

COMPUTING
SCIENCE

Timed Migration and Interaction with Access Permissions

Gabriel Ciobanu and Maciej Koutny

TECHNICAL REPORT SERIES

No. CS-TR-1291 November 2011

TECHNICAL REPORT SERIES

No. CS-TR-1291 November, 2011

Timed Migration and Interaction with Access Permissions

G. Ciobanu, M. Koutny

Abstract

We introduce and study a process algebra able to model the systems composed of
processes (agents) which may migrate within a distributed environment comprising a
number of distinct locations. Two processes may communicate if they are present in
the same location and, in addition, they have appropriate access permissions to
communicate over a channel. Access permissions are dynamic, and processes can
acquire new access permissions or lose some existing permissions while migrating
from one location to another. Timing constraints coordinate and control the
communication between processes and migration between locations. Then we
completely characterise those situations when a process is always guaranteed to
possess safe access permissions. The consequences of such a result are twofold. First,
we are able to validate systems where one does not need to check (at least partially)
access permissions as they are guaranteed not to be violated, improving efficiency of
implementation. Second, one can design systems in which processes are not blocked
(deadlocked) because of the lack of dynamically changing access permissions.

© 2011 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

CIOBANU, G., KOUTNY, M.

Timed Migration and Interaction with Access Permissions
[By] G. Ciobanu, M. Koutny
Newcastle upon Tyne: Newcastle University: Computing Science, 2011.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1291)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1291

Abstract

We introduce and study a process algebra able to model the systems composed of processes (agents) which may
migrate within a distributed environment comprising a number of distinct locations. Two processes may
communicate if they are present in the same location and, in addition, they have appropriate access permissions to
communicate over a channel. Access permissions are dynamic, and processes can acquire new access permissions
or lose some existing permissions while migrating from one location to another. Timing constraints coordinate and
control the communication between processes and migration between locations. Then we completely characterise
those situations when a process is always guaranteed to possess safe access permissions. The consequences of
such a result are twofold. First, we are able to validate systems where one does not need to check (at least
partially) access permissions as they are guaranteed not to be violated, improving efficiency of implementation.
Second, one can design systems in which processes are not blocked (deadlocked) because of the lack of
dynamically changing access permissions.

About the authors

Gabriel Ciobanu is a senior researcher at the Institute of Computer Science, Romanian Academy. He is also a
Professor at "Alexandru Ioan Cuza" University of Iasi, Romania.

Maciej Koutny obtained his MSc (1982) and PhD (1984) from the Warsaw University of Technology. In 1985 he
joined the then Computing Laboratory of the University of Newcastle upon Tyne to work as a Research Associate.
In 1986 he became a Lecturer in Computing Science at Newcastle, and in 1994 was promoted to an established
Readership at Newcastle. In 2000 he became a Professor of Computing Science.

Suggested keywords

DISTRIBUTED SYSTEMS
MOBILE AGENTS
COMMUNICATION
ACCESS PERMISSIONS
OPERATIONAL SEMANTICS
SPECIFICATION
STATIC ANALYSIS

Timed Migration and Interationwith Aess PermissionsGabriel Ciobanu1 and Maiej Koutny2
1 Institute of Computer Siene, Romanian Aademyand A.I.Cuza University of Iasi700483 Iasi, Romaniagabriel�iit.tuiasi.ro

2 Shool of Computing SieneNewastle UniversityNewastle upon Tyne, NE1 7RU, United Kingdommaiej.koutny�newastle.a.ukAbstrat. We introdue and study a proess algebra able to model thesystems omposed of proesses (agents) whih may migrate within a dis-tributed environment omprising a number of distint loations. Twoproesses may ommuniate if they are present in the same loation and,in addition, they have appropriate aess permissions to ommuniateover a hannel. Aess permissions are dynami, and proesses an a-quire new aess permissions or lose some existing permissions whilemigrating from one loation to another. Timing onstraints oordinateand ontrol the ommuniation between proesses and migration be-tween loations. Then we ompletely haraterise those situations whena proess is always guaranteed to possess safe aess permissions. Theonsequenes of suh a result are twofold. First, we are able to validatesystems where one does not need to hek (at least partially) aess per-missions as they are guaranteed not to be violated, improving e�ienyof implementation. Seond, one an design systems in whih proessesare not bloked (deadloked) beause of the lak of dynamially hangingaess permissions.Keywords: distributed systems, mobile agents, ommuniation, aesspermissions, operational semantis, spei�ation, stati analysis1 IntrodutionThe inreasing omplexity of mobile appliations in whih the timing aspets areimportant to the system operation means that the need for their e�etive analysisand veri�ation is beoming ritial. In this paper we explore formal modellingof mobile systems where one an also speify time-related aspets of migrat-ing proesses and, ruially, seurity aspets expressed by aess permissionsto ommuniation hannels. Building on our previous work on TiMo presentedat FASE'08 [8℄, we introdue PerTiMo (Permissions, Timers and Mobility)whih is a proess algebra supporting proess migration (strong mobility), loal

2 G.Ciobanu and M.Koutnyinterproess ommuniation over shared hannels ontrolled by aess permis-sions that proesses must possess, and timers (driven by loal loks) ontrollingthe exeution of ations. An important feature of the proposed model is that a-ess permissions are dynami. More preisely, proesses an aquire new aesspermissions, or lose some of their urrent aess permissions while moving fromone loation to another, modelling a key seurity related feature. Proesses areequipped with input and output apabilities whih are ative up to pre-de�nedtime deadlines and, if these ommuniations are not taken, alternative ontinu-ations for the proess behaviour are followed. Another timing onstraint allowsone to speify the latest time for moving a proess from one loation to another.These two kinds of timing onstraints help in the ontrol and oordination ofmigration and ommuniation in distributed systems. We provide the syntaxand operational semantis of PerTiMo whih is a disrete time semantis in-orporating maximally parallel exeutions of ations using loal loks.To introdue the basi omponents of PerTiMo, we use a TravelShop run-ning example in whih a lient proess attempts to pay as little as possible fora tiket to a pre-de�ned destination. The senario involves �ve loations and sixproesses. The role of eah of the loations is as follows: (i) home is a loationwhere the lient proess starts and ends its journey; (ii) travelshop is a mainloation of the servie whih is initially visible to the lient; (iii) standard and
special are two internal loations of the servie where lients an �nd out aboutthe tiket pries; and (iv) bank is a loation where the payment is made. Therole of eah of the proesses is as follows:� client is a proess whih initially resides in the home loation, and is deter-mined to pay for a �ight after omparing two o�ers (standard and speial)provided by the travel shop. Upon entering the travel shop, client reeivesthe loation of the standard o�er and, after moving there and obtaining thiso�er, the lient is given the loation where a speial o�er an be obtained.After that client moves to the bank and pays for the heaper of the twoo�ers, and then returns bak to home .� agent �rst informs client where to look for the standard o�er and then movesto bank in order to ollet the money from the till. After that agent returnsbak to travelshop.� flightinfo ommuniates the standard o�er to lients as well as the loationof the speial o�er.� saleinfo ommuniates the speial o�er to lients together with the loationof the bank. saleinfo an also aept an update by the travel shop of thespeial o�er.� update initially resides at the travelshop loation and then migrates to specialin order to update the speial o�er.� till resides at the bank loation and an either reeive e-money paid in bylients, or transfer the e-money aumulated so far to agent .PerTiMo uses timers in order to impose deadlines on the exeution of om-muniations and migrations. Moreover, proesses need to possess appropriate

Timed Migration and Interation with Aess Permissions 3a: initial on�guration
home travelshop standard special bank

130

client

100

agent

60

update

110

special

flightinfo

90

bank

saleinfo

10

till

b: intermediate on�guration
home travelshop standard special bank

130

client

100

agent update

110

special

flightinfo

60

bank

saleinfo

10

till: �nal on�guration
home travelshop standard special bank

70

client

170

agent

update

110

special

flightinfo

60

bank

saleinfo

0

tillFig. 1. Three snapshots of the evolution of the running example. In the initial on�gu-ration we indiated the intended migration paths of three proesses. The intermediateon�guration illustrates the phase of the evolution after some initial movements ofthe lient and after updating the seond �ight prie. The �nal on�guration shows thestate of the system after a suessful payment has been made; the total sum of e-moneyowned by the lient (70), agent (170) and till (0) is exatly the same as the sum atthe beginning of the evolution when the lient has 130 , agent 100 and till 10 . Notethat the hannels used by proesses to ommuniate information are not shown.aess permissions in order to send and reeive information. Figure 1 portraysthree possible stages of the evolution of the TravelShop system.Eah loation has its loal lok whih determines the timing of ations exe-uted at that loation. The timeout of a migration ation indiates the networktime limit for that ation (similar to TTL in TCP/IP).We use x to denote a �nite tuple (x1, . . . , xk) whenever it does not leadto a onfusion, and if X is a tuple of sets (X1, . . . , Xk) then ∏

X denotes
X1 × . . .×Xk. We assume that the reader is familiar with the basi onepts ofproess algebras [14℄. All proofs our results an be found in [9℄.

4 G.Ciobanu and M.Koutny2 Syntax and semantis of PerTiMoTiming onstraints for migration allow one to speify what is the time window fora proess to move from one loation to another. E.g., a timer (suh as ∆5) of amigration ation go∆5home indiates that the proess will move to home within5 time units. It is also possible to onstrain the waiting for a ommuniationon a hannel; if a ommuniation ation does not happen before a deadline, thewaiting proess gives up and swithes its operation to an alternative. E.g., atimer (suh as ∆4) of an output ation a∆4
! 〈13 〉 makes the hannel availablefor ommuniation only for the period of 4 time units. We assume suitable datasets inluding a set Loc of loations and a set Chan of ommuniation hannels.We use a set Id of proess identi�ers, and eah id ∈ Id has arity mid .To ommuniate over a hannel at a given network loation, the sender pro-ess should have a `put' aess permission, and the reeiving proess a `get'aess permission. The set Γ of aess permissions of a proess is a subset of

AccPerm
df
= {put, get} × Chan × Loc. We use the notation get〈a@l〉 to denotean aess permission (get, a, l) ∈ AccPerm, and put〈a@l〉 to denote (put, a, l) ∈

AccPerm. Intuitively, we work with aess permissions to sokets where l repre-sents an IP address and a represents a ommuniation port.We allow aess permissions of a proess to hange while moving from oneloation to another. To model this, we use the following four basi aess per-mission modi�ation operations: put+
a@l

, get+
a@l

, put−
a@l

and get−
a@l

, where l is aloation and a is a ommuniation hannel. The �rst two (put+
a@l

and get+
a@l

)add aess permissions, while the latter two (put−
a@l

and get−
a@l

) remove aesspermissions. For instane, put+
a@l

(Γ) = Γ ∪ {put〈a@l〉}. Then an aess permis-sion modi�ation operation is either the identity on AccPerm, or a ompositionof some basi aess permission modi�ation operations suh that if put+
a@l

isused in the omposition then put−
a@l

is not used (giving and at the same timeremoving an aess permission does not make sense). For a given network, wethen speify what are the hanges to the aess permission sets of proesses mi-grating from one loation to another. This is spei�ed as a mapping apm whih,for eah pair (l, l′) of loations, returns a permission modi�ation operation; if aproess with the urrent aess permissions Γ moves from loation l to loation
l′, its new set of aess permissions beomes apm(l, l′)(Γ).The syntax of PerTiMo is given in Table 1, where P are proesses, PPproesses with (aess) permissions, and N networks. Moreover, for eah id ∈ Id ,there is a unique proess de�nition of the form:

id(u1, . . . , umid
: X id

1 , . . . , X id
mid

)
df
= Pid , (1)where the ui's are distint variables playing the role of parameters, and the

X id
i
's are data sets. Proesses of the form stop and id(v) are alled primitive.In Table 1, it is assumed that:� a ∈ Chan is a hannel, and t ∈ N ∪ {∞} is a time deadline;� eah vi is an expression built from values, variables and allowed operations;

Timed Migration and Interation with Aess Permissions 5Proesses P ::= a∆t
! 〈v〉 then P else P ′

p (output)
a∆t

? (u:X) then P else P ′
p (input)

go∆t l then P p (move)
P |P ′

p (parallel)
stop p (termination)
id(v) p (reursion)
sP (stalling)Typed Proesses PP ::= P : Γ p PP |PP ′Networks N ::= l [[PP]] p N |N ′Shorthand notation:

a ! 〈v〉 → P will be used to denote a∆∞
! 〈v〉 then P else stop

a ? (u:X) → P will be used to denote a∆∞
? (u:X) then P else stop .Table 1. PerTiMo syntax. The length of u is the same as that of X, and the lengthof v in id(v) is mid .� eah ui is a variable, and eah Xi is a data set;� l is a loation or a variable, and Γ a set of ation permissions; and� s is a speial symbol used to express that a proess is temporarily stalled.The only variable binding onstrut is a∆t

? (u:X) then P else P ′ whih bindsthe variables u within P (but not within P ′). We use fv(P) to denote the freevariables of a proess P (and similarly for proesses with aess permissionsand networks). For a proess de�nition as in (1), we assume that fv (Pid) ⊆
{u1, . . . , umid

} and so the free variables of Pid are parameter bound. Proessesare de�ned up to the alpha-onversion, and {v/u, . . .}P is obtained from P byreplaing all free ourrenes of a variable u by v, possibly after alpha-onverting
P in order to avoid lashes. Moreover, if v and u are tuples of the same lengththen {v/u}P = {v1/u1, v2/u2, . . . , vk/uk}P .A network N is well-formed if the following hold:� there are no free variables in N ;� there are no ourrenes of the speial symbol s in N ; and� assuming that id is as in the reursive equation (1), for every id(v) ourringin N or on the right hand side of any reursive equation, the expression vi isof type orresponding toX id

i
(where we use the standard rules of determiningthe type of an expression).Intuitively, a proess a∆t

! 〈v〉 then P else P ′ attempts to send a tuple ofvalues v over the hannel a for t time units. If suessful, it then ontinuesas proess P ; otherwise it ontinues as the alternative proess P ′. Similarly,
a∆t

? (u:X) then P else P ′ is a proess that attempts for t time units to inputa tuple of values from X and substitute them for the variables u. Mobility isimplemented by proesses go∆t l then P whih moves from the urrent loation

6 G.Ciobanu and M.Koutny
TravelShop

df
=

home [[client(130) : ∅]] |
travelshop [[agent(100) : {put〈flight@travelshop〉} | update(60) : ∅]] |
standard [[flightinfo(110 , special) : {put〈info@standard 〉, get〈info@standard〉}]] |
special [[saleinfo(90 , bank) : {put〈info@special〉, get〈info@special〉}]] |
bank [[till(10) : {put〈pay@bank〉, get〈pay@bank〉}]]

apm(home, travelshop)
df
= get+flight@travelshop

apm(travelshop , standard)
df
= get+info@standard

apm(travelshop , special)
df
= put+info@special

apm(standard , special)
df
= get+info@special ◦ get

−
info@standard

apm(special , bank)
df
= put+pay@bank ◦ get−info@special ◦ get

−
pay@bank

apm(travelshop , bank)
df
= get+pay@bank

client(init:eMoney)
df
=

go
∆5 travelshop → flight ? (standardoffer :Loc) →

go
∆4 standardoffer → info ? (p1 :eMoney , specialoffer :Loc) →

go
∆3 specialoffer → info ? (p2 :eMoney , paying :Loc) →

go∆6 paying → pay ! 〈min{p1 , p2}〉 →
go∆4 home → client(init −min{p1 , p2})

agent(balance:eMoney)
df
=

flight ! 〈standard〉 → go
∆10 bank →

pay ? (profit :eMoney) → go
∆12 travelshop →

agent(balance + profit)

update(saleprice :eMoney)
df
=

go
∆0 special → info ! 〈saleprice〉 → stop

flightinfo(price : eMoney ,next : Loc)
df
=

info ! 〈price,next〉 → flightinfo(price, next)

saleinfo(price : eMoney ,next : Loc)
df
=

info∆10
? (newprice:eMoney)

then saleinfo(newprice ,next)
else info ! 〈price ,next〉 → saleinfo(price,next)

till(cash :eMoney)
df
=

pay∆1
? (newpayment :eMoney)

then till(cash + newpayment)
else pay∆2

! 〈cash〉 then till(0) else till(cash)Table 2. PerTiMo network modelling the running example together with the relevantaess permission modi�ation operations (those omitted are all equal to the identitymapping on AccPerm).to the loation given by l within t time units. Note that sine l an be a variable,and so its value is assigned dynamially through ommuniation with other pro-esses, migration ations support a �exible sheme for movement of proessesfrom one loation to another.

Timed Migration and Interation with Aess Permissions 7A network l [[P : Γ]] spei�es a proess P with the aess permissions Γrunning at a loation l. Finally, proess expressions of the form sP representa purely tehnial devie whih is used in our formalisation of strutural op-erational semantis of PerTiMo; intuitively, it spei�es a proess P whih istemporarily stalled and so annot exeute any ation.One might wonder why a proess an delay migration to another loation.The point is that by allowing this we an model in a simple way the non-determinism in the movement of proesses whih is, in general, outside theontrol of a system designer. Thus the timer in this ase indiates the upperbound on the migration time.The spei�ation of the running example whih aptures the essential fea-tures of the senario desribed in the introdution is given in Table 2. Weassume that Loc = {home, travelshop, standard , special , bank} and Chan =
{info,flight , pay}. Table 2 shows the proess network TravelShop modelling thesenario, as well as the aess permission modi�ation operations whih are ap-plied to the proess expressions when they move around the �ve nodes of thenetwork.The �rst omponent of the operational semantis of PerTiMo is the stru-tural equivalene ≡ on networks, similar to that used in [4℄. It is the smallestongruene suh that the equalities (Eq1�Eq4) in Table 3 hold. Its role is torearrange a network in order to apply the ation rules whih are also given inTable 3. Using (Eq1�Eq4) one an always transform a given network N into a�nite parallel omposition of networks of the form:

l1 [[P1:Γ1]] | . . . | ln [[Pn:Γn]] (2)suh that no proess Pi has the parallel omposition operator at its topmostlevel. Eah sub-network li [[Pi:Γi]] is alled a omponent of N , the set of allomponents is denoted by comp(N), and the parallel omposition (2) is alleda omponent deomposition of the network N . Note that these notions are well-de�ned sine omponent deomposition is unique up to the permutation of theomponents (see Remark 1 below).Table 3 introdues two kinds of ation rules, N λ
−→ N ′ and N

√
l−→ N ′. Theformer is an exeution of an ation λ, and the latter a time step in loation l.In the rule (Time), N 6→l means that no l-ation λ (i.e., an ation of the form

id@l or l ⊲ l′ or @l or a〈v〉@l) an be applied to N . Moreover, φl(N) is obtainedby taking the omponent deomposition of N and simultaneously replaing allomponents of the form l [[a∆tω then P else Q : Γ]] � where ω stands for ! 〈v〉or ? (u:X) � by l [[Q : Γ]] if t = 0, and otherwise by l [[a∆t−1ω then P else Q :
Γ]]. After that ourrenes of the speial symbol s in N are erased.So far we de�ned loated exeutions of ations. An entire omputational stepis aptured by a derivation N

Λ
=⇒ N ′, where Λ = {λ1, . . . , λn} is a �nite multisetof l-ations for some loation l suh that
N

λ1−→ · · ·
λn−→

√
l−→ N ′ .

8 G.Ciobanu and M.Koutny
(Eq1) N |N ′ ≡ N ′ |N

(Eq2) (N |N ′) |N ′′ ≡ N | (N ′ |N ′′)

(Eq3) l [[PP |PP ′]] ≡ l [[PP]] | l [[PP ′]]

(Eq4) l [[P |Q : Γ]] ≡ l [[P : Γ |Q : Γ]]

(Call) l [[id(v) : Γ]]
id@l
−→ l [[s {v/u}Pid : Γ]](Move) l [[go∆t l′ then P : Γ]]
l⊲l

′

−→ l′ [[sP : apm(l, l′)(Γ)]](Wait) t > 0

l [[go∆t l′ then P : Γ]]
@l
−→ l [[s go∆t−1 l′ then P : Γ]](Com) put〈a@l〉 ∈ Γ get〈a@l〉 ∈ Γ ′

v ∈
∏

X

l [[a∆t
! 〈v〉 then P else Q : Γ | a∆t

′

? (u:X) then P ′
else Q′ : Γ ′]]

a〈v〉@l

−−−−−−−−−−−−−−→ l [[sP : Γ | s {v/u}P ′ : Γ ′]](Par) N
λ

−→ N ′

N |N ′′ λ
−→ N ′ |N ′′(Equiv) N ≡ N ′ N ′ λ
−→ N ′′ N ′′ ≡ N ′′′

N
λ

−→ N ′′′(Time) N 6−→l

N
√

l−→ φl(N)Table 3. Four rules of the strutural equivalene (Eq1-Eq4), and seven ation rules(Call Move Wait Com Par Equiv Time) of the operational semantis.We also all N ′ diretly reahable from N . In other words, we an apture theumulative e�et of the onurrent exeution of the multiset of ations Λ atloation l. Intuitively, networks evolution onforms to the loally maximallyparallelism paradigm sine one exeutes in a single loation l as many as possibleonurrent ation before applying a loal time move whih signi�es the passageof a unit of time at loation l.The two results below ensure that derivations are well de�ned. First, oneannot exeute an unbounded sequene of ation moves without time progress.Proposition 1. If N is a network and N
λ1−→ · · ·

λk−→ N ′, then k ≤ |comp(N)|.Seond, if we start with a well-formed network, exeution proeeds throughalternating exeutions of time steps and ontiguous sequenes of loal ationsmaking up what an be regarded as a maximally onurrent step (note the roleof the speial symbols s). This intuition is reinfored by the following result.

Timed Migration and Interation with Aess Permissions 9Proposition 2. Let N be a well-formed network. If N λ1−→ · · ·
λn−→ N ′, then wehave N

λi1−→ · · ·
λin−→ N ′, for every permutation i1, . . . , in of 1, . . . , n.It is worth noting that the semantial treatment of PerTiMo� itself a on-tinuation of the idea developed for TiMo � goes beyond interleaving semantisby introduing an expliit representation of loal maximal parallelism and loaltime progress in the network evolution.Our last result in this setion is that the rules of Table 3 preserve well-formedness of networks.Proposition 3. Networks reahable from a well-formed network are well-formed.Table 4 illustrates exeution steps based on the senario illustrated in Figure 1(note that Λ2 represents a parallel exeution of two ations). We indiate onlythe main rules used in the derivation of steps. Eah exeution step takes a singleunit of time in the loation at whih it has been exeuted and some timers arederemented by one (e.g., the timer ∆3 of hannel info in U0 is hanged to ∆2in U1). Other timers whih have expired ause an immediate migration or theseletion of the alternative part of a ommuniation ation (see W1 whih isreplaed by W2).Note that the last network expression derived from TravelShop in Table 4orresponds to the intermediate on�guration shown in Figure 1(b). Note alsothat in the representation of Figure 1(b) we show the home loation, even thoughit is not present in the last network expression in Table 4. The reason is thatthe client proess has moved to travelshop, and there is at present no proessresiding at home . This situation hanges in the �nal on�guration of Figure 1()where client has ompleted its migration and ame bak to its initial loation.Remark 1. Component deomposition is unique sine the rule (Call) treatsreursive de�nitions as funtion alls whih take a unit of time. Another onse-quene of suh a treatment is that it is impossible to exeute an in�nite sequeneof ation steps without exeuting any time steps. Both these properties wouldnot hold if, instead of an ation rule (Call), we would have a strutural rule ofthe form l [[id(v) : Γ]] ≡ l [[{v/u}Pid : Γ]]. ⊓⊔3 Safe Aess PermissionsIn this setion, we attempt to verify that a migrating proess possesses a suf-�iently rih set of initial aess permissions suh that whenever later on itattempts to ommuniate over a hannel, it has the required safe aess per-mission. While doing so, we need to take into aount that migrating proesseshave their aess permission sets modi�ed aording to the mapping apm . Ifwe sueed, then an important seurity problem related to migration and a-ess permissions is solved in the sense that never an unauthorised attempt toommuniate over a hannel happens during network evolutions.

10 G.Ciobanu and M.Koutny
TravelShop

Λ1 Λ2 Λ3 Λ4 Λ5===⇒ 6 × (Call)
home [[go∆5 travelshop → P0 : ∅]] |

travelshop [[Q0 : {put〈flight@travelshop〉} | go
∆0 special → R0 : ∅]] |

standard [[U0 : {put〈info@standard 〉, get〈info@standard 〉}]] |
special [[V0 : {put〈info@special〉, get〈info@special〉}]] |
bank [[W0 : {put〈pay@bank〉, get〈pay@bank〉}]]

{home ⊲ travelshop} {travelshop ⊲ special}
===⇒ 2 × (Move)

travelshop [[flight ? (standardoffer :Loc) → P1:{get〈flight@travelshop〉} |
flight ! 〈standard 〉 → Q1:{put〈flight@travelshop〉}]] |

standard [[U1 : {put〈info@standard 〉, get〈info@standard 〉}]] |
special [[info∆9

? (newprice : eMoney)
→ V1 : {put〈info@special〉, get〈info@special 〉} |

info ! 〈60 〉 → stop : {put〈info@special〉}]] |
bank [[W1 : {put〈pay@bank〉, get〈pay@bank〉}]]

{flight〈standard〉@travelshop} {info〈60〉@special}
===⇒ 2 × (Com)

travelshop [[P2:{get〈flight@travelshop〉} | Q1:{put〈flight@travelshop〉}]] |
standard [[U2 : {put〈info@standard 〉, get〈info@standard 〉}]] |
special [[V2 : {put〈info@special〉, get〈info@special〉} | stop : {put〈info@special〉}]] |
bank [[W2 : {put〈pay@bank〉, get〈pay@bank〉}]]

P0 = flight ? (standardoffer :Loc) → P1

P1 = go
∆4 standardoffer → info ? (p1 :eMoney , specialoffer :Loc) →

go∆3 specialoffer → info ? (p2 :eMoney , paying :Loc) →
go∆6 paying → pay ! 〈min{p1 , p2}〉 →

go
∆4 home → client(130 −min{p1 , p2})

P2 = {standard/standardoffer }P1

Q0 = flight ! 〈standard 〉 → Q1

Q1 = go
∆10 bank →

pay ? (profit :eMoney) → go
∆12 travelshop → agent(100 + profit)

R0 = info ! 〈60 〉 → stop

U0 = info∆3
! 〈110 , special 〉 → flightinfo(110 , special)

U1 = info∆2
! 〈110 , special 〉 → flightinfo(110 , special)

U2 = flightinfo(110 , special)
V0 = info∆10

? (newprice :eMoney) then saleinfo(newprice , bank)
else info ! 〈90 , bank〉 → saleinfo(90 , bank)

V1 = info∆9
? (newprice :eMoney) then saleinfo(newprice , bank)

else info ! 〈90 , bank〉 → saleinfo(90 , bank)
V2 = saleinfo(60 , bank)
W0 = pay∆1

? (newpayment :eMoney) then till(10 + newpayment)
else pay∆2

! 〈10 〉 then till(0) else till(10)

W1 = pay∆0
? (newpayment :eMoney) then till(10 + newpayment)

else pay∆2
! 〈10 〉 then till(0) else till(10)

W2 = pay∆2
! 〈10 〉 then till(0) else till(10)Table 4. Exeution steps for the running example where Λ1 = {client@home},

Λ2 = {agent@travelshop , update@travelshop}, Λ3 = {flightinfo@standard}, Λ4 =
{saleinfo@special} and Λ5 = {till@bank}.

Timed Migration and Interation with Aess Permissions 11Throughout this setion we assume that all the data sets are �nite (see Re-mark 2), and that the r.h.s. Pid of eah reursive de�nition (1) is either a prim-itive proess (i.e., it is of the form Pid = stop or Pid = id ′(w)) or Pid usesexatly one appliation of one of the proess operators to some primitive pro-ess(es). This does not diminish the generality of the proposed method sine wean always transform all reursive de�nition into the simple form using addi-tional proess identi�ers and reursive de�nitions without a�eting the resultsthat follow (e.g., P df
= a → b → P is replaed by P

df
= a → P ′ and P ′ df

= b → P).We use judgements of the form Γ ⊢l P to mean that a single-omponentnetwork l [[P :Γ]] has safe aess permissions. We assume the open system ontextwhih means that we annot know preisely the migration patterns of a proessand its ommuniation hannels whih an be aquired through interation with(unknown) proesses. We plan to deal with lose systems in future, and thentake into aount the time aspets (here we use time for proess oordination).Given a set of loations Loc together with the apm mapping as well a proess
P and loation l, we want to devise rules for heking that a set of aess per-missions Γ satis�es Γ ⊢l P . For instane, if P = go∆0 l′ then a∆1

! 〈1〉 → stopand apm(l, l′) = put−
a@l′

then there is no Γ suh that Γ ⊢l P .If P does not involve reursive de�nitions, the task is straightforward. Onejust needs to follow the syntati struture of the proess and inrementallyderive Γ . Dealing with reursion is more ompliated, and the solution we pro-pose onsists in unfolding a reursive proess expression su�iently many timesto over all possibilities resulting from migration. For all id ∈ Id , n ≥ 0 and
v ∈

∏

X
id , the n-th unfolding of id(v) is given by id(v)↑0

df
= stop and, for

n > 0, id(v)↑n df
= P where P is obtained from {v/u}Pid by replaing eahsubexpression of the form id ′(w) with id ′(w)↑n−1.The derivation rules for Γ ⊢l P are given in Table 5. The (TMove) ruleonerns a migration from loation l to l′. In order to have l [[go∆t l′ then P : Γ]]with safe aess permissions, it is neessary to have l′ [[P : Γ ′]] with safe aesspermissions after applying the aess permission modi�ation to Γ when movingfrom l to l′ (note that Γ ′ = apm(l, l′)(Γ)). The rule (TOut) simply requiresthat a proess attempting to send a message along a hannel a should possessthe aess permission put〈a@l〉. Similarly, the rule (TIn) requires that a proessattempting to reeive a message along a hannel a should possess the aesspermission get〈a@l〉; moreover, after reeiving this message it has to have safeaess permissions with the urrent Γ irrespetive of the values arried by thatmessage. The onstant H in the rule (TRe) is H df

= 2 · |Loc| ·
(

1+
∑

id∈Id |X
id
1 | ·

. . .·|X id
mid

|
). The value of H omes from rather tehnial onsiderations needed toprove results. We an always ensure that H is a well-de�ned integer and (TIn)is a �nitary rule aording to the following argument.Remark 2. The judgement system in Table 5 makes important use of data throughthe (TOut) rule as a reeived message may arry a loation or hannel namewhih may later be used by other rules. Other kinds of values arried by mes-sages or present in proess desriptions are ignored. Hene, for the purpose of

12 G.Ciobanu and M.Koutny(TSub) Γ ′ ⊆ Γ Γ ′ ⊢l P

Γ ⊢l P(TStop) ∅ ⊢l stop(TMove) apm(l, l′)(Γ) ⊢l′ P

Γ ⊢l go
∆t l′ then P(TOut) put〈a@l〉 ∈ Γ Γ ⊢l P Γ ⊢l Q

Γ ⊢l a
∆t

! 〈v〉 then P else Q(TIn) get〈a@l〉 ∈ Γ ∀v ∈
∏

X : Γ ⊢l {v/u}P Γ ⊢l Q

Γ ⊢l a
∆t

? (u:X) then P else Q(TRe) Γ ⊢l id(v)
↑H

Γ ⊢l id(v)(TPar) Γ ⊢l P Γ ⊢l Q

Γ ∪ Γ ⊢l P |QTable 5. Derivation rules for proesses with safe aess permissions.safe aess permissions, we an replae all non-loation and non-hannel valuesby a speial value τ , and all the data types di�erent from Loc and Chan by asingleton type X = {τ}. In this way, all the data sets beome �nite. Hene, inpartiular, H is an integer value, and ∏

X in (TIn) is a �nite set. ⊓⊔We have de�ned what it means to have safe aess permissions in the aseof a single-omponent network. In the general ase, a network N has safe aesspermissions if eah of its omponents does. These two de�nitions are onsistentin the sense that Γ ⊢l P i� Γ ⊢l Pi, for every omponent network l [[Pi:Γ]] of asingle-omponent network l [[P :Γ]], whih follows from the rule (TPar).The �rst main result states that safe aess permissions is preserved over thenetwork evolutions de�ned by the operational semantis.Theorem 1 (soundness). If a well-formed network N has safe aess permis-sions, and N ′ is reahable from N , then N ′ has also safe aess permissions.The seond main result is that in a network with safe aess permissionsthere are no attempts to aess a ommuniation hannel without an appropriateaess permission. This result should be seen as a justi�ation of our interest inthe notion of safe aess permissions.Theorem 2 (safety of ommuniations). Let N be a well-formed networkwith safe aess permissions.
l [[a∆t

! 〈v〉 then P else Q : Γ]] ∈ comp(N) implies put〈a@l〉 ∈ Γ
l [[a∆t

? (u:X) then P else Q : Γ]] ∈ comp(N) implies get〈a@l〉 ∈ Γ .

Timed Migration and Interation with Aess Permissions 13As an immediate orollary of Theorem 2, for a network with safe aess permis-sions it is possible to simplify the operational rule for proess ommuniation,by deleting put〈a@l〉 ∈ Γ and get〈a@l〉 ∈ Γ ′ in rule (Com), and so simplifyingthe implementation.The third main result is that the notion of a network with safe aess per-missions is omplete in the sense that a network whih does not satisfy thisproperty an always be plaed in an environment whih reveals its potential tobreak safety of interproess ommuniation.Theorem 3 (ompleteness). Let N = l [[P : Γ]] be a well-formed networksuh that Γ 6⊢l P . Then there is a well-formed network N ′ with safe aesspermissions as well as a well-formed network N ′′ reahable from N |N ′ suhthat one of the following holds.� There is a omponent l′ [[a∆t
! 〈v〉 then P ′ else P ′′ : Γ ′]] of N ′′ suh that

put〈a@l′〉 /∈ Γ ′.� There is a omponent l′ [[a∆t
? (u:X) then P ′ else P ′′ : Γ ′]] of N ′′ suhthat get〈a@l′〉 /∈ Γ ′.We developed a sound and omplete system for safe of ommuniation and mi-gration in open networks. Hene we are able to validate systems where one doesnot need to hek aess permissions as they are guaranteed not to be violated,improving implementation. Moreover, the results an be extended allow design-ing systems in whih proesses are not bloked (deadloked) beause of the lakof dynamially hanging aess permissions.4 Conlusions and Related WorkWe introdued a distributed proess algebra with proesses able to migrate be-tween di�erent loations and timing onstraints used to ontrol migration andommuniation. We use loal loks and loal maximal parallelism of ations.Proesses have appropriate aess rights to ommuniate; the aess permissionsare dynami and an hange. We have provided an operational semantis of thismodel, and investigated the safety of ommuniation and migration in terms ofaess permissions. While we are not aware of any approah ombining all theseaspets regarding mobility with timing onstraints, loal loks, and dynamiaess permission mehanism, our work is related to a large body of literatureusing proess algebra in (type-based) seurity. Several systems enompass var-ious forms of aess ontrol poliies in distributed systems. Among them, thework on Dpi alulus in [13℄ uses type systems to ontrol statially the aessto the resoures at the di�erent loations of a distributed system. Other relatedwork on aess ontrol in distributed systems is done in the ontext of the lan-guage Klaim and its extensions, using type systems that enable the dynamiexhange of aess rights. The paper [7℄ ombines a weak form of information �owontrol with typed ryptographi operations to ensure safe stati aess ontroland seure network ommuniations. The paper [5℄ use ryptographi operations

14 G.Ciobanu and M.Koutnyand apability types to get a seure implementation of a typed pi-alulus in or-der to realise various poliies for aessing the ommuniation hannels. Noneof these systems, however, uses together mobility as a �rst lass itizen on-trolled by timing onstraints, dynami aspets of the aess permissions, loalloks and parallelism. These advantages of the new model an allow to spe-ify and enfore more diverse and expressive seurity poliies based on aesspermissions. This ould be done in the ontext of designing good programminglanguage supporting migration in a distributed environment [16℄. On the otherhand, several prototype languages have been designed and experimental imple-mentations derived from proess aluli like Klaim [4℄ and Aute [15℄. Theseprototype languages did not beome a pratial programming language beausehard questions revolving mainly around issues relating to seurity. PerTiMois intended to help bridging the gap between the existing foundational proessalgebras and forthoming realisti languages. It extends some previous attemptsrelated to tDpi [10℄ and TiMo [8℄. PerTiMo derives from TiMo model (a sim-pli�ed distributed π-alulus with expliit timeouts) presented in [8℄ by addinga type system in order to express seurity aspets related to aess permissions.The basi notion of a timeout in TiMo seemed useful and elegant. PerTiMoretains this notion and, in addition, it inorporates aess permissions in orderto provide formal foundations for seurity problems relating to the adequateprotetion of aess ontrol information in distributed environment.As related work, we should mention distributed pi-alulus having an expliitnotion of loation, and dealing with stati resoures aess [12℄ by using a typesystem. The paper [3℄ studies a π-alulus extension with a timer onstrut, andthen enrihes the timed πt with loations. Other timed extensions of proess al-gebras have been studied in [2, 11℄. In [6℄ the authors present a typed π-aluluswith groups and group reation in whih eah name belongs to a group. Therules for good environments ensure that the names and groups delared in anenvironment are distint, and that all the types mentioned in an environmentare good. A onsequene of the typing disipline is the ability to preserve se-rets, namely preventing ertain ommuniations that would leak serets. Thetype system is used for regulating the mobile omputation, allowing to partitionthe proesses into disjoint groups in order to speify the behaviour of both om-muniation and mobility. Somehow related to our dynami aess permissions,[1℄ presents a parametri alulus for proesses exhanging ode whih may on-tain free variables to be bound by the reeiver's ode (alled open mobile ode).Type safety is ensured by a ombination of stati and dynami heks of suhan exhange of open ode. In this way it is possible to express rebinding of odein a distributed environment in a relatively simple way.Deriving onrete implementation from PerTiMo is part of future work,and the approah presented in this paper is just a �rst step in this diretion. Inour future work we plan to extend the urrent model as follows:� aess permissions to loations to ontrol migrations of proesses;� seurity levels for migrating proesses to ontrol aess permissions to han-nels and loations;

Timed Migration and Interation with Aess Permissions 15� relaxing the synhronisation resulting from the maximally parallel semantis,by retaining maximal parallelism within eah loation, but allowing loationsto proeed with di�erent speed;� rules for well-typing of values in exhanged messages;� de�ning and analysing seurity poliies for aess and migration ontrol; and� introduing and analysing failures in proess migration.Referenes1. D.Anona, S.Fagorzi and E.Zua: A Parametri Calulus for Mobile Open Code.ENTCS 192 (2008) 3�22.2. J.Baeten and J.A.Bergstra: Disrete Time Proess Algebra: Absolute Time, Rela-tive Time and Parametri Time. Fundamenta Informatiae 29 (1997) 51�76.3. M.Berger: Towards Abstrations For Distributed Systems. Imperial College, De-partment of Computing (2002).4. L.Bettini et al.: The Klaim Projet: Theory and Pratie. Pro. of Global Com-puting: Programming Environments, Languages, Seurity and Analysis of Systems,Springer, LNCS 2874 (2003) 88�150.5. M.Bugliesi and M.Giunti: Seure Implementations of Typed Channel Abstrations.Pro. of POPL, ACM (2007) 251�262.6. L.Cardelli, G.Ghelli and A.Gordon: Serey and Group Creation. Inf. Comput. 196(2005) 127�155.7. T.Chothia, D.Duggan and J.Vitek: Type-based Distributed Aess Control. Pro.of CSFW'03, IEEE Computer Soiety (2003) 170�184.8. G.Ciobanu and M.Koutny: Modelling and Veri�ation of Timed Interation andMigration. Pro. of FASE'08, Springer, LNCS 4961 (2008) 215�229.9. G.Ciobanu and M.Koutny: TiMoTy: Timed Mobility with Types. Tehnial Re-port of Formal Methods Laboratory, Romanian Aademy, Institute of ComputerSiene, Iasi (2010).10. G.Ciobanu and C.Prisaariu: Timers for Distributed Systems. ENTCS 164 (2006)81�99.11. F.Corradini, G.L.Ferrari and M.Pistore: On the Semantis of Durational Ations.Theoretial Computer Siene 269 (2001) 47�82.12. M.Hennessy: A Distributed π-alulus. Cambridge University Press (2007).13. M.Hennessy and J.Riely: Resoure Aess Control in Systems of Mobile Agents.Information and Computation 173 (2002) 82�120.14. R.Milner: Communiating and Mobile Systems: the π-alulus. Cambridge Univer-sity Press (1999).15. P.Sewell et al.: Aute: High-Level Programming Language Design for DistributedComputation. Journal of Funtional Programming 17 (2007) 547�612.16. T.Thorn: Programming Languages for Mobile Code. ACM Computing Surveys 29(1997) 213�239.

	TRCover1291
	TRAbstract1291
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1291
	1291withoutcovers

