
Timed Control with Partial Observability�

Patricia Bouyer1��, Deepak D’Souza2� � �, P. Madhusudan3†, and Antoine Petit1

1 LSV – CNRS UMR 8643 & ENS de Cachan, 61, av. du Prés. Wilson, 94230 Cachan, France
2 Chennai Mathematical Institute, 92 G.N. Chetty Road, Chennai 600 017, India

3 University of Pennsylvania, C.I.S. Dept., Philadelphia, USA
bouyer@lsv.ens-cachan.fr, deepak@cmi.ac.in,

madhusudan@saul.cis.upenn.edu,petit@lsv.ens-cachan.fr

Abstract. We consider the problem of synthesizing controllers for timed systems
modeled using timed automata. The point of departure from earlier work is that
we consider controllers that have only a partial observation of the system that
it controls. In discrete event systems (where continuous time is not modeled),
it is well known how to handle partial observability, and decidability issues do
not differ from the complete information setting. We show however that timed
control under partial observability is undecidable even for internal specifications
(while the analogous problem under complete observability is decidable) and we
identify a decidable subclass.

1 Introduction

In the last twenty-five years, system verification has become a very active field of re-
search in computer science, with numerous success stories. A natural generalization
of system verification is the control of systems, which is useful in the context of auto-
mated system design. The problem here is not to verify that the system meets a given
specification, but to control the system in such a way that the specification is met. In
this framework a system, often called a plant, is usually viewed as open and interacting
with a “hostile” environment. The problem then is to come up with a controller such
that no matter how the environment behaves, the controlled plant satisfies the given
specification. An important issue concerns the power of the controller, both in terms of
controllability and observability. The controller can act only on a subset of the actions
of the plant, referred to as the controllable actions. Depending on the nature of the plant,
the non-controllable actions (also called environment actions) could all be observable
(full observability) or only a proper subset (partial observability) may be observable by
the controller.

The computer science community has studied these problems in the setting of au-
tomated synthesis, which can be viewed as a special case of control synthesis. In the
case of untimed (i.e. discrete) systems, this problem is now well understood, both for

� With the partial support of the French-Indian project CEFIPRA no2102–1
�� This work was partly carried out while author had a post-doctoral position at BRICS, Aalborg

University (Denmark).
� � � Part of this work was done during a visit to LSV, ENS de Cachan (France).

† This research was supported by NSF award CCR99-70925 and NSF award ITR/SY 0121431.

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 180–192, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Timed Control with Partial Observability 181

full observability (in terms of two-player games of complete information) [Tho02], and
for partial observability [KG95,Rei84,KV97].

In parallel, there has been a growing importance of verification for real-time sys-
tems, and this leads to the natural question of whether techniques developed in the un-
timed setting for the controller synthesis problem can be generalized to timed systems
(see for example the papers [AMPS98,WTH91,DM02,FLM02]). In this framework, the
timed system is usually given by a timed transition system (i.e. a timed automaton as
defined by Alur and Dill [AD94] but without acceptance conditions). As in the untimed
case, various proposals have been made and studied for the specification. For instance,
in [AMPS98,WTH91] the specification is given as an internal winning condition on the
state-space of the plant. External specifications given by timed automata [DM02] or
by TCTL-formulas [FLM02] have also been investigated. Note that since we deal here
with classes of specifications which are not, in general, closed under complementation,
a distinction has to be made between specifications that describe desired behaviours
and those that define undesired behaviours. The decidability of the problem can depend
crucially on this choice [DM02].

An important and new issue in the timed framework is related to the resources al-
lowed to the controller. By a controller’s resources we mean a description of the number
of new clocks available to the controller and the granularity or fineness of the guards
it can use. As done in [AMPS98,WTH91,FLM02], a simple and possible assumption
is that these resources are not fixed: the controller can use arbitrary new clocks and
guards that compare the clocks to any constant. Another probably more realistic setting
is that the resources of the controller are fixed a priori, as proposed in [DM02]. The
important point is that the controller synthesis problem becomes simpler in the latter
case [DM02,CHR02].

The purpose of this paper is to investigate the problem of timed controller synthesis
under the constraint of partial observability. In the timed setting, the partial observabil-
ity assumption applies not only to uncontrollable actions but also to the clocks of the
system. The setting of [AMPS98] and [DM02] treat the full observability hypothesis
and their main results are summarized in the table below.

Full observability hypothesis

Resources Det. Spec. (Internal/External) External Non-deterministic Spec.
Desired behaviours Undesired behaviours

Fixed Decidable [WTH91,AMPS98] Undecidable [DM02] Decidable [DM02]
Non-fixed Decidable [DM02] Undecidable [DM02] Undecidable [DM02]

Of course, when we drop the hypothesis of full observability, the undecidable cases
carry over under the weaker assumption of partial observability.

While full and partial observability lead to the same decidable cases in the untimed
framework [KV97], our results show that the situation is rather different in the timed
setting. Indeed, if the resources of the controller are not fixed a priori, the problem
becomes undecidable, even for deterministic specifications. This is in contrast to the
complete observability setting, where the problem is decidable for deterministic speci-
fications [DM02]. However, if the resources of the controller are fixed, the timed con-
troller synthesis problem remains decidable both for deterministic specifications, and

182 Patricia Bouyer et al.

for non-deterministic specifications that specify undesired behaviours. The results in
this paper thus complete the study begun in [AMPS98,DM02]. The completed picture
is summarized in the next table, with the new results of this paper written in bold face.
Note that in this timed setting, [LW95,WT97] have studied the problem though in a dif-
ferent framework from ours. In [LW95] time is modeled discretely via an explicit clock
tick, while [WT97] considers internal specifications on the state space of the plant and
provides only semi-decision procedures.

Partial observability hypothesis

Resources Det. Spec. (Internal/External) External Non deterministic Spec.
Desired behaviours Undesired behaviours

Fixed DECIDABLE Undecidable [DM02] DECIDABLE

Non-fixed UNDECIDABLE Undecidable [DM02] Undecidable [DM02]

The undecidability results are obtained through a reduction of the universality prob-
lem for timed automata [AD94] and are presented in Section 4. The technique used for
the main decision procedure can be viewed as a generalization of the technique used in
[DM02] and is presented in Section 5.

Due to lack of space proofs are omitted; details can be found in [BDMP02].

2 Preliminaries

For a finite alphabet Σ, let Σ∗ (resp. Σω) be the set of finite (resp. infinite) sequences
of elements in Σ. We use Σ∞ to denote Σ∗ ∪ Σω. The length of an element α of Σ∞

is denoted |α| (if α ∈ Σω, we set |α| = ω).

Timed Words. We consider a finite set of actions Σ and as time domain the set R≥0 of
non-negative reals. A timed word ω = (ai, ti)1≤i is an element of (Σ × R≥0)∞ which
satisfies:

– Monotonicity: ∀i < j, ti < tj
– If ω is infinite, non-zenoness: ∀t ∈ R>0, ∃i, ti > t

We denote the set of finite (infinite resp.) timed words over Σ by TΣ∗ (TΣω resp.),
and set TΣ∞ = TΣ∗ ∪ TΣω.

We consider a finite set X of variables, called clocks. A clock valuation over X is a
mapping v : X → R≥0 that assigns to each clock a time value. We use 0 to denote the
zero-valuation which resets each x in X to 0. If t ∈ R≥0, the valuation v + t is defined
as (v+ t)(x) = v(x)+ t, ∀x ∈ X . If Y is a subset of X , the valuation v[0/Y] is defined
as: for each clock x, (v[0/Y])(x) = 0 if x ∈ Y and is v(x) otherwise.

The set of constraints (or guards) over a set of clocks X , denoted G(X), is given by the
syntax

g ::= (x ∼ c) | ¬g | (g ∨ g) | (g ∧ g)

where x ∈ X , c is an element of the set Q≥0 of non-negative rationals and ∼ is one of
<, ≤, =, ≥, or >. In this paper, we write v |= g if the valuation v satisfies the clock
constraint g. The set of valuations over X which satisfy a guard g ∈ G(X) is denoted
by �g�X , or just �g� when the set of clocks is clear from the context.

Timed Control with Partial Observability 183

Symbolic Alphabet and Timed Automata. Let Σ be an alphabet of actions, and X be
a finite set of clocks. A symbolic alphabet Γ based on (Σ, X) is a finite subset of Σ ×
G(X)×2X . As used in the framework of timed automata [AD94], a symbolic word γ =
(bi, gi, Yi)i≥1 ∈ Γ∞ gives rise to a set of timed words, denoted tw(γ). We interpret the
symbolic action (a, g, Y) to mean that action a can happen if the guard g is satisfied,
with the clocks in Y being reset after the action. Formally, let σ = (ai, ti)i≥1 ∈ TΣ∞.
Then σ ∈ tw(γ) if there exists a sequence v = (vi)i≥1 of valuations such that (with the
notations t0 = 0 and v0 = 0):

|σ| = |γ| = |v| and ∀i ≥ 1,

ai = bi

vi−1 + (ti − ti−1) |= ϕi

vi = (vi−1 + (ti − ti−1))[0/Yi]

A timed automaton over (Σ, X) is a tuple A = (T , F,F) where T = (Q, q0,→),
with →⊆ Q × Γ × Q, is a finite state transition system over some symbolic alphabet
Γ based on (Σ, X), F ⊆ Q is the set of final states and F is an acceptance condition
for infinite behaviours. We consider instances of F as a Büchi condition, specified by a
subset B of repeated states, or a parity condition, specified by ind : Q → {0, . . . , d}
(where d ∈ N), that assigns an index to each state.

The timed automaton A (or the transition system T) is said to be deterministic if,
for every state, the set of symbolic actions enabled at that state is time-deterministic i.e.
do not contain distinct symbolic actions (a, g, Y) and (a, g′, Y ′) with �g� ∩ �g′� = ∅.

A path in T is a finite or an infinite sequence of consecutive transitions:

P = q0
a1,g1,Y1−−−−−→ q1

a2,g2,Y2−−−−−→ q2 . . . , where (qi−1, ai, gi, Yi, qi) ∈−→, ∀i > 0

The path is said to be accepting in A if either it is finite and it ends in a final state,
or it is infinite and the set inf (P), which consists of the states which appear infinitely
often in P , satisfies:

– inf (P) ∩ B = ∅ (in case of a Büchi condition)
– min({ind(q) | q ∈ inf (P)}) is an even number (in case of a parity condition)

A timed automaton A can be interpreted as a classical finite automaton1 on the
symbolic alphabet Γ . Viewed as such, A accepts (or generates) a language of symbolic
words, Lsymb(A) ⊆ Γ∞, constituted by the labels of the accepting paths in A. But
we will be more interested in the timed language generated by A, denoted L(A), and
defined by L(A) = tw(Lsymb(A)).

The set of finite symbolic words generated by a timed automatonA, Lsymb(A)∩Γ ∗

will be denoted by L∗
symb(A). Similarly, L∗(A) = L(A) ∩ TΣ∗.

Let T be a timed transition system on the symbolic alphabet Γ . We define Lsymb(T)
as the set Lsymb(A) where A is the timed automaton obtained from T by setting all
states to be both final and repeated. The languages L(T), L∗

symb(T) and L∗(T) are
defined in a similar way.

1 We assume the standard definitions of classical finite (untimed) automata on finite and infinite
words, or (untimed) transition systems.

184 Patricia Bouyer et al.

Synchronized Product. We define the synchronized product of timed transition sys-
tems. Let Σ =

⋃
i∈{1,...,k} Σi be an alphabet. Let X =

⋃
i∈{1,...,k} Xi be a finite

set of clocks and let (Ri)1≤i≤k be a partition of X . And, for i = 1, . . . , k, let Ti =
(Qi, q

i
0,−→i) be a timed transition system on some symbolic alphabet over (Σi, Xi)

with resets only in Ri. The synchronized product of T1, . . . , Tk w.r.t. the distributed
clock-alphabet ((Σ1, X1, R1), . . . , (Σk, Xk, Rk)), written T1 ‖· · ·‖Tk, is defined to be
the transition system T = (Q, q0,−→), where Q = Q1 × · · · × Qk, q0 = (q1

0 , . . . , q
k
0)

and the transitions are constructed as follows. Let (q1, . . . , qk) be a state of Q, let a ∈ Σ

and, for every i such that a ∈ Σi, let qi
a,gi,Yi−−−−−→i q′i be a transition in Ti. Then there

exists in T a (synchronized) transition (q1, . . . , qk)
a,g,Y−−−−→ (q1, . . . , qk) with

– g =
∧

i|a∈Σi
gi

– Y =
⋃

i|a∈Σi
Yi

– for any i = 1, . . . , k, qi = q′i if a ∈ Σi and qi = qi otherwise.

In the sequel, we will use the notations (a, g, Y) � j = ε if a ∈ Σj , (a, g, Y) � j =
(a, gj , Yj) otherwise. We extend this projection to words over symbolic product actions
in the obvious way, interpreting ε as the empty string.

The idea is that on an action in Σ, the agents involved in the action make a synchro-
nized move. Also, each transition system Ti can read the clocks Xi but a clock x ∈ X
can be reset only by one agent (the agent j such that x ∈ Rj).

Granularity and Regions. We define a measure of the clocks and constants used in
a set of constraints, called its granularity. A granularity is a tuple µ = (X, m,max)
where X is a set of clocks, m is a positive integer and max : X −→ Q+ a function
which associates with each clock of X a positive rational number. The granularity of
a finite set of constraints is the tuple (X, m,max) where X is the exact set of clocks
mentioned in the constraints, m is the least common multiple of the denominators of
the constants mentioned in the constraints, and max records for each x ∈ X the largest
constant it is compared to. A constraint g is said µ-granular if it belongs to some set
of constraints of granularity µ (note that a µ-granular constraint is also ν-granular for
any granularity ν finer than µ). We denote the set of all µ-granular constraints by G(µ).
A constraint g ∈ G(µ) is said µ−atomic if for all g′ ∈ G(µ), either �g� ⊆ �g′� or
�g� ∩ �g′� = ∅. Let atomsµ denote this set of µ-atomic constraints.

By the granularity of a timed automaton (or a timed transition system), we will
mean the granularity of the set of constraints used in it.

For granularities µ = (X, m,max) and ν = (X ′, m′,max ′) we use µ + ν to mean
the combined granularity of µ and ν which is (X ∪ X ′, lcm(m, m′),max ′′) where
max ′′(x) is the larger of max (x) and max ′(x), assuming max (x) = 0 for x ∈ X ′−X ,
and max ′(x) = 0 for x ∈ X − X ′.

Let µ = (X, m,max) be a granularity. A µ−region is thus an equivalence class of
valuations over X which satisfy

– for each x ∈ X , either both v(x), v′(x) > max (x), or �m.v(x)� = �m.v′(x)� and
frac(m.v(x)) = 0 iff frac(m.v′(x)) = 0. By �t� we mean the integer part of t and
by frac(t) we mean the value t − �t�.

Timed Control with Partial Observability 185

– for each pair of clocks x, y in X with v(x), v′(x) ≤ max (x) and v(y), v′(y) ≤
max (y), frac(m.v(x)) = frac(m.v(y)) iff frac(m.v′(x)) = frac(m.v′(y)) and
frac(m.v(x)) < frac(m.v(y)) iff frac(m.v′(x)) < frac(m.v′(y)).

The set of µ−regions is denoted by regµ. Note that two valuations in the same µ−region
satisfy in particular exactly the same set of constraints in G(µ).

3 The Timed Controller Synthesis Problem

In this section we define the controller synthesis problem we aim to study. The general
framework we will follow is along lines of the one proposed in [AMPS98,DM02] with
the necessary generalizations to handle partial observability.

We consider a plant over an alphabet of actions Σ which is partitioned into a set ΣC

of controllable actions and a set ΣE of environment (or non-controllable) actions. This
set of environment actions is further partitioned into observable actions Σo

E and unob-
servable actions Σu

E . In a similar way, the set of clocks X of the plant is constituted of
two disjoint sets, the set Xr of observable (or readable) clocks and the set Xu of unob-
servable (or unreadable) clocks. Let us fix Σ̂ = (ΣC , Σo

E , Σu
E) and X̂ = (Xr, Xu) for

the rest of this paper.
A partially observable plant (or simply plant in the following) over (Σ̂, X̂) is a

deterministic, finite state, timed transition system P over (Σ, X). Intuitively, we are
looking for a controller Cont such that the “controlled” plant P ‖ Cont satisfies some
given specification. The controller is assumed to have limited power. It can read the
clocks of Xr, and read/reset its own set of clocks which we call XCont. However, it
cannot refer to the clocks in Xu. Concerning the actions, the controller can only observe
the actions in ΣC ∪ Σo

E .
The controller must further satisfy two important requirements. It must be non-

restricting in the following sense: whenever we have τ ∈ L∗(P ‖ Cont) and τ.(e, t) ∈
L∗(P) with e ∈ ΣE , then we must have τ.(e, t) ∈ L∗(P ‖Cont). It must also be non-
blocking in that it does not block progress of the plant: whenever τ ∈ L∗(P ‖ Cont)
and τ.(b, t) ∈ L∗(P) with b ∈ Σ, then there exists c ∈ Σ and t′ ∈ R>0 such that
τ.(c, t′) ∈ L∗(P ‖Cont).

Formally, let XCont be a set of clocks disjoint from X , and let µ = (Xr ∪XCont, m,
max) be a given granularity. Then a µ-controller for P is a deterministic timed transi-
tion system Cont over (ΣC ∪ Σo

E , Xr ∪ XCont) of granularity µ and with resets only in

XCont (i.e. if q
a,g,Y−−−→ q′ in Cont, then Y ⊆ XCont). The behaviour of the “controlled”

plant is that of the synchronized product transition system P ‖Cont, w.r.t. the distributed
clock-alphabet ((Σ, X, X), (ΣC ∪ Σo

E, Xr ∪ XCont, XCont)). The µ-controller Cont is
a valid controller if moreover Cont is non-restricting and non-blocking.

We can distinguish several types of specifications that the controlled plant P ‖Cont
may have to satisfy:

– Internal specifications: The specification is given by a condition F on the states
of the plant (F can be a Büchi or parity condition, as described in the previous
section). The controlled plant P ‖ Cont meets the internal specificationF whenever

186 Patricia Bouyer et al.

for all timed words σ generated by P ‖ Cont, the unique run of P ‖ Cont on
σ satisfies the acceptance condition F along the states of the plant. These types
of specifications have been considered in [AMPS98], in the framework of fully
observable plants.

– External specifications: The specification is given by a timed automaton S which
can represent either the desired (in which case the specification will be said to
be positive) or the undesired behaviours (the specification will then be said to be
negative). The controlled plant P ‖ Cont meets an external positive specification
S whenever L(P ‖ Cont) ⊆ L(S), and the controlled plant P ‖ Cont meets an
external negative specification S whenever L(P ‖ Cont) ∩ L(S) = ∅. In [DM02],
such specifications have been studied for fully observable plants.

Note that external specifications are more general than internal specifications, as
an internal specification can be transformed to an equivalent external specification by
simply using the plant along with the internal specification as a deterministic external
specification of desired behaviours.

Depending on whether the resources of the controller are fixed a priori or not, we
define formally two types of timed controller synthesis problems.

Definition 1 (Timed controller synthesis problem with non-fixed resources). Let P
be a plant over (Σ̂, X̂). Let S be a specification. The timed controller synthesis problem
consists in deciding whether there exist some granularity µ = (Xr ∪ XCont, m,max)
(where XCont is disjoint from X) and a µ-controller Cont such that the controlled plant
(P ‖ Cont) meets the specification S.

Definition 2 (Timed controller synthesis problem with fixed resources). Let P be a
plant over (Σ̂, X̂). Let S be a specification. Let µ = (Xr ∪ XCont, m,max) be a fixed
granularity (where XCont is disjoint from X). The timed controller synthesis problem
with the fixed resources µ consists in deciding whether there exists a µ-controller Cont
such that the controlled plant (P ‖ Cont) meets the specification S.

The remainder of the paper is devoted to the study of these two problems, under our
general hypothesis of partial observability. We will thus extend both works [AMPS98]
and [DM02], where the assumption of full observability hypothesis is made. The results
of these works have been summed up in the table on page 181. We study in the next two
sections respectively the “Timed controller synthesis problem with non-fixed resources”
and the “Timed controller synthesis problem with fixed resources” under the partial
observability hypothesis.

4 Timed Controller Synthesis with Non-fixed Resources

In the setting of full observation the problem of controller synthesis with non-fixed resour-
ces is known to be decidable for deterministic specifications [AMPS98,WTH91,DM02].
In the presence of partial observability however, this problem becomes undecidable:

Theorem 1. The timed controller synthesis problem with non-fixed resources for par-
tially observable plants and deterministic specification is undecidable.

Timed Control with Partial Observability 187

The proof of this theorem can be done by reduction to the Q-universality problem
for timed automata, which is known as being undecidable [AD94].

As a simple but important corollary of this theorem, we get the following undecid-
ability result. Note that this implies in particular that the results of [AMPS98] for full
observability cannot be extended to partial observability.

Corollary 1. The timed controller synthesis problem with non-fixed resources for par-
tially observable plants and for internal specifications is undecidable.

5 Timed Controller Synthesis with Fixed Resources

We now consider the timed controller synthesis problem with fixed resources. Ob-
serve that the problem for deterministic specifications reduces to the problem of non-
deterministic specifications which specify undesired behaviours. This is true since a
deterministic specification of desired behaviours can be complemented and used as a
specification of undesired behaviours. Hence we concentrate on solving the problem for
non-deterministic specifications of undesired behaviours.

The technique we use is along the lines of the one used in [DM02]. We first show
that the existence of a controller is equivalent to the existence of a winning strategy for
player C (the “control”) in a timed game. We then reduce the existence of a winning
strategy for player C in this timed game to the existence of a winning strategy in a
classical untimed game. To take into account partial observability however we need
to use a slightly different notion of a timed game from the one in [DM02]. The game
graph is done away with, and the players simply play over the alphabet of symbolic
actions permitted to the controller. The plant comes into the picture only in describing
the winning condition of the timed game.

For rest of the section we fix the following instance of the problem. Let P be a plant
over (Σ̂, X̂), S an arbitrary (i.e. we do not assume time determinism) specification of
undesired behaviours, and µ = (Xr ∪ XCont, m,max) a granularity such that XCont ∩
X = ∅.

5.1 Timed Controller Synthesis Problem as a Timed Game

We first define the notion of “timed game” between two players C (the control) and
E (the environment). As we will see, the timed controller synthesis problem reduces
easily to the problem of checking whether player C has a winning strategy in such a
game.

Let ν = (Xr ∪ Z, n, max’) be a granularity such that Z ∩ X = ∅. A timed game
Ω based on (Σ̂, X̂, ν) is a triple (Γ,H,A) where Γ is the symbolic alphabet (ΣC ∪
Σo

E) × atomsν × 2Z , H is a timed transition system over (Σ, X) and A is a timed
automaton over (Σ, X). The game is played between players C and E, and a play
γ = u0u1 · · · ∈ Γ∞ is built up as follows. Player C offers a subset of symbolic actions
from Γ , and player E responds by choosing an action u0 from that subset. Next, player
C again offers a subset of symbolic actions from Γ , and player E picks u1 from it, and

188 Patricia Bouyer et al.

so on. At any point, player C can offer the empty set of moves, in which case the game
ends.

A play in Ω is thus a word in Γ∞. Whether a play γ is winning for player C will
depend on the “synchronized” symbolic words that γ can produce in conjunction with
H. Towards this end, for a word γ ∈ Γ∞, we define the set of synchronized words of γ
with respect to H, denoted synwH(γ), as follows. Let UΓ denote the universal, single-
state transition system over Γ which accepts all words of Γ∞. Consider the product
H ‖ UΓ , w.r.t. the distributed clock-alphabet ((Σ, X, X), (ΣC ∪ Σo

E , Xr ∪ Z, Z)).
Then synwH(γ) is defined to be the set of all γ′ ∈ Lsymb(H ‖ UΓ) such that γ′ �
2 = γ (recall that the operator � is defined in Section 2). Note that synwH(γ) is a set
of finite and infinite words. Also, even if γ is finite, synwH(γ) could contain infinite
words (there could be a word which after a point, has only actions from Σu

E). Let us
denote by synw∗

H(γ) and synwω
H(γ), the set of finite and infinite words in synwH(γ),

respectively.

A strategy for player C is a function f : Γ ∗ → 2Γ such that f(γ) is deterministic,
for every γ ∈ Γ ∗. Note that f(γ) can be the empty set. We say that a play γ is a play
according to f if for every prefix τ.u of γ, u ∈ f(τ). Let playsω

f (Ω) denote the set of
infinite plays and plays∗f (Ω) denote the set of finite plays played according to f . We set
playsf (Ω) = plays∗f (Ω)∪ playsω

f (Ω). Note that playsf (Ω) is prefix-closed. f will be
termed a finite-state strategy if there exists a deterministic finite state transition system
T over Γ , with f(γ) given by the set of actions enabled at stateT (γ) (defined as the
unique – recall that T is assumed to be deterministic – state of T reachable from the
initial state when reading γ).

For a strategy f and a finite play γ ∈ plays∗f (Ω), let Ξγ = tw(synw∗
H(γ)) denote

the set of finite timed words generated by the strategy in conjunction with H on the
finite play γ. We say that f is non-restricting if whenever γ ∈ plays∗f (Ω), σ ∈ Ξγ

and σ.(e, t) ∈ L∗(H) with e ∈ ΣE , it is the case that σ.(e, t) ∈ Ξγ′ for some γ′ ∈
plays∗f (Ω) such that γ is a prefix of γ′. We say f is non-blocking if whenever we have
γ ∈ plays∗f (Ω), σ ∈ Ξγ , and σ.(b, t) ∈ L∗(H) for some b ∈ Σ, then there is a word
σ.(c, t′) ∈ Ξγ′ , where c ∈ Σ, t′ ∈ R>0 and γ′ is in plays∗f (Ω) such that γ is a prefix
of γ′. We call a strategy valid if it is both non-restricting and non-blocking.

A play γ ∈ Γ∞ in Ω is said winning for player C whenever tw(synwω
H(γ)) ∩

L(A) = ∅. We say that a strategy f is winning for player C if all plays according to f
are winning for C – or equivalently, if

tw(synwω
H(playsf (Ω))) ∩ L(A) = ∅.

Let us return to the instance of the controller synthesis problem we have fixed.
We define the timed game Ω = (∆µ,XCont ,P ,S) over (Σ̂, X̂, µ) where ∆µ,XCont =
(ΣC∪Σo

E)×atomsµ×2XCont . The timed game Ω captures our timed controller synthesis
problem in the following sense:

Lemma 1. There exists a valid (finite-state) µ-controller Cont for P such that (P ‖
Cont) meets the specification S iff player C has a valid (finite-state) winning strategy
in the timed game Ω.

Timed Control with Partial Observability 189

5.2 Solving a Timed Game

In this section, we reduce the problem of checking whether C has a valid winning
strategy in Ω to whether there is a winning strategy for a player in a classical untimed
game. Our notion of an untimed game is slightly different from the usual infinite games
on finite graphs in the literature (see [McN93]) in that we additionally have a finitary
winning condition.

An untimed game is a tuple Φ = (∆,K, val ,B) where ∆ is a finite alphabet, K is
a finite deterministic transition system over ∆ (we refer to K as the arena), val is a
function Q −→ 22∆

(where Q is the set of states in K) that identifies a collection of
valid sets of moves at each state and B is a finite automaton over ∆ accepting a language
Lsymb(B) ⊆ ∆∞. We require that for any q ∈ Q, and U ∈ val(q), all the actions in U
are enabled at q.

The game is played between two players, player 0 and player 1, as follows. The
game starts at the initial state of K; at any state q in K, player 0 picks a set of actions
U ∈ val (q) and player 1 responds by picking an action u in U . The game then continues
from the unique u-successor state of q. The players hence build up plays which can be
finite or infinite words. At any state q, if ∅ ∈ val (q), player 0 can choose ∅ as its move,
and the game stops.

Formally, a strategy for player 0 is a function g : ∆∗ → 2∆ such that if α ∈ ∆∗

and there is a run of K on α reaching a state q, then g(α) ∈ val(q). The set of plays
according to g, playsg(Φ), is the set of all finite and infinite sequences γ such that for
every finite prefix δ.u of γ, where u ∈ ∆, we have u ∈ g(δ). The strategy g is said to
be winning for player 0 if playsg(Φ) ⊆ Lsymb(B).

Coming back to timed games, let us fix a granularity ν = (Xr ∪ Z, n, max’) such
that Z ∩ X = ∅. We also fix a timed game Ω = (Γ,H,A) over (Σ̂, X̂, ν), where
Γ = (ΣC ∪ Σo

E) × atomsν × 2Z , and H is a timed transition system over (Σ̂, X̂).
In the rest of this section, our aim is to construct an untimed game Φ = (Γ,K, val ,B)
such that player C has a valid winning strategy in Ω iff player 0 has a winning strategy
in the untimed game Φ.

Construction of the arena K. Let us first recall the standard region construction used
in the analysis of timed automata [AD94]. Consider a timed transition system T (resp.
a timed automaton A) over a symbolic alphabet ∆, with state-space Q. From the results
of [AD94], one can build a transition system RT (resp. an automaton RA) over the
symbolic alphabet ∆, whose state space is contained in Q× regδ (where δ is the granu-
larity of ∆) and such that for a symbolic word α ∈ ∆∗, there is a run of RT (resp. RA)
on α iff tw(α) is nonempty. We call these the region transition system and the region
automaton, respectively.

To construct the arena, we start from the transition system H ‖ UΓ w.r.t. the dis-
tributed alphabet ((Σ, X, X), (ΣC ∪Σo

E , Xr ∪Z, Z)) (recall the definition of UΓ from
page 188). Consider the region transition system R corresponding to it. This tran-
sition system can be viewed as an untimed transition system on the alphabet ∆ =
Σ × atomsκ+µ × 2X∪Z where κ is the granularity of H.

190 Patricia Bouyer et al.

Let us define now the “projection” of R on the atomic alphabet Γ , which has
the same set of states and its transitions are obtained by substituting each transition

s
a,g,Y−−−−→ s′ in R by s

(a,g,Y)�2−−−−−−−→ s′ (see page 184 for the definition of the projec-
tion �). This transition system R′ is thus a non-deterministic transition system, with
ε-transitions, over the alphabet Γ . By viewing R′ as a non-deterministic automaton
with ε-transitions on finite words (assuming all states are final), we can determinize it
using the usual subset construction, leading to a deterministic automaton K. Without
loss of generality, we assume K is complete, i.e. it has a run on every word γ in Γ ∗.

We take K to be the arena for the untimed game Φ. Note that the set of states of
K is 2H×regκ+µ where H is the set of states of H. Intuitively, if the state reached in K
on a word γ ∈ Γ ∗ is {(h1, r1), . . . , (hl, rl)}, this signifies that on the play γ, there are
several (finite) synchronized words w.r.t. H and these words end up in one of the states
hi of H along with the clocks in the region ri. Using this information, we can now
define the valid sets of moves that player 0 is allowed in the untimed game, by referring
to the transition system R from which K was obtained. Let s = {(h1, r1), . . . , (hl, rl)}
be a state of K. Then a set of actions U ⊆ Γ is in val(s) iff the following conditions
hold:

– U is a time deterministic set of actions,

– (non-restricting) for each (hi, ri) ∈ s and e ∈ Σo
E , if (hi, ri)

e,g,Y−−−−→ (h′
i, r

′
i) is in

R, then there is an action (e, g′, Y ′) ∈ U such that g ⇒ g′,
– (non-blocking) for each (hi, ri) ∈ s, if there exists some outgoing edge from

(hi, ri) in R, then there is a transition (hi, ri)
a,g,Y−−−→ (h′

i, r
′
i) in R and an action

(a, g′, Y ′) ∈ U such that g ⇒ g′.

Let Φ be the untimed game defined above (we leave the winning condition unspec-
ified for the moment). Then it is easy to see that the validity of strategies is preserved
across Ω and Φ:

Lemma 2. f : Γ ∗ → 2Γ is a valid strategy for C in Ω iff it is a strategy for player 0 in
Φ.

Construction of the winning condition. It remains now to construct the winning con-
dition B for the game Φ. The construction is based on the following lemma, whose
proof is based on the region automaton for an appropriately defined timed automaton.

Lemma 3. The set of plays in Ω which are winning for player C is regular, i.e. there
exists an automaton B which accepts exactly this set of executions.

Given a timed game Ω, we derive the corresponding untimed arena Φ and the win-
ning condition given by the automaton B as described above. From Lemma 2 and
Lemma 3, the following is immediate:

Lemma 4. Let Ω be a timed game and let Φ be the corresponding untimed game con-
structed above. Then, there is a valid (finite-state) winning strategy for player C in Ω
iff there is a (finite-state) winning strategy for player 0 in Φ.

Timed Control with Partial Observability 191

Untimed games with winning conditions given as automata on infinite words, are
known to be effectively solvable [Tho95]. In our case, we have finitary winning con-
ditions as well. We can handle this by first computing the set of all nodes from which
player 1 can force the play to enter a node that is not a finitary final state. These states
are thus the ones player 0 must not visit during a game. Note that it does not influence
the infinite winning condition (because if an infinite path goes through such a state, it
has a finite prefix play that is winning for player 1). We can then remove these nodes
and solve the resulting game with only the infinitary winning conditions.

5.3 The Decision Procedure

For solving an instance of the timed controller synthesis problem, we first find the cor-
responding timed game Ω, as described in section 5.1, and the untimed game Φ corre-
sponding to Ω, as described in section 5.2. We can then solve Φ to obtain a memory-less
winning strategy for player 0 whenever he has one. Such a strategy is also a valid win-
ning strategy in Ω, which in turn corresponds to a finite state controller which meets
the specification S. Thus we have:

Theorem 2. The timed controller synthesis problem with fixed resources for partially
observable plants and for external negative specifications is decidable and effective.

The complexity of the decision procedure can be seen to be in time doubly exponen-
tial in the size of the instance (see the appendix for details). A point worthy of note here
is that this problem, under complete observability is 2EXPTIME-complete [DM02].
Hence, in terms of overall complexity, there is no extra cost paid for partial observabil-
ity. From the 2EXPTIME lower bound for the complete observation setting, it follows
that our problem is also 2EXPTIME-complete.

6 Conclusion

The table on page 182 summarizes our results. It is interesting to note that in the timed
setting, moving from complete information to partial information preserves only cer-
tain decidability results, unlike the situation in a discrete setting where all decidability
results carry over [KV97].

The restriction to searching the domain of controllers with limited resources seems
to be very useful in the timed controller synthesis problem. In the case of partial ob-
servation, it extends the decidability results of complete information, while without this
restriction, we get undecidability even for simple specifications. Also, for the complete
observation setting, it allows us to have stronger but decidable specification mecha-
nisms [DM02]. We see restricting resources as a very useful restriction which often
makes problems decidable and yet remains interesting from the perspective of con-
troller synthesis.

In handling partial observability, for the decidable problems, we have shown results
for the general case of external non-deterministic specifications, as done in [DM02] for
the complete observation setting. These kinds of specifications are in fact the only truly
non-deterministic timed specifications we know for which controller synthesis remains

192 Patricia Bouyer et al.

decidable. The work reported in [FLM02] handles a sub-class of TCTL which can be
transformed to automata where clock-resets are in fact deterministic.

There are several variants of the problem studied in this paper which are interest-
ing. First, the assumption that the plant is deterministic is not really a restriction in the
partial-observation setting, as one can always make a nondeterministic plant determin-
istic by adding extra labels to distinguish nondeterministic transitions, and hiding this
away from the controller by making it unobservable.

Secondly, we could ask whether we need to control all the resources of the plant.
For example, we could ask whether we would still get decidability if we demand that
only the number of clocks is fixed, but the granularity of observation of clocks is not
fixed. We can show that this still does not suffice and the problem remains undecidable.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-
tomata. In Proc. IFAC Symp. System Structure and Control, pages 469–474. Elsevier,
1998.

[BDMP02] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial
observability. Research Report LSV-02-5, LSV, ENS de Cachan, France, 2002.

[CHR02] F. Cassez, T.A. Henzinger, and J.-F. Raskin. A comparison of control problems for
timed and hybrid systems. In Proc. 5th Int. Works. Hybrid Systems: Computation and
Control (HSCC’02), volume 2289 of LNCS, pages 134–148. Springer, 2002.

[DM02] D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications.
In Proc. 19th Int. Symp. Theoretical Aspects of Computer Science (STACS’02), vol-
ume 2285 of LNCS, pages 571–582. Springer, 2002.

[FLM02] M. Faella, S. La Torre, and A. Murano. Dense real-time games. In Proc. 17th Symp.
Logic in Computer Science (LICS’02), pages 167–176. IEEE Comp. Soc. Press, 2002.

[KG95] R. Kumar and V.K. Garg. Modeling and Control of Logical Discrete Event Systems.
Kluwer Academic Publishers, 1995.

[KV97] O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Proc. 2nd
Int. Conf. Temporal Logic (ICTL’97), pages 91–106. Kluwer, 1997.

[LW95] F. Lin and W.M. Wonham. Supervisory control of timed discrete-event systems under
partial observation. IEEE Trans. Automatic Control, 40(3):558–562, 1995.

[McN93] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 65(2):149–184, 1993.

[Rei84] J.H. Reif. The complexity of two-player games of incomplete information. Journal
of Computer and System Sciences, 29(2):274–301, 1984.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Int. Symp.
Theoretical Aspects of Computer Science (STACS’95), volume 900 of LNCS, pages
1–13. Springer, 1995.

[Tho02] W. Thomas. Infinite games and verification. In Proc. 14th Int. Conf. Computer Aided
Verification (CAV’02), volume 2404 of LNCS, pages 58–64. Springer, 2002.

[WT97] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc. 36th
Conf. Decision and Control, pages 4607–4612. IEEE Comp. Soc. Press, 1997.

[WTH91] H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event systems.
In Proc. 30th Conf. Decision and Control, pages 1527–1528. IEEE Comp. Soc. Press,
1991.

	1 Introduction
	2 Preliminaries
	3 The Timed Controller Synthesis Problem
	4 Timed Controller Synthesis with Non-fixed Resources
	5 Timed Controller Synthesis with Fixed Resources
	5.1 Timed Controller Synthesis Problem as a Timed Game
	5.2 Solving a Timed Game
	5.3 The Decision Procedure

	6 Conclusion
	References

