
Timed languages, dyadic approximations
and regular tree grammars

Jean-Franqois Antoniotti and Dominique Luzeaux
Lab. Perception pour la l~Obotique CTA/GIP,

16bis, av. Prieur de la C6te d’Or, 94114 Arcueil Cedex, FRANCE
{ant oniot, luzeaux}©etca, fr

Introduction
Our research on the modelization of the loop action-
perception for an autonomous robot has led us naturally
towards a tree-like representation of that interaction: a
node is labeled by a perceptive context of the robot,
the different branches correspond to the various avail-
able actions and the children nodes are then the effect
of these different actions on the original context.

This tree-like view allows us to state rigorously the
problems of viable control in terms of games: the
existence of a controller is reduced to the existence
of strategies which allow to walk through the trees
representing the system in order to remain within a
given class of contexts (viability goal). Such game ap-
proaches are widely used in computer science (BL69;
Mos89; NYY92), and appear in hybrid control theory
too (TLS98).

Furthermore it is necessary to describe these tree sets
as simply as possible, in order to decide for the exis-
tence of a controller, and in the best case to synthe-
size such a controller (The95). In this paper, we study
timed automata from the point of view of regular
tree grammars showing how our approach can be ap-
plied to this central class of decidable hybrid systems.

Timed automata and duration semantic
Our model of timed automaton differs from the one pro-
posed in (AD94). Our choice follows (ACM97) where
duration semantic is defined; we believe that the ideas
of this paper are more understandable in this frame-
work and that these two models are similar enough to
ensure the generality of our approach.

Let us recall the notations and definitions
from (ACM97).
Notation: An interval with integral boundaries
is an interval (l, u) (boundaries may be open or closed)
where l e N, u ¯ N U {(x~} (the case oo] is not consid-
ered) and l < u.

Definition 1 (Timed automata) A timed au-
tomaton A = (Q, C, A, E,)~, S, F) is a 7-tuple where
Q is a finite set of states, C a finite set of clocks, E an
output alphabet, A a transition relation,)~ an output
function, S C Q a set of initial states and F C Q a set

of final states. An element of the transition relation
is (q,¢,p, ql) where q and ql are states, p C C and
- the transition guard - is a boolean combination
of formulae c ¯ I for a clock c and an interval with
integral boundaries I.

A clock valuation is a function v : C --+ ~+ assign-
ing to each clock a positive value. The reset fnnction
for a set p C C maps v to the valuation defined by

0 ifc¯p,Reseto(v)(e) = c otherwise.

A finite run of length n of the timed automaton is
a sequence

51 52 5~
(qo,vo) ---+ (ql,vl) ----+ ... ---+ (qn,vn),

to tl tn

with 5~ ̄ A and ti ¯ lI~+, which satisfies both following
conditions:

Time progression: to < tl < t~. < ... < tn ;
Succession: If 5i = (q, ¢, p, ql) then q~-I = q, qi = qJ,

the valuation v~_ 1 + (t~ -t~_ I) - addition of a fnnction
and a scalar - satisfies the transition guard ¢ and
v~ = I~e~etp(v~_~ + (t~ -t~_~)).
An accepting run should satisfy the following sup-

plementary conditions:

Initialization: q0 ̄ S, to = 0 and v0 = 0;~ (zero func-
tion),

Termination: qn ¯ F.

Such an automaton emits a signal o" ¯ E from each
state and is able to move from a state to another when
its clocks satisfy the guard of the transition to be fired.

One can consider such a automaton modeling a real-
time system whose behavior is:

¯ emiting A(q), the system signals that its current in-
ternal state is q;

¯ if the clocks have the right values (depending on the
current state q) then it must move to state q~ (ac-
cording with the transition relation);

¯ it has to make a move before the clocks exceed the
right values.

From: AAAI Technical Report SS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

This duration semantic (emit A(q) while staying
state q) is now formally defined.

Definition 2 A signal of length k > 0 is a right-
conlinuous function ~ : [0, k[--+ E with a finite number
of discontinuilies. The length of ~ is denoled by I~1.

Remark: Such a function can be put under the equiva-
lent form ~ = ~tr1~2~2 ... #n~" with the #i E E and the
ri strictly positive for all 0 < i _< n, and n k.Ei=I ri :

The logical part of the signal - denoted by untimed(~)
- is the word cle2...~a.

Definition 3 /f one notes S(E) the set of signals
whose eodomain is E, lhe renaming g. from S(E1)
S(E2) is lhe natural homorphism induced by the letter-
lo-leller funclion g : E1 -+ E2.

Definition 4 Given two signals ~ and ~1 of length k
and M, their concatenation is the signal denoted by

o ~’, of length k + k’, defined by:

fit<k,

Definition 5 (Duration semantics) The trace of a
run of lenglh n is lhe signal of length tn -to defined by:

A(q0)tl-t0A(ql)t,-tl ... A(q~_ 1)to-t~-,.

The language of the timed automaton A, L(A), is the
set of all lhe lraces of lhe accepting runs.

Remark: qn is considered just as an ending state of
the run, and A(qn) does not appear in this definition.

From a timed automaton to several

one-clock automata
In this section, we give a list of properties satisfied by
timed automata which will be useful for the coming
proofs.

¯ A state is resetting if all its incoming transitions
reset exactly the same set of clocks. An automaton
is state-reset if all its states are resetting.

¯ An antomaton is self-loop free if it does not contain
transitions (q, ¢, p, q).

¯ An automaton is conjunctive if all its transition
guards are conjunctions of simple tests c E I or

e I).
¯ An automaton is state=output if E = Q and A =

Id. Given an automaton A = (Q, C, A, E, A, S, F)
one can give a state-output automaton -A~ =
(Q, C, A, E, Id, S, F) which is equivalent to A up to
the renaming A.. The state-output property allows
us to read into signals the underlying runs of the
automaton.

In (ACM97), a procedure is given which transforms
a timed automaton into a state-reset self-loop free con-
junctive and state-output automaton. A proof of the
following lemma can be found there. It shows the inter-
est of such a transformation which transfers construc-
tively results obtained with one-clock automata to au-
tomata with several clocks.

Lemma 1 Let ,4 be a timed automaton with k clocks.
We can construct k one-clock automata .At,.A2, ¯ ¯ ̄ , .Ak

kand a renaming ~ such that L(.A) = (N,=~ L(.A,)).

Roughly speaking, first we transform the antomaton
into a state-reset, self-loop and conjunctive one by split-
ling the states. In this first step, states keep their out-
put letters. Then, we consider the underlying state-
output automaton which is equivalent to the former up
to renaming, as mentioned earlier. Each signal of the
language of this automaton is the trace of exactly one
run, and this run is the same in all sub-automata .Ai
where we only consider clock ci to evaluate (,he transi-
t, ions guards, forgetting the value of clocks cj for j ¢- i.
Note that automata .Ai are trivially state-reset, self-
loop, conjunctive and state-output.

From now on, and unless stated otherwise, we con-
sider only "transformed" timed automata, i.e. holding
the state-reset, self-loop, conjunctive and state-output
properties.

Signals and trees : the basic

representation

Motivation

In (ACM97), Maler et M. prove that a timed language
can be described by a timed regular expression built
from the classical operators (HU79) with the additional
operators (/I where I is an interval with integer bound-
aries. Such an operator allows the "jump" between a
word w E E+ and the set of signals, the length of which
belongs to I and the logical part is w.

This result is an extension of Kleene’s theorem [ibid.]
for arbitrary timed automata, and the main reason is
because: if 0 = r0 < rl < ... < r,~ < r,~+l = oo is the
ordered list of the constants appearing in its transition
guards, a timed automaton behaves in a regular man-
ner on the intervals]rl, vi+l[for 0 < i < n: on such an
interval, truth values of transition guards are constant,
and the timed automaton behaves like the correspon-
dent classical sub-automaton. Such intervals being in
finite number for a given automaton, it is possible to
describe uniformly the set of recognized signals as the
concatenation of signals (r)l where r is a classical reg-
ular expression1.

This fundamental property being .identified, our
problem is now: does there exist other "classical" syn-
tactic representations for timed languages? And is it
possible to find a family of such expressions closed un-
der concatenation?

The goal of the following paragraphs is to prove that
tree regular expressions are a good candidate, and
to discuss about the implications of this fact in term of
control for timed automata.

1This is particularly clear if one considers a one-clock
automaton which is never reset, i.e. such that its clock’s
value corresponds to the duration elapsed since the start of
the run.

Dyadic signals
Our goal being to describe syntactically signals ac-
cepted by a timed automaton, we are facing off the clas-
sical representation problem of real-valued durations¯
To overcome this problem, we introduce the notion of
dyadic signal ; durations defining such signals are mul-
tiples of a sample step equal to 2-e for an integer e E N.

Definition 6 A dyadic signal of length 1 is a signal
of t,he form:

2-e. ~-e 2-e
~ 0-ipI ’ 0"2p2’z ...o-r,p~’

where c is an int,eger and Pi are strictly positive integers
s.t,. Y’]in--_l Pi " 2-e = 1. A dyadic signal (of length
k) is the homot,hetic image of a 1-length dyadic signal:

k ¯ 0- P12-e P~ 2-~~’~ (0"2 ’ ...0"nPn’2-’).

In this section, we show how to approximate
a signal with a dyadic signal of the same length.
For this purpose~ we define a projection from
l-length signals to l-length dyadic signals.

The project,ion follows two steps :

¯ We isolate discontinuity points of the signal, foreclos-
ing them within dyadic boundary intervals as small
as needed¯ Outside these intervals, the value of the
projected signal is given without ambiguities by the
original one.

¯ We "fill in the holes", deciding for the value inside
the intervals by watching the value either at the left
of the interval (low approximation) or at the right
(high approximation).

The following lemmacorresponds to the high approx-
imation case.

Lemma 2 Let, ~ = 0"tr10"~r2 ...o’n rn be a 1-1ength sig-
nal. Lett,ing:

i¯ t’i = }’~j=l rj for 0 < i <_ n,

¯ e = min{e : 2-~ _< min{rl}0<i<,~} and pi = max{p :
p . 2-e <_ ri } for O < i < n,

¯ Ptl = Pl and, for 0 < i < n, P~+I = Pi+l ifri+l-pi+l.
i t 2-e2-~ + ti -- Y’~j=t P) < 2-~, and ~ 1¯ Pi+t =-" Pi+l q-

otherwise,
we gel:

i

EV) = max{p’ : p’ . 2-e <_ t’i} for all 0 < i <_ n.
j=l

The differenl,s objects of this lemma are illustrated
by figure 1.
PROOF: First note t, hat e is well defined because
the ri are strictly positive, and the set {e : 2-e _<
min{ri}o<i<n} is nonempty. Moreover, the Pl are
strictly posl-tive : 1 E {p : p.2-e <_ ri} for all 0 < i _< n,
by definition of e.

By induction on i we show that for all 0 < i < n,
i t 2-ethere exists 0 _< ei < 2-e s.t. t i = ~-~j=l P) q- ei.

10 a g b 1
~---4-1 ¯2-2

0 1

0 a b
- _ -@ ¯ @

P~ = Pl P~ = P2 + 1

Figure 1: High approximation of the signal ~ = a~b~.

The case i = 1 follows from definition of p~. Suppose
the property true at rank i. Writing ri+l = pi+l.2-e+e2
with 0 _< e2 < 2-e (such an e2 exists by construction of

Pi+l) and r,+l = t,+l-Y~’~=I P~’ 2-~+ Y~=I P~" 2-e-ti,
we get; the equality:

i
(.) - Ep; - " 2-° = +

j=l

The induction step follows by considering (,) and the
following two cases. If 0 _< q + e2 < 2-~ then P~+I =

Pi+l and we let ei_[.1 = fi "3t- e2; if 2-~ _< ei + e2 < 2’ 2-e
then P~+I = Pi+I q- 1 and we let q+t = el + e2 - 2-e.

[]

Remark: tn= 1, so the equality tn = ~-~4=in P~"2-e+en
with 0 < e,~ < 2-e implies ~ ’ = 2e -- ¯ 2e

-- Ei=I Pi en with
O<en 2e<1; n I¯ Y~’~i=t Pi being an integer, this finally
implies en = 0 and ~=1 P~ " 2-e = 1.

Definition 7 The projection of the 1-1engt,h signal
pl 2-" p’~2-o

is the 1-1ength dyadic signal p(~) = 1 ’’’ 0"n

where e and p~ are as in the lemma. The projeclion of
a k-length signal ~ is the dyadic signal k ¯ p(k-1 ¯ ~).

To understand the meaning of this projection one
may ask: "what, does this projection lose in term of
information about the signal ?" To answer, we notice
that we temporary lose the length of the signal, as we
project l-length signals onto 1-signals. But we recover
this information by multiplying again. This normal-
ization operation preserves the different durations of
the signal up to their relative weight¯ The real
approximation lies in the foreclosing of the discontinu-
ity points within dyadic intervals and the decision to
take the upper letter on each of these intervals. We can
speak about this as the first dyadic approximation sep-
arating the discontinuity points. Observe that relative
weights are no longer exactly preserved, but they are
as far as this first approximation permits it.

Representing signals by means of trees
The following classical definitions of trees are inspired
from (Tho90).

Definition 8 A Y-valued tree is an application t :
dora(l) --+ P where dora(t) {0 , 1} * is a n onempty
prefix-closed set which satisfies wj E dora(t) A i <
wi E dora(l). Words in dom(t) are called nodes in lhe
tree and t(w) is the label of node w. The set fr(t)
{w: wi ~_ dora(t) A w E dora(t)} of maximal elements
of dora(t) is the frontier of t, and its inner frontier
is the set fr-(l) = {w : 3i, wi E fr(t) Aw E dorn(t)}
Nodes of the frontier are called leaves of the tree.

As an example of such a tree, one may give T on fig-
ure 2. Its domain is the set {e, 0, 00, 01,000,010, 1, 10}

Definition 9 A binary tree is a tree where all nodes
have either zero or two nodes. A quasi binary tree is
a tree where nodes satisfy lhe binary tree property ex-
cept at lhe inner frontier, where each node has exactly
one child.

T

/0

/0 /0

/o Io b
I

a b

Figure 2: a quasi binary tree.

We now turn to the basic tree representation of sig-
nals, which is the syntactic part of the work. Instead of
abruptly giving the pure syntactic part in a logic-like
manner, let us try to highlight; it with some operational
considerations.

Suppose you want to represent the trace of a one-
clock automaton run starting from q0 with its clock c
at, vi and finishing at qn with its clock between ~-j and
rj+l. Basically, there are three levels of representation,
from the simpler to the harder.

case 1: i = j and no resetting state appears in the run.
Then, one can use the dyadic projection of the trace
to represent it as a quasi binary tree, with the infor-
mal,ion i at the root of the tree. The tree T of figure 2
is such an example of a representation; in particular
it represents the signal of figure 1. As the projection
identifies many signals, such a tree represents a set
of signals. This remark is also valid in the two other
cases.

case 2: i < j and no resetting state appears in the
run. Then the only possible evolution for c is to suc-
cessively go through the values ri+l...r j, and the
trace (appears as the concatenation of trace runs
~0,. ¯ ¯ , ~/-i of the preceding form: each ~k is of length
ri+k+l--ri+k except the last one (k = j-i) the length

of which is between 0 and rj+l - rj; moreover, each
~k is the trace of a partial run of the automaton start-
ing at c = vi+k and finishing at c = Vi+k+l, excepting
~j_i the underlying run of which finishes with c be-
tween vj and rj+1.

case 3: i < j and there are some resetting states in the
run. We first mark the resetting state as rl,... , rm
(note how we crucially need the state-output prop-
erty to do that for an arbitrary trace), and we write

as the concatenation of ~1,..., ~rn which are traces
of runs containing resetting states at their limits only.
For each ~k, the underlying run starts with the clock
value 7"0 = 0 and finishes with c between vi and 7)+1,
where vt depends on the length of ~k. These signals
may be viewed as fitting the second case.

Definition 10 (signal representation) Let
0 = 7"0 < 7"1 < ... < 7"n < vn+l = ~ an ordered
list of constants and let Z ={oIi : 0 < i < n) U {i-~-j
0 <_ i < j <_ n}U{i~ : 0 <_ i <_ n} a set of labels.
An Z U E-valued quasi binary tree t with all its leaves
labeled by a letter of ~ represents a set of signals in
the following manner:

case 1 : t is {Ii}UE-valued. If fr(t) = {wl,...,ws}
we put il = 1 and ij = min{i : t(w,i .,) ¢ t(w~j)} (so
(it} j is the unique family s.t. ~r1 =-t(w,~) -- t(wl)

..... ¢ = = =
.... = t(w,)). Then
represents all the (k - 7"i)-length dyadic signals where

< k <_ vi+l defined as:

O.p2-1’"ipl+l +...+2-1wsl+x

ease 2 : t is obtained by substituting some {Iik} U ~-

valued trees tl,...,tt at the leaves of a {-~j : 0 <
i < j <_ n}-valued binary tree. If the tk’s respective-(y
represent sets of signals Ek as in the first case then
t represents all the concatenations of dyadic signals
~1 o ~2 o... o ~t where each ~k belongs to ~7k and the
length of ~k is exactly (rlk+~ - 1"i~) for 1 < k < l and
arbitrary for k = l (see figure 3). Notice how this
case generalizes the precedent one by substituting a
{Ii} U ~-valued tree at the leaf of a single-noded tree.

case 3: t is obtained by substituting some lrees
Q,...,tm matching the precedent case definition at
the leaves of a {0Ii : 0 < i < n}-valued binary tree.
If the tk ’s respectively represent sets of signals 7~k as
in the second case then t represents all the concatena-
tions of signals ~1 o ~ o... o ~m where each ~k belongs
to Ek.

Remark:

1. /:UE-valued quasi binary trees not matching this case
definition (for example the tree t s.t. t(e) = ~33 and
t(0) = o/2) implicitly represent the void set of signals.

Figure 3: representation of the trace of a non resetting
rHn,

2. The well-known property Euefr(t) 2-1ul = 1 for bi-
nary trees insures us that the length of dyadic signals
0.i 2- Iw I l+t.~...~2- lwi2- t I+i

¯ . . O.p2-I "i p 1+l+...+2--1’~sl+t

appearing in the first case of the definition is 1.

Regular tree languages
In this section, we define regular tree languages and we
show how the trace of a simple partial run:

s ---+ ql ---+ ... f
7"i = to ~’i < ll tn < vi+l

which does not meet any resetting state can be repre-
sented by such a language.

Definition 11 A (top-down) tree automaton on
the signature Y is a 4-tuple A = (Q,, Q,o, T’, 2X) where

is a finite set of states, (~0,/~ C (~ are respectively the
set of initial and final states. Letting B = Q x Y x Q, x
the set of binary rules and tt = Q x 12 x Q the set
of unary rules, B U H D A is the transition re-
lation of the automaton. An execution of the tree
automaton A on the binary tree t is a Q-valued tree
v such that dom-(r) = dom(t) with r(e) E Q,o
(r(w), t(w), r(wO), r(wl)) E h’ or (r(w),

for all w dora(t); it is accepting ifr(w) e for all
w fr(r). The set of tree T(A) recogni,ed by such
an automaton contains the ones for which an accepting
execution exists. Such a set is called regular.

We are now ready to define our first regular tree lan-
guages.

Definition 12 Let A = tO, {e}, A, Q, Id, S, F) be
one-clock limed automaton and let 0 = Vo < vl < ... <

vn < rn+l = co be the ordered list of constants appear-
ing in its transition guards. For each 0 < i < n+ 1, we
define:

Qi={qEQ:q ¢-+ and3t>_vi s.t. tp¢}

and: Q~-t-1 = {q E Q :¢-+ q and St < vi+1 s.l. l ~ ¢} U S.

We define then, for allO < i < n+l andfor all(s,f)

Qi x Q~+~, the tree automaton A~’! = (Q, Qo, A, 17) on
the signature {Ii}uQ whose state space is 0 = {(q, q’)

(q,q’)EOxQ}u{(q,q):qEQ}uQ and:

initial state: (~0 = (s, f),
final states : /~ = {OK},
unary rules : The set H is equal to

{((q,q’>,q,q) :q4q’ E A A]r~,ri+l[~ ¢}

U{((q, q}, q,q): q E Q} U {(q, q, OK)},

binary rules : The set 13 is equal to

{((q, q’>, It, (q, q}, (q, q’)) (q, q’) E Q2

U{((q, q">, Ii, (q, q’), (q’, q">): (q, q’, q") E Q3}.

Remark: A carefnl reading of the transition relation
shows that this atttomaton can only accept; quasi binary
trees. Moreover, accepted trees have leaves labeled by
letters of Q: the only rules leading to the final state are
of the form (., q, OK).

Now, how does such a tree automaton behave ? First,
we note that s E Qi means that the timed automaton
may start a partial run from state s with a clock value
greater than vl, and f E Qi-+l means that it; may finish
a partial run at state f with a clock value less than
vi+t. Therefore, one can see the state (s, f} as a ques-
tion from timed automaton to tree automaton like: "
I am currently in state s. How can I reach state f in
the remaining time?"¯ Tree automaton tries to answer
using the following recursive procedure:

¯ either wait for the beginning of the second half of the
interval before doing anything; this is the first; binary
rule.

¯ or fire a transition to a state ql (closer to f than s)
in the first half of the interval; this is second binary
rule.

The tree automaton can delay its answer only on a half-
interval and it; cannot do it indefinitely (the accepting
tree must be finite). Then, an accepting execution tree
exhibits (at its inner frontier) a path from s to f and,
for all intermediate states, the number of "wait" an-
swers that the tree atttomaton gave, allowing different
durations elapsed in each state.

We can now state the following long awaited lemma.

Lemma 3 (Key Lemma) The trace of a partial run

s ---+ ql) ... f
to = 1"i tl = vi "4- cl tn < Ti.t-1

which does not meet any resetting state is represented
by some tree in T(A~’]). Conversely, all the signals

represented by a tree in T(A~’f) are traces of such a

partial run. We shall say that A~’! describes the ith

local behavior of.4 between s and f.

The global case
We now turn to the representation of non-resetting run
traces with length greater than ri+l -Ti: we slice such
a signal into intervals [r~, ri+l[and use the key lemma
to locally represent the signal. Generating slicing trees
can be done in the same spirit as in the local case :
the global tree automaton may guess a path between
s E Q~ and f E Qj-+I’ To find a path between q and f
on an interval [rk, rj+l[, automaton slices this interval
into [rk, rk+l[and [rk+l, rj+l [, then it suggests to either
"do nothing" on the first, slice (i.e. wait in state q un-
til the next slice) and rectirsively try to find a path from
q to f on the second slice, or trig {;he right local gram-
mar l,o find a path between q and q~ in [rk, rk+l[and
rectlrsively try to find a path from q~ to f on the second
slice. In technical terms, we substitute the appropri-
ate local execution tree at the leaves of the global one,
and closure under substitution is a well known regular
grammars property.

The reset case is also similar in nature. We now have
to design a "super-automaton" that can use resetting
states to find a path between s with clock value 0 and
f with clock value in [rj,rj+l[. This can be done by
choosing a clock interval [rk, rk+l[with 0 _< k < j + 1,
triggering the global grammar to find a non-resetting
path between s with clock value 0 and r with clock
value in [rk, rk+l[and to guess recursively a path be-
tween r with clock value 0 and f with clock value in
[rj, rj+l[. Note how this operation is intrinsically non-
deterministic and how it can be iterated: supposing
that the resei.i, ing state r is initial and reachable from
itself on the time interval [0, 1[, one can construct a
path from r i.o r by concatenating this little path an
arbitrary number of times, allowing for always longer
traces. This is in strong eonstrast with the global non-
resetting case, where slicing trees always are in finite
number. One will recognize here the effect of the regu-
lar "star"operatlon.

The previous discussion should convince the reader
of the following theorem and corollary.

Theorem 1 Given a one-clock automaton ..4 there ex-
isis a regular tree language T(A~’/) such that the traces
of any run:

(s, v0) -~ (ql,vl) -~ 5~) (f, vn),
tO : 0 tI tn

with vo = 0 and rj < v,~ <_ Tj+1 i8 represented by a tree

in T(A~’/). The converse also holds : any tree in this
language represents such a signal.

Corollary 1 The language of an arbitrary timed au-
lomaton is represented by a regular tree grammar.

PaooF: Split the automaton by the procedure de-
scribed in the third section of the paper and apply the
theorem to each one-clock automaton. Taking the (fi-
nite) union of the regular tree languages T(A~’1) for
all initial states s, all final states f and all j between
0 and n, we obtain a regular tree language represent-
ing the language of each sub-automaton. We conclude
then by closure of regular langages under intersection
and renaming. []

Conclusion
In this paper, we have provided an interesting link be-
tween game theory approaches and hybrid system the-
ory. Indeed, the construction of a succesful run for a
timed automaton appears as a game played by the tree
automaton, and our work shows what the basic strate-
gies are that this automaton uses to play this game.

At a higher level, games between an automaton (play-
ing transitions) and an opponent (playing directions
in the constructed tree) are well-known, and strong
results about determinacy (is there a winner?) and
existence/synthesis of memory-bounded strategies are
available (Tho95; GH82). We hope that; these results
could guide us to extend our considerations first to
other classes of hybrid systems and second to infinite
runs (by means of languages of infinite trees).

References
E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for
timed automata. In G. Winskel, editor! LICS’97, pages
161-171, 1997.
R. Alur and D. L. Dill. A theory of timed automata. The-
oretical Computer Science, 126:183-235, 1994.
J.R. Bfichi and L.H. Landweber. Solving sequential con-
ditions by finite-state operators. Trans. o/AM5 138:295-
311, 1969.
Y. Gurevich and L.A. Harrington. Automata trees and
games. In 14th ACM Symposium on the theory o~ Com-
puting, pages 60-65, 1982.
J.E. Hoperoft and J.D. Ullman. Introduction to Automata
theory, Languages and Computation. Addison-Wesley,
1979.
Y. N. Moschovakis. A game-theoretic modeling of concur-
rency. In Fourth Annual Symposium on Logic in Computer
Science. IEEE Computer Society Press, 1989.
A. Nerode, A. Yakhnis, and V. Yakhnls. Concurrent pro-
grams as strategies in games. In Springer-Verlag, editor,
Logic]tom Computer Science:Proceedings o/ a Workshop
held November 13-17, 1989, 1992.
W. Thomas. Handbook of Theoretical Computer Science,
chapter Automata on Infinite Objects...]. van Leeuwen,
1990.
W. Thomas. On the synthesis of strategies in infinite
games. In Springer-Verlag, editor, STA CS’95, volume 900,
pages 1-13. Lecture Notes in Computer Sciences, 1995.
C. Tom]in, J. Lygeros, and S. Sastry. Synthesizing con-
trollers for nonlinear hybrid systems. In Proceedings o/
Hybrid Systems: Computation and Control, Berkeley, April
1998.

