
Journal of Software Engineering and Applications, 2015, 8, 43-50

Published Online February 2015 in SciRes. http://www.scirp.org/journal/jsea

http://dx.doi.org/10.4236/jsea.2015.82006

How to cite this paper: Akhtar, N. and Nauman, M. (2015) Timed-Automata Based Model-Checking of a Multi-Agent Sys-

tem: A Case Study. Journal of Software Engineering and Applications, 8, 43-50. http://dx.doi.org/10.4236/jsea.2015.82006

Timed-Automata Based Model-Checking

of a Multi-Agent System: A Case Study

Nadeem Akhtar, Muhammad Nauman

Department of Computer Science and IT, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus,

Bahawalpur, Pakistan

Email: nadeem.akhtar@iub.edu.pk

Received 17 May 2014; accepted 10 February 2015; published 12 February 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Abstract

A multi-agent based transport system is modeled by timed automata model extended with clock

variables. The correctness properties of safety and liveness of this model are verified by timed

automata based UPPAAL. Agents have a degree of control on their own actions, have their own

threads of control, and under some circumstances they are also able to take decisions. Therefore

they are autonomous. The multi-agent system is modeled as a network of timed automata based

agents supported by clock variables. The representation of agent requirements based on mathe-

matics is helpful in precise and unambiguous specifications, thereby ensuring correctness. This

formal representation of requirements provides a way for logical reasoning about the artifacts

produced. We can be systematic and precise in assessing correctness by rigorously specifying the

functional requirements.

Keywords

Software Correctness, Formal Verification, Model Checking, Timed-Automata, Multi-Agent System,

Timed Computation Tree Logic (TCTL)

1. Introduction

The use of formal methods to define the requirements, design and architecture of a multi-agent system results in
precise and unambiguous specifications. These formal specifications provide the basis for systematic, mathe-
matically-proven, well-defined, and unambiguous software development phases of analysis, design, and imple-
mentation. Multi-agent systems are distributed, decentralized, consisting of autonomous computing entities
known as agents. Correctness is a mathematical property that establishes the equivalence between software and
its specifications. Software systems analyzed, designed, and implemented by using agents to offer significant

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.82006
http://dx.doi.org/10.4236/jsea.2015.82006
http://www.scirp.org
mailto:nadeem.akhtar@iub.edu.pk
http://creativecommons.org/licenses/by/4.0/

N. Akhtar, M. Nauman

44

challenges in ensuring their correctness. One of the methods of ensuring the correctness of safety and liveness
properties of these agent-based systems is to use formal model checking methods based on timed automata.

2. State of the Art

2.1. Formal Methods

The primary objective of a formal approach is precise and unambiguous specification. A representation of the
requirements based on mathematics aids in precise specification of the software, thereby ensuring that the cor-
rectness, completeness, and unambiguous properties of the system are preserved [1]. The formal representation
of software requirements provides a method for logical reasoning about the artifacts produced. This achieves
more precision in the description and allows for a stronger design that satisfies the required properties. Formal
methods offer the ability to rigorously prove system correctness, i.e. that specifications are consistent with the
stated objective; that code is consistent with specification; and that code produces a desired result and none other.
To overcome the complexity problems in multi-agent systems and get significant results with formal specifica-
tions, we must cope with complexity at each phase: requirements, architecture to design and implementation.
We can prove the correctness of a multi-agent system by formalizing critical components in the multi-agent de-
velopment life-cycle.

The most important reasons to use formal methods in software engineering are: rigorous analysis of system
properties; property-preserving transformations; error-free implementation; high quality of each phase of the
development process; firm foundation for the adaptation and evolution process; continuous correctness as mul-
ti-agent systems are concurrent and often have dynamic environments; formal specification and modeling of a
multi-agent system architecture which can change at run-time (i.e. dynamic architecture); specification accord-
ing to the functional and non-functional properties; property-preserving step-by-step transformations from ab-
stract to concrete concepts and then stepwise refinement to implementation code; improved documentation and
understanding of specifications.

2.2. Agents and Multi-Agent Systems

An agent is a computer system that is capable of autonomous actions on behalf of its user or owner [2]. Agents
are coarse-grained computational systems, each making use of significant computational resources [3]. An agent
is a software entity that is able to conduct information-related tasks without human supervision [4]. Intelligent
agents (i.e. referred to as rational agents) are systems that accomplish their goals by acting rationally. Rational
agents can use reasoning to make decisions about their goals. A rational agent is an autonomous computing ent-
ity that can accomplish tasks autonomously on the behalf of its user. It can also interact and collaborate with
other agents to accomplish its goals. It can also refuse an order or an action that is called from another agent. In-
telligent agents must show some degree of autonomy, social ability, and combine proactive and reactive beha-
vior.
• Autonomous: agents have a degree of control on their own actions, they own their thread of control and un-

der some circumstances, they are also able to take decisions;
• Proactive: agents do not only react in response to external events (i.e. a remote method call), but they also

exhibit a goal-directed behavior and where appropriate are able to take initiative;
• Social: agents are able to and need to interact with other agents in order to accomplish their task and achieve

the complete goal of the system [5].
The environment is a first-class abstraction that provides the surrounding conditions for agents to exist and

that mediates both the interaction among agents and the access to resources [6]. A generic environment program
has been defined by [7]. This simple program gives the agents precepts and receives back their actions; it then
updates the state of the environment based on the actions of the agents and other dynamic processes in the envi-
ronment that are not considered to be agents. Demazeau [8] considers four essential building blocks for agent
systems: agents (i.e., the processing entities), interactions (i.e., the elements for structuring internal interactions
between entities), organizations (i.e., elements for structuring sets of entities within the multi-agent system), and
finally the environment that is defined as the domain-dependent elements for structuring external interactions
between entities. The environment is an independent component of the multi-agent system that has its own re-
sponsibilities. These responsibilities are not dependent on agents. It provides the medium for agents to exchange
messages, and all agent interactions are done through it.

N. Akhtar, M. Nauman

45

A multi-agent system is composed with autonomous entities (i.e. agents) that interact with one another. Mul-
tiple agents are necessary to solve a problem, especially when the problem involves distributed data, knowledge,
or control [9]. A multi-agent system is a collection of several interacting agents in which each agent has incom-
plete information or capabilities for solving the problem [10]. In a multi-agent system, agents are autonomous.
There is no global system control, data is decentralized, and communication is asynchronous.

2.3. Correctness: Safety and Liveness Properties

A program is functionally correct if it behaves according to its stated functional requirements. Correctness is a
mathematical property that establishes the equivalence between software and its specifications [11]. We can be
systematic and precise in assessing correctness by rigorously specifying the functional requirements. Software
systems provide critical services to users, i.e. process control systems in nuclear power plants or in chemical in-
dustry, radiation machines in hospitals, transport systems such as cars, trains and airplanes. In these types of
systems, correctness is of vital importance.

Safety and liveness properties are correctness properties. The safety property is an invariant which asserts that
something bad never happens, that an acceptable state of affairs is maintained. Magee and Kramer [12] have de-
fined safety property S = {a1, a2 … an} as a deterministic process that asserts that any trace including actions in
the alphabet of S is accepted by S. ERROR conditions are like exceptions which state what is not required, as in
complex systems we specify safety properties by directly stating what is required. The liveness property asserts
that something good happens, which describes the states of a system that an agent must bring about given certain
conditions. These properties play a vital role in system verification. Both safety and liveness properties are com-
plementary to each other, safety alone or liveness alone is not sufficient to ensure system correctness. Progress is
a type of liveness property. Progress P = {a1, a2 ... an} defines a property P which asserts that in an infinite ex-
ecution of a target system, at least one of the actions (a1, a2 ... an) will be executed infinitely [13]. We have the
safety and liveness properties mathematically based on timed automata and are unambiguous.

2.4. Formal Verification

Formal verification is the mathematical demonstration of the correctness of a system. The basic idea is to con-
struct a mathematical model of the system under investigation, a model which represents the possible behavior
of the system. The correctness requirements are specified along with the other functional requirements that
represent the desirable behavior of the system. Based on these specifications, we check formal proof whether the
possible behavior agrees with the desired behavior. Verification process can be made precise by using formal
methods. Formal verification leads to proving or disproving the correctness with respect to this formal correct-
ness notion. Formal verification can achieve complete exhaustive coverage of the system thus ensuring that un-
detected failures in the behavior are excluded.

In summary, formal verification requires a model of the system consisting of:
1) A set of states incorporating information about values of variables program counters;
2) A transition relation that describes how the system can change from one state to another;
3) A specification method for expressing requirements in a formal way;
4) A set of proof rules to determine whether the model satisfies the stated requirements.
To obtain a more concrete feeling of what is meant, we consider the way in which sequential programs can be

formally verified.

2.5. Model Checking

Model checking [14]-[19] is a method for automatic and algorithmic verification of finite state concurrent sys-
tems. It takes as input a finite state model of a system and a logical property, it then systematically checks
whether this property holds for a given initial state in that model. Model checking is performed as an exhaustive
state space search that is guaranteed to terminate since the model is finite. It uses temporal logic to specify cor-
rect system behavior. An efficient, flexible search procedure is used to find correct temporal patterns in the finite
state graph of the concurrent system. The orientation of the method is to provide a practical verification method.
The technical formulation of the Model checking is: Given structure M, state s, and TL formula f, does M, s | =
f?. Clarke and Emerson [14] formulated the CTL (Computation Tree Logic) and proposed a CTL Model check-
ing algorithm. They proposed that concurrent programs can be abstracted to finite state synchronization skele-

N. Akhtar, M. Nauman

46

tons, suppressing behavior irrelevant to concurrency.
Model checking addresses finite systems but can be scaled up to a more complex system as a multi-agent sys-

tem. Here, by complex we mean a system with a large number of independent interacting components, with
non-linear aggregate activity, with concurrency between components and constant evolution. Model checking
basic idea is to use algorithms executed by software tools to verify the correctness of the system. The user inputs
a description of a model of the system, the possible behavior, and a description of the requirements specification,
i.e. the desirable behavior, and leaves the verification up to the machine. If an error is recognized, the tool pro-
vides a counter-example showing under which circumstances the error can be generated. The counter-example
consists of a scenario in which the model behaves in an undesired way. Thus the counter-example provides evi-
dence that the model is faulty and needs to be revised. This allows the user to locate the error and to repair the
model specification before continuing. If no errors are found, the user can refine its model description e.g. by
taking more design decisions into account so that the model becomes more concrete and can restart the verifica-
tion process.

2.6. Timed Automata

A timed automaton is a finite state automaton equipped with a finite set of real value clock variables called
clocks, which are used to measure the elapse of time. Timed automata are used to model finite state real-time
systems. A state of a timed automaton consists of the current location of the automaton plus the current values of
all clock variables. Clocks can be initialized when the system makes a transition. Once initialized, they start in-
crementing their value implicitly. All clocks proceed at the same rate. The value of a clock thus denotes the
amount of time that has been elapsed since it has been initialized. Conditions on the values of clocks are used as
enabling conditions of transitions: only if the clock constraint is fulfilled, the transition is enabled, and can be
taken; otherwise, the transition is blocked. Invariants on clocks are used to limit the amount of time that maybe
spent in a location. Enabling conditions and invariants are constraints over clocks.

A timed automaton A is a tuple (L, l0, E, Label, C, clocks, guard, inv) [21] with
• L, a non-empty, finite set of locations with initial location l0 Є L
• E ⊆ L x L, a set of edges
• Label: L → 2AP, a function that assigns to each location l Є L a set Label(l) of atomic propositions
• C, a finite set of clocks
• clocks: E → 2C, a function that assigns to each edge e Є E a set of clocks clocks(e)

clocks: E → ψ (C), a function that assigns to each edge e Є E a set of clocks clocks(e)
• guard: E → ψ (C),a function that labels each edge e Є E with a clock constraint guard(e) over C,

and
• inv: L → ψ (C), a function that assigns to each location an invariant.

3. UPPAAL

UPPAAL [20] is a toolkit for symbolic model checking of real-time systems developed at the University of
Uppsala (Sweden) and Aalborg (Denmark). It provides model checking for verification of behavioral properties
as well as simulation of timed automata. It also has some features to detect deadlocks. The model checking al-
gorithms that are implemented in UPPAAL are based on sets of clock constraints, rather than on explicit sets of
regions. By dealing with (disjoint) sets of clock constraints, a coarser partitioning of the infinite state space is
obtained. A multi-agent system in UPPAAL is modeled as a network of timed automata, called processes. A
clock variable evaluates to a real number and clocks progress synchronously. The fulfilled constraints for the
clock values only enable state transitions but do not force them to be taken. A process is an instance of a para-
meterized template. A template can have local declared variables, functions, and labeled locations. State of the
system is defined by locations of the automata, clocks, and variables values.

UPPAAL uses a query language (i.e. subset of TCTL) for defining requirements. The query language consists
of state formulae and path formulae. State formulae describe individual states with regular expressions such as x
≥ 0. State formulae can also be used to test whether a process is in a given location. Path formulae quantify over
paths of the model and can be classified into reachability, safety, and liveness properties:
• Reachability properties are used to check whether a given state formula f can be satisfied by some reachable

N. Akhtar, M. Nauman

47

state. The syntax for writing this property is E <> f.
• Safety properties are used to verify that something bad will never happen. There are two path formulae for

checking safety properties. A[] f expresses that a given state formula f should be true in all reachable states,
and E[] f means that there should exist a path that is either infinite, or the last state has no outgoing transi-
tions, called maximal path, such that f is always true.

• Liveness properties are used to verify that something eventually will hold, which is expressed as A <> f.
Processes communicate with each other through channels. Binary channels are declared as chan x. The sender

x! can synchronize with the receiver x? through an edge. If there are multiple receivers x?, then a single receiver
will be chosen non-deterministically. The sender x! will be blocked if there is no receiver. Broadcast channels
are declared as broadcast chan x. The syntax for sender x! and receiver x? are the same as for binary channels.
However, a broadcast channel sends a signal to all the receivers, and if there is no receiver, the sender will not
be blocked. UPPAAL also supports arrays of channels. The syntax to declare them is chan x [N] or broadcast
chan x [N], and sending and receiving signals are specified as x[id]! and x[id]?. Processes cannot pass data
through signals. If a process wants to send data to another process then the sender has to put the data in a shared
variable before sending a signal and the receiver will get the data from shared variable after receiving the signal.

4. Case Study: A Multi-Agent Transport System

In this section we present a case study of multi-agent system. It is a system composed of transporting agents.
The objective is to specify our system using timed automata and then verify the correctness properties of safety
and liveness. The mission is to transport stock from one storehouse to another. They move in their environment
which in this case is static, i.e. topology of the system does not evolve at run time. We have specified each and
every part of the system, i.e. agents along with the environment in the form of LTS.

There are three types of agents:
1) Carrier agent: It transports stock from one storehouse to another, it can be loaded or unloaded and can

move both forward and backward direction. Each road section is marked by a sign number and the carrier agent
can read this number.

2) Loader/Un-loader agent: It receives/delivers stock from the storehouse, it can detect if a carrier is waiting
(for loading or unloading) by reading the presence sensor, it ensures that the carrier waiting to be loaded is
loaded and the carrier waiting to be unloaded is unloaded.

3) Store-manager agent: It manages the stock count in the storehouse and it also transports the stock be-
tween storehouse and loader/un-loader.

4.1. UPPAAL Model

The template of the Carrier agent has eight locations: Safe, Appr Loaded Carrier, Parking Store House A, Start

Loaded Carrier, Crossing, unload Carrier, Parking Store House B and Start Empty Carrier. The templates for
Carrier agent and path have been modeled as shown in Figure 1.

The Carrier Agent Template: The initial location is Safe, which corresponds to a carrier agent has not ap-
peared on crossing loaded yet. The location has no invariant, which means that a carrier agent may stay in this
location for an unlimited amount of time. When a carrier agent is approaching, it synchronizes with the control-
ler. This is done by the channel synchronization appr! on the transition to Appr Loaded Carrier. The controller
has a corresponding appr?. The clock x is reset and the parameterized variable e is set to the identity of this car-
rier agent. This variable is used by the queue and the controller to know which carrier agent is allowed to con-
tinue or which carrier agent must be stopped and later restarted.

The location Appr Loaded Carrier has the invariant x ≤ 20, which means that the carrier agent must leave the
location within 20 time units. The two outgoing transitions are guarded by the constraints x ≤ 10 and x ≥ 10,
which corresponds to the two sections before the crossing: can be stopped and cannot be stopped. At exactly 10,
both transitions are enabled, which allows us to take into account any race conditions if there is one. If the carri-
er agent can be stopped (x ≤ 10) then the transition to the location Parking Store House A is taken, otherwise the
carrier agent goes to location Crossing. The transition to Parking Store House A is also guarded by the condition
e == id and is synchronized with stop?

When the controller decides to stop a carrier agent, it decides which one (sets e) and synchronizes with stop!
The location Parking Store House A has no invariant: a carrier agent may be stopped for an unlimited amount

of time. It waits for the synchronization go?. The guard e == id ensures that the right carrier agent is restarted.

N. Akhtar, M. Nauman

48

Figure 1. The template for the (a) Carrier agent; and (b) Carrier path.

We can assume that a carrier agent may receive a go? synchronization even when it is not stopped completely,
which will give a non-deterministic restarting time. The location Start Loaded Carrier has the invariant x ≤ 15
and its outgoing transition has the constraint x ≥ 7.

This means that a carrier agent is restarted and reaches the crossing section between 7 and 15 time units
non-deterministically. The location Crossing is similar to Start Loaded Carrier in the sense that it is left between
3 and 5 time units after entering it.

The Template of the Path: The path controller synchronizes with the Carrier agent. Some of its locations do
not have names. Typically, they are committed locations (marked with a c). The controller starts in the Free lo-
cation (i.e., the path is free), where it tests the queue to see if it is empty or not. If the queue is empty then the
controller waits for approaching carrier agent with the appr? synchronization. When a carrier agent is approach-
ing, it is added to the queue with the add! synchronization. If the queue is not empty, then the first carrier agent
on the queue is restarted with the go! synchronization.

In the Occ location, the controller essentially waits for the running carrier agent to leave the path (leave?). If
other carrier agent is approaching (appr?), they are stopped (stop!) and added to the queue (add!). When a carrier
agent leaves the path, the controller removes it from the queue.

Table 1 shows the UPPAAL code snippets for system declarations, global declarations, and carrier agent
declarations. There is also the UPPAAL verification code which highlights the safety properties.

5. Conclusions and Future Work

A well-defined, precise, timed automaton based model of a multi-agent transport system is proposed. The cor-
rectness properties of safety and liveness of this proposed model are verified. The multi-agent system is modeled
as a network of timed automata. A clock variable evaluates to a real number and clocks progress synchronously.

Our future work is the proposition, design and implementation of transformation rules for the translation of
the current timed automata based formal model into a working system. This working system would have a for-
mal foundation as it would be based on timed automata model.

Acknowledgements

We are grateful to The Worthy Vice Chancellor, The Islamia University of Bahawalpur for motivation and en-

N. Akhtar, M. Nauman

49

Table 1. UPPAALspecifications (liveness and safety properties).

Declarations UPPAAL Specifications

System declarations
1
2

//Template instantiations
system Carrier_Agent,Path;

Global declarations

1
2
3
4
5

//Global declarations
const int N = 2; //number of carrier agents

typedef int [0,N-1] id_carrier;
chanappr[N], stop[N], leave[N];

urgent chan go[N];

Carrier agent declarations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

id_carrier list[N+1];
int[0,N] len;

// Postcondition: Put an element at the end of the queue
void enqueue(id_carrier element)

{list[len++] = element;}
// Postcondition: Removes the front element of the queue

void dequeue()
{

int i = 0;
len -= 1;

while (i < len)
{list[i] = list[i + 1];

i++;}
list[i] = 0;

}
// Postcondition: Returns the front element of the queue

id_carrier front()
{return list[0];}

// Postcondition: Returns the last element of the queue
id_carrier tail()

{return list[len - 1];}

Formal verification using
UPPAAL verifier

1
2
3
4
5
6
7

//Collion Detection on Crossing Area
E<> Carrier_Agent(1).Crossing imply not Carrier_Agent(0).Crossing

//Reachability
E<> Carrier_Agent(1).Crossing
//Check Deadlock For System

A[] not deadlock

couragement. This work has been possible due to the support of The Department of Computer Science & IT,
The Islamia University of Bahawalpur, Pakistan.

References

[1] George, V. and Vaughn, R. (2003) Application of Lightweight Formal Methods in Requirement Engineering. Crosstalk:
The Journal of Defense Software Engineering, 16, 30.

[2] Wooldridge, M. (2002) An Introduction to MultiAgent Systems. John Wiley and Sons, Chichester.

[3] Wooldridge, M., Jennings, N.R. and Kinny, D. (2000) The Gaia Methodology for Agent-Oriented Analysis and Design.
Autonomous Agents and Multi-Agent Systems, 3, 285-312. http://dx.doi.org/10.1023/A:1010071910869

[4] Dogac, A. and Cingil, I. (2004) Agent Technology. In: B2B E-Commerce Technology: Frameworks, Standards and

Emerging Issues, Addison-Wesley, Boston, 103-150.

[5] Wooldridge, M. and Jennings, N.R. (1995) Intelligent Agents: Theory and Practice. The Knowledge Engineering Re-

view, 10, 115-152. http://dx.doi.org/10.1017/S0269888900008122

[6] Weyns, D., Omicini, A. and Odell, J. (2007) Environment as a First-Class Abstraction in Multi-Agent Systems. Inter-
national Journal of Autonomous Agents and Multi-Agent Systems, 14, 5-30.

[7] Russell, S. and Norvig, P. (2002) Artificial Intelligence: A Modern Approach. 2nd Edition, Prentice Hall, Upper Sad-
dle River.

[8] Demazeau, Y. (2003) Multi-Agent Systems Methodology. Franco-Mexican School on Cooperative and Distributed
Systems (LAFMI).

[9] Ferber, J. (1999) An Introduction to Distributed Artificial Intelligence. Addison-Wesley, Boston.

http://dx.doi.org/10.1023/A:1010071910869
http://dx.doi.org/10.1017/S0269888900008122

N. Akhtar, M. Nauman

50

[10] Jennings, N.R., Sycara, K. and Wooldridge, M. (1998) A Roadmap of Agent Research and Development. International

Autonomous Agents and Multi-Agent Systems, 1, 7-38. http://dx.doi.org/10.1023/A:1010090405266

[11] Ghezzi, C., Jazayeri, M. and Mandrioli, D. (2003) Fundamentals of Software Engineering. 2nd Edition, Prentice Hall,
Upper Saddle River.

[12] Magee, J. and Kramer, J. (2006) Concurrency: State Models and Java Programs. 2nd Edition, John Wiley and Sons,
Hoboken.

[13] Giannakopoulou, D., Magee, J. and Kramer, J. (1999) Fairness and Priority in Progress Property Analysis. Technical
report, Department of Computing, Imperial College of Science, Technology and Medicine, London.

[14] Clarke, E.M. and Emerson, E.A. (1981) Design and Synthesis of Synchronization Skeletons Using Branching Time
Temporal Logic. In: Kozen, D., Ed., Logics of Programs, Volume 131, Springer-Verlag, New York, 52-71.

[15] Quielle, J.P. and Sifakis, J. (1982) Specification and Verification of Concurrent Systems in CESAR. Proceedings of the

5th International Symposium on Programming, Turin, 6-8 April 1982, 337-351.
http://dx.doi.org/10.1007/3-540-11494-7_22

[16] Clarke, E., Grumberg, O. and Peled, D. (1999) Model Checking. MIT Press, Cambridge.

[17] Clarke, E.M., Emerson, E.A. and Sistla, A.P. (1986) Automatic Verification of Finite State Concurrent Systems Using
Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems, 8, 244-263.

[18] Clarke, E.M., Grumberg, O. and Long, D.E. (1994) Model Checking and Abstraction. ACM Transactions on Pro-

gramming Languages and Systems, 16, 1512-1542. http://dx.doi.org/10.1145/186025.186051

[19] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y. and Veith, H. (2003) Counter Example-Guided Abstraction Refinement for
Symbolic Model Checking. Journal of the ACM, 50, 752-794. http://dx.doi.org/10.1145/876638.876643

[20] Larsen, K.G., Pettersson, P. and Yi, W. (1997) UPPAAL in a Nutshell. International Journal on Software Tools for

Technology Transfer, 1, 134-152.

[21] Katoen, J.P. (1999) Concepts, Algorithms, and Tools for Model Checking. A Lecture Notes of the Course Mechanized
Validation of Parallel Systems. For 1998/99 at Friedrich-Alexander Universitat, Erlangen-Nurnberg, 195.

http://dx.doi.org/10.1023/A:1010090405266
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1145/186025.186051
http://dx.doi.org/10.1145/876638.876643

http://www.scirp.org/
mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/
http://www.scirp.org/journal/CE/
http://www.scirp.org/journal/ENG/
http://www.scirp.org/journal/FNS/
http://www.scirp.org/journal/Health/
http://www.scirp.org/journal/JCC/
http://www.scirp.org/journal/JCT/
http://www.scirp.org/journal/JEP/
http://www.scirp.org/journal/JMP/
http://www.scirp.org/journal/ME/
http://www.scirp.org/journal/NS/
http://www.scirp.org/journal/PSYCH/

	Timed-Automata Based Model-Checking of a Multi-Agent System: A Case Study
	Abstract
	Keywords
	1. Introduction
	2. State of the Art
	2.1. Formal Methods
	2.2. Agents and Multi-Agent Systems
	2.3. Correctness: Safety and Liveness Properties
	2.4. Formal Verification
	2.5. Model Checking
	2.6. Timed Automata

	3. UPPAAL
	4. Case Study: A Multi-Agent Transport System
	4.1. UPPAAL Model

	5. Conclusions and Future Work
	Acknowledgements
	References

