insights and knowledge

from it. Different approaches have been developed to extract
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useful information from raw time-series data including data-

mining. In many situations, however, automated techniques

do not achieve satisfactory results, so experts rely on visual

analytics tools to perform their tasks [17]. Visual analyt-

ics [23] combines the strengths of machine capabilities with

human capabilities to facilitate exploration, analysis, under-

standing, and providing insights. The visual analytics process

aims to tightly couple automatic analysis methods and inter-

active visualization to gain knowledge from raw data and

present a possible chance for analysts, through interaction

tasks, to analyze, explore and understand data.

The time-series data are commonly represented as a time-

series graph. When dealing with a small data space, time-

series graphs are effective, but performing common tasks

such as anomaly detection, extracting frequently occurring

patterns, classifying time-series subsequences into clusters of

similar patterns, or getting an overview of an uncompressed

or compressed time-series graph for large time-series data

become more challenging.

There is a considerable amount of works in information

visualization which examine alternative visual encodings,

such as color-fields [3,16,47] and horizon graphs [22,38].

They have focused on elementary visual tasks that evalu-

ate estimation, such as, point comparison and discrimination
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tasks, or estimation of averages. Thus, the results say very

little about how the users assess the similarity of two or

more time-series when utilizing various time-series visu-

alizations [17]. Such tasks usually involve the notion of

similarity between time-series which is sometimes ineffi-

cient [31]. Dimensionality reduction also is used to enhance

the efficiency of finding repeated patterns by extracting fea-

tures which usually require a discrete representation of the

time-series [31]. Thus, locating such patterns is not easy and

requires the user to have a better understanding of where

repeated patterns (clusters) or outliers (anomalies) occur

especially for the data that have long periods, and how rela-

tionships between data change over time.

In this paper, we investigate a methodology for visu-

alization and interaction with large time-series. The tasks

of anomaly discovery and discovery of frequent patterns

are quite distinct and are usually tackled separately. Our

approach addresses these issues in a single system. The pro-

posed approach uses a sliding window and dimensionality

reduction techniques which aim to depict a large time-series

data as points into a 2D connected scatter plot. The sliding

window moves along the time axis and relies on two main

factors: stride between the existing window and next window;

and the window size. Each vector derived from the sliding

window will be considered as a point in high-dimensional

space representing the phenomenon under consideration. To

enable analysis and exploration, we apply dimensionality

reduction techniques to project the points to two dimensions.

The two-dimensional projections are used to simplify navi-

gation techniques and prevent clutter. Ultimately, the whole

time-series data are presented in one image. From the result-

ing projections, selecting any points should allow the user

to know why they are similar or different, where outliers

(anomalies) occur, where clusters (repeated patterns) occur,

and how the relations between points evolve (connected lines

between points). The methodology applies to univariate and

multivariate time-series data and demonstrates how it aids

the user to label patterns in time-series dataset.

The proposed visual analytics system and approach assists

users to understand and visualize a large time-series data

using both connected scatter plots which represent the entire

dataset after the projection to the new space simultaneously

with time-series graph. It provides novel interactive solutions

to many pattern discovery issues such as anomalous or fre-

quent patterns. It also assists to display how the form of data

develops over time helping researchers to see, understand,

and compare the phenomena under consideration over time.

Dense clusters allow the rapid labeling of similar patterns.

Also, selecting subsets of data in the original time series view

allows them to be located in the connected scatter view.

Overall, our contributions in this work are that we:

1. Demonstrate a visual analytics system that aids identi-

fication of patterns, repeated patterns (clusters), outliers

(anomalies), and transitions between states in large time-

series data.

2. Use a deep convolutional auto-encoder (DCAE) to apply

our approach to multivariate time-series data. Thus, our

approach will be suitable for both univariate and multi-

variate time-series data.

3. Provide visual comparisons of the different approaches

to dimension reduction in our accompanying video.

4. Evaluate our approach and system with two case studies

utilizing two different time-series datasets.

In the following sections, we present a review of the chal-

lenges, approaches, and systems that are relevant to our work,

as well as present and evaluate our approach.

2 Background and related work

In this section, we discuss the prior works that are pertinent

to our work. We divide the related work into three categories:

(1) pattern discovery, (2) labeling time-series data, (3) dimen-

sionality reduction techniques. A brief description of each

category and some works that are related to it will be dis-

cussed.

2.1 Pattern discovery

Pattern discovery is utilized to detect interesting patterns

in the data. The presence of interesting patterns is discov-

ered without any prior assumptions. Under this group, there

are two main sub-tasks which are: (a) Identifying outliers

(anomalies) in time-series which aims to extract data that

deviates from other data and does not conform to an expected

pattern in the data. (b) Identifying common patterns (motifs)

in time-series that aims to find frequently occurring patterns

in a large dataset.

VizTree [30] uses symbolic aggregate approximation

(SAX) to discretize time-series data into a sequence of sym-

bols. A suffix tree encapsulates the global and local structures

of time-series data. Patterns are generated by moving a slid-

ing window along the time-series data which are represented

by a horizontal tree visualization. Performing different pat-

tern discovery tasks is available in VizTree such as finding

frequently occurring patterns (motif discovery) by selecting

the thickest branches across the tree and surprising patterns

(anomaly detection) by selecting the thinnest branches across

the tree.

The Viztree algorithm is fast and effective but it assumes

prior knowledge of the length of the motif to be found. There-

fore, motifs with lengths other than the pre-defined length

would remain undetected. However, if the algorithm re-runs
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TimeCluster: dimension reduction applied to temporal data for visual analytics 1015

multiple times using different motif lengths, motifs could be

detected, but would reduce its efficiency [56,57].

To overcome fixed pattern length, Li et al. [29] intro-

duced a system for detecting variable length motifs by

grammar induction on symbolic representations. Senin et al.

[42] extend GrammarViz [29] to incorporate the parameter-

less discovery of anomalies in time-series data. However,

processing multi-dimensional data [34] is unavailable in

GrammarViz.

Ordonez et al. [37] add radial representations to their line

graphs to simplify the motif analysis process; however, this

could create an overlapping problem because multiple lines

are drawn along the circular axes [10]. TimeSeer [36] uses

scagnostics to identify scatter plots of data attributes at each

time index. Using the statistical summaries lets the user to

explore pairs of variables which helps detecting outliers in

the time-series data. The interface of TimeSeer has lots of

details which may require user training for data exploration

[45]. Legg et al. [26] employ a sketch-based system for query-

by-example search for similar patterns.

TimeSearcher2 [11] allows pattern discovery through

query by example. Filtering is utilized to decrease the size of

the search and allow users to explore multi-dimensional data

using graphs and coordinated tables. The rubberband selec-

tion is also applied allowing users to perform a pattern search

utilizing Euclidean distance. At least, one pattern must be

provided to start the matching process. Similarly, TimeClas-

sifier [53] requires the user to select one behavioral instance

in order to perform the matching process. Therefore, both

systems demand the user to have an overall notion of what

constitutes intriguing or repeating patterns to be selected.

2.2 Labeling time-series data

Labeling is the task of providing labels y to given input

instances x; thus, labels can be utilized to find functions

f that map instances to labels, for example, f (x1, x2) =

y where x1 and x2 are instances and y is the label [8].

Bernard et al. [7] conduct a study to compare and assess

the performance of various labeling strategies using machine

learning and visual analytics. Both fields have individ-

ual strengths and weaknesses. Machine learning follows

a model-centered approach while visual analytics employs

user-centered approaches. They conclude that visual ana-

lytics (visual-interactive labeling) can perform better than

machine learning (active learning) provided that dimen-

sion reduction successfully separates the class distributions.

Alsallakh et al. [5] introduce a visual analytics approach

which supports the user with automated segmentation results

and assists domain experts to inspect the results, to iden-

tify segmentation problems, and correct mislabeled segments

accordingly. Rohlig et al. [39] propose a visual analyt-

ics system to help the user to comprehend the influence

of parameters on the resulting segmentation and labeling.

Thus, it supports subsequent decision making and enhances

higher accuracy as well as confidence in the results. For the

exploration of time-series data, Walker et al. [53] introduce

TimeClassifier a visual analytics system for the classification

of time-series to facilitate in labeling smart sensor data. They

also introduce TimeNotes [52] which supports interactive

selection, hierarchical navigation, exploration, and compar-

ison of time-series data. Similar to our use case, sequences

are labeled with overlaid colored regions illustrating labeled

animal behavior.

2.3 Dimensionality reduction techniques

An efficient motif discovery algorithm for time-series would

be beneficial to summarize and visualize large datasets.

Dimensionality reduction is a way to enhance the efficiency

of extracting patterns in data [31]. Utilizing dimension reduc-

tion in combination with further visual encodings that reveal

the internal state of the learning model enhances the perfor-

mance of visual-interactive labeling [7].

Principal component analysis (PCA), as a feature extrac-

tion method, is applied to time-series data [27,46,59,60]. It is

used to decrease the dimensions of a d-dimensional dataset by

decreasing it to a k-dimensional subspace (where k < d). t-

Distributed Stochastic Neighbor Embedding (t-SNE) is used

[13,28,48,58] which helps to visualize high-dimensional data

by giving each datapoint a location in a two- or three-

dimensional map. Huang et al. [21] use deep convolutional

auto-encoder (DCAE), based on deep convolutional neural

network (CNN), to hierarchically model tfMRI time-series

data in an unsupervised manner. DCAE is a powerful method

for learning high-level and mid-level abstractions from low-

level raw data. It has the ability to extract features from

complex and large time-series in an unsupervised manner.

In this work, dimension reduction visually clusters sim-

ilar patterns removing the need for length matching com-

putation. Previous works [4,48] also use sliding window

approach and PCA, but here we introduce the option to

switch between different dimensionality reduction tech-

niques (t-SNE, UMAP and PCA) and also deep convolutional

auto-encoder (DCAE). We develop the methodology further

to incorporate DCAE work with multivariate time-series,

provide a thorough consideration of parameters in the accom-

panying video, and discuss the results.

3 Overview of themethodology

Our method is designed for detecting, exploring and inter-

preting outlier patterns (anomalous) and repeated patterns

(clusters) in large time-series data. In this section, we intro-
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Fig. 1 An overview of our proposed visual analytics approach. It starts

from raw time-series data and ends allowing users to interact with the

system and changing the parameters which help to improve and fit

the users tasks. Transforming time-series data into a 2D space (points)

passing through a multi-step process including preprocessing (the time-

series data are in high-dimensional space after this step), dimensionality

reduction techniques are used to project each sliding window into a 2D

space (if the number of time-dependent variables is univariate PCA,

t-SNE, or UMAP are applied directly on the sliding window matrix,

but if it is multivariate, DCAE is applied to extract important features

which are then projected into a 2D space using PCA, t-SNE, or UMAP),

visualizing the data into a 2D space, assisting users to detect outliers

and frequent patterns in large time-series data, and allowing users to

interact with the system and customize views

duce our pipeline (Fig. 1) which helps users to visualize,

understand, explore, and validate large time-series data.

3.1 Preprocessing

Data preprocessing transforms the raw data. In this step,

we, respectively, apply normalization and sliding window

approach.

3.1.1 Normalization

In our case, we use unity-based normalization Eq. (1) to set

all values into the range [0,1].

x
′

=
x − min(x)

max(x) − min(x)
(1)

3.1.2 Sliding window approach

Define a continuous multivariate time-series data D of dimen-

sion d with n time-steps, D = X1, X2, . . . , Xn , where each

X i =
{

x1
i , . . . , xd

i

}

. Let w be the window width, s the stride,

and t the start time of a sliding window in the data.

Define a new matrix Zk where each row is a vector of size

w of data extracted from the kth dimension.

Zk(w, s, t)

=

⎡

⎢

⎢

⎢

⎣

xk
t xk

t+1 . . . xk
t+w−1

xk
t+s xk

t+s+1 . . . xk
t+s+w−1

...
...

. . .
...

xk
t+(r−1)s xk

t+(r−1)s+1 . . . xk
t+(r−1)s+w−1

⎤

⎥

⎥

⎥

⎦

where r is the number of desired rows, and t + (r − 1)s +

w − 1 ≤ n

When more than one dimension of the multivariate data

is used, the data are interleaved as depicted in (Fig. 1). As a

default setting, the values of the window size (width) w and

stride (offset) s have their default values where w = 60 and

s = 1. However, they can be interactively changed using a

slider in the system interface which gives the user control

over the parameters w and s and helps to get insight into

behaviors at different resolutions. These values are explored

in the accompanying video. The overlapping between win-

dows is very useful for avoiding lost data and facilitating

the smooth transition between time-steps after reducing the
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dimensionality of the features. Also, it helps to capture local

temporal patterns in the datasets.

3.2 Dimensionality reduction (DR)

The resultant matrix from the sliding window approach is

treated as points in high-dimensional space. Each such point

represents the phenomena that occur at a different time-

interval. We use DR techniques to provide an alternative

view for users to visually analyze and explore the time-series

data. The aim is to reduce the feature space to two dimen-

sions using DR techniques. A higher-level abstraction is also

generated which represents the data while preserving the

shape characteristics of the original data during the reduc-

tion process. In general, choosing a particular DR technique

is important in our approach because the visualization phase

is dependent on it.

There are several linear and nonlinear DR techniques

have been proposed which aim at decreasing the number of

variables that describe the data [50]. The data attributes of

the features in the lower-dimensional subspace are therefore

approximated to the geometric attributes of the data in the

original high-dimensional space. In our work, different lin-

ear and nonlinear DR techniques are applied such as Principal

Component Analysis (PCA), t-Distributed Stochastic Neigh-

bor Embedding (t-SNE) [49], Uniform Manifold Approxi-

mation and Projection (UMAP) [33], and deep convolutional

auto-encoder (DCAE). The target of using these techniques

is to differentiate and visualize high-dimensional data by giv-

ing each data point a location in a two-dimensional map, thus,

different perceptions of the phenomenon under consideration

will be presented which help to visualize, analyze, and facil-

itate exploration of large time-series datasets. To overcome

the complexity of multivariate time-series, DCAE is used to

reduce the features to a certain value, then PCA, t-SNE, or

UMAP is applied to the reduced features to obtain a 2D visu-

alization while univariate time-series is straightway reduced

to a 2D using PCA, t-SNE, or UMAP (Fig. 1).

We choose PCA as an initial DR technique. As nonlinear

techniques, t-SNE and UMAP are available in the system

using source code provided by the authors [33,49]. Nonlinear

DR techniques could help to avoid overcrowding issues [6].

Both t-SNE and UMAP use as default the standard Euclidean

distance between data points.

While t-SNE is currently the most commonly used

technique, the new algorithm UMAP shows its high com-

petitiveness compared to t-SNE [6]. t-SNE suffers from

some limitations such as loss of large-scale information (the

inter-cluster relationships). UMAP has a faster runtime and

provides better scaling which helps to gain a meaningful

organization of clusters, outliers and the preservation of con-

tinuums compared to t-SNE [6,33,51] (Fig. 2 and discussion

in the case studies).

Fig. 2 Top: (all) a selected part of the time-series graph which contains

12000 flow data points of breathing (exhalation and inhalation for one

person). Bottom: connected scatter plot of the data after applying our

methodology, a PCA, b t-SNE, and c UMAP. The yellow highlight in

the time-series graph with the corresponding yellow points are shown

in the connected scatter plot indicates the breathing at that moment

was completely distinct which is clearly obvious once it is labeled in

time-series graph

3.3 Deep convolutional auto-encoder (DCAE)

One of the practical applications of auto-encoders is dimen-

sionality reduction for data visualization. It can learn data

projections that are more interesting than other basic tech-

niques [15]. Deep convolutional auto-encoder (DCAE) is

a strong nonlinear dimensionality reduction method [14].

Compared to the conventional auto-encoder, DCAE has

fewer parameters than the conventional auto-encoder which

means less training time. Also, DCAE uses local information

to reconstruct the signal while conventional auto-encoders

utilize fully connected layers to globally do the reconstruc-

tion. DCAE is an unsupervised model for representation

learning which maps inputs into a new representation space.

It has two main parts which are the encoding part that is used

to project the data into a set of feature spaces and the decod-

ing part that reconstructs the original data. The latent space

representation is the space where the data lie in the bottleneck

layers.

Reducing the dimensionality is achieved by unsupervised

training of an encoder and a decoder neural network, mini-

mizing the reconstruction error [19,32]. The latent features

resulting from the encoder are flattened, and one of PCA,

UMAP, or t-SNE is then used to reduce them to 2D for visu-

alization.

3.3.1 Architecture

The loss function of the DCAE is defined as the error between

the input and the output. DCAE aims to find a code for each

input by minimizing the mean squared error (MSE) between

its input (original data) and output (reconstructed data). The

MSE is used which assists to minimize the loss; thus, the

network is forced to learn a low-dimensional representation

of the input [14,19].
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Table 1 Architecture of the

deep convolutional auto-encoder

with the dense layer highlighted

in bold

Layers Shape Filter size Number of kernels Number of units Activation

Input 60 × 3

Convolution 60 × 64 10 64 ReLu

MaxPool 30 × 64 2

Convolution 30 × 32 5 32 ReLu

MaxPool 15 × 32 2

Convolution 15 × 12 5 12 ReLu

MaxPool 5 × 12 3

Flatten

Dense 60 Linear

reshape 5 × 12

Convolution 5 × 12 5 12 ReLu

Upsample 15 × 12 3

Convolution 15 × 32 5 32 ReLu

Upsample 30 × 32 2

Convolution 30 × 64 10 64 ReLu

Upsample 60 × 64 2

Output 60 × 3 10 3 Linear

For convenience, all layers input and output shape, fil-

ters size, number of kernels, number of units, and activation

functions of the DCAE are summarized in Table 1 and can

be explained as detailed below:

The network architecture consists of three main parts

which are encoding part, encoded representation or bottle-

neck (compressed representation), and decoding part. The

shape of the input and output layers are 60 × 3. In the

encoding part, there are three convolutional layers, and each

layer is followed by pooling layer. The max pooling is

used which is a down-sampling operation on feature maps.

Using max pooling has two main benefits which are: it

obtains translation-invariant features [40]. Second, it ulti-

mately reduces the computational cost for the upper layer

[21]. It is followed by fully connected layers, which take

the output of the last convolution layer and flattens it to

60 neurons. In the decoding part, it has three convolutional

layers, and each layer is followed by the upsampling layer

which is a process that is mainly used to increase the size

of the input data. It works by repeating each temporal step

n times along the time axis. In our case n = 3 after the first

convolutional layer, and n = 2 after the second and third

convolutional layers in the decoding part. The upsampling

process does not apply any particular function, just iterates

the contents of the input. The last convolutional layer has

output shape which is of the same shape as the input. As

activation function, a Rectified Linear Unit activation func-

tion (Relu) [35], defined as ReLU(x) = max(0, x), is used

in all of the convolutional layers except the hidden layer and

the final layer of the decoder part where linear activation

function is used.

Using the Relu activation function has some advantages

which have been discussed in previous studies [25,35] for

example, it reduces the probability of vanishing gradient

which often occurred when the model is deep. Another exam-

ple is that it adds nonlinearity and guarantees the robustness

of the system against noise in the input signals [2]. The out-

put of the last layer in the decoding part is the reconstructed

data of the original input where linear activation is used.

Also, linear activation is used on the latent space layer (fully

connected layer or hidden layer) to preserve the extracted

features from the last conventional layer in the encoding part

which will be used as input to the decoding part. It should

be noted here that the features from the hidden layer are the

features that we are looking for, so we use linear activation

to ensure that they are not modified to be ready for the next

process (2D visualization). The number of feature maps, size

of filter and depth of the model are set based on the recon-

struction error on validation set.

3.3.2 Training

The proposed model was implemented using the libraries

TensorFlow [1] and Keras [15] for building, training, and pro-

cessing the DCAE. Using all queries as a preprocessing stage,

the model is trained end-to-end in an unsupervised manner

before the visualization starts. Adam optimizer [24] is used

which is computationally efficient, requires little memory,

and appropriate for problems with noisy data. Each batch

contains 100 random shuffled windows from the time-series

data. The DCAE is trained to transform the time-series data

into latent representation and then reconstruct the original
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Fig. 3 DCAE followed by a PCA, b t-SNE, and c UMAP to create

the 2D visualization. This figure also shows the Auto-Labeling process.

From the time-series graph (top), the user chooses a portion of data.

Based on Euclidean distance, all windows that match below a threshold

are labeled with the same color in both graphs. In this example, the

selected cluster is corresponding to the Descent Phase of Dive

input or get an optimal approximation of the implicit data rep-

resentation by minimizing the reconstruction error. DCAE is

trained to perform the feature extraction process. After that,

the features in the latent space (bottleneck) are projected into

a 2D space using the previous DR techniques (Fig. 3).

4 Visualization and interaction techniques

The widely referenced mantra “overview first, zoom and fil-

ter, and then details-on-demand” by Shneiderman [44] is

employed. As we show in this paper, our system fits neatly

into these principles. In one image, the overview of the large

dataset is obtained after applying the proposed approach

using 2D connected scatter plot (Fig. 4). The user can zoom

in a particular area, and the detail on demand will be provided

for identified patterns. Sedlmair et al. [41] suggest using 2D

scatter plots, as the most promising approach, to explore

the output of different dimensionality reduction techniques.

They also advocate avoiding interactive 3D scatter plots for

dimension reduction data, especially for cluster verification

tasks.

The time-series graph (Fig. 4A) displays the original data

rendered on the time axis. To simplify navigation techniques

and prevent clutter, the connected scatter plot (Fig. 4B) is

used which displays the transformed points after applying

dimension reduction using any of the described techniques.

While the connected scatter plot is a simple visualization

technique, it has very specific functions in our approach.

Every sliding window is represented as a dot in the plot

after the projection process (Fig. 4C, D). Before labeling, all

points have the same color and transparency, and when they

are concentrated in one area, the densities are accumulated.

Lines are used to connect consecutive points preserving the

temporal ordering of the data and allowing the user to see

temporal connections (Fig. 4B). Thus, the point is linked to

the previous point (inner) and to the posterior point (outer)

as an indication of the flow of time. Lines can be omitted as

one of the options provided in the system. Another option

that is available is path extractions (Fig. 4E). It helps the user

to track the transition between points or clusters. The size

and stride of the sliding window can be also modified. If the

stride has a bigger value than the window size, there will be

some data uncovered, so the system limits the stride option

to be less than the window size (see accompanying video).

For navigating large information spaces, filtering and

zooming are important tasks which support panning or

scrolling through the data. Selecting and zooming could be

utilized to facilitate fast and interactive exploration of large

datasets which help to define the level of detail the user

requires (Fig. 4C). In the time-series graph, the width of the

graph is expanded as the zoom is increased, and the scroll bar

allows the user to scroll smoothly through the expanded time-

series. In the connected scatter plot, scrolling and zooming

display the visualization at different levels of abstraction.

The user can zoom in on regions of interest to emphasize

interesting data for instance, clusters, outliers, etc. That will

give the user direct control over the mapped data and aid for

quickly locating and a close-up visual displaying of clusters.

Smooth zooming is applied to assist the user to maintain their

sense of context and position. In the connected scatter plot,

the smooth zooming is achieved through three levels: zoom-

ing into the whole image, zooming into a specific cluster, and

zooming inside the specific cluster.

For details-on-demand, the idea of linking and brushing is

implemented to connect the two visualization techniques, so

the change to the representation in one view affects the rep-

resentation in the other. Linking and brushing techniques are

beneficial for instance, assisting to overcome the shortcom-

ings of a single visualization technique, combining different

visualization techniques, providing more information, etc.
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Fig. 4 The overview of the system (also see video) (A) Time-series

graph for raw data (multivariate time-series). (B) Connected scatter

plot for the time-series data after applying the proposed approach which

reveals six clusters and transitions between them. The DCAE following

by a dimension reduction technique (UMAP) is applied on the data that

is collected from a Cormorant bird using a sensor. Various colors reveal

various clusters were: cluster A, B, C, D, E, and F are, respectively,

Descent Phase of Dive, Bottom Phase of Dive, Surface Swimming,

Ascent Phase of Dive, Flight, and the beginning and the end of the

dataset. (C) Zooming in an area of interest (cluster A), (D) Drawing

time-series graph for the selected point in connected scatter plot, (E)

Zooming of the transitions (connected lines) from cluster C to clus-

ter A, and (F) X, Y, and Z acceleration during a single cormorant dive

where the changing in posture during descent, swimming, and ascent

are obvious as shifts in the time-series graph

In our system, both time-series graph and connected scat-

ter plot are linked. The desired data can be chosen in either

view, and the highlighted color is automatically reflected

on both graphs to distinguish selected data, hence, patterns,

relationships, clusters, or outliers could be easily visualized,

inspected, and differentiated. The selecting and highlighting

could be performed in both graphs, and the selected data will

be colored in the graph concurrently with the corresponding

items in the other graph which is helpful to demonstrate a

labeling task for repeated patterns, outliers, etc (Figs. 4, 6).

Query by example is also provided by the system to

achieve automatic labeling, where the user selects the inter-

esting data by applying rubber band brushing. Thus, a

timebox as a rectangular region will highlight the interesting

pattern (Fig. 3) (top time series graph). The matching process

will be executed to find similar occurrences in the data using

Euclidean distance (other similarity measures can be intro-

duced). The threshold is set by the user, where 0 means the

patterns are completely identical. Euclidean distance is calcu-

lated between the selected instance and the remaining of the

series data; therefore, all windows that match below a thresh-

old are labeled with the same color in both graphs (Fig. 3).

5 Case study

The capabilities of the system are demonstrated by analyz-

ing real-world data from two domains: medicine and biology.

We collaborated with experts who provided us with datasets

and offered several suggestions and opinions to improve the

system performance giving the user more control over explo-

ration and analysis.

Two time-series datasets are presented. One of the datasets

is univariate time-series (breathing patterns), and the second

is multivariate time-series (triaxial accelerometers recording

animal activity).

5.1 Case study 1: breathing patterns

The respiratory rate is an important vital sign to the health

status of the human. There are various kinds of normal and

abnormal respiration. Evaluating breathing patterns is impor-

tant and helps the clinician in understanding the patient’s

current status [55]. Inspection of the pattern of breathing

will yield clues of the disease process, independent of the

rate measurement. Abnormal patterns of breathing suggest

the possibility of diseases [55,61]. In preparation for analy-

sis anomalies in the dataset should be removed. These are:

a participant may sigh on inspiration or swallow or cough

on expiration which interrupts the normal breathing pat-

terns.

Looking for patterns, such as repeated patterns or abnor-

mal tidal breathing patterns, is important, but when using

time-series graph, revealing such patterns becomes a com-

plex process. Each of the 48 participants have about 12,000
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Fig. 5 Nine breathing patterns

for nine different participants

where the abnormal patterns

could be easily evidenced

through the connected scatter

plot after applying the proposed

approach (PCA)

inspiratory and expiratory flow readings. The two main

issues arising are: the comparing of all the individual breaths

against each other is difficult while looking for abnormalities

because of a long time-series data. Second, comparing one

person with several others is complicated using time-series

graphs.

After applying our approach, every inspiratory and expi-

ratory breath are represented as one loop by applying PCA

and UMAP (Fig. 2a, c). Using our approach allows users to

see all breaths in one view which facilities finding irregular

patterns (Fig. 5). Visual outliers correspond to problemati-

cal breaths (Fig. 6), which can be confirmed by brushing the

outlier points in the connected scatter plot, e.g., the outlier in

(Fig. 6) is highlighted in yellow and is found to correspond

to an interrupted breath (see time-series graph). It is bene-

ficial to eliminate abnormal patterns so they do not impact

in any of the further statistical analysis. As (Fig. 2) shows,

we found that outliers corresponding to breathing anomalies

were visually obvious when using PCA or UMAP, but were

not easy to detect when using t-SNE. Including the option

to switch between dimension reduction techniques within a

visual analytics system can lead to improved interaction with

the data.

Another functional requirement is to be able to compare

patterns far apart within the time-series. Identifying repeated

patterns is a hard task specially with long time-series. After

applying the proposed approach, similar patterns are clus-

tered in the same area in the connected scatter plot. Thus,

identifying such patterns become more simple. Repeated pat-

terns can be confirmed by brushing the dense area (points),

e.g., the repeated patterns in Fig. 6 are highlighted in green

and orange are found to correspond to similar patterns (see

time-series graph). As Fig. 2 shows, when using PCA or

UMAP, repeated patterns are obvious, but they are hard to be

located when using t-SNE.

Fig. 6 Top: time-series graph with overlaid colored regions indicating

to the selected clusters in the connected scatter plot. Bottom: connected

scatter plot where frequent patterns (orange and green) and outlier pat-

terns (yellow) can be allocated with a distinct color that supports the

identification and comparison of the data

5.2 Case study 2: imperial Cormorant bird

One of the attractive solutions to measure behavior in wild

animals is using accelerometers [54]. The attachment of tri-

axial accelerometer provides quantitative data which assists

biologists to monitor and determine animals behavior in

their natural environment over long periods of time [9].

The three axes are corresponding to the dorsoventral (Y),

anterior-posterior (Z) and lateral axes (X) [43]. The biologists

sometimes use directly measured attributes such as pressure

or temperature to be compared with derived attributes help-

ing them in the validation of the animal activities.

Accelerometer data are presented on three separated time-

series graphs, and each graph component of the signal

describes the behavior over the time (Fig. 4F). Using this

type of visualization is not easy to look into the triaxial

nature of the data, and the correlation among axes is hard to

be followed which is important to be considered during the

searching process[18]. Simple visual inspection of three-line

graphs in acceleration to locate behaviors is difficult because
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Fig. 7 This figure shows the main user interface of our system operat-

ing on an Imperial Cormorant dataset. Top: a time series graph of the

whole dataset where accelerator [respectively, X, Y, and Z (black, blue,

and red)] and pressure (purple). The pressure is only plotted for the val-

idation purpose and is not included in any process. Bottom: connected

scatter plot where descent phase of dive (green color), ascent phase of

dive (yellow color), and the rest of the behaviors (gray color). The high

correlation between pressure and channels of the triaxial sensors are

evident for example, during descent and ascent phases the changing

of the pressure can be observed in the time-series graph supports the

decision-making process

patterns may occur in different variables over a long period

of time, such as repeated patterns (Fig. 4A).

Biologists from our university provided us with datasets

for a device attached to an Imperial Cormorant bird. It

records parameters such as triaxial acceleration, triaxial local

magnetic field intensity, pressure, and temperature. Animal

behavior can be derived and quantified from the triaxial

accelerometer data because particular behaviors can be iden-

tified via animal posture and changes in body velocity which

are extracted from accelerometers [53]. The dataset contains

173,256 multivariate measurements for the three axes of the

accelerometer. Another dataset for the Imperial Cormorant

bird is provided with the pressure measurements which is

used for validation (Fig. 7)

The manual labeling of such data can take many days. As

the video demonstrates, this methodology enables interactive

labeling of the data in minutes. A major component of this

is the clustering of similar features such that the user can

select similar but temporally disparate features easily in the

interface (see video). After applying the proposed approach,

the dataset is converted to a connected scatter plot which

clearly reveals six main clusters and the transitions between

them. Each point in the plot represents the animal behavior

for a particular duration.

The expert informs us that the dataset has five main behav-

iors which are Descent Phase of Dive, Bottom Phase of

Dive, Ascent Phase of Dive, Surface Swimming, and Flight.

After applying the proposed approach to the dataset, six clus-

ters have been appeared. Five clusters correspond with five

behaviors that are reported by the expert, and one cluster

represents the beginning and the end of the dataset when the

sensor was attached and detached (Fig. 4). Instead of looking

for the behavior in the time-series graph which may take a

long time, our approach increases the ability to detect animal

postures (connected scatter plot) and behaviors (overlays—

repeated patterns). Comparing between PCA, t-SNE, and

UMAP which are applied after DCAE (Fig. 3), the clusters

in PCA and UMAP are clear while t-SNE is more outspread.

Also, the transitions between clusters are different where they

are harmonious in UMAP and follow the same or near paths

while in PCA they follow near paths and twisted which cause

some dispersion. In t-SNE, the transitions are less clear than

PCA and UMAP.

Interaction The selection and zooming tasks are avail-

able in either view to determine or zoom areas of interest

(Fig. 4C, D). The brushing and rubberband selection tools

are efficiently used in the system where the user can select

an interesting area which is automatically reflected with the

same color in both graphs for example, if the user selects a

particular cluster in the scatter plot, the selected data will be

highlighted by the same color, and all data that are associated

with that cluster in time-series graph will be also highlighted

with the same color (Fig. 4). For the remaining clusters, each

cluster is selected in turn, is colored in the connected scatter

plot where the highlighted color is automatically reflected on

the line view. Thus, the expert can confirm that each cluster

represents one of the behaviors in the raw data.

Edges between clusters can be selected (Fig. 4E). The

user can employ region growing on a selection. Because a

source point is not part of the already highlighted clusters,

it can be selected which will be grown until it reaches a

point that is part of an existing cluster. The source selec-

tion may have multiple points. A whole bundle of edges

can be selected using this approach which is represented

the transitional paths between two clusters. For example, the

transitions (Fig. 4E) are selected which represent the domi-

nant change between cluster C (Surface Swimming) to cluster

A (Descent Phase of Dive). Also, dominant transitions can

be obviously observed of cluster A (Descent Phase of Dive)

to cluster B (Bottom Feeding), cluster B (Bottom Feeding) to

cluster D (Ascent), and cluster D (Ascent) to cluster C (Sur-

face). Cluster F (when the sensor was attached and detached)

only occurs in the start and the end of the dataset which

is obvious by looking to the connected lines to the cluster.

Cluster E (flight) is dominating in the outset and end of the

dataset. It also happens at several shorter intervals throughout

the data, so some activity between those clusters can be seen.

The well-defined edges between clusters can be explicated as

repeated behavior which moves through those statuses with

a high frequency while weaker edges indicate less frequent

behavior. Our interface helps to quickly observe these types

of transitions which can be labeled for further analysis.

For validation purpose, we also compare an automatic

clustering approach. A hierarchical clustering method (HDB-

SCAN) [12,20] is used to generate the most significant

clusters as a density-based clustering algorithm. It requires

only one parameter which represents the minimum size of

the cluster. We use the sklearn package, and we use the hdb-

scan package as available on PyPi in order to determine the
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Fig. 8 (A) HDBSCAN is used

to color clusters after applying

UMAP. Six clusters are clearly

shown which are compatible

with our system view (B)

number of clusters. It is able to correctly identify the sepa-

rate clusters (six clusters) in the cormorant bird dataset after

applying the UMAP (Fig. 8). Other methods, such as K-

means clustering algorithm requires the users the number of

clusters which are difficult to be known in advance especially

in large datasets.

6 Conclusion

For time-series analysis, the sliding window approach

together with dimension reduction techniques including

auto-encoders are becoming popular. TimeCluster combines

these approaches with user interaction to achieve a fast

pattern identification, labeling and outlier detection. The

user may vary the pipeline by choosing between different

dimension reduction techniques, window and step size, and

using 1D deep convolutional auto-encoder. For multivari-

ate data, 1D deep convolutional auto-encoder has the ability

to learn appropriate features resulting in less information

loss. This transforms the points for 2D visualization allow-

ing TimeCluster to summarize the whole dataset in one image

and allowing interaction through multiply linked visualiza-

tions. For time-series data, we find that t-SNE over-clusters

the data and presents a rather disjointed view that makes

it difficult to locate outliers, or to brush similar features.

Using deep learning to combine information from all chan-

nels using appropriate feature representation at the latent

layer is a very effective method to find repetitive patterns

or interesting anomalies that were previously unknown.
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