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eNew
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astle.a
.ukAbstra
t. We introdu
e and study a pro
ess algebra able to model thesystems 
omposed of pro
esses (agents) whi
h may migrate within a dis-tributed environment 
omprising a number of distin
t lo
ations. Twopro
esses may 
ommuni
ate if they are present in the same lo
ation and,in addition, they have appropriate a

ess permissions to 
ommuni
ateover a 
hannel. A

ess permissions are dynami
, and pro
esses 
an a
-quire new a

ess permissions or lose some existing permissions whilemigrating from one lo
ation to another. Timing 
onstraints 
oordinateand 
ontrol the 
ommuni
ation between pro
esses and migration be-tween lo
ations. Then we 
ompletely 
hara
terise those situations whena pro
ess is always guaranteed to possess safe a

ess permissions. The
onsequen
es of su
h a result are twofold. First, we are able to validatesystems where one does not need to 
he
k (at least partially) a

ess per-missions as they are guaranteed not to be violated, improving e�
ien
yof implementation. Se
ond, one 
an design systems in whi
h pro
essesare not blo
ked (deadlo
ked) be
ause of the la
k of dynami
ally 
hanginga

ess permissions.Keywords: distributed systems, mobile agents, 
ommuni
ation, a

esspermissions, operational semanti
s, spe
i�
ation, stati
 analysis1 Introdu
tionThe in
reasing 
omplexity of mobile appli
ations in whi
h the timing aspe
ts areimportant to the system operation means that the need for their e�e
tive analysisand veri�
ation is be
oming 
riti
al. In this paper we explore formal modellingof mobile systems where one 
an also spe
ify time-related aspe
ts of migrat-ing pro
esses and, 
ru
ially, se
urity aspe
ts expressed by a

ess permissionsto 
ommuni
ation 
hannels. Building on our previous work on TiMo presentedat FASE'08 [8℄, we introdu
e PerTiMo (Permissions, Timers and Mobility)whi
h is a pro
ess algebra supporting pro
ess migration (strong mobility), lo
al



2 G.Ciobanu and M.Koutnyinterpro
ess 
ommuni
ation over shared 
hannels 
ontrolled by a

ess permis-sions that pro
esses must possess, and timers (driven by lo
al 
lo
ks) 
ontrollingthe exe
ution of a
tions. An important feature of the proposed model is that a
-
ess permissions are dynami
. More pre
isely, pro
esses 
an a
quire new a

esspermissions, or lose some of their 
urrent a

ess permissions while moving fromone lo
ation to another, modelling a key se
urity related feature. Pro
esses areequipped with input and output 
apabilities whi
h are a
tive up to pre-de�nedtime deadlines and, if these 
ommuni
ations are not taken, alternative 
ontinu-ations for the pro
ess behaviour are followed. Another timing 
onstraint allowsone to spe
ify the latest time for moving a pro
ess from one lo
ation to another.These two kinds of timing 
onstraints help in the 
ontrol and 
oordination ofmigration and 
ommuni
ation in distributed systems. We provide the syntaxand operational semanti
s of PerTiMo whi
h is a dis
rete time semanti
s in-
orporating maximally parallel exe
utions of a
tions using lo
al 
lo
ks.To introdu
e the basi
 
omponents of PerTiMo, we use a TravelShop run-ning example in whi
h a 
lient pro
ess attempts to pay as little as possible fora ti
ket to a pre-de�ned destination. The s
enario involves �ve lo
ations and sixpro
esses. The role of ea
h of the lo
ations is as follows: (i) home is a lo
ationwhere the 
lient pro
ess starts and ends its journey; (ii) travelshop is a mainlo
ation of the servi
e whi
h is initially visible to the 
lient; (iii) standard and
special are two internal lo
ations of the servi
e where 
lients 
an �nd out aboutthe ti
ket pri
es; and (iv) bank is a lo
ation where the payment is made. Therole of ea
h of the pro
esses is as follows:� client is a pro
ess whi
h initially resides in the home lo
ation, and is deter-mined to pay for a �ight after 
omparing two o�ers (standard and spe
ial)provided by the travel shop. Upon entering the travel shop, client re
eivesthe lo
ation of the standard o�er and, after moving there and obtaining thiso�er, the 
lient is given the lo
ation where a spe
ial o�er 
an be obtained.After that client moves to the bank and pays for the 
heaper of the twoo�ers, and then returns ba
k to home .� agent �rst informs client where to look for the standard o�er and then movesto bank in order to 
olle
t the money from the till. After that agent returnsba
k to travelshop.� flightinfo 
ommuni
ates the standard o�er to 
lients as well as the lo
ationof the spe
ial o�er.� saleinfo 
ommuni
ates the spe
ial o�er to 
lients together with the lo
ationof the bank. saleinfo 
an also a

ept an update by the travel shop of thespe
ial o�er.� update initially resides at the travelshop lo
ation and then migrates to specialin order to update the spe
ial o�er.� till resides at the bank lo
ation and 
an either re
eive e-money paid in by
lients, or transfer the e-money a

umulated so far to agent .PerTiMo uses timers in order to impose deadlines on the exe
ution of 
om-muni
ations and migrations. Moreover, pro
esses need to possess appropriate
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ess Permissions 3a: initial 
on�guration
home travelshop standard special bank

130

client

100

agent

60

update

110

special

flightinfo

90

bank

saleinfo

10

till

b: intermediate 
on�guration
home travelshop standard special bank

130

client

100

agent update

110

special

flightinfo

60

bank

saleinfo

10

till
: �nal 
on�guration
home travelshop standard special bank

70

client

170

agent

update

110

special

flightinfo

60

bank

saleinfo

0

tillFig. 1. Three snapshots of the evolution of the running example. In the initial 
on�gu-ration we indi
ated the intended migration paths of three pro
esses. The intermediate
on�guration illustrates the phase of the evolution after some initial movements ofthe 
lient and after updating the se
ond �ight pri
e. The �nal 
on�guration shows thestate of the system after a su

essful payment has been made; the total sum of e-moneyowned by the 
lient (70 ), agent (170 ) and till (0 ) is exa
tly the same as the sum atthe beginning of the evolution when the 
lient has 130 , agent 100 and till 10 . Notethat the 
hannels used by pro
esses to 
ommuni
ate information are not shown.a

ess permissions in order to send and re
eive information. Figure 1 portraysthree possible stages of the evolution of the TravelShop system.Ea
h lo
ation has its lo
al 
lo
k whi
h determines the timing of a
tions exe-
uted at that lo
ation. The timeout of a migration a
tion indi
ates the networktime limit for that a
tion (similar to TTL in TCP/IP).We use x to denote a �nite tuple (x1, . . . , xk) whenever it does not leadto a 
onfusion, and if X is a tuple of sets (X1, . . . , Xk) then ∏

X denotes
X1 × . . .×Xk. We assume that the reader is familiar with the basi
 
on
epts ofpro
ess algebras [14℄. All proofs our results 
an be found in [9℄.



4 G.Ciobanu and M.Koutny2 Syntax and semanti
s of PerTiMoTiming 
onstraints for migration allow one to spe
ify what is the time window fora pro
ess to move from one lo
ation to another. E.g., a timer (su
h as ∆5 ) of amigration a
tion go∆5home indi
ates that the pro
ess will move to home within5 time units. It is also possible to 
onstrain the waiting for a 
ommuni
ationon a 
hannel; if a 
ommuni
ation a
tion does not happen before a deadline, thewaiting pro
ess gives up and swit
hes its operation to an alternative. E.g., atimer (su
h as ∆4 ) of an output a
tion a∆4
! 〈13 〉 makes the 
hannel availablefor 
ommuni
ation only for the period of 4 time units. We assume suitable datasets in
luding a set Loc of lo
ations and a set Chan of 
ommuni
ation 
hannels.We use a set Id of pro
ess identi�ers, and ea
h id ∈ Id has arity mid .To 
ommuni
ate over a 
hannel at a given network lo
ation, the sender pro-
ess should have a `put' a

ess permission, and the re
eiving pro
ess a `get'a

ess permission. The set Γ of a

ess permissions of a pro
ess is a subset of

AccPerm
df
= {put, get} × Chan × Loc. We use the notation get〈a@l〉 to denotean a

ess permission (get, a, l) ∈ AccPerm, and put〈a@l〉 to denote (put, a, l) ∈

AccPerm. Intuitively, we work with a

ess permissions to so
kets where l repre-sents an IP address and a represents a 
ommuni
ation port.We allow a

ess permissions of a pro
ess to 
hange while moving from onelo
ation to another. To model this, we use the following four basi
 a

ess per-mission modi�
ation operations: put+
a@l

, get+
a@l

, put−
a@l

and get−
a@l

, where l is alo
ation and a is a 
ommuni
ation 
hannel. The �rst two (put+
a@l

and get+
a@l

)add a

ess permissions, while the latter two (put−
a@l

and get−
a@l

) remove a

esspermissions. For instan
e, put+
a@l

(Γ ) = Γ ∪ {put〈a@l〉}. Then an a

ess permis-sion modi�
ation operation is either the identity on AccPerm, or a 
ompositionof some basi
 a

ess permission modi�
ation operations su
h that if put+
a@l

isused in the 
omposition then put−
a@l

is not used (giving and at the same timeremoving an a

ess permission does not make sense). For a given network, wethen spe
ify what are the 
hanges to the a

ess permission sets of pro
esses mi-grating from one lo
ation to another. This is spe
i�ed as a mapping apm whi
h,for ea
h pair (l, l′) of lo
ations, returns a permission modi�
ation operation; if apro
ess with the 
urrent a

ess permissions Γ moves from lo
ation l to lo
ation
l′, its new set of a

ess permissions be
omes apm(l, l′)(Γ ).The syntax of PerTiMo is given in Table 1, where P are pro
esses, PPpro
esses with (a

ess) permissions, and N networks. Moreover, for ea
h id ∈ Id ,there is a unique pro
ess de�nition of the form:

id(u1, . . . , umid
: X id

1 , . . . , X id
mid

)
df
= Pid , (1)where the ui's are distin
t variables playing the role of parameters, and the

X id
i
's are data sets. Pro
esses of the form stop and id(v) are 
alled primitive.In Table 1, it is assumed that:� a ∈ Chan is a 
hannel, and t ∈ N ∪ {∞} is a time deadline;� ea
h vi is an expression built from values, variables and allowed operations;
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ess Permissions 5Pro
esses P ::= a∆t
! 〈v〉 then P else P ′

p (output)
a∆t

? (u:X) then P else P ′
p (input)

go∆t l then P p (move)
P |P ′

p (parallel)
stop p (termination)
id(v) p (re
ursion)
sP (stalling)Typed Pro
esses PP ::= P : Γ p PP |PP ′Networks N ::= l [[PP ]] p N |N ′Shorthand notation:

a ! 〈v〉 → P will be used to denote a∆∞
! 〈v〉 then P else stop

a ? (u:X) → P will be used to denote a∆∞
? (u:X) then P else stop .Table 1. PerTiMo syntax. The length of u is the same as that of X, and the lengthof v in id(v) is mid .� ea
h ui is a variable, and ea
h Xi is a data set;� l is a lo
ation or a variable, and Γ a set of a
tion permissions; and� s is a spe
ial symbol used to express that a pro
ess is temporarily stalled.The only variable binding 
onstru
t is a∆t

? (u:X) then P else P ′ whi
h bindsthe variables u within P (but not within P ′). We use fv(P ) to denote the freevariables of a pro
ess P (and similarly for pro
esses with a

ess permissionsand networks). For a pro
ess de�nition as in (1), we assume that fv (Pid ) ⊆
{u1, . . . , umid

} and so the free variables of Pid are parameter bound. Pro
essesare de�ned up to the alpha-
onversion, and {v/u, . . .}P is obtained from P byrepla
ing all free o

urren
es of a variable u by v, possibly after alpha-
onverting
P in order to avoid 
lashes. Moreover, if v and u are tuples of the same lengththen {v/u}P = {v1/u1, v2/u2, . . . , vk/uk}P .A network N is well-formed if the following hold:� there are no free variables in N ;� there are no o

urren
es of the spe
ial symbol s in N ; and� assuming that id is as in the re
ursive equation (1), for every id(v) o

urringin N or on the right hand side of any re
ursive equation, the expression vi isof type 
orresponding toX id

i
(where we use the standard rules of determiningthe type of an expression).Intuitively, a pro
ess a∆t

! 〈v〉 then P else P ′ attempts to send a tuple ofvalues v over the 
hannel a for t time units. If su

essful, it then 
ontinuesas pro
ess P ; otherwise it 
ontinues as the alternative pro
ess P ′. Similarly,
a∆t

? (u:X) then P else P ′ is a pro
ess that attempts for t time units to inputa tuple of values from X and substitute them for the variables u. Mobility isimplemented by pro
esses go∆t l then P whi
h moves from the 
urrent lo
ation
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TravelShop

df
=

home [[ client(130 ) : ∅ ]] |
travelshop [[ agent(100 ) : {put〈flight@travelshop〉} | update(60 ) : ∅ ]] |
standard [[ flightinfo(110 , special ) : {put〈info@standard 〉, get〈info@standard〉} ]] |
special [[ saleinfo(90 , bank) : {put〈info@special〉, get〈info@special〉} ]] |
bank [[ till(10 ) : {put〈pay@bank〉, get〈pay@bank〉} ]]

apm(home, travelshop)
df
= get+flight@travelshop

apm(travelshop , standard )
df
= get+info@standard

apm(travelshop , special )
df
= put+info@special

apm(standard , special )
df
= get+info@special ◦ get

−
info@standard

apm(special , bank)
df
= put+pay@bank ◦ get−info@special ◦ get

−
pay@bank

apm(travelshop , bank)
df
= get+pay@bank

client(init:eMoney)
df
=

go
∆5 travelshop → flight ? (standardoffer :Loc) →

go
∆4 standardoffer → info ? (p1 :eMoney , specialoffer :Loc) →

go
∆3 specialoffer → info ? (p2 :eMoney , paying :Loc) →

go∆6 paying → pay ! 〈min{p1 , p2}〉 →
go∆4 home → client(init −min{p1 , p2})

agent(balance:eMoney)
df
=

flight ! 〈standard〉 → go
∆10 bank →

pay ? (profit :eMoney) → go
∆12 travelshop →

agent(balance + profit)

update(saleprice :eMoney)
df
=

go
∆0 special → info ! 〈saleprice〉 → stop

flightinfo(price : eMoney ,next : Loc)
df
=

info ! 〈price,next〉 → flightinfo(price, next)

saleinfo(price : eMoney ,next : Loc)
df
=

info∆10
? (newprice:eMoney)

then saleinfo(newprice ,next)
else info ! 〈price ,next〉 → saleinfo(price,next)

till(cash :eMoney)
df
=

pay∆1
? (newpayment :eMoney)

then till(cash + newpayment)
else pay∆2

! 〈cash〉 then till(0 ) else till(cash)Table 2. PerTiMo network modelling the running example together with the relevanta

ess permission modi�
ation operations (those omitted are all equal to the identitymapping on AccPerm).to the lo
ation given by l within t time units. Note that sin
e l 
an be a variable,and so its value is assigned dynami
ally through 
ommuni
ation with other pro-
esses, migration a
tions support a �exible s
heme for movement of pro
essesfrom one lo
ation to another.
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ess Permissions 7A network l [[P : Γ ]] spe
i�es a pro
ess P with the a

ess permissions Γrunning at a lo
ation l. Finally, pro
ess expressions of the form sP representa purely te
hni
al devi
e whi
h is used in our formalisation of stru
tural op-erational semanti
s of PerTiMo; intuitively, it spe
i�es a pro
ess P whi
h istemporarily stalled and so 
annot exe
ute any a
tion.One might wonder why a pro
ess 
an delay migration to another lo
ation.The point is that by allowing this we 
an model in a simple way the non-determinism in the movement of pro
esses whi
h is, in general, outside the
ontrol of a system designer. Thus the timer in this 
ase indi
ates the upperbound on the migration time.The spe
i�
ation of the running example whi
h 
aptures the essential fea-tures of the s
enario des
ribed in the introdu
tion is given in Table 2. Weassume that Loc = {home, travelshop, standard , special , bank} and Chan =
{info,flight , pay}. Table 2 shows the pro
ess network TravelShop modelling thes
enario, as well as the a

ess permission modi�
ation operations whi
h are ap-plied to the pro
ess expressions when they move around the �ve nodes of thenetwork.The �rst 
omponent of the operational semanti
s of PerTiMo is the stru
-tural equivalen
e ≡ on networks, similar to that used in [4℄. It is the smallest
ongruen
e su
h that the equalities (Eq1�Eq4) in Table 3 hold. Its role is torearrange a network in order to apply the a
tion rules whi
h are also given inTable 3. Using (Eq1�Eq4) one 
an always transform a given network N into a�nite parallel 
omposition of networks of the form:

l1 [[P1:Γ1 ]] | . . . | ln [[Pn:Γn ]] (2)su
h that no pro
ess Pi has the parallel 
omposition operator at its topmostlevel. Ea
h sub-network li [[Pi:Γi ]] is 
alled a 
omponent of N , the set of all
omponents is denoted by comp(N), and the parallel 
omposition (2) is 
alleda 
omponent de
omposition of the network N . Note that these notions are well-de�ned sin
e 
omponent de
omposition is unique up to the permutation of the
omponents (see Remark 1 below).Table 3 introdu
es two kinds of a
tion rules, N λ
−→ N ′ and N

√
l−→ N ′. Theformer is an exe
ution of an a
tion λ, and the latter a time step in lo
ation l.In the rule (Time), N 6→l means that no l-a
tion λ (i.e., an a
tion of the form

id@l or l ⊲ l′ or @l or a〈v〉@l) 
an be applied to N . Moreover, φl(N) is obtainedby taking the 
omponent de
omposition of N and simultaneously repla
ing all
omponents of the form l [[ a∆tω then P else Q : Γ ]] � where ω stands for ! 〈v〉or ? (u:X) � by l [[Q : Γ ]] if t = 0, and otherwise by l [[ a∆t−1ω then P else Q :
Γ ]]. After that o

urren
es of the spe
ial symbol s in N are erased.So far we de�ned lo
ated exe
utions of a
tions. An entire 
omputational stepis 
aptured by a derivation N

Λ
=⇒ N ′, where Λ = {λ1, . . . , λn} is a �nite multisetof l-a
tions for some lo
ation l su
h that
N

λ1−→ · · ·
λn−→

√
l−→ N ′ .
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(Eq1) N |N ′ ≡ N ′ |N

(Eq2) (N |N ′) |N ′′ ≡ N | (N ′ |N ′′)

(Eq3) l [[PP |PP ′ ]] ≡ l [[PP ]] | l [[PP ′ ]]

(Eq4) l [[P |Q : Γ ]] ≡ l [[P : Γ |Q : Γ ]]

(Call) l [[ id(v) : Γ ]]
id@l
−→ l [[s {v/u}Pid : Γ ]](Move) l [[ go∆t l′ then P : Γ ]]
l⊲l

′

−→ l′ [[sP : apm(l, l′)(Γ ) ]](Wait) t > 0

l [[ go∆t l′ then P : Γ ]]
@l
−→ l [[s go∆t−1 l′ then P : Γ ]](Com) put〈a@l〉 ∈ Γ get〈a@l〉 ∈ Γ ′

v ∈
∏

X

l [[ a∆t
! 〈v〉 then P else Q : Γ | a∆t

′

? (u:X) then P ′
else Q′ : Γ ′ ]]

a〈v〉@l

−−−−−−−−−−−−−−→ l [[sP : Γ | s {v/u}P ′ : Γ ′ ]](Par) N
λ

−→ N ′

N |N ′′ λ
−→ N ′ |N ′′(Equiv) N ≡ N ′ N ′ λ
−→ N ′′ N ′′ ≡ N ′′′

N
λ

−→ N ′′′(Time) N 6−→l

N
√

l−→ φl(N)Table 3. Four rules of the stru
tural equivalen
e (Eq1-Eq4), and seven a
tion rules(Call Move Wait Com Par Equiv Time) of the operational semanti
s.We also 
all N ′ dire
tly rea
hable from N . In other words, we 
an 
apture the
umulative e�e
t of the 
on
urrent exe
ution of the multiset of a
tions Λ atlo
ation l. Intuitively, networks evolution 
onforms to the lo
ally maximallyparallelism paradigm sin
e one exe
utes in a single lo
ation l as many as possible
on
urrent a
tion before applying a lo
al time move whi
h signi�es the passageof a unit of time at lo
ation l.The two results below ensure that derivations are well de�ned. First, one
annot exe
ute an unbounded sequen
e of a
tion moves without time progress.Proposition 1. If N is a network and N
λ1−→ · · ·

λk−→ N ′, then k ≤ |comp(N)|.Se
ond, if we start with a well-formed network, exe
ution pro
eeds throughalternating exe
utions of time steps and 
ontiguous sequen
es of lo
al a
tionsmaking up what 
an be regarded as a maximally 
on
urrent step (note the roleof the spe
ial symbols s). This intuition is reinfor
ed by the following result.
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ess Permissions 9Proposition 2. Let N be a well-formed network. If N λ1−→ · · ·
λn−→ N ′, then wehave N

λi1−→ · · ·
λin−→ N ′, for every permutation i1, . . . , in of 1, . . . , n.It is worth noting that the semanti
al treatment of PerTiMo� itself a 
on-tinuation of the idea developed for TiMo � goes beyond interleaving semanti
sby introdu
ing an expli
it representation of lo
al maximal parallelism and lo
altime progress in the network evolution.Our last result in this se
tion is that the rules of Table 3 preserve well-formedness of networks.Proposition 3. Networks rea
hable from a well-formed network are well-formed.Table 4 illustrates exe
ution steps based on the s
enario illustrated in Figure 1(note that Λ2 represents a parallel exe
ution of two a
tions). We indi
ate onlythe main rules used in the derivation of steps. Ea
h exe
ution step takes a singleunit of time in the lo
ation at whi
h it has been exe
uted and some timers arede
remented by one (e.g., the timer ∆3 of 
hannel info in U0 is 
hanged to ∆2in U1). Other timers whi
h have expired 
ause an immediate migration or thesele
tion of the alternative part of a 
ommuni
ation a
tion (see W1 whi
h isrepla
ed by W2).Note that the last network expression derived from TravelShop in Table 4
orresponds to the intermediate 
on�guration shown in Figure 1(b). Note alsothat in the representation of Figure 1(b) we show the home lo
ation, even thoughit is not present in the last network expression in Table 4. The reason is thatthe client pro
ess has moved to travelshop, and there is at present no pro
essresiding at home . This situation 
hanges in the �nal 
on�guration of Figure 1(
)where client has 
ompleted its migration and 
ame ba
k to its initial lo
ation.Remark 1. Component de
omposition is unique sin
e the rule (Call) treatsre
ursive de�nitions as fun
tion 
alls whi
h take a unit of time. Another 
onse-quen
e of su
h a treatment is that it is impossible to exe
ute an in�nite sequen
eof a
tion steps without exe
uting any time steps. Both these properties wouldnot hold if, instead of an a
tion rule (Call), we would have a stru
tural rule ofthe form l [[ id(v) : Γ ]] ≡ l [[ {v/u}Pid : Γ ]]. ⊓⊔3 Safe A

ess PermissionsIn this se
tion, we attempt to verify that a migrating pro
ess possesses a suf-�
iently ri
h set of initial a

ess permissions su
h that whenever later on itattempts to 
ommuni
ate over a 
hannel, it has the required safe a

ess per-mission. While doing so, we need to take into a

ount that migrating pro
esseshave their a

ess permission sets modi�ed a

ording to the mapping apm . Ifwe su

eed, then an important se
urity problem related to migration and a
-
ess permissions is solved in the sense that never an unauthorised attempt to
ommuni
ate over a 
hannel happens during network evolutions.
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TravelShop

Λ1 Λ2 Λ3 Λ4 Λ5=======================================================================================================================================================================================⇒ 6 × (Call)
home [[ go∆5 travelshop → P0 : ∅ ]] |

travelshop [[Q0 : {put〈flight@travelshop〉} | go
∆0 special → R0 : ∅ ]] |

standard [[U0 : {put〈info@standard 〉, get〈info@standard 〉} ]] |
special [[ V0 : {put〈info@special〉, get〈info@special〉} ]] |
bank [[W0 : {put〈pay@bank〉, get〈pay@bank〉} ]]

{home ⊲ travelshop} {travelshop ⊲ special}
=======================================================================================================================================================================================⇒ 2 × (Move)

travelshop [[flight ? (standardoffer :Loc) → P1:{get〈flight@travelshop〉} |
flight ! 〈standard 〉 → Q1:{put〈flight@travelshop〉} ]] |

standard [[U1 : {put〈info@standard 〉, get〈info@standard 〉} ]] |
special [[ info∆9

? (newprice : eMoney)
→ V1 : {put〈info@special〉, get〈info@special 〉} |

info ! 〈60 〉 → stop : {put〈info@special〉} ]] |
bank [[W1 : {put〈pay@bank〉, get〈pay@bank〉} ]]

{flight〈standard〉@travelshop} {info〈60〉@special}
=======================================================================================================================================================================================⇒ 2 × (Com)

travelshop [[P2:{get〈flight@travelshop〉} | Q1:{put〈flight@travelshop〉} ]] |
standard [[U2 : {put〈info@standard 〉, get〈info@standard 〉} ]] |
special [[ V2 : {put〈info@special〉, get〈info@special〉} | stop : {put〈info@special〉} ]] |
bank [[W2 : {put〈pay@bank〉, get〈pay@bank〉} ]]

P0 = flight ? (standardoffer :Loc) → P1

P1 = go
∆4 standardoffer → info ? (p1 :eMoney , specialoffer :Loc) →

go∆3 specialoffer → info ? (p2 :eMoney , paying :Loc) →
go∆6 paying → pay ! 〈min{p1 , p2}〉 →

go
∆4 home → client(130 −min{p1 , p2})

P2 = {standard/standardoffer }P1

Q0 = flight ! 〈standard 〉 → Q1

Q1 = go
∆10 bank →

pay ? (profit :eMoney) → go
∆12 travelshop → agent(100 + profit)

R0 = info ! 〈60 〉 → stop

U0 = info∆3
! 〈110 , special 〉 → flightinfo(110 , special)

U1 = info∆2
! 〈110 , special 〉 → flightinfo(110 , special)

U2 = flightinfo(110 , special )
V0 = info∆10

? (newprice :eMoney) then saleinfo(newprice , bank)
else info ! 〈90 , bank〉 → saleinfo(90 , bank)

V1 = info∆9
? (newprice :eMoney) then saleinfo(newprice , bank)

else info ! 〈90 , bank〉 → saleinfo(90 , bank)
V2 = saleinfo(60 , bank)
W0 = pay∆1

? (newpayment :eMoney) then till(10 + newpayment)
else pay∆2

! 〈10 〉 then till(0 ) else till(10 )

W1 = pay∆0
? (newpayment :eMoney) then till(10 + newpayment)

else pay∆2
! 〈10 〉 then till(0 ) else till(10 )

W2 = pay∆2
! 〈10 〉 then till(0 ) else till(10 )Table 4. Exe
ution steps for the running example where Λ1 = {client@home},

Λ2 = {agent@travelshop , update@travelshop}, Λ3 = {flightinfo@standard}, Λ4 =
{saleinfo@special} and Λ5 = {till@bank}.



Timed Migration and Intera
tion with A

ess Permissions 11Throughout this se
tion we assume that all the data sets are �nite (see Re-mark 2), and that the r.h.s. Pid of ea
h re
ursive de�nition (1) is either a prim-itive pro
ess (i.e., it is of the form Pid = stop or Pid = id ′(w)) or Pid usesexa
tly one appli
ation of one of the pro
ess operators to some primitive pro-
ess(es). This does not diminish the generality of the proposed method sin
e we
an always transform all re
ursive de�nition into the simple form using addi-tional pro
ess identi�ers and re
ursive de�nitions without a�e
ting the resultsthat follow (e.g., P df
= a → b → P is repla
ed by P

df
= a → P ′ and P ′ df

= b → P ).We use judgements of the form Γ ⊢l P to mean that a single-
omponentnetwork l [[P :Γ ]] has safe a

ess permissions. We assume the open system 
ontextwhi
h means that we 
annot know pre
isely the migration patterns of a pro
essand its 
ommuni
ation 
hannels whi
h 
an be a
quired through intera
tion with(unknown) pro
esses. We plan to deal with 
lose systems in future, and thentake into a

ount the time aspe
ts (here we use time for pro
ess 
oordination).Given a set of lo
ations Loc together with the apm mapping as well a pro
ess
P and lo
ation l, we want to devise rules for 
he
king that a set of a

ess per-missions Γ satis�es Γ ⊢l P . For instan
e, if P = go∆0 l′ then a∆1

! 〈1〉 → stopand apm(l, l′) = put−
a@l′

then there is no Γ su
h that Γ ⊢l P .If P does not involve re
ursive de�nitions, the task is straightforward. Onejust needs to follow the synta
ti
 stru
ture of the pro
ess and in
rementallyderive Γ . Dealing with re
ursion is more 
ompli
ated, and the solution we pro-pose 
onsists in unfolding a re
ursive pro
ess expression su�
iently many timesto 
over all possibilities resulting from migration. For all id ∈ Id , n ≥ 0 and
v ∈

∏

X
id , the n-th unfolding of id(v) is given by id(v)↑0

df
= stop and, for

n > 0, id(v)↑n df
= P where P is obtained from {v/u}Pid by repla
ing ea
hsubexpression of the form id ′(w) with id ′(w)↑n−1.The derivation rules for Γ ⊢l P are given in Table 5. The (TMove) rule
on
erns a migration from lo
ation l to l′. In order to have l [[ go∆t l′ then P : Γ ]]with safe a

ess permissions, it is ne
essary to have l′ [[P : Γ ′ ]] with safe a

esspermissions after applying the a

ess permission modi�
ation to Γ when movingfrom l to l′ (note that Γ ′ = apm(l, l′)(Γ )). The rule (TOut) simply requiresthat a pro
ess attempting to send a message along a 
hannel a should possessthe a

ess permission put〈a@l〉. Similarly, the rule (TIn) requires that a pro
essattempting to re
eive a message along a 
hannel a should possess the a

esspermission get〈a@l〉; moreover, after re
eiving this message it has to have safea

ess permissions with the 
urrent Γ irrespe
tive of the values 
arried by thatmessage. The 
onstant H in the rule (TRe
) is H df

= 2 · |Loc| ·
(

1+
∑

id∈Id |X
id
1 | ·

. . .·|X id
mid

|
). The value of H 
omes from rather te
hni
al 
onsiderations needed toprove results. We 
an always ensure that H is a well-de�ned integer and (TIn)is a �nitary rule a

ording to the following argument.Remark 2. The judgement system in Table 5 makes important use of data throughthe (TOut) rule as a re
eived message may 
arry a lo
ation or 
hannel namewhi
h may later be used by other rules. Other kinds of values 
arried by mes-sages or present in pro
ess des
riptions are ignored. Hen
e, for the purpose of



12 G.Ciobanu and M.Koutny(TSub) Γ ′ ⊆ Γ Γ ′ ⊢l P

Γ ⊢l P(TStop) ∅ ⊢l stop(TMove) apm(l, l′)(Γ ) ⊢l′ P

Γ ⊢l go
∆t l′ then P(TOut) put〈a@l〉 ∈ Γ Γ ⊢l P Γ ⊢l Q

Γ ⊢l a
∆t

! 〈v〉 then P else Q(TIn) get〈a@l〉 ∈ Γ ∀v ∈
∏

X : Γ ⊢l {v/u}P Γ ⊢l Q

Γ ⊢l a
∆t

? (u:X) then P else Q(TRe
) Γ ⊢l id(v)
↑H

Γ ⊢l id(v)(TPar) Γ ⊢l P Γ ⊢l Q

Γ ∪ Γ ⊢l P |QTable 5. Derivation rules for pro
esses with safe a

ess permissions.safe a

ess permissions, we 
an repla
e all non-lo
ation and non-
hannel valuesby a spe
ial value τ , and all the data types di�erent from Loc and Chan by asingleton type X = {τ}. In this way, all the data sets be
ome �nite. Hen
e, inparti
ular, H is an integer value, and ∏

X in (TIn) is a �nite set. ⊓⊔We have de�ned what it means to have safe a

ess permissions in the 
aseof a single-
omponent network. In the general 
ase, a network N has safe a

esspermissions if ea
h of its 
omponents does. These two de�nitions are 
onsistentin the sense that Γ ⊢l P i� Γ ⊢l Pi, for every 
omponent network l [[Pi:Γ ]] of asingle-
omponent network l [[P :Γ ]], whi
h follows from the rule (TPar).The �rst main result states that safe a

ess permissions is preserved over thenetwork evolutions de�ned by the operational semanti
s.Theorem 1 (soundness). If a well-formed network N has safe a

ess permis-sions, and N ′ is rea
hable from N , then N ′ has also safe a

ess permissions.The se
ond main result is that in a network with safe a

ess permissionsthere are no attempts to a

ess a 
ommuni
ation 
hannel without an appropriatea

ess permission. This result should be seen as a justi�
ation of our interest inthe notion of safe a

ess permissions.Theorem 2 (safety of 
ommuni
ations). Let N be a well-formed networkwith safe a

ess permissions.
l [[ a∆t

! 〈v〉 then P else Q : Γ ]] ∈ comp(N) implies put〈a@l〉 ∈ Γ
l [[ a∆t

? (u:X) then P else Q : Γ ]] ∈ comp(N) implies get〈a@l〉 ∈ Γ .
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tion with A

ess Permissions 13As an immediate 
orollary of Theorem 2, for a network with safe a

ess permis-sions it is possible to simplify the operational rule for pro
ess 
ommuni
ation,by deleting put〈a@l〉 ∈ Γ and get〈a@l〉 ∈ Γ ′ in rule (Com), and so simplifyingthe implementation.The third main result is that the notion of a network with safe a

ess per-missions is 
omplete in the sense that a network whi
h does not satisfy thisproperty 
an always be pla
ed in an environment whi
h reveals its potential tobreak safety of interpro
ess 
ommuni
ation.Theorem 3 (
ompleteness). Let N = l [[P : Γ ]] be a well-formed networksu
h that Γ 6⊢l P . Then there is a well-formed network N ′ with safe a

esspermissions as well as a well-formed network N ′′ rea
hable from N |N ′ su
hthat one of the following holds.� There is a 
omponent l′ [[ a∆t
! 〈v〉 then P ′ else P ′′ : Γ ′ ]] of N ′′ su
h that

put〈a@l′〉 /∈ Γ ′.� There is a 
omponent l′ [[ a∆t
? (u:X) then P ′ else P ′′ : Γ ′ ]] of N ′′ su
hthat get〈a@l′〉 /∈ Γ ′.We developed a sound and 
omplete system for safe of 
ommuni
ation and mi-gration in open networks. Hen
e we are able to validate systems where one doesnot need to 
he
k a

ess permissions as they are guaranteed not to be violated,improving implementation. Moreover, the results 
an be extended allow design-ing systems in whi
h pro
esses are not blo
ked (deadlo
ked) be
ause of the la
kof dynami
ally 
hanging a

ess permissions.4 Con
lusions and Related WorkWe introdu
ed a distributed pro
ess algebra with pro
esses able to migrate be-tween di�erent lo
ations and timing 
onstraints used to 
ontrol migration and
ommuni
ation. We use lo
al 
lo
ks and lo
al maximal parallelism of a
tions.Pro
esses have appropriate a

ess rights to 
ommuni
ate; the a

ess permissionsare dynami
 and 
an 
hange. We have provided an operational semanti
s of thismodel, and investigated the safety of 
ommuni
ation and migration in terms ofa

ess permissions. While we are not aware of any approa
h 
ombining all theseaspe
ts regarding mobility with timing 
onstraints, lo
al 
lo
ks, and dynami
a

ess permission me
hanism, our work is related to a large body of literatureusing pro
ess algebra in (type-based) se
urity. Several systems en
ompass var-ious forms of a

ess 
ontrol poli
ies in distributed systems. Among them, thework on Dpi 
al
ulus in [13℄ uses type systems to 
ontrol stati
ally the a

essto the resour
es at the di�erent lo
ations of a distributed system. Other relatedwork on a

ess 
ontrol in distributed systems is done in the 
ontext of the lan-guage Klaim and its extensions, using type systems that enable the dynami
ex
hange of a

ess rights. The paper [7℄ 
ombines a weak form of information �ow
ontrol with typed 
ryptographi
 operations to ensure safe stati
 a

ess 
ontroland se
ure network 
ommuni
ations. The paper [5℄ use 
ryptographi
 operations
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apability types to get a se
ure implementation of a typed pi-
al
ulus in or-der to realise various poli
ies for a

essing the 
ommuni
ation 
hannels. Noneof these systems, however, uses together mobility as a �rst 
lass 
itizen 
on-trolled by timing 
onstraints, dynami
 aspe
ts of the a

ess permissions, lo
al
lo
ks and parallelism. These advantages of the new model 
an allow to spe
-ify and enfor
e more diverse and expressive se
urity poli
ies based on a

esspermissions. This 
ould be done in the 
ontext of designing good programminglanguage supporting migration in a distributed environment [16℄. On the otherhand, several prototype languages have been designed and experimental imple-mentations derived from pro
ess 
al
uli like Klaim [4℄ and A
ute [15℄. Theseprototype languages did not be
ome a pra
ti
al programming language be
ausehard questions revolving mainly around issues relating to se
urity. PerTiMois intended to help bridging the gap between the existing foundational pro
essalgebras and forth
oming realisti
 languages. It extends some previous attemptsrelated to tDpi [10℄ and TiMo [8℄. PerTiMo derives from TiMo model (a sim-pli�ed distributed π-
al
ulus with expli
it timeouts) presented in [8℄ by addinga type system in order to express se
urity aspe
ts related to a

ess permissions.The basi
 notion of a timeout in TiMo seemed useful and elegant. PerTiMoretains this notion and, in addition, it in
orporates a

ess permissions in orderto provide formal foundations for se
urity problems relating to the adequateprote
tion of a

ess 
ontrol information in distributed environment.As related work, we should mention distributed pi-
al
ulus having an expli
itnotion of lo
ation, and dealing with stati
 resour
es a

ess [12℄ by using a typesystem. The paper [3℄ studies a π-
al
ulus extension with a timer 
onstru
t, andthen enri
hes the timed πt with lo
ations. Other timed extensions of pro
ess al-gebras have been studied in [2, 11℄. In [6℄ the authors present a typed π-
al
uluswith groups and group 
reation in whi
h ea
h name belongs to a group. Therules for good environments ensure that the names and groups de
lared in anenvironment are distin
t, and that all the types mentioned in an environmentare good. A 
onsequen
e of the typing dis
ipline is the ability to preserve se-
rets, namely preventing 
ertain 
ommuni
ations that would leak se
rets. Thetype system is used for regulating the mobile 
omputation, allowing to partitionthe pro
esses into disjoint groups in order to spe
ify the behaviour of both 
om-muni
ation and mobility. Somehow related to our dynami
 a

ess permissions,[1℄ presents a parametri
 
al
ulus for pro
esses ex
hanging 
ode whi
h may 
on-tain free variables to be bound by the re
eiver's 
ode (
alled open mobile 
ode).Type safety is ensured by a 
ombination of stati
 and dynami
 
he
ks of su
han ex
hange of open 
ode. In this way it is possible to express rebinding of 
odein a distributed environment in a relatively simple way.Deriving 
on
rete implementation from PerTiMo is part of future work,and the approa
h presented in this paper is just a �rst step in this dire
tion. Inour future work we plan to extend the 
urrent model as follows:� a

ess permissions to lo
ations to 
ontrol migrations of pro
esses;� se
urity levels for migrating pro
esses to 
ontrol a

ess permissions to 
han-nels and lo
ations;
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ess Permissions 15� relaxing the syn
hronisation resulting from the maximally parallel semanti
s,by retaining maximal parallelism within ea
h lo
ation, but allowing lo
ationsto pro
eed with di�erent speed;� rules for well-typing of values in ex
hanged messages;� de�ning and analysing se
urity poli
ies for a

ess and migration 
ontrol; and� introdu
ing and analysing failures in pro
ess migration.Referen
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