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Abstract. We introduce and study a process algebra able to model the
systems composed of processes (agents) which may migrate within a dis-
tributed environment comprising a number of distinct locations. Two
processes may communicate if they are present in the same location and,
in addition, they have appropriate access permissions to communicate
over a channel. Access permissions are dynamic, and processes can ac-
quire new access permissions or lose some existing permissions while
migrating from one location to another. Timing constraints coordinate
and control the communication between processes and migration be-
tween locations. Then we completely characterise those situations when
a process is always guaranteed to possess safe access permissions. The
consequences of such a result are twofold. First, we are able to validate
systems where one does not need to check (at least partially) access per-
missions as they are guaranteed not to be violated, improving efficiency
of implementation. Second, one can design systems in which processes
are not blocked (deadlocked) because of the lack of dynamically changing
access permissions.

Keywords: distributed systems, mobile agents, communication, access
permissions, operational semantics, specification, static analysis

1 Introduction

The increasing complexity of mobile applications in which the timing aspects are
important to the system operation means that the need for their effective analysis
and verification is becoming critical. In this paper we explore formal modelling
of mobile systems where one can also specify time-related aspects of migrat-
ing processes and, crucially, security aspects expressed by access permissions
to communication channels. Building on our previous work on TIMO presented
at FASE’08 [8], we introduce PERTIMO (Permissions, Timers and Mobility)
which is a process algebra supporting process migration (strong mobility), local
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interprocess communication over shared channels controlled by access permis-
sions that processes must possess, and timers (driven by local clocks) controlling
the execution of actions. An important feature of the proposed model is that ac-
cess permissions are dynamic. More precisely, processes can acquire new access
permissions, or lose some of their current access permissions while moving from
one location to another, modelling a key security related feature. Processes are
equipped with input and output capabilities which are active up to pre-defined
time deadlines and, if these communications are not taken, alternative continu-
ations for the process behaviour are followed. Another timing constraint allows
one to specify the latest time for moving a process from one location to another.
These two kinds of timing constraints help in the control and coordination of
migration and communication in distributed systems. We provide the syntax
and operational semantics of PERTIMO which is a discrete time semantics in-
corporating maximally parallel executions of actions using local clocks.

To introduce the basic components of PERTIMO, we use a TravelShop run-
ning example in which a client process attempts to pay as little as possible for
a ticket to a pre-defined destination. The scenario involves five locations and six
processes. The role of each of the locations is as follows: (i) home is a location
where the client process starts and ends its journey; (ii) travelshop is a main
location of the service which is initially visible to the client; (iii) standard and
special are two internal locations of the service where clients can find out about
the ticket prices; and (iv) bank is a location where the payment is made. The
role of each of the processes is as follows:

— client is a process which initially resides in the home location, and is deter-
mined to pay for a flight after comparing two offers (standard and special)
provided by the travel shop. Upon entering the travel shop, client receives
the location of the standard offer and, after moving there and obtaining this
offer, the client is given the location where a special offer can be obtained.
After that client moves to the bank and pays for the cheaper of the two
offers, and then returns back to home.

— agent first informs client where to look for the standard offer and then moves
to bank in order to collect the money from the till. After that agent returns
back to travelshop.

— flightinfo communicates the standard offer to clients as well as the location
of the special offer.

— saleinfo communicates the special offer to clients together with the location
of the bank. saleinfo can also accept an update by the travel shop of the
special offer.

— update initially resides at the travelshop location and then migrates to special
in order to update the special offer.

— till resides at the bank location and can either receive e-money paid in by
clients, or transfer the e-money accumulated so far to agent.

PERTIMO uses timers in order to impose deadlines on the execution of com-
munications and migrations. Moreover, processes need to possess appropriate



Timed Migration and Interaction with Access Permissions 3

a: initial configuration
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b: intermediate configuration

home travelshop standard special bank
agent update
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4 S];lef:(i)al bSZk i

c: final configuration

home travelshop standard special bank
update
client agent flightinfo saleinfo till
110 60
o 170 special bank b

Fig. 1. Three snapshots of the evolution of the running example. In the initial configu-
ration we indicated the intended migration paths of three processes. The intermediate
configuration illustrates the phase of the evolution after some initial movements of
the client and after updating the second flight price. The final configuration shows the
state of the system after a successful payment has been made; the total sum of e-money
owned by the client (70), agent (170) and till (0) is exactly the same as the sum at
the beginning of the evolution when the client has 130, agent 100 and till 10. Note
that the channels used by processes to communicate information are not shown.

access permissions in order to send and receive information. Figure 1 portrays
three possible stages of the evolution of the TravelShop system.

Each location has its local clock which determines the timing of actions exe-
cuted at that location. The timeout of a migration action indicates the network
time limit for that action (similar to TTL in TCP/IP).

We use x to denote a finite tuple (z1,...,z;) whenever it does not lead
to a confusion, and if X is a tuple of sets (Xi,...,Xx) then J[[ X denotes
X1 X ... x Xi. We assume that the reader is familiar with the basic concepts of
process algebras [14]. All proofs our results can be found in [9].
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2 Syntax and semantics of PERTIMO

Timing constraints for migration allow one to specify what is the time window for
a process to move from one location to another. E.g., a timer (such as A5) of a
migration action go®” home indicates that the process will move to home within
5 time units. It is also possible to constrain the waiting for a communication
on a channel; if a communication action does not happen before a deadline, the
waiting process gives up and switches its operation to an alternative. E.g., a
timer (such as A4) of an output action a®4 ! (18) makes the channel available
for communication only for the period of 4 time units. We assume suitable data
sets including a set Loc of locations and a set Chan of communication channels.
We use a set Id of process identifiers, and each id € Id has arity mq.

To communicate over a channel at a given network location, the sender pro-
cess should have a ‘put’ access permission, and the receiving process a ‘get’
access permission. The set I' of access permissions of a process is a subset of
AccPerm = {put, get} x Chan x Loc. We use the notation get(a@I) to denote
an access permission (get, a,l) € AccPerm, and put(a@l) to denote (put,a,l) €
AccPerm. Intuitively, we work with access permissions to sockets where [ repre-
sents an IP address and a represents a communication port.

We allow access permissions of a process to change while moving from one
location to another. To model this, we use the following four basic access per-
mission modification operations: put;r@l, get:@l, put_q,; and get_g,, where [ is a
location and a is a communication channel. The first two (putly, and get’y,)
add access permissions, while the latter two (put_q, and get_q,) remove access
permissions. For instance, put g, (I") = I' U {put(a@l)}. Then an access permis-
sion modification operation is either the identity on AccPerm, or a composition
of some basic access permission modification operations such that if put;r@l is
used in the composition then put_g, is not used (giving and at the same time
removing an access permission does not make sense). For a given network, we
then specify what are the changes to the access permission sets of processes mi-
grating from one location to another. This is specified as a mapping apm which,
for each pair (I,1’) of locations, returns a permission modification operation; if a
process with the current access permissions I" moves from location [ to location
I', its new set of access permissions becomes apm(I,1")(I").

The syntax of PERTIMO is given in Table 1, where P are processes, PP
processes with (access) permissions, and N networks. Moreover, for each id € Id,
there is a unique process definition of the form:

id(un, ..o Uyt X34 X Y Py (1)

where the wu;’s are distinct variables playing the role of parameters, and the
X%s are data sets. Processes of the form stop and id(v) are called primitive.
In Table 1, it is assumed that:

— a € Chan is a channel, and t € NU {o0} is a time deadline;
— each v; is an expression built from values, variables and allowed operations;
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Processes P = a?'!(v) then P else P’ | (output)
a®*? (u:X) then P else P’ | (input)
go?! | then P | (move)
PP (parallel)
stop | (termination)
id(v) (recursion)
®P (stalling)

Typed Processes PP u:=P:I | PP|PP

Networks N :=I1[PP] | N|N'

Shorthand notation:

al{v) - P will be used to denote a“*!(v) then P else stop
a?(u:X) — P will be used to denote a“* ? (u:X) then P else stop .

Table 1. PERTIMO syntax. The length of w is the same as that of X, and the length
of v in id(v) is mq.

— each u; is a variable, and each X; is a data set;
— [l is a location or a variable, and I" a set of action permissions; and
— (© is a special symbol used to express that a process is temporarily stalled.

The only variable binding construct is a* ? (u:X) then P else P’ which binds
the variables w within P (but not within P’). We use fv(P) to denote the free
variables of a process P (and similarly for processes with access permissions
and networks). For a process definition as in (1), we assume that fv(P;q) C
{u1,...,Um,, } and so the free variables of P;q are parameter bound. Processes
are defined up to the alpha-conversion, and {v/u,...}P is obtained from P by
replacing all free occurrences of a variable u by v, possibly after alpha-converting
P in order to avoid clashes. Moreover, if v and u are tuples of the same length
then {v/u}P = {v1/u1,v2/us,...,vi/ug}P.
A network N is well-formed if the following hold:

— there are no free variables in V;

— there are no occurrences of the special symbol @) in /V; and

— assuming that id is as in the recursive equation (1), for every id(v) occurring
in N or on the right hand side of any recursive equation, the expression v; is
of type corresponding to X ¢ (where we use the standard rules of determining
the type of an expression).

Intuitively, a process a“*! (v) then P else P’ attempts to send a tuple of
values v over the channel a for ¢ time units. If successful, it then continues
as process P; otherwise it continues as the alternative process P’. Similarly,
a®t? (u:X) then P else P’ is a process that attempts for ¢ time units to input
a tuple of values from X and substitute them for the variables u. Mobility is
implemented by processes go* | then P which moves from the current location
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df

TravelShop =
home [ client(130) : @] |
travelshop [ agent(100) : {put(flight@Qtravelshop)} | update(60): @] |
standard [ flightinfo(110, special) : {put(infoQstandard), get(infoQstandard)}] |
special [ saleinfo(90, bank) : {put{infoQspecial), get{infoQspecial)}] |
bank [ till(10) : {put{payQbank), get(payQbank)} |

df
apm(home, travelshop) = get‘;lfight@mvelshop
apm(travelshop, standard) L get;;fa@smndard
apm/(travelshop, special) < PUL) foaspecial
. df —
apm(standard, special) = get;;fo@specml ° g€l io@standard
. df + — —
apm(speczal, bank) = pUtpay@bank ° getinfa@special ° getpay@bank
apm(travelshop, bank) = et abank

client (init:eMoney) =
g0’ travelshop — flight 7 (standardoffer:Loc) —
go?* standardoffer — info 7 (p1:eMoney, specialoffer:Loc) —
go2? specialoffer — info 7 (p2:eMoney, paying:Loc) —
g02% paying — pay ! (min{p1,p2}) —
g0 home — client(init — min{p1,p2})
agent (balance:eMoney) =
flight ! (standard) — go?!? bank —
pay ? (profit:eMoney) — go** travelshop —
agent (balance + profit)
update(saleprice:eMoney) £
g0 special — info ! (saleprice) — stop
flightinfo(price : eMoney, next : Loc) £
info ! (price, next) — flightinfo(price, next)
saleinfo(price : eMoney, next : Loc) &
info ? (newprice:eMoney)
then saleinfo(newprice, next)
else info ! (price, next) — saleinfo(price, next)
till( cash:eMoney) =
pay“? 7 (newpayment:eMoney)
then till(cash + newpayment)
else pay>? ! {cash) then till(0) else till(cash)
Table 2. PERTIMO network modelling the running example together with the relevant

access permission modification operations (those omitted are all equal to the identity
mapping on AccPerm).

to the location given by [ within ¢ time units. Note that since [ can be a variable,
and so its value is assigned dynamically through communication with other pro-
cesses, migration actions support a flexible scheme for movement of processes
from one location to another.
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A network [[P : I'] specifies a process P with the access permissions I’
running at a location [. Finally, process expressions of the form () P represent
a purely technical device which is used in our formalisation of structural op-
erational semantics of PERTIMO; intuitively, it specifies a process P which is
temporarily stalled and so cannot execute any action.

One might wonder why a process can delay migration to another location.
The point is that by allowing this we can model in a simple way the non-
determinism in the movement of processes which is, in general, outside the
control of a system designer. Thus the timer in this case indicates the upper
bound on the migration time.

The specification of the running example which captures the essential fea-
tures of the scenario described in the introduction is given in Table 2. We
assume that Loc = {home, travelshop, standard, special,bank} and Chan =
{info, flight, pay}. Table 2 shows the process network TravelShop modelling the
scenario, as well as the access permission modification operations which are ap-
plied to the process expressions when they move around the five nodes of the
network.

The first component of the operational semantics of PERTIMO is the struc-
tural equivalence = on networks, similar to that used in [4]. It is the smallest
congruence such that the equalities (EQ1-EQ4) in Table 3 hold. Its role is to
rearrange a network in order to apply the action rules which are also given in
Table 3. Using (EQ1-EQ4) one can always transform a given network N into a
finite parallel composition of networks of the form:

such that no process P, has the parallel composition operator at its topmost
level. Each sub-network I; [ P;:I;] is called a component of N, the set of all
components is denoted by comp(N), and the parallel composition (2) is called
a component decomposition of the network N. Note that these notions are well-
defined since component decomposition is unique up to the permutation of the
components (see Remark 1 below).

Table 3 introduces two kinds of action rules, N 2 N and N i> N'. The
former is an execution of an action A, and the latter a time step in location .
In the rule (TIME), N ; means that no l-action A (i.e., an action of the form
id@l or I>1’ or Q[ or a(v)@l) can be applied to N. Moreover, ¢;(/N) is obtained
by taking the component decomposition of N and simultaneously replacing all
components of the form [ [a“*w then P else Q : I'] — where w stands for ! (v)
or ? (w:X) —byl[Q:I']ift =0, and otherwise by [ [a?'~'w then P else Q :
I']. After that occurrences of the special symbol ) in N are erased.

So far we defined located executions of actions. An entire computational step

is captured by a derivation N LN N’ where A = {\1,..., A\, } is a finite multiset
of l-actions for some location [ such that

n

N 22y 2 Vi
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(Eql) NIN' = N[N
(EQ2) (NIN)N" = NI[(N'|N")
(EQ3) I[PP|PP'] = I[PP]|I[PP]
(Eq4) I[PIQ:T'] = I[P:T|Q:I]
(CALL) 1id(v): '] 2% 1[®{v/u}Py:T]
(MovE) [[go? ' then P:T'] 5% V[@P: apm(i,U)(I)]
(Warr) t>0
AIT
1[go? I' then P : I'] N 1[®go?t™ ! I’ then P : I']
put(a@l) e I'  get{a@lye I" wve]]X
(Com) 1[a*"! (v) then P else Q: " | a®" 7 (u:X) then P’ else Q' : I"]
a(v)Ql
l[@P: I | ®{v/u}P : 1]
N 25 N
(PAR) X
N|N" 25 N'|N"

N=N' N’ A) N N = N"

(EqQuiv) — A —
N 25 N
(TivE) N #=
IME
N Y 4 ()

Table 3. Four rules of the structural equivalence (EQ1l-EQ4), and seven action rules
(CaLL MoveE WAIT CoMm Par EQuiv TIME) of the operational semantics.

We also call N’ directly reachable from N. In other words, we can capture the
cumulative effect of the concurrent execution of the multiset of actions A at
location [. Intuitively, networks evolution conforms to the locally maximally
parallelism paradigm since one executes in a single location [ as many as possible
concurrent action before applying a local time move which signifies the passage
of a unit of time at location .

The two results below ensure that derivations are well defined. First, one
cannot execute an unbounded sequence of action moves without time progress.

Proposition 1. If N is a network and N 2% -+ 2% N’ then k < |comp(N)|.

Second, if we start with a well-formed network, execution proceeds through
alternating executions of time steps and contiguous sequences of local actions
making up what can be regarded as a maximally concurrent step (note the role
of the special symbols (). This intuition is reinforced by the following result.
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Proposition 2. Let N be a well-formed network. If N RN N’, then we
Ai Ainp, . . .
have N — ... = N’ for every permutation iy,...,i, of 1,...,n.

It is worth noting that the semantical treatment of PERTIM O — itself a con-
tinuation of the idea developed for TIMO — goes beyond interleaving semantics
by introducing an explicit representation of local maximal parallelism and local
time progress in the network evolution.

Our last result in this section is that the rules of Table 3 preserve well-
formedness of networks.

Proposition 3. Networks reachable from a well-formed network are well-formed.

Table 4 illustrates execution steps based on the scenario illustrated in Figure 1
(note that As represents a parallel execution of two actions). We indicate only
the main rules used in the derivation of steps. Each execution step takes a single
unit of time in the location at which it has been executed and some timers are
decremented by one (e.g., the timer A& of channel info in Uy is changed to A2
in Uy). Other timers which have expired cause an immediate migration or the
selection of the alternative part of a communication action (see W; which is
replaced by W5).

Note that the last network expression derived from TravelShop in Table 4
corresponds to the intermediate configuration shown in Figure 1(b). Note also
that in the representation of Figure 1(b) we show the home location, even though
it is not present in the last network expression in Table 4. The reason is that
the client process has moved to travelshop, and there is at present no process
residing at home. This situation changes in the final configuration of Figure 1(c)
where client has completed its migration and came back to its initial location.

Remark 1. Component decomposition is unique since the rule (CALL) treats
recursive definitions as function calls which take a unit of time. Another conse-
quence of such a treatment is that it is impossible to execute an infinite sequence
of action steps without executing any time steps. Both these properties would
not hold if, instead of an action rule (CALL), we would have a structural rule of
the form [ [id(v) : I'| =1 [{v/u}Py : I']. O

3 Safe Access Permissions

In this section, we attempt to verify that a migrating process possesses a suf-
ficiently rich set of initial access permissions such that whenever later on it
attempts to communicate over a channel, it has the required safe access per-
mission. While doing so, we need to take into account that migrating processes
have their access permission sets modified according to the mapping apm. If
we succeed, then an important security problem related to migration and ac-
cess permissions is solved in the sense that never an unauthorised attempt to
communicate over a channel happens during network evolutions.
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TravelShop
O WEC WEC W 6 x (CALL)
home [ go??° travelshop — Py : @] |
travelshop [ Qo : {put{flightQtravelshop)} | go?’ special — Ro : @] |
standard [ Uy : {put(infoQstandard), get(infoQstandard)}] |
special [ Vo : {put(infoQspecial), get(infoQspecial)} ] |
bank [ Wo : {put{payQbank), get(pay@bank)} |
{home > travelshop} {travelshop > special} 9 % (MOVE)

{flight(standard)@Qtravelshop} {info(60)Qspecial}

travelshop [ flight ? (standardoffer:Loc) — Py:{get(flightQtravelshop)} |
flight ! (standard) — Q1:{put(flightQtravelshop)}] |
standard [ Uy : {put(infoQstandard), get(infoQstandard)}] |
special [ info? T (newprice : eMoney)
— V1 : {put{infoQspecial), get{infoQspecial)} |
info ! (60) — stop : {put({infoQspecial)}] |
bank [ W1 : {put{payQbank), get(payQ@bank)} ]

2 x (Cowm)

travelshop [ Pa:{get{flightQtravelshop)} | Q1:{put{flightQ@travelshop)}] |

standard [ Us : {put(infoQstandard), get(infoQstandard)}] |

special [ Va : {put(infoQspecial), get(infoQspecial)} | stop : {put(infoQspecial)}] |
bank [ W : {put{payQbank), get(payQ@bank)} ]

Py = flight ? (standardoffer:Loc) — P
Py = go?* standardoffer — info ? (p1:eMoney, specialoffer:Loc) —

go?? specialoffer — info ? (p2:eMoney, paying:Loc) —
g0’ paying — pay ! (min{p1,p2}) —
go* home — client(130 — min{p1,p2})

P, = {standard/standardoffer } P,
Qo = flight ! (standard) — Q1
Q1 = gko bank —

pay ? (profit:eMoney) — go®'? travelshop — agent(100 + profit)

Ry = info!(60) — stop

Uo
Uy

info3 1 (110, special) — flightinfo(110, special)
info* 1 (110, special) — flightinfo(110, special)

Uz = flightinfo(110, special)
Vo = info!? 7 (newprice:eMoney) then saleinfo(newprice, bank)

else info! (90, bank) — saleinfo(90, bank)

Vi = info?? ? (newprice:eMoney) then saleinfo(newprice, bank)

Va

else info! (90, bank) — saleinfo(90, bank)
saleinfo (60, bank)

Wo = pay?! ? (newpayment:eMoney) then till(10 + newpayment)

else pay??!1(10) then till(0) else till(10)

Wi = pay?’ ? (newpayment:eMoney) then till(10 + newpayment)

else pay??1(10) then till(0) else till(10)

Wa = pay®* 1 (10) then till(0) else till(10)

Table 4. Execution steps for the running example where A1 = {client@home},
Ay = {agentQtravelshop, updateQtravelshop}, As = {flightinfoQstandard}, As =
{saleinfo@special} and As = {tillQbank}.
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Throughout this section we assume that all the data sets are finite (see Re-
mark 2), and that the r.h.s. P;; of each recursive definition (1) is either a prim-
itive process (i.e., it is of the form P;; = stop or Py = id'(w)) or P;q uses
exactly one application of one of the process operators to some primitive pro-
cess(es). This does not diminish the generality of the proposed method since we
can always transform all recursive definition into the simple form using addi-
tional process identifiers and recursive definitions without affecting the results
that follow (e.g., P = a — b — P is replaced by P = ¢ — P’ and P’ = b — P).

We use judgements of the form I" ; P to mean that a single-component
network [ [ P:I"] has safe access permissions. We assume the open system context
which means that we cannot know precisely the migration patterns of a process
and its communication channels which can be acquired through interaction with
(unknown) processes. We plan to deal with close systems in future, and then
take into account the time aspects (here we use time for process coordination).

Given a set of locations Loc together with the apm mapping as well a process
P and location [, we want to devise rules for checking that a set of access per-
missions I” satisfies I" F; P. For instance, if P = go®? I’ then ¢! ! (1) — stop
and apm(l,1") = put_q, then there is no I" such that I" F; P.

If P does not involve recursive definitions, the task is straightforward. One
just needs to follow the syntactic structure of the process and incrementally
derive I'. Dealing with recursion is more complicated, and the solution we pro-
pose consists in unfolding a recursive process expression sufficiently many times
to cover all possibilities resulting from migration. For all id € Id, n > 0 and
v € [[ X, the n-th unfolding of id(v) is given by id(v)™ = stop and, for
n > 0, id(v)™ = P where P is obtained from {v/u}P;q by replacing each
subexpression of the form id’(w) with id’(w)™ L.

The derivation rules for I' F; P are given in Table 5. The (TMOVE) rule
concerns a migration from location [ to I’. In order to have [ [ go! I’ then P : I']
with safe access permissions, it is necessary to have I’ [ P : I'"] with safe access
permissions after applying the access permission modification to I" when moving
from [ to I’ (note that I = apm(l,!")(I")). The rule (TOUT) simply requires
that a process attempting to send a message along a channel a should possess
the access permission put{a@l). Similarly, the rule (TIN) requires that a process
attempting to receive a message along a channel a should possess the access
permission get(a@l); moreover, after receiving this message it has to have safe
access permissions with the current I irrespective of the values carried by that
message. The constant H in the rule (TREC) is H = 2-|Loc| (1+ 3,5 1q | X74]-
...-| X ). The value of H comes from rather technical considerations needed to
prove results. We can always ensure that H is a well-defined integer and (TIN)
is a finitary rule according to the following argument.

Remark 2. The judgement system in Table 5 makes important use of data through
the (TOuUT) rule as a received message may carry a location or channel name
which may later be used by other rules. Other kinds of values carried by mes-
sages or present in process descriptions are ignored. Hence, for the purpose of
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rcr r'ep

(TSuB)
I+ P
(TSToP) & by stop
(TMove) apm(L,U)(T") by P
I'Hy goAt !’ then P
(TOuT) put(a@l)y e I’ I'H P I'H Q
UT
't a®t! (v) then P else Q
(TIx) get(a@lye I' Yo e[[X: I'H {v/u}P Ik Q
I'F a®t? (u:X) then P else Q
(TRc) L hid)™
I id(v)
(TPaR) I'ap I'n@
Ul PlQ

Table 5. Derivation rules for processes with safe access permissions.

safe access permissions, we can replace all non-location and non-channel values
by a special value 7, and all the data types different from Loc and Chan by a
singleton type X = {7}. In this way, all the data sets become finite. Hence, in
particular, H is an integer value, and [[ X in (TIN) is a finite set. O

We have defined what it means to have safe access permissions in the case
of a single-component network. In the general case, a network N has safe access
permissions if each of its components does. These two definitions are consistent
in the sense that I" ; P iff I' b; P;, for every component network [ [ P;:I'] of a
single-component network [ [ P:I"], which follows from the rule (TPAR).

The first main result states that safe access permissions is preserved over the
network evolutions defined by the operational semantics.

Theorem 1 (soundness). If a well-formed network N has safe access permis-
sions, and N' is reachable from N, then N' has also safe access permissions.

The second main result is that in a network with safe access permissions
there are no attempts to access a communication channel without an appropriate
access permission. This result should be seen as a justification of our interest in
the notion of safe access permissions.

Theorem 2 (safety of communications). Let N be a well-formed network
with safe access permissions.

1[a?! (v) then P else Q: I'] € comp(N) implies  put(a@Ql) € I'
[[a?*? (u:X) then P else Q: I'] € comp(N) implies get(aQl) € I
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As an immediate corollary of Theorem 2, for a network with safe access permis-
sions it is possible to simplify the operational rule for process communication,
by deleting put{a@l) € I" and get{a@l) € I'"" in rule (CoM), and so simplifying
the implementation.

The third main result is that the notion of a network with safe access per-
missions is complete in the sense that a network which does not satisfy this
property can always be placed in an environment which reveals its potential to
break safety of interprocess communication.

Theorem 3 (completeness). Let N = [[P : I'] be a well-formed network
such that I' I/, P. Then there is a well-formed network N' with safe access
permissions as well as a well-formed network N' reachable from N |N’ such
that one of the following holds.

— There is a component I'[a®t! (v) then P’ else P" : I'"] of N” such that
put{aQl’') ¢ I,

— There is a component ' [a®*? (u:X) then P’ else P” : I'"] of N" such
that get{a@l’) ¢ I".

We developed a sound and complete system for safe of communication and mi-
gration in open networks. Hence we are able to validate systems where one does
not need to check access permissions as they are guaranteed not to be violated,
improving implementation. Moreover, the results can be extended allow design-
ing systems in which processes are not blocked (deadlocked) because of the lack
of dynamically changing access permissions.

4 Conclusions and Related Work

We introduced a distributed process algebra with processes able to migrate be-
tween different locations and timing constraints used to control migration and
communication. We use local clocks and local maximal parallelism of actions.
Processes have appropriate access rights to communicate; the access permissions
are dynamic and can change. We have provided an operational semantics of this
model, and investigated the safety of communication and migration in terms of
access permissions. While we are not aware of any approach combining all these
aspects regarding mobility with timing constraints, local clocks, and dynamic
access permission mechanism, our work is related to a large body of literature
using process algebra in (type-based) security. Several systems encompass var-
ious forms of access control policies in distributed systems. Among them, the
work on Dpi calculus in [13] uses type systems to control statically the access
to the resources at the different locations of a distributed system. Other related
work on access control in distributed systems is done in the context of the lan-
guage KLAIM and its extensions, using type systems that enable the dynamic
exchange of access rights. The paper [7] combines a weak form of information flow
control with typed cryptographic operations to ensure safe static access control
and secure network communications. The paper [5] use cryptographic operations
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and capability types to get a secure implementation of a typed pi-calculus in or-
der to realise various policies for accessing the communication channels. None
of these systems, however, uses together mobility as a first class citizen con-
trolled by timing constraints, dynamic aspects of the access permissions, local
clocks and parallelism. These advantages of the new model can allow to spec-
ify and enforce more diverse and expressive security policies based on access
permissions. This could be done in the context of designing good programming
language supporting migration in a distributed environment [16]. On the other
hand, several prototype languages have been designed and experimental imple-
mentations derived from process calculi like KLA™ [4] and ACUTE [15]. These
prototype languages did not become a practical programming language because
hard questions revolving mainly around issues relating to security. PERTIMO
is intended to help bridging the gap between the existing foundational process
algebras and forthcoming realistic languages. It extends some previous attempts
related to TDPI [10] and TTMo [8]. PERTIMO derives from T1Mo0 model (a sim-
plified distributed m-calculus with explicit timeouts) presented in [8] by adding
a type system in order to express security aspects related to access permissions.
The basic notion of a timeout in TIMO seemed useful and elegant. PERTIMO
retains this notion and, in addition, it incorporates access permissions in order
to provide formal foundations for security problems relating to the adequate
protection of access control information in distributed environment.

As related work, we should mention distributed pi-calculus having an explicit
notion of location, and dealing with static resources access [12] by using a type
system. The paper [3] studies a w-calculus extension with a timer construct, and
then enriches the timed 7; with locations. Other timed extensions of process al-
gebras have been studied in [2,11]. In [6] the authors present a typed w-calculus
with groups and group creation in which each name belongs to a group. The
rules for good environments ensure that the names and groups declared in an
environment are distinct, and that all the types mentioned in an environment
are good. A consequence of the typing discipline is the ability to preserve se-
crets, namely preventing certain communications that would leak secrets. The
type system is used for regulating the mobile computation, allowing to partition
the processes into disjoint groups in order to specify the behaviour of both com-
munication and mobility. Somehow related to our dynamic access permissions,
[1] presents a parametric calculus for processes exchanging code which may con-
tain free variables to be bound by the receiver’s code (called open mobile code).
Type safety is ensured by a combination of static and dynamic checks of such
an exchange of open code. In this way it is possible to express rebinding of code
in a distributed environment in a relatively simple way.

Deriving concrete implementation from PERTIMO is part of future work,
and the approach presented in this paper is just a first step in this direction. In
our future work we plan to extend the current model as follows:

— access permissions to locations to control migrations of processes;
— security levels for migrating processes to control access permissions to chan-
nels and locations;
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relaxing the synchronisation resulting from the maximally parallel semantics,
by retaining maximal parallelism within each location, but allowing locations
to proceed with different speed;

rules for well-typing of values in exchanged messages;

defining and analysing security policies for access and migration control; and
introducing and analysing failures in process migration.
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